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Sp(4) gauge theories on the lattice:
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We perform lattice studies of meson mass spectra and decay constants of the Sp(4) gauge theory in the
quenched approximation. We consider two species of (Dirac) fermions as matter field content, transforming
in the 2-index antisymmetric and the fundamental representation of the gauge group, respectively. All
matter fields are formulated as Wilson fermions. We extrapolate to the continuum and massless limits and
compare to each other the results obtained for the two species of mesons. In the case of two fundamental
and three antisymmetric fermions, the long-distance dynamics is relevant for composite Higgs models. This
is the first lattice study of this class of theories. The global SU(4) x SU(6) symmetry is broken to the
Sp(4) x SO(6) subgroup, and the condensates align with the explicit mass terms present in the lattice
formulation of the theory. The main results of our quenched calculations are that, with fermions in the
2-index antisymmetric representation of the group, the masses squared and decay constant squared of all
the mesons we considered are larger than the corresponding quantities for the fundamental representation,
by factors that vary between ~1.2 and ~2.7. We also present technical results that will be useful for future
lattice investigations of dynamical simulations, of composite chimera baryons, and of the approach to large
N in the Sp(2N) theories considered. We briefly discuss their high-temperature behavior, where symmetry
restoration and enhancement are expected.
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In composite Higgs models (CHMs) [1-3], the Higgs
fields, responsible for electroweak symmetry breaking,
arise as pseudo-Nambu-Goldstone bosons (pNGBs) in a
more fundamental theory, hence addressing the little
hierarchy problem of generic extensions of the Standard
Model (SM) of particle physics. In comparison to the other
SM fermions, the top quark has a large mass, making it
heavier than the W, the Z, and even the recently discovered
Higgs boson [4,5]. It is then natural to complete the CHM
scenario by postulating that also the top quark has
composite nature, at least partially, at the fundamental
level. The additional model-building dimension added to
this framework by (partial) top compositeness yields a
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richness of potential implications that has been explored in
the literature on the subject in a range of possible directions
and motivates us to study its dynamical origin with non-
perturbative techniques. The literature on composite Higgs
models is indeed vast (see for instance Refs. [6—40]),
especially in connection with dynamical theories charac-
terized by the SU(4)/Sp(4) coset (see for instance
Refs. [41-61]).

In Ref. [62] (see also Refs. [63,64] and the more recent
Refs. [65-68]), some of us proposed a systematic program
of exploration of the lattice dynamics of Sp(2N) gauge
theories. Our main scientific motivation is the application
of the results of such studies to the CHM context. In order
to realize also top compositeness, it is necessary to imple-
ment on the lattice matter fields with mixed representations.
For example, the model discussed in Refs. [12,43] requires
that the matter content consists of Ny =2 Dirac fields
transforming in the fundamental representation of Sp(2N),
supplemented by n, = 3 Dirac fields transforming in the
antisymmetric representation of Sp(2N). This dynamical
system is expected to yield the spontaneous breaking of the
SU(4) x SU(6) global symmetry to its Sp(4) x SO(6)
subgroup. The introduction of diagonal mass terms for
the fermions is compatible (aligned) with the vacuum
structure and provides a degenerate nonvanishing mass
for the resulting 5 4+ 20 pNGBs. The lattice treatment of
such a system with multiple dynamical fermion represen-
tations is a novel arena for lattice gauge theories, and only
recently have calculations of this type been published, in
the specific context of theories with SU(4) gauge group
[21,27,29,33,38].

In this paper, we take a first step in this direction for
Sp(2N) gauge theories. We consider the Sp(4) gauge
theory and treat the two species of fermions in the quenched
approximation; only the gluon dynamics is captured by the
lattice numerical study, but the operators used to compute
the relevant correlation functions involve both types of
matter fields. We compute the mass spectra and decay
constants of the mesons built both with fundamental and
antisymmetric fermions and perform their continuum
extrapolation. We compare the properties of mesonic
observables obtained with the two representations, which,
in the dynamical theory, is important for CHM phenom-
enology. Since very little is known about the Sp(2N) gauge
theories, our quenched study is a first benchmark of these
theories and would serve as a starting point for a more
extensive and detailed investigation of such models.

We treat the relevant degrees of freedom with a low-
energy effective field theory (EFT) that we employ to
analyze the numerical data extrapolated to the continuum
limit. The EFT proposed in Ref. [62] for the theory with
SU(4)/Sp(4) coset is based on the ideas of hidden local
symmetry, adapted from Refs. [69-73] (and [74-77]), and
supplemented by some simplifying working assumptions.

Here we return to the EFT to improve it and to generalize it
to the case of the SU(6)/SO(6) coset.

The paper is organized as follows. In Sec. II, we define
the Sp(4) theory with field content we are interested in, by
writing both the Lagrangian density of the microscopic
continuum theory as well as its low-energy EFT descrip-
tion. We devote Sec. III to describing the lattice action we
adopt, the Monte Carlo algorithm we employ, and other
important aspects of the lattice study we perform, such as
scale setting and topology. In Sec. IV we present our results
for the calculation of the masses and the (renormalized)
decay constants of the lightest mesons in the quenched
approximation. We compare the results for quenched
fundamental and antisymmetric fermions. We also discuss
in Sec. V a first attempt at matching the results to the low-
energy EFT description applicable to pseudoscalar (PS),
vector (V) and axial-vector (AV) states. We conclude by
summarizing and discussing our main findings and by
outlining future avenues for investigation in Sec. VL.

The presentation is complemented by a rather generous
set of Appendixes, intended to be of use also beyond the
specific aims of this paper, for the research program we are
carrying out as a whole. We expose some details and
conventions in the treatment of spinors in Appendix A and
some technical points about the treatment of massive spin-1
particles in Appendix B. Technical points about the
embedding of the SM gauge group in the context of
CHMs are highlighted in Appendix C. Appendix D con-
tains some numerical tests of the topological charge history
and of its effect on spectral observables, in the illustrative
case of a numerical ensemble that has a fine lattice spacing.
In Appendix E, besides briefly summarizing some proper-
ties of QCD light flavored mesons, we discuss general
symmetry properties of the mesons in theories with
symmetric cosets, that are important for spectroscopy.
We also touch upon possible high-temperature symmetry
restoration and enhancement in Appendix E 1. We explic-
itly write the operators relevant as sources of all the mesons
in Appendix F, and in Appendix F 1 we specify the sources
of PS, V and AV mesons in the SU(4)/Sp(4) case, by
adopting a specific choice of SU(4) generators and
normalizations.

II. THE MODEL

In this section, we describe the specific model of interest,
borrowing ideas from Refs. [12,43], and we describe the
basic properties of the long-distance EFT description(s) we
use later.

A. Continuum microscopic theory

The Sp(4) gauge theory we started to study in Ref. [62]
has matter content consisting of two Dirac fermions Q,
where a = 1, ...,4 is the color index and i = 1, 2 the flavor
index, or equivalently four two-component spinors ¢/¢ with
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TABLE 1.  Field content of the microscopic theory (V,,, ¢, y)
and of the low-energy EFT describing the pNGBs (Z¢ 51, Mg 1).
Sp(4) is the gauge group, while SU(4) and SU(6) are the global
symmetries. The elementary fields V,, are gauge bosons, while ¢
and y are two-component spinors. ¢ and X,; are composite scalar
fields. They capture the long-distance dynamics of operators that
are bilinear in g and y, the VEVs of which are responsible for the
breaking SU(4) — Sp(4) and SU(6) — SO(6), respectively. The
mass matrices Mg and M, are treated as scalar spurions, formally
transforming as ~6 ~ 6 of SU(4), and ~21 of SU(6), respectively.

Fields Sp(4) SU(4) SU(6)
v, 10 1 1
q 4 4 1
W 5 1 6
%6 1 6 1
Mg 1 6~6 1
) 1 1 21
M, 1 1 21

j=1,...,4. Following [12,43], we supplement it by three
Dirac fermions W* transforming in the antisymmetric
2-index representation of Sp(4), or equivalently by
six two-component spinors w7/, with j =1,...,6. The
field content is summarized in Table I. The Lagrangian
density is

1 1, — . ‘ )
L= —ETrVﬂVV’““ +§(iQ’ay”(DﬂQ’)“ —iD,Q' v Q')
M0 44 (1" (D, W) — D, i)
—m@ab‘l‘k”b. (1)

The covariant derivatives are defined by making use of the
transformation properties under the action of an element U
of the Sp(4) gauge group—Q — UQ and ¥ - UYUT—
so that

Vlw = aﬂvv - aI/VM + ig[vﬂ’ V”]’ (2)
D,Q' = 0,0' +igV,0', (3)
DY =9,% +igV, W + ig¥/ V], 4)

where ¢ is the gauge coupling.

The Lagrangian density possesses a global SU(4)
symmetry acting on the fundamental fermions Q and a
global SU(6) acting on the antisymmetric-representation
fermions W. The mass terms break them to the Sp(4) and
SO(6) subgroups, respectively. The unbroken subgroups
consist of the transformations that leave invariant the
symplectic matrix € and the symmetric matrix w, respec-
tively, that are defined by

0 0O 1 0
Q=0Q, =0k= 0 0l ,

-1 0 0 O

0O -1 0 O

00 01 00

00 0 O0T1TO0
e

01 0 0 0 O

00 1 0 0O

By rewriting explicitly the fermion contributions to the
Lagrangian density in two-component notation as follows
(see Appendix A for the list of conventions about spinors):

w qia
Q <Qab(_(~jqi+2*>b>’

g _ [ bdv/ib ). ()
QU (=Cy'™)

the global symmetries become manifest:

1 1 AN ia _ ; iNT =4 ja
,C:——TI’VMDV’W—|—§(Z(q1)26ﬂ(l)ﬂqj) _l(Dﬂq])ZG; q] )

2

1 ‘ _ e
_EMij(qjaTQaqukb—(q/)&QabC(qk*>b)
5 ({050 (D) = (D)5 )

1 i ~ . ~
— Emwjk (wjabTQMdekacd _ (l//] )Zanchdcwk*)Cd) )
(7)

Of the 15 generators T4 of the global SU(4) and 35
generators 18 of SU(6), we denote with A =1,...,5 and
with B =1, ..., 20 the broken ones, which obey

QA —TATQ =0, wf =BT =0,  (8)

while the unbroken generators with A = 6, ..., 15 and with
B =21,...,35 satisfy
QT4 + TATQ =0, ot? + 17w = 0. 9)
As described in Appendix C, the Higgs potential in the
SM has a global symmetry with group SU(2), x SU(2)g ~
SO(4), which in the present case is a subgroup of the
unbroken global Sp(4). The SU(3), gauge group charac-
terizing QCD is a subgroup of the unbroken global SO(6).
And finally the generator Y of the hypercharge U(1),
group is a linear combination of one of the generators of
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SU(2)g and of the generator of the additional U(1)y
unbroken subgroup of SO(6) that commutes with SU(3)..

B. The pNGB fields

At low energies, the gauge theory with Sp(4) group is
best described by an EFT that contains only the fields

corresponding to the pNGBs parametrizing the %
coset. We define the fields X4 and X,; in terms of the
transformation properties of the operators that are respon-

sible for spontaneous symmetry breaking, hence identifying
zgm ~ QabqnaTCqmb’ (10)

S ~ Q" Ty (11)

Y transforms as the antisymmetric representation
of SU(4), and %,, as the symmetric representation of
SU(6). We parameterize them in terms of fields 74 and

TTp1 as

Yo = e2ins/fo () — QeZing/fe,

T = e2imi/fa gy = weziﬂ;/fﬂ , (12)
where 7 = ziT# with A = 1,...,5 and 7, = 75,1 with
B =1, ...,20 are Hermitian matrix-valued fields and the

generators T4 are normalized by the relation TrTAT? =
168 = Tr"1B. The decay constants of the pNGBs are
denoted by f and f»;, and the normalization conventions
we adopt correspond to those in which the decay constant in
the chiral Lagrangian of QCD is f, ~ 93 MeV.

In order to identify the operators to be included in the
Lagrangian density describing the mass-deformed theory,
one treats the (diagonal) mass matrices as (nondynamical)
spurions Mg = MQ and M,; = —mw (see Table I). The
vacuum expectation value (VEV) of the operators %; yields
the symmetry-breaking pattern SU(4) x SU(6) — Sp(4)x
SO(6), aligned with the explicit breaking terms controlled
by Mg and M5, and hence in the vacuum of the theory we
have (z;) = 0.

At the leading order in both the derivative expansion and
the expansion in small masses, the Lagrangian densities of
the EFT describing the dynamics of the pNGBs of both the
SU(4)/Sp(4) and SU(6)/SO(6) cosets are given by

2 3
L; :ZiTr{aﬂZi(aﬂZi)*} _%Tr{MiZi} +H.c.

1

=Tr{aﬂn,-aﬂn,~}+31?Tr{[aﬂni,mnaﬂm,m]}+-~~
(13)

miU?

31t

ml"U?

1?

Trr? +

1 -
—I—Emiv?Tr(ZiZ;) - Traf + -+, (14)

for i=6, 21, and with mg=M and m,y = m."
The condensates are parameterized by vg and v,;, which
have dimension of a mass. In the SU(4)/Sp(4) case
TrEeX, = 4, and in the SU(6)/SO(6) case TrX, =}, = 6.

In order to describe the coupling to the Standard Model,
one chooses appropriate embeddings for the relevant
SU(2), x SU(2)g and SU(3). x U(1)y groups and pro-
motes the ordinary derivatives to covariant derivatives. By
doing so, the irreducible representations of the unbroken
Sp(4) x SO(6) can be decomposed in representations of
the SM groups (see Appendix C).

Starting from the SU(4)/Sp(4) coset, the five pNGBs
transform as the fundamental representation of SO(5) ~
Sp(4). Because SO(4) ~SU(2), x SU(2)g is a natural
subgroup of SO(5), one finds the decomposition 5 =144,
and hence four of the pNGBs are identified with the SM
Higgs doublet, while the one additional degree of freedom
is a real singlet of SU(2), x SU(2)g. In the conventions of
[50,62], the latter is denoted by z3—or # if one needs to
avoid ambiguity with the set of pNGBs from the
SU(6)/SO(6) coset (see also Appendix C 1).

A similar exercise can be performed for the SU(6)/
SO(6) coset. By remembering that SO(6) ~ SU(4), the
20 pNGBs transform as the 20’ irreducible representation
of this SU(4) [the only self-conjugate among the three
representations of SU(4) that has 20 real elements].”
The decomposition of SU(4) in its maximal SU(3), x
U(1)y subgroup dictates that 20’ =8 + 6¢ (see also
Appendix C 1).

C. EFT: Hidden local symmetry

This subsection is devoted to the treatment of spin-1
composite states. All irreducible representations coming
from the SU(4)/Sp(4) theory can be decomposed follow-
ing the same principles illustrated by the pNGBs, into
representations of the groups relevant to SM physics. For
example the 10 of SO(5) decomposes as 10 =4 + 6 of
SO(4), so that the composite vector mesons V of the
SU(4)/Sp(4) theory (corresponding to the p mesons of
QCD) decompose into a complex doublet and a complex
triplet of SU(2), x SU(2)g. The axial vectors AV (corre-
sponding to the a; mesons in QCD) transform with the
same internal quantum numbers as the pNGBs and hence
give rise to a complex doublet and a real singlet. In the

'In order to make the expansion for the SU(6)/SO(6) formally
identical to the SU(4)/Sp(4) case, we chose opposite signs in the
definition of the mass matrices and condensing operators. The
origin for this technical annoyance is the fact that Q> = —1,,
while @*> = 1. We also note that one has to exercise caution with
the trace of the identity matrix, which may introduce numerical
factors that differ in the expansions when traces are taken in
products that do not include the group generators.

In the rest of the paper, we will always denote this repre-
sentation as 20/, for the purpose of avoiding confusion with the
representations of the unrelated broken global SU(4).
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SU(4)ep  SU(4)6a SU(6)2a18 SU(6)214

* 77 56 77 821

FIG. 1. The moose diagrams representing the low-energy EFT
descriptions. On the left SU(4)4, is gauged, while SU(4)¢p is a
global symmetry [including the SU(2), x SU(2)g], and the
combination of the nontrivial VEVs of Sg and X4 breaks the
symmetry to Sp(4), giving mass to all the vector mesons and
leaving a set of five light pions. On the right, the same principles
are applied to SU(6),,5 x SU(6),,,4 and to its breaking to the
SO(6) subgroup.

SU(6)/SO(6) coset, the composite vector mesons V trans-
form as the 15 of SO(6) ~ SU(4), which decomposes as
15=1+ 3¢+ 8 of SU(3),, and the axial-vector mesons
AV transform as the 20’ of SO(6), which decomposes as
20 =8 4 6¢ of SU(3),.

We study a reformulation of the low-energy EFT
description of the model, that is intended to capture also
the behavior of the lightest vector and axial-vector states, in
addition to the pNGBs (as in the chiral Lagrangian). It is
based on hidden local symmetry [69—73] (see also [74-77])
and illustrated by the diagram in Fig. 1. There are well-
known limitations to the applicability of this type of EFT
treatment, which we will discuss in due time.

We consider the two moose diagrams as completely
independent from one another. We follow closely the
notation of Ref. [62] in describing the SU(4)/Sp(4) coset,
except for the fact that we include only single-trace
operators in the Lagrangian density. Because the breaking
is due to the condensate of the operator transforming in
|

1 K T 12
Lo = —7TrA, A" — ~Tr{A,Z(A")'Z"} +—
2 2 4

S

b_
Ty

the 6 of SU(4), we label all the fields of relevance to the
low-energy EFT with a subscript, as in S¢. The scalar fields
Se transform as a bifundamental of SU(4)5 X SU(4)g4,
while X transform as the antisymmetric representations of
SU(4)¢4- Hence the transformation rules are as follows:

Se = UepSeUl,, T = UgaZUL,,  (15)
where Ug, and Ugp are group elements of SU(4)q, and
SU(4)ep, respectively.

The EFT is built by imposing the nonlinear constraints
2622 =1, = S6S2, which are solved by parameterizing
Se = e%os/F and £g = e2m/fQ = Qe6/f Mg = MQ s a
constant matrix, introducing explicit symmetry breaking.
One can think of it as a spurion in the antisymmetric
representation of SU(4)¢g, so that as a field it would
transform according to M; — UggMiUL,. The 15 real
Nambu-Goldstone fields 65 = 64T and five real 75 =
7aT* are in part gauged into providing the longitudinal
components for the 15 gauge bosons of SU(4)e,, so that
only five linear combinations remain in the spectrum as
physical pseudoscalars. One then uses Z; and its derivatives,
as well as M, to build all possible operators allowed by the
symmetries, organizes them as an expansion in derivatives
(momenta p?) and explicit mass terms (M), and writes a
Lagrangian density that includes all such operators up to a
given order in the expansion. We also restrict attention to
operators that can be written as single traces, as anticipated.

Truncated at the next-to-leading order, the Lagrangian

density takes the following form, which we borrow from
Ref. [62]™:

Tr{D,Z(D"%)"} + FTzTr{DMS(D”S)T}

i Tr{D,(SZ)(D*(SZ))"} + c;Tr{D”(SZST)(D”(SZST))T} - %Tr{MSZST} + H.c.

- %Tr{M(DﬂS)Z(D”S)T} - %Tr{MS(DMZ)(DﬂS)T} +He.

y v v
- gTr{sz[(Aﬂ )TSTMS — STMSA™]} + H.c.

y i v
- g“Tr{AWz[(Af )TSTMS + STMSA™]} + H.c.

2
U

> Tr{MSZSTMSES"} + H.c.

+

The very last term of the Lagrangian density differs from
Ref. [62], as we rewrite the subleading correction to the pion mass
in terms of a single-trace operator. The equations giving the
masses and decay constants are independent of the dimension-
ality of the matrices used. We notice also an inconsequential typo
in Eq. (2.16) of [62], in which the last term should have a + sign
rather than a — sign, in order to be consistent with Egs. (2.30) and
(2.31) of [62] itself.

(16)

|

We omitted, for notational simplicity, the subscript
“6” on all fields and all the parameters. We should
stress that we made some simplifications, and omitted
some operators, as discussed in [62]. The covariant
derivatives introduce the parameter gy, controlling the
coupling of the spin-1 states. They can be written as
follows:
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D,S = 0,8 — iSgyA,, (17)
and
DX = 0,2+ i[(gvA)Z +Z(gvA,)T].  (18)

The analog of Eq. (16) in the SU(6)/SO(6) case is
obtained in the same way. The only changes are the
replacement of ¥¢ by X,,, that now depends on 20 z},
fields, of S¢ by Sy, that depends on 35 %, fields, of Mg by
My, = —m, and of Aj, by the 35 vector bosons A3, of
SU(6),, - Finally, one must also require the change of sign
K71 <> —kKg in the second term of the Lagrangian, for the
same reason explained in footnote 1.

With the conventions outlined above, masses and decay
constants are given by the same relations as in Ref. [62],
both for the mesons sourced by fundamental and antisym-
metric fermion bilinears:

1
Mi=—— gA(bfP+Fr42 , 19
A\ 4(1+K+my3)gV ( f + + mvl) ( )
1
M2 =—— 0 2(bFPEF?4LD
AV 4(1 _K__my4)gv ( f + + mvl)
Iy - ), (20)
1 —x—my,
1
f%,zi(bf2+F2+2mv1), (21)

(bf? — F? 4+ 2m(v, — 1,))?

fav = 2((b+4)f? + F? = 2mv, + 4muv,)’ (22)

fo=F+(b+2)f. (23)

The pNGB decay constants obey the following
relation”:

fis = 15— 1% = fav- (24)

It was observed in Ref. [62] that f3 = f3q + f3 + fiy is
independent of m as the accidental consequence of the
truncations and of the omission of some operators. It was
also shown that some of the couplings parameterize the
violation of the saturation of the Weinberg sum rules, when
truncated at this level—retaining only the lightest excita-
tions sourced by the V and AV operators rather than the
whole infinite tower of states.

In both the SU(4)/Sp(4) as well as SU(6)/Sp(6)
cosets, truncated at this level the Lagrangian implies that

*In Ref. [62] we denoted the decay constant of the PS mesons
as f,(0), to explicitly highlight that this is not the constant that
naturally appears in the zz — 7z scattering amplitude.

the mass of the pions satisfies a generalized Gell-Mann—
Oakes—Renner relation, which reads as follows:

ks = (v + mid). 25)

which implies a dependence of the condensate on m. We
notice the presence of the constant gy, which enters the
gypp coupling between V and two PS states and has an
important role in controlling the EFT expansion.

III. LATTICE MODEL

The lattice action and its numerical treatment via
Monte Carlo methods are the main topics of this section.
Most of the material covered here is based upon well-
established processes, and we discussed its application to
our program elsewhere [62,67]; hence, we summarize it
briefly, mostly for the purpose of defining the notation and
language we adopt later in the paper.

A. Lattice definitions

In the numerical (lattice) studies, we should adopt a
discretized four-dimensional Euclidean-space version of
Eq. (1). But as we perform our numerical work in the
quenched approximation, we only need the pure gauge part
of the Lagrangian density, as in pioneering studies of
Sp(2N) Yang-Mills theories in Ref. [78]. We employ the
standard Wilson action

S =8> <1 - %ReTrP,,,,(x)) , (26)

X p<v

where # = 8/ g7 is the bare lattice coupling and the trace is
over color indices. The elementary plaquette P, is a path-
ordered product of (fundamental) link variables U, (x), the
group elements of Sp(4), and reads as follows:

Pu(x) = U, (x)U, (x + D)Uj(x + D)UL(x).  (27)

Given the action in Eq. (26), we generate the gauge
configurations by implementing a heat bath (HB) algorithm
with microcanonical overrelaxation updates. Technical
details, including the modified Cabbibo-Marinari pro-
cedure [79] and the resymplectization process we adopted,
can be found in Refs. [62,65]. The Hirep code [80],
appropriately adapted to the requirements of this project,
is used for the numerical calculations.

The pure Sp(4) Yang-Mills lattice theory at any values
of f can in principle be connected smoothly to the
continuum, as no evidence of bulk transitions has been
found [78]. In this study, we work in the regime with
p > 71.5. In a previous publication [62], some of us used
two values of the coupling (f = 7.62 and f = 8.0) and
performed preliminary studies of the meson spectrum
with fermions in the fundamental representation, in the
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TABLE II. List of ensembles used for quenched calculations.
For each ensemble, we report the bare coupling S, the lattice size
N, x N3, the average plaquette (P) and the gradient-flow scale
wo/a = 1/a.

Ensemble p N, x N3 (P) wo/a
QB1 7.62 48 x 243 0.60192 1.448(3)
QB2 7.7 60 x 483 0.608795 1.6070(19)
QB3 7.85 60 x 483 0.620381 1.944(3)
QB4 8.0 60 x 483 0.630740 2.3149(12)
QB5 8.2 60 x 483 0.643228 2.8812(21)

quenched limit. In order to carry out the continuum
extrapolation, here we extend those studies by including
three additional values of the bare lattice coupling, f = 7.7,
7.85, 8.2. The four-dimensional Euclidean lattice has size
N, x N3, with N, and N, the temporal and spatial extents,
respectively. We impose periodic boundary conditions in all
directions for the gauge fields. While for the ensemble at
p =7.62 we reuse the configurations generated on a
48 x 243 lattice already employed in the quenched calcu-
lations in Ref. [62], for all the other values of the coupling
we generate new configurations with 60 x 483 lattice
points. For each lattice coupling we generate 200 gauge
configurations, separated by 12 trajectories’ between adja-
cent configurations. To ensure thermalization, we discard
the first 600 trajectories. In Table II we summarize the
ensembles. In addition to the ensemble name, the lattice
coupling and the lattice size, we also present two measured
quantities: the average plaquette (P) and the gradient-flow
scale wy/a in lattice units. The former is defined by
(P)=Re) >, TtP,(x)/(24 x N, x Nj), while the
latter will be defined and discussed in the next subsection.
The statistical uncertainties are estimated by using a
standard bootstrapping technique for resampling, which
will also be applied to the rest of this work.

B. Scale setting and topology

In numerical lattice calculations, all dimensional quan-
tities can be written in terms of the lattice spacing a, for
example by defining a dimensionless mass as m'*' = ma.
But in taking the continuum limit, the lattice spacing
vanishes, ¢ — 0. Hence, in order to connect the lattice
observables to continuum ones, we have to set a common
physical scale that allows the comparison. We adopt as our
scale-setting method Liischer’s gradient-flow (GF) scheme,
using the definition of Wilson flow in Ref. [81] (see also

3 Conventionally, for heat bath simulations like those used in
this work, a full update of the lattice link variables is called a
sweep rather than a trajectory. However, to match the terminol-
ogy of our dynamical simulations [62-64,67,68], we use the term
trajectory for a full lattice gauge field update also in the present
context.

Refs. [82—84]). This method is particularly suitable for the
purpose of this work, since it relies on theoretically defined
quantities that do not require direct experimental input.

The scale-setting procedure with the GF scheme in
Sp(4) theories has been first discussed in Ref. [62], both
for the pure Yang-Mills and for the theory with two
fundamental Dirac fermions (see also [63,67]). We follow
the same procedure throughout this work: we define the
flow scale wy by W|,_,2 = W) [85], where W(1) is the
derivative of the action density built from gauge fields at
nonzero fictitious flow time ¢. The reference value W, =
0.35 has been chosen to minimize both discretization and
finite-volume effects [62] (though with the caveats dis-
cussed in Refs. [86-88]). We also choose a four-plaquette
clover for the definition of the field-strength tensors [81].
The resulting values of the flow scale in lattice units wy/a
are shown in Table II.

We measure the history of the topological charge Q to
monitor the possible emergence of topological freezing,
which might affect spectral measurements [89,90] (see also
Refs. [91,92]). Since O =", 555 €,0 TH{ U, () U 6 (x) }
is dominated by ultraviolet (UV) fluctuations when calcu-
lated directly on the configurations in ensembles QB1-5,
configurations that have been smoothed by the gradient
flow are instead used. Q is measured at the point in the flow

such that the smoothing radius /87 = L/2.

In Fig. 2 we present the histories and histograms
of Q along the Markov chain for all ensembles in
Table II, the latter of which is fitted with the Gaussian

(0-0

fit form n(Q) o« exp (— T‘))Z) In Table III we present the

results of this fit and the exponential autocorrelation time
Texp Calculated via a fit to the autocorrelation function of Q.
In the five ensembles, there is no clear evidence of a freeze-
out of the topology; the histograms clearly show sampling
from multiple topological sectors, and the distributions are
peaked within 1o of Q = 0.

However, as we move to finer lattice spacing, we observe
that the autocorrelation time of the topological charge
grows significantly; in the case of QBS, this has grown to
around 34 configurations. In this case specifically Q, =
—4.12 is also marginal compared to o = 4.81. This effect
may be due to the fact that a change of the discrete global
quantity Q by local updates becomes disfavored in the
approach to the continuum limit.

To verify that this increasing 7., and marginal Q do not
affect the spectroscopic results we obtain from these
ensembles, we generate an additional ensemble QB5 of
2400 trajectories starting from the last configuration in
QB5. We repeated the measurements of meson masses and
decay constants, and of the topological charge history, on
200 configurations sampled from QB5. While the value of
Q, differs between the two ensembles, the meson masses
and decay constants do not show significant deviations
(beyond the statistical fluctuations). We report these tests in
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FIG. 2. Topological charge histories (left panels), and histograms (right panels), for the five ensembles QB 1-QBS5, listed from top to
bottom. Fitted parameters are given in Table III. In the plots we show Q evaluated only on the configurations used in the data analysis.

TABLE III.

Fitted parameters from topological charge histor-

ies; see also Fig. 2. The autocorrelation time 7., is expressed in
units of consecutive configurations.

QO 9 Texp
QBl1 0.29092) 11.43(94) 1.35(21)
QB2 1.6(2.3) 30.2(2.3) 2.95(24)
QB3 2.5(2.3) 25.4(2.3) 7.73(12)
QB4 -2.2(1.1) 14.7(1.1) 15.79(65)
QB5 —4.12(46) 4.81(46) 34.1(1.7)

detail in Appendix D. This suggests that any systematic
effect associated with the long autocorrelation time of the
topological charge and the marginal Q, on the spectros-
copy is comfortably smaller than the statistical error for the
ensembles and observables we study, and we use ensembles
QB1-5 for the remainder of the analysis.

IV. OF QUENCHED MESONS

In this section, we present the main numerical results of
our study. We start by defining the mesonic two-point
correlation functions that are computed numerically, and
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TABLE IV.

Interpolating operators 0, built of Dirac fermions on the fundamental Q™ and antisymmetric ¥*?*. We show explicitly

the flavor indices i, j = 1, 2 and k, m = 1, 2, 3, while color and spinor indices are implicit and summed over. We also show the J”
quantum numbers, the corresponding QCD mesons sourced by the analogous operator, and the irreducible representation of the
unbroken global Sp(4) x SO(6) spanned by the meson (see also [44]). We indicate in parentheses other nontrivial representations that
are obtained with the same operator structure but that we do not study in this paper as they source heavier states. The singlets [1 of both
Sp(4) and SO(6)] are ignored, as we choose to analyze only the operators with i # j or k # m. More details about the symmetries can be
found in Appendix E, and the details of a specific choice of basis for the global SU(4) are presented in Appendix F.

Label M Interpolating operator Oy, Meson in QCD JP Sp(4) SO(6)

PS 0OlysQ/ n 0~ 5(+1) 1

S 00/ ag 0* 5(4+1) 1

v ayﬂQj 1~ 10 1

T 01,0/ 1- 10(4+5 + 1) 1

AV 0'rs7,0 a " 5(+1) 1

AT Orsro7, 0 b, I 10(+5+ 1) 1

ps wE, x 0 1 20(+1)

s ghyn ag 0+ 1 20(+1)

v @y”ll"” 1~ 1 15

t gy, o7 - 1 15(+20/ + 1)
w Physy, o a I 1 20/(+1)

at Wy o, B by 1+ 1 15(+20/ + 1)

the observables we extract from them, namely the meson
masses and decay constants. We provide some technical
details about the otherwise standard procedure we follow,
in order to clarify how different representations of the
gauge group are implemented. Perturbative renormalization
of the decay constants is summarized toward the end of
Sec. IVA. We perform continuum extrapolations with
the use of Wilson chiral perturbation theory (WyPT) in
Sec. IV B. We devote Secs. IV C and IV D to present the
numerical results for the mesons made of fermions trans-
forming in the fundamental and 2-index antisymmetric
representations, respectively, and conclude with a compari-
son of the two representations in Sec. IV E. For practical
reasons, in this section we specify our results to the theory
with N, =2 fermions on the fundamental representation
and ny = 3 on the antisymmetric, though the results of the
quenched calculations apply for generic N and n.

A. Correlation functions

We extract masses and decay constants of the lightest
flavored spin-0 and spin-1 mesons from the corresponding
Euclidean two-point correlation functions of operators Oy,
involving Dirac fermions Q transforming in the fundamen-
tal and ¥ in the 2-index antisymmetric representation, as
listed in Table IV. In the table, color and spin indices are
implicitly summed over, while the flavor indices i # j

(k # m) are chosen. The operators of the form @FMQj are
gauge invariant and they source the meson states M. Spin

and parity J” are determined by the choice of I'y,. The
operators built with I' =ys,y,,7s57,, with u=1, 2, 3,
correspond to the pseudoscalar (PS), vector (V), and axial-
vectors (AV) mesons, respectively. They appeared in the
EFT discussion in Sec. II C. For all of them, we measure
both the masses and the decay constants of the particles that
they source. For completeness, we also calculate the
correlation functions built with I" = 14, yo7,, ¥5707,> Which
refer to scalar (S), (antisymmetric) tensor (T), and
axial tensor (AT), but we extract only the masses of the
lightest states sourced by these operators. The operators

WAL, P are defined and classified in the same way, except
that we denote them with lowercase letters as ps, v, av, s, t,
and at, respectively. In Table IV, we also show the
irreducible representation of the unbroken global symmetry
Sp(4) x SO(6), as well as the corresponding mesons in
QCD, to provide intuitive guidance to the reader. We also
recall that because of the (pseudo)real nature of the
representations we use, there is no difference between
meson and diquark operators. More details about the
classification of the mesons and the relation between
four-component and two-component spinors can be found
in Appendixes E and F.

The two-point correlation functions at positive Euclidean
time 7 and vanishing momentum p can be written as

Cu (1) = 3010y (E. 00}, B.0)0).  (28)
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We extract physical observables from these objects. In
most of our calculations we set M = M’, with the exception
of the extraction of the pseudoscalar decay constant,
which involves both Opg and O,y (O, and O,, in the
case of fermions W). The standard procedure requires
rewriting C(#) in terms of fermion propagators Si5(x) =
(0"(x)Q4(0)) (and analogous expressions for the propa-
gators involving V), to yield

Crmr (1) ZTTFMS ()TarrsST(x)rs]. (29)

where the trace is over both spinor indices «, f and gauge
indices a, b.

In the simplest case of a point source, the fermion
propagator DR (R labeling the fermion representation) is
calculated by solving the Dirac equation

Dfaﬁbﬂ (x’ Y)S}Zf(Y) = x,05a;'5ac" (30)

In order to improve the signal, in our numerical studies
throughout this work we use the Z, x Z, single time slice
stochastic wall sources [93] with three different sources
considered individually for each configuration, instead of
the point sources, on the right-hand side of Eq. (30).

In all the spectroscopic measurements using quenched
ensembles, we use the (unimproved) Wilson action for the
fermions. The corresponding massive Wilson-Dirac oper-
ator in the fundamental representation D' is defined by its
action on the fermions Q, that takes the form

__Z{

—ﬂ)Q(X—ﬂ)}a (31)

DFQ(x)=(4/a+my)0 )O(x+i)

+(1+7,)U,(x

where U, (x) are the link variables in the fundamental
representation of Sp(4), a is the lattice spacing, and j is the
unit vector in the spacelike direction p.

In order to construct the Dirac operator DS for fermion
fields W in the 2-index antisymmetric representation, we
follow the prescription in [80]. For Sp(2N), we define an

orthonormal basis (% [with the multi-index (ab) running
over ordered pairs with 1 <a < b <2N] for the appro-
priate vector space of 2N x 2N antisymmetric matrices.
The N(2N —1)—1 such matrices have the following
nonvanishing entries. For b =N +a and 2<a <N

1
—— forc<a,
(ah) _ (ab) _ \/2a(a—l)
(eas ewvie =—(€as Inice =
—(a—1)
——— forc=a,
2a(a—1)
(32)

and for b# N +a

ab
(eEXS ))c =7

\/— (5a05bd 5b05ad)' (33)

The main difference compared to the case of SU(N) is that
the base e,g is Q-traceless, satisfying Qdc(e/(fsb) )eg = 0. In
the Sp(4) case, one can verify that the resulting five
nonvanishing matrices satisfy the orthonormalization con-
dition Tre')e(d = —5(@)d)  while the matrix e’
vanishes identically. The explicit form of the antisymmetric
link variables U5 (x) descends from the fundamental link

variables U, (x), as

Tr[(ely)) U, (x)els UL ()],

with a < b,c < d.

(Ulljs)(ab)(cd) ( )
(34)

Finally, the Dirac operator for the 2-index antisymmetric
representation D% is obtained by replacing (U,),, by
(U3) (ab)(cay and Q by ¥ in Eq. (31).

Masses and decay constants for the mesons are extracted
from the asymptotic behavior of Cj,r(7) at large
Euclidean time. We assume it to be dominated by a single
mesonic state. If M = M’, for all meson interpolating
operators we can write

= 0[Oy M)

—myt —my (T—t)
2mM [e te ]’

Cum(t) (35)

where 7 is the temporal extent of the lattice. In our
conventions, the meson states |M) are normalized by
writing M = MATA, with T4 the generators of the global
SU(2Ny) or SU(2n;) symmetry. The value of the pseu-
doscalar decay constant in QCD in these conventions
would be fps = f,~93 MeV. We also consider the
correlator defined with M = PS and M’ = AV, for which
the large-time behavior is given by

=0 (0[Oay [PS) (0[Ops |PS)*

—mps(T—t)
2mPS ¢ ]’

[ —mpgt __

Cps.av(t)—
(36)

having restricted attention to the components of the AV
operator with index =1, 2, 3.

We parameterize the vacuum-to-meson matrix elements
for fundamental fermions in such a way that the decay
constants f,, obey the following relations:

(0|Oxy|PS) = (0|01757,02[PS) = frsp,.
<O|OV|V> = <O|Q_17yQ2|V> = fymyey,
(0]Oay|AV) = (0101757,02|AV) = faymave,, (37)
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where the polarization vector €, is transverse to the
momentum p,, and normalized by €,¢* = 1. (For operators
constituted by antisymmetric fermions we replace the fields
Q by Y.) For spin-1 V and AV mesons we extract both
masses and decay constants from Eqgs. (35) and (37). In the
case of the pseudoscalar meson, we determine the masses
and decay constants by combining Eqs. (35) with M = PS,
Eq. (36) and Eq. (37).

The matrix elements at finite lattice spacing a have to be
renormalized. For Wilson fermions, the axial and vector
currents receive multiplicative (finite) renormalization. The
renormalization factors Z, and Zy are defined by the
relations
Trs = ZASBES,  fv=Zuf¥,  fav=ZafR.  (38)
In this work we determine the renormalization factors via
one-loop perturbative matching, and for Wilson fermions
the relevant matching coefficients are written as [94]
gZ

Zaw) =1+ C(R)(Ag, + Ar)@a

(39)
where I' = ysy, for Z, and I" = y,, for Zy. The eigenvalues
of the quadratic Casimir operators with fermions in the
fundamental and antisymmetric representations of Sp(4)
are C(F) = 5/4 and C(AS) = 2, respectively. The match-
ing factors in Eq. (39) are computed by one-loop integrals
within the continuum MS (modified minimal subtraction)
regularization scheme. The resulting numerical values are
Ay =-1282, A, =-775 and A, =-3.0 [62,94].
Following the prescription in Ref. [95], in order to improve
the convergence of perturbative expansion we replace the
bare coupling g by the tadpole improved coupling defined
as i* = ¢*/(P). (P) is the average plaquette value, and this
procedure removes large tadpole-induced additive renorm-
alization arising with Wilson fermions.

B. Continuum extrapolation

Extrapolations to the continuum limit are carried out
following the same procedure as in Ref. [67]. We borrow
the ideas of tree-level Wilson chiral perturbation theory
(WyxPT), which we truncate at the next-to-leading order
(NLO) in the double expansion in fermion mass and lattice
spacing [96,97] (see also Ref. [98], as well as [99,100],
though written in the context of improvement). Tree-level
results for the full theory can be extended to (partially)
quenched calculations, since quenching effects only arise
from integrals in fermion loops [97]. But we cannot a priori
determine the range of validity of tree-level WyPT at NLO.
On the one hand, if we were too close to the chiral limit, we
would need to include loop integrals (the well-known chiral
logs). On the other hand, if we were in the heavy mass
regime, then we would need to include more higher-order
terms. As we will discuss later, most of our data sit

somewhere in between these two extrema, and as a
consequence we can empirically find appropriate ranges
of fermion mass over which tree-level NLO WyPT well
describes the numerical data.

We apply the scale-setting procedure discussed in
Sec. III B and define the lattice spacing in units of the
gradient-flow scale as @ = a/w,. All other dimensional
quantities are treated accordingly, so that masses are rescaled
as in 71y, = wymy, and decay constants as in fM =wofu-
Tree-level NLO WyPT assumes that the decay constant

squared j‘lz,‘SNLO is linearly dependent on both /i3 and a. We

extend this assumption to all other observables as well,
hence defining the ansatz

~ ~D. N “7 Afl 4”
ij\ILO — f}\/[)((l _|_ l .(Z.Mm%S) (;M ’ ( )
~ L.O A2, 0 n/t’\2 + u/ (Al 4

for decay constants squared and masses squared, respec-
tively. We note that the fermion mass m, appearing in the
standard WyPT has been replaced by the pseudoscalar mass
squared by using LO yPT results, according to which
m%s = 2Bmy. The low-energy constant B could in principle
be determined via a dedicated study of the fermion mass, but
this would go beyond our current aims. The empirical
prescription we adopt requires us to identify the largest
possible region of lattice data showing evidence of the linear
behavior described above and then fit the data in order to
identify the additive contribution proportional to a.
Extrapolation to the continuum is obtained by subtracting
this contribution from the lattice measurements.

C. Quenched spectrum: Fundamental fermions

Reference [62] reported the quenched spectrum of the
lightest PS, V, and AV flavored mesons for two values of
the lattice coupling, # = 7.62 and 8.0, with fermions in the
fundamental representation. In this section, we extend the
exploration of the quenched theory in several directions.
First, we consider three more values of the coupling,
p="71.77,7.85, and 8.2, as mentioned in Sec. IIl A, aiming
to perform continuum extrapolations, along the lines
described in Sec. IV B. Second, in order to remove
potential finite-volume effects, we restrict the bare fermion
mass m, to ensembles that satisfy the condition
mpgL > 7.5, in line with the results of the study with
dynamical fermions [67]. Only part of the data in [62]
meets this restriction, over the range of mq € [-0.7, —0.79]
at f=7.62, measured on the lattice with extension
48 x 243—corresponding to the ensemble denoted as
QB1 in Table II. For the other values of the lattice coupling
we perform new calculations by using lattices with exten-
sion 60 x 483. The details of all the ensembles are found in
Sec. Il A and summarized in Table II.
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Decay constants squared of PS, V, and AV mesons (constituted of fermions transforming in the fundamental representation), as

a function of the PS meson mass squared n%}%s, for f = 7.62 (blue), 7.7 (purple), 7.85 (green), 8.0 (red), and 8.2 (brown). All quantities
are expressed in units of the gradient-flow scale w,. The results of the continuum and massless extrapolations are represented by the

gray bands.

For a given ensemble QBi (with i=1,...,5) we
introduce various choices of bare mass am, of the funda-
mental fermions (see Table IX) and calculate two-point
Euclidean correlation functions of pseudoscalar PS, vector
V, axial-vector AV, scalar S, (antisymmetric) tensor T and
axial-tensor AT meson operators, using the interpolating
operators in Table IV. We follow the standard procedure
described in Sec. IV A, and we extract the masses and decay
constants from the correlated fit of the data for the
correlation functions as in Eq. (35). In the case of the
pseudoscalar meson, we simultaneously fit the data for the
correlators Cpg ps(#) and Cpg sy (?) according to Egs. (35)
and (36). The fitting intervals over the asymptotic (plateau)
region at large Euclidean time are chosen to optimize the >
while keeping the interval as large as possible. Such
optimized values are shown in the numerical fits presented
in Tables IX and X in Appendix G.

Notice that, in the case of AV, AT and S mesons, we are
not able to find an acceptable plateau region for several
among the lightest choices of fermion masses. This
problem appears when approximately reaching the thresh-
old for decay to three pseudoscalars. Similar problems have
been observed before in the literature on quenched theories
(see for example Refs. [101-103]) and may be due to the
appearance of two types of new features, both of which
are ultimately due to violations of unitarity: polynomial
factors correct the exponential behavior of the large-time

correlation functions, and finite-volume effects do not
decouple in the infinite-volume limit. We pragmatically
decided to ignore measurements showing evidence of these
phenomena and discard them from the analysis.

The resulting values of meson masses and decay con-
stants are presented in Tables XIII, XIV and XVI in
Appendix G. In Table XIII we also present the results of
mpgL and fpgL. For all the listed measurements the lattice
volumes are large enough that the finite-volume effects are
expected to be negligible as mpgL = 7.5, and the low-
energy EFT is applicable as fpgL 2 1.6. All fermion
masses are large enough that the decay of a V meson into
two PS mesons is kinematically forbidden. The resulting
values of the masses measured from the correlators involv-
ing Oy and Or are statistically consistent with each other,
in support of theoretical prediction: the V and T operators
interpolate the same physical states with J¥ = 1~ (identi-
fied with the p meson in the case of real-world QCD).

We perform simultaneous continuum and massless
extrapolations by fitting the data for (quenched) meson
masses and decay constants to Eqs. (40) and (41). We
restrict the range of masses used for the extrapolations to
m3s < 0.4 for the PS states, and to ensembles yielding
ﬁz%s < 0.6 for all other states, in order to retain the largest
possible range of masses within which the data show linear
dependence on 7i3g. In Figs. 3 and 4 we show the results of
decay constants and masses, with different colors being
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FIG. 4. Masses squared of V, T, AV, AT and S mesons (constituted of fermions in the fundamental representation), as a function of the
PS meson mass squared rhlz,s, for f = 7.62 (blue), 7.7 (purple), 7.85 (green), 8.0 (red), and 8.2 (brown). All quantities are expressed in
units of the gradient-flow scale wy. The results of the continuum and massless extrapolations are represented by the gray bands.

used to denote ensembles at different 8 values. In the figures
we also present the continuum-extrapolated values (denoted
by gray bands, the widths of which represent the statistical
uncertainties), obtained after subtracting artifacts arising
from finite lattice spacing. We find that f3s, % and i} are
significantly affected by the discretization of the Euclidian
space. And such a long continuum extrapolation can be
understood from the fact that we have used the standard
Wilson fermions. The size of lattice artifacts in all other
quantities is comparable with that of statistical uncertainties.

From the numerical fits we determine the constants
appearing in Egs. (40) and (41), and we report them in
Table V. The numbers in the first and second parentheses are
the statistical and systematic uncertainties of the fits,
respectively. In the table, we also present the values of
7%/ Ngor. Some large values of y?/Ng, indicate that either

the uncertainties of the individual data were underestimated
or the fit functions are not sufficient to correctly describe the
data. Although it would be difficult to fully account for the
systematics associated with the continuum extrapolation
with limited number of lattice spacings, we estimate the
systematic uncertainties in the fits by taking the maximum
and minimum values obtained from the set of data excluding
the coarsest lattice (the ensemble with f = 7.62) and
including or excluding the heaviest measurements. Notice
in the table that this process yields large estimates for the
systematic uncertainty for those fits that result in a large
value of y?/Ngy, at the minimum. Finally, the resulting

values in the massless limit, 37 and 7177, should be taken
with a due level of caution, since the considered masses are
still relatively heavy and only the corrections corresponding

to the tree-level terms in the chiral expansion are used in the
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TABLE V. Results of the fit of the coefficients in Eqs. (40) and (41), used in the continuum and massless extrapolations of masses and
decay constants of mesons in the quenched simulations involving Dirac fermions in the fundamental representation. The numbers in
parentheses represent, respectively, statistical and systematic uncertainties due to the fit.

2 LY, W9 22/ Naof
PS 0.00765(13)(11) 2.101(38)(51) —0.00190(24)(15) 3.1
\% 0.0275(12)(4) 0.47(51)(24) 0.0060(18)(4) 1.5
AV 0.031(6)(10) —0.40(18)(25) 0.019(10)(20) 4.2
iyl LY,y W, 27/ Naot
\% 0.451(13)(5) 1.86(7)(4) —0.257(20)(6) 0.4
T 0.455(20)(7) 1.81(8)(5) —0.256(31)(9) 0.9
AV 1.14(10)(14) 0.96(14)(18) 0.13(16)(29) 3.8
AT 1.36(9)(13) 0.78(10)(10) ~0.19(14)(24) 3.1
S 1.529)(4) 0.18(6)(12) ~0.14(13)(7) 40

fits. We leave more dedicated studies of the massless
extrapolation to our future work with fully dynamical and

light fermions.

As seen in Table XV, for each given value of  the ratio
fry/ fps is approximately constant over the mass region
ity /Aipg 2 1.3. From a simple linear extrapolation to the
continuum of these constant vector masses in units of f‘ps,
we find that iy/v2fps = 5.42(5). A more rigorous,
yet compatible, estimate of the massless limit is obtained
by taking the extrapolated results in Table V and yields

)/ V2 ks = 5.48(9)(4).

D. Quenched spectrum: Antisymmetric fermions

We turn now our attention to the quenched spectrum of the
lightest flavored mesons involving the fermions transform-
ing in the antisymmetric representation of Sp(4). We use the
same ensembles listed in Table II, but the bare masses m of
the fermions are listed in Table XI of Appendix G. As with
fundamental fermions, we choose the values of amg to
satisfy the condition of m,L > 7.5. In the table, we also
present the fitting intervals used for the extraction of the
masses and the decay constants of ps, v, av, and s mesons as

well as the resulting values of y?/N .. The results for t and
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FIG. 5.

ps

Decay constants squared of ps, v, and av mesons (constituted of fermions in the antisymmetric representation), as a function of

the ps meson mass squared /712, for # = 7.62 (blue), 7.7 (purple), 7.85 (green), 8.0 (red), and 8.2 (brown). All quantities are expressed in

ps?

units of the gradient-flow scale wy. The results of the continuum and massless extrapolations are represented by the gray bands.
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FIG. 6. Masses squared of v, t, av, at and s mesons (constituted of fermions transforming in the antisymmetric representation), as a

function of the ps meson mass squared 7 mps,

for f = 7.62 (blue), 7.7 (purple), 7.85 (green), 8.0 (red), and 8.2 (brown). All quantities are

expressed in units of the gradient-flow scale w,. The results of the continuum and massless extrapolations are represented by the

gray bands.

at mesons are shown in Table XII of the same appendix. We
apply to the antisymmetric case the same numerical treat-
ment and analysis techniques used for the fundamental
fermions. As in the case of the fundamental representation,
we could not find an acceptable plateau region for some
measurements at the smallest fermion masses, in the cases of
v, av and s mesons.

In Appendix G we also present the numerical results of
the masses and decay constants of ps, v and av mesons, as
well as the masses of s, t and at mesons. See Tables XVII,
XVIII and XX. As shown in Table XVII, all the measure-
ments meet the aforementioned condition mp,L > 7.5. In
addition, we find that f L > 2.3, which supports the
applicability of low-energy EFT techniques. Furthermore,

the meson masses in units of f,,; and the ratio f,/f are

presented in Tables XIX and XX. As already seen in the
results for fundamental fermions, in all the measurements
we find that the results of 77, are consistent with those of 7z,,
given the current statistical uncertainties.

We perform the numerical fits of masses and decay
constants by using the tree-level NLO WyPT described by
Egs. (40) and (41). In Figs. 5 and 6, we present the fit
results denoted by gray bands as well as numerical results
of the masses and the decay constants measured at given
lattice parameters. For the fits we consider the same ranges
of iy taken for the case of fundamental fermions: /i <
0.4 and mgs < 0.6, respectively, for the ps and all other
states. Over these mass ranges no signiﬁcant deviation from
linearity of the data in @ and mpg is visible in our data.
Different colors denote different lattice couplings, while the
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TABLE VL

Results of the fit of the coefficients in Egs. (40) and (41), used in the continuum and massless extrapolations of masses and

decay constants of mesons in the quenched simulations involving Dirac fermions transforming in the 2-index antisymmetric
representation. In parentheses we show statistical and systematic errors, respectively.

2 Lo, w9 22/ Naof

ps 0.01388(18)(10) 1.754(41)(28) —0.00028(26)(15) 13

v 0.0404Q21)(7) 0.626(91)(16) 0.0310(28)(17) 2.4

av 0.084(8)(5) 0.01(13)(9) —0.022(12)(9) 2.3
sityy LY WO 22/ N ot

\% 0.65721)(21) 1.375(56)(5) —0.336(34)(4) 0.8

t 0.675(29)(19) 1.26(7)(7) —0.326(47)(19) 1.2

av 2.01(1)(7) 0.70(10)(5) ~0.33(17)(11) 2.1

at 2.50(18)(7) 0.32(12)(7) —0.48(24)(8) 24

s 1.80(9)(13) 0.32(7)(14) ~021(12)(15) 16

widths of the bands represent the statistical uncertainties of
the continuum extrapolations.

The resulting fit values are reported in Table VI. The
numbers in the first and second parentheses are the
statistical and systematic uncertainties of the fits, respec-
tively. Once more, we estimate the fitting systematics by
taking the maximum and minimum values obtained from
the set of data excluding the coarsest lattices at f = 7.62
and including or excluding the heaviest measurements.

As in the case of fundamental fermions Q, we find that
for each f value the vector masses in units of the
pseudoscalar decay constant are almost constant over the

range of 7, /7, 2 1.3—see Table XIX. After performing a
simple linear extrapolation of these constants, we find that
i,/ \/QJACPS =4.72(4) in the continuum limit. A more
rigorous, yet compatible, estimate is obtained by making
use of the extrapolated results in Table VI: we find

it /2%, = 4.80(12)(4). The resulting value of the ratio
is smaller than that for the fundamental fermions by 13%.

E. Quenched spectrum: Comparison

Figure 7 shows a visual comparison between the decay
constants of the pseudoscalar, vector, and axial-vector
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FIG. 7.

Comparison of the decay constant squared (in the continuum limit) of the mesons as a function of the pseudoscalar meson

mass squared, in units of w,, for fermion constituents transforming in the fundamental (blue) or 2-index antisymmetric (red)

representation.
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Comparison of the mass squared (in the continuum limit) of the mesons as a function of the pseudoscalar meson mass squared,

in units of wy, for fermion constituents transforming in the fundamental (blue) or 2-index antisymmetric (red) representation.

mesons, made of fermions transforming in the fundamental
representation of Sp(4) (PS, V, AV) and in the 2-index
antisymmetric representation (ps, v, av). In order to make
the comparison, we plot the continuum-limit results by
naively identifying the masses of the pseudoscalars fipg =
n%f,s as the abscissa. The comparison at finite mass should
be taken with some caution, as the symmetry-breaking
operators controlling the mass of PS and ps states are
distinct, but the massless extrapolations can be compared
unambiguously. We repeat the exercise also for the masses
of all the mesons and show the result in Fig. 8.

In all cases we considered, masses and decay constants
of bound states made of fermions ¥ transforming in the 2-
index antisymmetric representation are considerably larger
than those made of fermions @ transforming in the
fundamental representation. Focusing on the massless

limit, we find that the ratio 72,/fiy = 2.7+ 1.1 is the

largest, while m2/m3 =1.18 £0.13 is the smallest,
and the other results are distributed in the range between
these two values. The hierarchy between the pseudoscalar
decay constants is important in the CHM context; we find
that fa./fps = 1.81 £0.04. It is also to be noted that
the mass of the vector states v is larger, but not substantially
so, in respect to that of the corresponding V mesons,
with 2 /M3 = 1.46 £ 0.08.

How much of the above holds true for the dynamical
calculations is not known and is an interesting topic for
future studies. It was shown in Ref. [67] that, by comparing
quenched and dynamical calculations for mesons in the
fundamental representation (performed in comparable
ranges of fermion mass), and after both the continuum
and massless extrapolations were performed, the discrep-
ancies are not too large: O(25%) for g, O(20%) for fps,
O(10%) for /%, and smaller for the other measurements.
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Whether this is due to the fact that all the calculations in
Ref. [67] are performed in a range of fermion masses that
are comparatively large or to other reasons—the large-N
behavior of the theory might already be dominating the
dynamics of Sp(4) mesons, for example—is not currently
known and should be studied in future dedicated inves-
tigations. Yet, it is suggestive that no dramatic discrepancy
has emerged so far, for all the observables we considered.

We conclude this section by reminding the reader that the
calculations performed for this paper, being done with the
quenched approximation, are insensitive to the number of
fundamental flavors N, and antisymmetric flavors n; and
hence apply to other models, beyond the phenomenologi-
cally relevant case with N, = 2 and n; = 3. A recent lattice
study within the SU(3) gauge theory [104] of the ratio
m,/f, between the mass of the rtho mesons and the decay
constant of the pions (corresponding to my/fpg in this
paper) shows no appreciable dependence on the number
of flavors Ny < 6—as long as the theory is deep inside
the regime in which chiral symmetry breaking occurs. It
would be interesting to measure whether this holds true
also for other representations, in the dynamical theories.
Meanwhile, we find that in our quenched calculation,
after taking both the continuum and massless limits, for
the fundamental representation we have 7y, /f%sz59.0:|:
2.2, while for the antisymmetric representation we find
2/ j’gs =473 +23 The discrepancy reaches beyond the
30 level, suggesting that this ratio—which enters into the
Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin =~ (KSRF)
relation M3/(g5..f2) = 2 [106,107]—depends on the fer-
mion representation. By comparison, the ratio obtained
from the numerical studies with dynamical Dirac fermions
in the fundamental representation is 73,/ ﬁ; s =6544+5.0
[67], which is slightly larger than the result of our quenched
calculation. Once more, checking this result (as well as
the KSRF relations) in the full dynamical theory with
fermions in the antisymmetric representation would be of
great interest.

V. GLOBAL FITS

In this section, we perform a global fit of the continuum-
extrapolated masses and decay constants of PS, V, and AV
mesons to the EFT described in Sec. II C. As stated there,
the EFT equations are applicable both to mesons consti-
tuted of fermions in the fundamental as well as 2-index
antisymmetric representations of the Sp(4) gauge group.
We also recall from Ref. [62] that several working
assumptions have been used to arrive at Eqs. (19)—(24).
We follow in the analysis the prescription introduced in
Ref. [67]. We only repeat some of the essential features of

®These data have been used in Ref. [105] to compare these
quantities with other theories.

the process, while referring the reader to Ref. [67] for
details. We focus instead on the results of the global fit.
We start by restricting the data analyzed to lie in
the mass range over which all the measured masses
and decay constants can be extrapolated to the continuum
limit using Egs. (40) and (41). In the case of the
fundamental representation, we restrict our measurements
to include only QBIFM3-QBIFM6, QB2FMI-
QB2FM3, QB3FM4-QB3FM7, QB4FM6-QB4FMS,
and QB5SFM2-QBSFM3. In the case of antisymmetric
representation, we restrict to QBIASM4-QB1ASMG6,
QB2ASM3-QB2ASMG, QB3ASM2-QB3ASM4,
QB4ASM4-QB4ASM6, and QB5ASM?2. As anticipated
in Sec. IV B, we use the LO yPT result for the pseudoscalar
mass and replace the fermion mass in Eqgs. (19)—(24) by
Mg = 2Bmy. In the mass range considered, this replace-

ment is supported by the numerical data, as 7itpg is found to
be approximately linear with the mass of the fermion
mgy. Accordingly, we expand the EFT equations and
truncate at the linear order in 7. The resulting fit
equations have been presented as Egs. (6.1)-(6.5) in
Ref. [67]. The ten unknown low-energy constants, denoted
as (]A‘, F.b,c, gy by, Da, 93, 94), are appropriately rede-
fined by introducing the gradient-flow scale wy.

We perform the numerical global fits of the data to the
EFTs, via standard y> minimization, by using 200 boot-
strapped samples and a simplified y? function that is built
by just summing the individual y* functions for the five
independent fit equations. The fit results satisfy the con-
straints obtained from the unitarity conditions in Eq. (6.8)
of Ref. [67]. In practice, we guide the fits by an initial
minimization of the full dataset. In Fig. 9 we present the
results of the global fit along with the continuum-extrapo-
lated data used for the fits, by further comparing the results
originating from fundamental and antisymmetric fermions.
In the figure, the fit results are presented by shaded bands,
the widths of which represent the statistical uncertainties.
The quality of the fits is measured by the fact that
7% /Ngor ~0.6 at the minimum, although one should
remember that correlations have not been taken into
consideration in the analysis. The results of continuum
and massless extrapolations, displayed in Figs. 7 and 8, are
in good agreement, even in proximity of the massless limit,
with those of this alternative analysis.

As pointed out in Ref. [67], some of the parameters in the
EFTs are not well constrained by the global fit of
measurements coming from two-point functions only.
Hence, we do not report the individual best-fit results,
which are affected by flat directions and large correlations.
Yet, in the same reference it is observed that some
(nontrivial) combinations of the parameters may be
determined well. One of the most interesting such quan-
tities is the coupling constant associated with the decay of a
vector meson V (or v) into two pseudoscalar mesons
PS (ps). These couplings play the same role as the g,.,
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FIG.9. Decay constants and masses in the continuum limit after subtracting lattice artifacts due to the finite lattice spacing. The global
fit results are denoted by blue solid bands for the mesons constituted of fundamental fermions Q, and red bands for the ones constituted
of antisymmetric fermions ¥. The width of the bands indicates the statistical errors.

in low-energy QCD. The resulting values in the cases of
fundamental and antisymmetric fermions are

Fopp = 4.95(21)(8)

respectively, where the suffix y denotes the result of
simultaneous continuum and massless extrapolations. As
shown in Fig. 10, the distributions of this quantity exhibit a
regular Gaussian shape, from which we estimate the
statistical uncertainty—the numbers in the first parentheses
of Eq. (42). The numbers in the second parentheses in
Eq. (42) denote the systematic errors of the fits with similar
caveats to those discussed in Sec. IV C, that we estimated
by taking the maximum and minimum values obtained
from the set of data excluding the coarsest ensemble and
including or excluding the heaviest measurements.

and  ¢fpp = 3.80(24)(16),  (42)

The EFT analyses performed in this section is affected by
several limitations—in particular by the quenched approxi-
mation and by the comparatively large fermion masses—
and thus one should interpret the results with some caution.
Yet, it is interesting to compare the EFT results with
phenomenological models and with available measure-
ments obtained with dynamical fermions transforming in
the fundamental representation. We first compare the EFT
results in Eq. (42) with the ones predicted from the KSRF
relation, gypp = my/v/2mps. We find that the left-hand
side is smaller than the right-hand side of this relation by
about 10% and 23%, for the fundamental and antisym-
metric representations, respectively. These discrepancies
are larger than the uncertainties associated with the fits and
might indicate that the KSRF relation does not describe the
quenched theories accurately, particularly in the case of the
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FIG. 10. Histogram distribution of the gypp (left panel) and gy, (right panel) couplings, obtained from the quenched calculation by
applying the global fit strategy discussed in the text. In the former, gypp denotes the coupling between mesons composed of fermions in
the fundamental. In the latter case the constituent fermions transform in the 2-index antisymmetric representation.

antisymmetric representation, although this statement is
affected by uncontrolled systematic uncertainties due to the
use of the EFT with such large values of gypp and gy, as
well as large fermion masses. We also find that for the
fundamental representation the quenched value of ¢pp is
smaller by 29% compared to the dynamical value of ¢&pp =
6.0(4)(2) [67], yielding again a discrepancy that is sig-
nificantly larger than the fit uncertainties. It would be
interesting to repeat these tests with dynamical fermions in
the antisymmetric representation and in general to explore
more directly the low-mass regimes of all these theories,
but these are tasks that we leave for future extensive studies.

VI. CONCLUSIONS AND OUTLOOK

Composite Higgs and (partial) top compositeness
emerge naturally as the low-energy EFT description of
gauge theories with fermion matter content in mixed
representations of the gauge group. Motivated by this
framework, we considered the Sp(4) gauge theory with
N quenched Wilson-Dirac fermions Q transforming in the
fundamental representation of Sp(4), as well as ny;
quenched fermions ¥ in the 2-index antisymmetric repre-
sentation. While the quenched theory is not expected to
reproduce the full dynamics, it provides a useful compari-
son case for future full dynamical calculations. We gen-
erated lattice ensembles consisting of gauge configurations
by means of the HB algorithm, modified appropriately the
HIRep code [80], considered meson operators O, bilinear in
these fermions (see Table IV for explicit definitions of the
operators), and measured two-point Euclidean correlation
functions of such operators on discrete lattices (and in the
quenched approximation).

We hence extracted decay constants f), and masses 1,
of the flavored mesons sourced by the operators O,,, with
M =PS,V, AV, S, T, and AT (and M = ps, v, av, s, t, and
at), defined in Table IV. We renormalized the decay
constants, expressed all dimensional quantities in terms
of the gradient-flow scale w,, and—having restricted

attention to ensembles for which finite-volume effects
can be ignored—applied tree-level WyPT to extrapolate
toward the continuum and massless limits the results for
mesons constituted of both fermion species. We also
performed a first global fit of the continuum results that
makes use of the EFT describing the lightest spin-1 states
(besides the pseudoscalars). It is constructed by extending
with the language of hidden local symmetry the chiral-
Lagrangian description of the pNGBs spanning the
SU(2Ny) x SU(2ny)/Sp(2Ny) x SO(2ny) coset.

Our main results for the physical observables in the
continuum limit are listed in the tables and plots in
Secs. IVC and IVD and graphically illustrated in
Sec. IVE (see in particular Figs. 7 and 8). They can be
summarized as follows. In the quenched approximation,
after extrapolation to the massless limit, all dimensional
quantities extracted from two-point correlation functions
involving operators constituted of ¥ fermions are larger than
the corresponding observables involving Q fermions. The

two extremes are 72/ =1.1840.13 and f2,/fiy =2.7+
1.1, respectively, with all other ratios between observables
in the two sectors falling between these two values.
(Of particular interest for model building are the ratios
w2/ = 1.46 £ 0.08 and fa./fps = 1.81 £0.04.)
The error bars comprise both statistical as well as
systematic errors, the latter arising from the continuum
and massless extrapolations as discussed in details in
Sec. IV. Furthermore, we found statistically significant
violations of the KSRF relations by the mesons made of
antisymmetric fermions, at least in the quenched approxi-
mation. (The extraction of the gypp and gy, couplings from
the global fit of two-point function data collected with large
fermion mass to the EFT is affected by unknown systematic
effects, and hence this should be taken as a preliminary
result.)

Despite the physical limitations of the studied quenched
theory, this paper opens the way toward addressing a
number of interesting questions in future related work, a
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first class of which is related to the comparison of the
quenched calculations to the full dynamical ones, in
particular for the case of fermions in the antisymmetric
representation. While it was observed elsewhere [67] that
the quenched approximation captures remarkably well the
dynamics of fundamental fermions (at least for the range of
masses hitherto explored), there is no clear reason for this to
happen also in the antisymmetric case, for which large-N
arguments are less constraining. In order to address this
point, one would require to study the dynamical simula-
tions with ¥ fermions, in the phenomenologically relevant
low-mass ranges of the dynamical calculations, and also to
generalize our approach to Sp(2N) gauge theories. The
reader may be aware of the possibility that, with higher-
dimensional representations and large numbers of fermion
degrees of freedom, some of the Sp(2N) theories we are
interested in might be close to the edge of the conformal
window and behave very differently. [For perturbative
studies within the Sp(2N) class, see for instance
Ref. [108-110], and references therein.]

The extensive line of research outlined in the previous
paragraph complements the development of our program
of studies in the context of top compositeness, that as
outlined in Ref. [62] requires one to consider the dynamical
theory in the presence of mixed representations. This is a
novel area of exploration for lattice gauge theories, for
which the literature is somewhat limited (see for instance
Refs. [21,27,29,33,38]). New fermion bound states, some-
times referred to as chimera baryons, can be sourced by
operators that involve gauge-invariant combinations of
fermions in mixed representations. (The anomalous dimen-
sions of chimera baryons are discussed for example in
[40,61,111].) The study of these states is necessary in the
context of top compositeness, as they are interpreted as top
partners.

A third group of future research projects can be envi-
sioned to explore the role of higher-dimensional operators,
for which the material in the Appendixes of this paper is
technically useful. These operators play a role in determin-
ing the physics of vacuum (mis)alignment and of electro-
weak symmetry breaking, as their matrix elements enter the
calculation of the potential in the low-energy EFT descrip-
tion. These studies would provide an additional link to
phenomenological investigations of composite Higgs mod-
els, bringing lattice calculations in close contact with
model-building considerations and searches for new phys-
ics at the Large Hadron Collider (LHC).

Finally, it would be interesting to investigate the finite
temperature behavior of these theories. As discussed in
Appendix E 1, it is important to characterize symmetry
restoration and symmetry enhancement that appear at high
temperatures, generalizing what has been studied about
QCD to the case of real and pseudoreal representations, for
which the group structure of the global symmetries and
their breaking is expected to be different.
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APPENDIX A: SPINORS

We summarize in this Appendix our conventions in the
treatment of spinors, which are useful, for example, in
switching between the two-component and the four-com-
ponent notation (see also Ref. [50]). The former is best
suited to highlight the symmetries of the system, while the
latter is the formalism adopted as a starting point for the
lattice numerical treatment. We highlight some important
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symmetry aspects that offer insight in the theories studied
in this paper.

For two-component spinors, we use the Pauli matrices,
denoted as 7/, with i = 1, 2, 3, and

Q) (D) )

Given a two-component spinor #, with no internal quantum
numbers, we define the C-conjugate uc = it’u* = —Cu*.
Furthermore, we introduce the notation o* = (1,, —7 )
and 6" = (1,,7').

We adopt conventions in which the space-time
Minkowski metric is
1
-1 )
My = =1 (A2)

The Dirac algebra is defined by the anticommutation
relation
{r'.r'}y =2, (A3)

with the 4 x 4 matrix y° Hermitian, while the three y’ are
anti-Hermitian, so that y'y#y® = y#7_ Chirality is defined by
the eigenvalues of the matrix y5 = iy%y'y?y?, that satisfies
the relation {y#,y°} = 0.

The charge-conjugation matrix C = iy>y° obeys the
defining relations Cy#C~'=—y#T and C?>=-1,=-CC".
The chiral representation of the y# matrices is

0<0 112) ,-<0 —Ti>

"7\, o) TT\d o)
y5:<112 0 ) c:<_”2 0>
) .o

0 —]]2 0 1T

which implies the useful relations

o 0 o 0
Oyt = . OOprC = . (A5
it (0 Gﬂ) 7’y (0 5,,) (AS)

We also define the matrices

o =27 (A6)
which obey the relations [ys,o"] = 0, y%6*y° = (o**)"
and ys0" = %e"”f’”a{,g, where €*7° is the completely
antisymmetric Levi-Civita symbol. In the chiral represen-
tation for the y# matrices, the six ¢ matrices are block
diagonal and can be written as

a"”z(aﬁ 0) 0’“’7/=<GIZUL ) >=}'0"”
0 ) T N0 =) T

(A7)

By isolating the spatial indices i, one finds that

. 0 » y k0
o0 —i(T ) gu_ewk(f ) (A8)
0o -7 0 7*

We introduce the notation 1 = Ay?. A single Majorana
spinor A obeys the relation A = +1. = +CAT = +Cy°2* =
+iy?)*. We conventionally resolve the + ambiguity by the
choice of the + sign. Starting from a two-component spinor
u, a four-component Majorana spinor is

= (o Lo
- \iut=-Cu )’

so that 4 = A¢. The left-handed (LH) chiral projector is
P, =%(14+7s), so that a four-component LH chiral
spinor A; = P; A satisfies P;A; = A;. Analogous defini-
tions apply to the right-handed (RH) projector Py and
spinor Ag. The decomposition in LH and RH four-compo-
nent chiral Weyl spinors is given by

2 (”) A ( 0 ) (A10)
L7 \o ) B \idut = —Cur

and yields the relations A, =CAgT and 1, = AFC=—-A5C".
Clearly, u, 4, 4; and Ap are different ways to encode the
same information.

Consider two distinct, two-component spinors u
and d, with no additional internal degrees of freedom
(aside from the spinor index a =1, 2). When taken
together, they naturally define the fundamental representa-
tion of a global U(2) symmetry. Their components are
described by Grassmann variables, satisfying the two
nontrivial relations’

(A9)

udl = —dPu*, (udl)* = dP*u°, (All)

and analogous for all other combinations.
A Dirac four-component spinor is obtained by joining
the LH projection of the Majorana spinor built starting from

u and the RH projection of the Majorana spinor corre-
sponding to d, so that Q = U; + Dy with

"The first one is the defining relation of the anticommuting
Grassmann variable, while the second is required for consistency
of the definition of absolute value as a real number

&E= (&) #0.
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(o) o= () 2= () o (e )
EERN(YA "o\ -Ca ) "7 \o) T\ -tuw )
and Q¢ = CQO" = Cy°Q* = D, + Uy, while Q- = Q'C.
By inspection, one finds that the following relations hold true:
QP, 0 =DrU; = d"Cu, (OP,Q)" = OPrQ = —u'Cd",
OcPLOc = UgDy, = u"Cd, (Qc LQc) = QcPrQc = —d'Cu”,
OP,Qc = DgD; = d"Cd. (OPLQc)" = OcPrQ = —d'Cd",
OcPLQ = UgUy = u"Cu, (OcPLQ)" = OPrQc = —u'Cu, (A13)
and by using the y* matrices, one also finds the relations
Or'PLQ =U y"U, = u'c"u, (Or*PLO)" = =Qcy*PrQc = —u"6" u*,
Qcy*PLQc = Dy y*D, = d'6%d, (Ocy"PLQOC)" = —0r*PrQ = —d"6**d",
Or*P1Qc = U y*Dy, = u'std, (Or*PLQC)" = =0y PrQc = —d"6* ", (A14)
Qcr*PLQ =D y*U, = d'a"u, (Ocr*PLO)" = =0cy*PrQ = —u'6"*d", (A15)
| _ —_— —_
as well as -MQQ = -M(U; D+ DrU;)
_ _ ~M(=u"Cd* +d"Cu)
(Qr'PLQ)" = Qr'PLO, 1
R I _ T T T T 7~
(Q ”PLQC)* — QCyﬂPLQCv = ZM( u'Cd d"Cu +u Cd+d CM)
* __ 1) 1 v A
(Qc}’”PLQ) = Or*PQc. (Al6) 7

By definition, the transpose of a C number is trivial,
and hence EAy = (EAy)T = —yTATET, for any &, y spinor
written in terms of Grassmann variables and A any matrix
of C numbers. This implies the relation

QP 0 —0cP;Qc=d"Cu—u"Cd =0, (A17)
which will be useful later. Some algebra shows that the
following identity between real numbers holds:

1 - _
_(leﬂayQ - layQyMQ>

—

2
=5 Z (iq’"5" 0,4’ — 0,47 5" q),
j=1

(A18)

where ¢/ = (u,d) and where the U(2) = U(1) x SU(2)
global symmetry is now made manifest. This is adopted as
the kinetic term of the Dirac spinor Q.

The Lagrangian density for the Dirac spinor Q admits
also a mass term. By virtue of the relations C* = —C = CT,
and by the Grassmann nature of the spinors, it can be

written in terms of the symmetric matrix w = 7'

This term breaks the symmetry to the subgroup O(2) €
U2).

The real Lagrangian density of a single Dirac fermion
is then

1 _
E(IQV"a Q- i,0r"Q) - MQQ
= 0(ir'd, = M)Q + 0,(...) (A20)
— %Z(iqﬁ?f”ayqj — i0,q/'5"qY)
j
- %Mzwjk(qﬂ@q" - ¢/'Cq"),  (A21)
I

8If the spinors have additional, internal degrees of freedom,
their anticommuting nature, which ultimately descends from
Fermi-Dirac statistics, might enforce to antisymmetrize over
them and can lead to the replacement of the symmetric @ with
an antisymmetric €. Such is indeed the case if Q transforms in the
fundamental of Sp(2N), for example. Alternatively, if one has to
antisymmetrize in two gauge indices, as in the case discussed in
Ref. [112] and also in the case relevant to the ¥ spinors on the
antisymmetric 2-index representation, symmetry breaking is,
once more, controlled by the symmetric matrix .
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the first line of which (by ignoring the surface term) yields
the Dirac equation:

(iy*0, — M)Q = 0. (A22)
Equation (A21) can be generalized by adding a sym-

metric M j; Majorana mass matrix via the replacement
Mawj, = My in the two-component formulation:

2L, = Z(iqﬁ‘(—;ﬂaﬂqi — 0,477 q))

j
- Z(Mjkqﬂéqk - Mg Cq™).  (A23)
I

The Majorana mass term can then be written also in terms
of four-component Dirac spinors by applying the projector
P, and C along the lines of Eq. (A13), as follows:

PO

L/:_%((PLQ)T?(PLQC)T)CM <P ) +H.c., (A24)

L¥C

where the matrix M is defined as

Muu

M= ( 1
Mdu = E(Ms - Ma) Mdd

(A25)

If there are no other internal degrees of freedom, M is
symmetric, with M, ; = M,,. In the language of U(2), the
product of two doublets naturally decomposes as 3 @ 1 of
U(2):

QcP,Q=u"Cu
3~ | 1(0PLO+0cPLOc) =1(d"Cu+u™Cd) |,
OP, Q¢ =d"Cd

(A26)
1, _ | .
I~3 (QPLO — QcPLOc) = 5 (d"Cu—u'Cd). (A27)

The latter vanishes in the absence of additional degrees of
freedom, due to Eq. (A17).

APPENDIX B: A NOTE ABOUT
MASSIVE VECTORS

A massive vector of mass m in D =4 space-time
dimensions can be described by two equivalent quantum
theories, with different field content and Lagrangian
densities (see for instance the detailed discussions in
Refs. [113-116], and references therein).

(i) A vector field A, couples to a scalar field x, with

Lagrangian density

Mud :%(Ms +Ma>>

1
Ly=——F,F*

1
2 Fw —5(8ﬂﬂ+mA”)(8”ﬂ+mA”),

(BI)

where F,, = 0,A, — 0,A,. L, is invariant under the
gauge transformations
T — 1+ ma, A, = A, —-0,a, (B2)
with @ = a(x). The gauge choice a = —z/m re-
moves 7 from the Lagrangian density, which then
depends only on a massive vector field.
(i) A 2-index antisymmetric form B, is coupled to a
vector A, (not to be confused with A,), and the
Lagrangian density is

1 ;1 )

El — _EGW/I)GMW - ZHIWH” 5 (B3)
where F,=0,A,-90,A,, H,=F,+mB,
and G,,,=0,B,,+0,B,,+0,B,,. The Lagrangian
L, is invariant under the gauge transformation

A, = A, +ma,, B,—B,-0,a4,+0,a, (B4)

with the vector @, = a,(x). The gauge choice a, =
—A,/m removes A, from the Lagrangian density,
which then depends only on a massive 2-form field.
The Lagrangian £; can also be rewritten, by defining

Ky = 5 €45 H??, in the form

1 m?
Ly = E@”ICW@/”IC; + TICWIC’“’. (B3)
Gauge invariance is not manifest in this form. The
Lagrangians £, and £, are equivalent at the level of the
path integrals they define [113-116]. Hence, the use of
antisymmetric massive 2-index tensors provides an alter-
native, equivalent descriptions of massive vectors.

In physical terms, there is no difference between
these two (or rather, three) formulations. Important
differences are introduced by the coupling to matter fields
and sources. For example, one can couple fermions to A,
via the new term

Ly =igQy*A,PLQ. (B6)
with Q a Dirac fermion and g the coupling. For the
antisymmetric tensor, one may write

Ly = 906" B,,P.0. (B7)
While £, couples the spin-1 field to the LH component
only of Q, in Lz the LH and RH projections are coupled to
one another, so that while £, and £, in isolation define the
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same theory, the addition of £, or Lz leaves different
global symmetries and different coupled theories.

APPENDIX C: ABOUT LIE GROUPS, ALGEBRAS
AND SM EMBEDDING

Here we summarize some group theory notions relevant
for models of composite Higgs and top quark composite-
ness based on the SU(4)/Sp(4) ® SU(6)/SO(6) coset

[12,43]. We do not repeat unnecessary details—in

|

0 01 0 0

, 110 0 0 0 , 110
T, == , T; ==

211 0 0 O 21 i

0 0 0 O 0

0 0 0 O 0

, 110 0 0 1 , 110
Tp == , Ty ==

210 0 0 O 210

01 0 O 0

o O O O

oS O O

i

particular, our special choice of SU(4) generators can be
found elsewhere [50]—but we explicitly show the embed-
ding of the SM gauge group (and fields, when useful).

The SU(4)/Sp(4) coset governs the Higgs sector of
the Standard Model. Given the form of Q in Eq. (5), the
unbroken subgroup SO(4)~ SU(2);, x SU(2)p is the
subset of the unbroken global Sp(4) C SU(4) that is
generated by the following elements of the associated
algebra:

) 1 0 0 0
0 0 1o 0o o o

, T3 == , Cl
0 0 =210 0 =1 0 (1)
0 0 00 0 0
0 0 000 O
0 —i 1o 1.0 o

A g C2
0 0 E=210 0 0 0 (€2)
0 0 00 0 -1

The T, generators satisfy the SU(2), algebra [T T4 ] = ie"*T% , and similarly [T%, T%]=ie'/*T%, while [T% , T%] = 0. In the
vacuum aligned with Q in Eq. (5), this is the natural choice of embedding of the SO(4) symmetries of the
Higgs potential. Following the notation in Refs. [50,62], the matrix of the five pNGB fields parametrizing the

SU(4)/Sp(4) coset is

3 (x) 7' (x) — in*(x) 0 —in*(x) + 7°(x)
1| 7'(x) +ir?(x) —m3(x) in*(x) — 7 (x) 0
n(x) =—= C3
) 2V/2 0 —in*(x) — 7°(x) 3 (x) 7l (x) + in?(x) (©3)
in*(x) + 7°(x) 0 7t (x) —in%(x) -3 (x)

The real fields 7', 72, z*, and #° combine into the Higgs
doublet, while 7 is a SM singlet.

The SU(6)/SO(6) coset is relevant to top composite-
ness. The choice of ny = 3 Dirac fermions on the 2-index
antisymmetric representation of Sp(4) matches the number
of colours in the SU(3),. gauge group of the Standard
Model. The natural subgroup SU(3), x SU(3)z C SU(6)

is generated by

31/13’@3 1@3‘@3

= —F—|, (=
2\0; | 0 2\o; | -am

with A8 the eight Hermitian Gell-Mann matrices, normal-
ized according to the relation TrAi%A® =258 (so that
Tref 18 = 1548).

By defining % = (/% + /§), with the choice of w in
Eq. (5), one can verify that wt® + t8Tw = 0, that the

[B_

). e

|

structure constants [t4, 18] = ifABCtC are those of the
su(3), algebra, and that Tr2¢8 = 58 is twice the funda-
mental. The latter property is due to the fact that we are
writing the SU(3),. generators as 6 X 6 matrices acting on
two-component spinors. We hence identify 2 as the gen-
erators of the SU(3), gauge symmetry of the Standard
Model. An additional, independent, unbroken generator of

SU(6) is given by
G5
0o | -1,

which also commutes with the generators of SU(3),. The
generator Y of the hypercharge U(1), gauge symmetry of
the Standard Model is a linear combination of X and T% (see
also Ref. [36] and references therein).

X

(C5)
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1. Weakly coupling the SM gauge group

In this Appendix, we perform a technical exercise. We
compute the (divergent) contributions to the effective poten-
tial due to the gauging of the relevant SM subgroups of the
global SU(4) x SU(6) symmetry and discuss their effects on
the potential of the pNGBs. The purpose of this exercise is to
show explicitly how by gauging part of the global symmetry
one breaks it. We also identify the decomposition of the
representations according to the unbroken subgroup.

We adopt the external field method and borrow the
regulated Coleman-Weinberg potential V; from Ref. [117],
computed by assuming that a hard momentum cutoff A is
applied to the one-loop integrals. With our conventions
we write

A? 5
V,=——ST
1 3277:2 rM +

2
64n28Tr (Mz)zlog%—l—ci , (Co)

where in the trace STr fermions have negative weight and
where c¢; are scheme-dependent coefficients. The matrix
M? is obtained as follows: consider £; in Eq. (13), gauge
the relevant subgroups, by promoting the derivatives to
covariant derivatives, and compute the mass matrices
of all the fields, as a function of the (background, external)
scalar fields.

When applied to the SU(4)/Sp(4) part of the theory
(and for M = 0), this procedure involves only loops of
gauge bosons and yields a quadratically divergent contri-
bution to the mass of four of the pPNGBs—labeled 7', 72, z*
and 7° in Eq. (C3):

A% /9 3
Symy = " (59% +59R>,

(C7)

where g; is the coupling associated with the SU(2), group
with generators in Eqgs. (C1), while g is the coupling
associated with the U(1), subgroup generated by 7% from
Egs. (C2). The four masses are exactly degenerate, and the
mass of 7° does not receive a correction, as it is associated
with a generator that commutes with SU(2), x SU(2),
and is hence left unbroken by the weak gauging of the SM

gauge group—in practice, the mass of 7> arises for M # 0
due to the explicit breaking of the global symmetry of the
Lagrangian.

When applied to the 20 pNGBs that describe the
SU(6)/SO(6) coset, the loops involve the SU(3),. gauge
bosons, with the embedding chosen in this Appendix, and
strength gg, as well as the U(1)y gauge boson generated by
Eq. (C5), with strength gy. We find that the mass of
12 pNGBs—transforming as 6¢ of SU(3),—receive the
quadratically divergent contribution

2

A
512”1;2: =2~ (109?9 + 249%()’

3272 (C8)

and the other eight, which form the adjoint of SU(3),,
receive the mass correction

2

3272

dymz = —— (995). (€9)
The complex 6 of SU(3), has nontrivial U(1)y charge,
while the eight real components of the adjoint representation
of SU(3), have vanishing U(1)y charge. All 20 pNGBs
receive also a degenerate, explicit contribution to their mass,

which is controlled by m.

APPENDIX D: TOPOLOGICAL CHARGE
HISTORY AND MESONIC SPECTRAL
OBSERVABLES

This Appendix reports some technical details and sup-
plementary numerical studies that are not used in the main
body of the paper. We saw in Sec. III B that finer lattice
spacings were associate with longer autocorrelation times
of the topological charge Q (see Fig. 2), with the ensemble
with the finest lattice spacing (which we denoted by QBS5)
showing a particularly long autocorrelation time and a
marginal central value of Q. To verify that this observation
does not affect our main results, we produce a second set of
2400 additional trajectories with the same lattice param-
eters for QBS, which we call QB5. In Fig. 11 we report the
topological history and statistical distribution of QB5. The

10 1
S 07
710 -
T T T
2500 3000 3500
Trajectory

T T
4000 4500 0 20

Count

FIG. 11. Topological charge history (left), and histogram (right), for the ensemble QB5. Fitted parameters are Q, = —3.17(31),

o =4.53(31), and 7, = 9.2(1).
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TABLE VII. Masses and (renormalized) decay constants, in
lattice units, extracted from the measurements QBSFM2 and
QBS5SFM2. In parentheses are reported the statistical errors.

Measurement QB5FM2 QB5FM2
anpg 0.1850(4) 0.1848(3)
amy 0.2680(15) 0.2722(17)
amay 0.449(7) 0.437(7)
amg 0.428(6) 0.437(7)
amry 0.2685(23) 0.2676(25)
amar 0.45009) 0.448(9)
afps 0.03740(16) 0.03765(13)
afy 0.0637(8) 0.0646(9)
afay 0.0749(27) 0.0682(21)

behavior of the topological charge is consistent with
ergodicity.

We measure, in the quenched approximation, the masses
and (renormalized) decay constants for mesons built of
fermions Q transforming in the fundamental representation
of Sp(4). The results are shown in Table VII. We compare
the measurements in QB5SFM2 (used in the main analysis in
the body of the paper) with the ones from the ensemble
QBS with the same fermion mass (denoted QBSFM?2). The
two sets of measurements are in agreement, within stat-
istical errors, with all nine measurements within 1o and 26
of each other. Notice that systematic uncertainties are not
included. In the body of the paper we did not include QB5
in the analysis.

APPENDIX E: GLOBAL SYMMETRIES AND
CLASSIFICATION OF MESONS

In this Appendix, we review some symmetry properties
of the mesons in more general gauge theories of relevance
as candidates for the microscopic origin of CHMs. We
discuss the cosets that control the long-distance behavior of
the theory at low temperatures and describe patterns of
symmetry restoration and symmetry enhancement at
high temperatures. We keep the discussion as general as
possible but occasionally exemplify our observations with
the specific case of the Sp(4) gauge theory with N, = 2
and n; = 3.

Given a Lie group G and its subgroup H, a generic
element g of the associated Lie algebra G can be decom-
posed as g = ) + £, with §j € H an element of the algebra
associated with H and ¥ € K an element of the complement
of H in G. The coset space G/H is said to be symmetric if,
for all possible choices of §) and ¥, the following properties
are true:

5,5 € H, 5.t e K, £t e H. (El)
These properties define in an unambiguous way an unbro-
ken, multiplicative Z, symmetry, which we can call G parity,

which is compatible with the Lie algebra and upon which £ is
assigned G parity —, while § is assigned G parity +.

Three classes of cosets are commonly considered in the
CHM context (see for instance Table I in Ref. [36]). They
all emerge from gauge theories at the microscopic level.

(i) SU(N;), x SU(N;)r/SU(Ny)y cosets are, for ex-

ample, realized in SU(N) gauge theories with N,
fundamental Dirac fermions.

(ii)) SU(2N;)/Sp(2Ny) cosets are, for example, realized
in Sp(2N) gauge theories with N, fundamental
Dirac fermions.

(iii) SU(2N;)/SO(2N) cosets are, for example, real-
ized in Sp(2N) gauge theories with N, Dirac
fermions transforming in the 2-index antisymmetric
representation.

All these cosets are symmetric, and the resulting G parity is
a symmetry of the theories. It allows selection rules for
scattering and decay processes to be established. We now
discuss each of these possibilities in some detail, with
emphasis on the properties of the mesons associated with
the theories they emerge from.

We begin by reviewing the case of the SU(3) gauge theory
with N, = 2 light flavors. It describes the light mesons in
QCD. The associated coset is SU(2); x SU(2)x/SU(2)y.
Much of what one learns from this theory is applicable
to the other symmetric cosets listed above, with modifica-
tions that will be discussed later. In Table VIII, we report
some information about light QCD mesons with
S=C=B=0, taken from the Particle Data Group
[118]. We found Refs. [119-126] and Appendix B in
Ref. [127] particularly useful for the discussion that follows.

It is conventional to denote the states of QCD by the
quantum numbers I¢JFC, where I is the isospin [the
representation of the unbroken SU(2),] and J the spin.
The assignment of G parity for the isotriplets coincides
with the traditional G parity: it is related to charge
conjugation C of the neutral component in an isomultiplet,
and the isospin / of the isomultiplet, by the relation
G =C(-1)!, hence providing a link between the internal
symmetry described above and a space-time symmetry. A
second subtle link between internal and space-time sym-
metries involves the notion of spatial parity P; the SU(2),
and SU(2), symmetries act, respectively, on the LH and
RH projections of the spinors, while the unbroken sub-
group is the (vectorial) symmetric combination of the two.

We start the discussion from the isotriplets / = 1. The
pions z and axial vectors a; are, respectively, the lightest
spin-0 and spin-1 states and are associated with the broken
generators of the global symmetry, so that they have
G = —; the vector mesons p are associated with the
unbroken group SU(2), and have G = +. As a result,
the p decays to two z’s, while the a; decays to three z’s (or
also one 7z and one p). G parity is a useful practical tool:
while p and a; particles both transform in the adjoint
representation of the unbroken SU(2), (isospin)—the
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TABLE VIII. Light mesons with S=C =B =0 in QCD
[118,128], their approximate masses, and quantum numbers.
Charge conjugation C refers to the neutral component in multiplets
including electrically charge particles, and G = C(—1)! for the
whole multiplet. We show also representative hadronic decay
modes. The three-body decay of # violates isospin, and hence G
parity, and yields T/M ~ 1075,

Mass Hadronic
Particle (MeV) 16 JPC decay mode(s)
f0(500) 500 0to*t 7.4
f0(980) 980 0Tt nn
n 548 0to—* nrr (Al)
7 960 0to~+ nrm
0] 783 01—~ b 7%/1
¢ 1019 01—~ KK
f1(1285) 1282 0r 1+ A, narw
f1(1420) 1426 ottt K°K,KKx
h 1170 01t pr
4 1440[128] 017 KK
(1420) 1420 071~ pr
$(1680) 1680 0717~ KK
r 135 1-0~+ —
ap 980 1-0** nr
p 775 1717~ 74
a; 1230 -1+t PR, AR
b, 1230 171+ wn
p(1450) 1465 171 74
unbroken subgroup and the coset have the same

dimension—they are distinguished unambiguously by
the different assignments of G, and hence they decay in
different ways.

The global symmetries naturally extend to U(2), x
U(2)g/U(2)y. The additional unbroken vectorial U(1),
is the baryon number, and all mesons have vanishing
U(1)z charge. The broken, anomalous, global, axial
U(1), symmetry plays an interesting role in relation to
parity P. The axial U(1), partners of the pions z, named ay,
have the same G parity but opposite P. If the U(1), were
exact, = and a, would be degenerate.

In the J = 1, I = 1 sector, the role played by the U(1),
symmetry is more subtle. The p and a; mesons are sourced
by bilinear operators V and AV, in which spinor indices
are contracted on the y* and y*ys matrices, respectively.
Such operators involve either two LH or two RH chiral
spinors: the action of U(1), leaves them both invariant, as
they are two independent singlets of U(1),. But there is
an important complication, as massive vectors in four
dimensions can equivalently be described by 2-index
antisymmetric tensors (see Appendix B and references
therein). Two additional sources of spin-1 states T and AT
are obtained by contracting the spinor indices on ¢** and

o"ys, respectively. The two operators T and AT couple the
LH and RH chiral projections of the fermions, in a way that
is similar to the J = 0 isotriplet operators PS and S, that
source the 7 and a particles. They form a doublet of the
U(1), ~ O(2) symmetry.

Because of symmetry breaking, the operator T (built
with ¢#¥) has the same quantum numbers 19J7¢ = 1+1~~
as the source V (built from y#). The lightest and next-to-
lightest states in this channel [p and p(1450) in Table VIII]
can approximately be thought of as resulting from the
mixing of two states that have different SU(2), x SU(2)g
transformation properties and are sourced by different
operators V and T. The U(1), partner of the combination
of p and p(1450) sourced by T is denoted by b, (see again
Table VIII) and sourced by AT.

Because we are also comparing with real-world QCD,
we should notice that the isosinglet I =0 sector is
complicated by the fact that real-world light mesons are
better explained by a model in which one includes 2 + 1
quarks, including the heavier strange quark s. The iso-
singlet mesons include an additional tower of states, due to
mixing with the (5s) singlet. In Table VIII, this results in
the doubling of states with / = 0 in respect to the [ =1
case, as we chose to retain pairs of mesons with identical
quantum numbers. The G-parity assignment of each iso-
singlet state is the opposite of that of the corresponding
isotriplet with the same JC. Notice in the table that the
decay of the 77 to 37 violates G parity: it yields a suppressed
rate I, with I'/M ~ 107>, and originates from explicit
breaking of isospin in real-world QCD, in which, for
instance, up and down quarks are not degenerate in mass.

The I=0 and J =0 lightest states are the
f0(500)/f¢(980) and their U(1), partners, the 5/5' pair.
The I =0 and J =1 sector contains the pairs /¢,
f1(1285)/f,(1420), h,/h}, and w(1420)/¢(1680). The
four of them play the same roles as, respectively, the p, a;,
by, and p(1450) mesons, in the isotriplet case. One linear
combination of the two w/¢ pairs is sourced by the bilinear
operator T, which forms a doublet of U(1), with the source
AT of the hy/h| pair.

Let us see how these considerations have to be modified
for enlarged cosets. [Both the SU(2N,)/Sp(2N;) and
SU(2N;)/SO(2N;) contain the SU(N;); x SU(Ny)g/
SU(N)y subspace, enhanced because of the (pseudo)real
nature of the underlying fermion representations.] The
unbroken baryon number U(1) is a subset of the unbroken
part of these two cosets rather than commuting with it.
Diquark operators hence source mesons that complete the
representation of SU(N )y into full representations of the
unbroken Sp(2Ny) or SO(2N). The unbroken group and
the coset have in these cases different dimension, so that
representations with different G parity have different
dimensionality as well (see Table IV for instance), render-
ing G parity redundant, at least as a way to distinguish
among them.
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We conclude by discussing explicitly the general form of
the operators to be used as sources. We start from a two-
component spinor y transforming in the fundamental
representation of the global SU(2N;) symmetry group.

A spin-0 local operator JO takes the schematic form yTCy.
The product of two fundamental decomposes as

ON; ® 2N; = [N;(2N; = 1) & [N;2N; +1)].  (E2)

into the 2-index antisymmetric and symmetric representa-
tions of SU(2N ;), respectively. Furthermore, depending on
whether the unbroken subgroup is Sp(2N) or SO(2N ),
either the antisymmetric or the symmetric combination is
reducible and further decomposes into the unbroken sub-
group by projecting one element along the elementary
symplectic matrix Q or the symmetric @, respectively.
Excitations sourced by this operator correspond to the
fo of QCD-like theories, while those along the complement
correspond to the PS flavored states (the 7 of QCD). The
representation that is irreducible, instead, would coincide
with the adjoint of the unbroken subgroup, except that it
vanishes because of Fermi statistics—unless one considers
nonlocal operators.

Along the same lines, the spin-1 local operator J!
schematically reads y'6*y, and the decomposition in
SU(2Ny) takes the form

2N; ® 2N, = 1@ [4N7 - 1]. (E3)
After decomposition into the representations of the unbro-
ken subgroup, the adjoint splits into its antisymmetric and
symmetric parts, and hence one ultimately finds the same
decomposition as in the spin-0 case. This property descends
from the (pseudo)real nature of Sp(2N,) and SO(2N/),
that do not distinguish the fundamental representation 2N ;
from its conjugate. It is useful to notice that the four
operators V, T, AV, and AT states source only one state that
is a singlet. This is different from the SU(N ;) xSU(N )/
SU(Ny)y, where each of the four operators sources a
singlet of the unbroken group: the three additional J =1
states are part of the irreducible representations sourced by
V, T, and AT.

Summarizing for the SU(2N;)/Sp(2Ny) and SU(2N)/
SO(2Ny) cases: pseudoscalar PS and axial-vector AV
multiplets have the same degeneracies, as do the flavored
scalar S—the U(1), partners of the PS states. The vector
states V belong to a different representation of the unbroken
group common also to the antisymmetric tensor T, as well
as to its U(1), partner AT. In the unbroken Sp(2N) case,
the V, T and AT mesons span a complete symmetric
representation of Sp(2N f), with PS, S, and AV on the
(antisymmetric) complement. The reverse is true in the case
of SO(2N) (see again Table IV). In both cases, the singlet
sector is simpler: it consists of two spin-0 states forming a
U(1), doublet and of one isolated spin-1 singlet state.

1. Symmetry restoration and enhancement

At high temperatures, the fermion condensates melt,
leading to restoration of the global symmetries. Both the
non-Abelian SU(2N;) [or SU(Ny) x SU(Ny)] global
symmetry, as well as the Abelian U(1), symmetry are
restored [129] (see also [130-132] for progress on Ny = 2
lattice QCD). As a consequence of the former, one might
find that the states sourced by V and AV operators become
degenerate (the p and a, in the QCD-like case). Because of
the latter, U(1), multiplets should become degenerate, for
example the states sourced by PS and S operators (the 7 and
ao mesons in the QCD-like case). See for instance Ref. [50]
and references therein.

Recent studies have emerged suggesting that, because
the thermal bath reduces the space-time symmetries, the
global internal symmetry is further enhanced, with the
emergence of a new chiral-spin symmetry that combines
with the global symmetries. We refer the reader to
Refs. [119-125] for this research field, in which the specific
case of the QCD-like, SU(3) theory with N, =2 is
discussed in great detail, and numerical evidence of the
emergence of a SU(4) global symmetry is exposed, in the
channels with spin J > 0. In the following, we limit
ourselves to producing a summary of what would be the
(testable) expectations in the three main cosets of interest to
CHMs, if the corresponding symmetry-restoration and
symmetry-enhancement patterns were to be confirmed.

(i) The SU(N;)p x SU(N;)g/SU(Ny)y, cosets can

emerge, at 7 =0, from theories with complex
representations, for example the SU(N) gauge
theories with Ny fundamental Dirac fermions. These
cosets are accompanied by the anomalous U(1), =
U(1), x U(1)g/U(1), Abelian coset. At high tem-
peratures, the global U(N;), x U(Ny), symmetry
is restored and enhanced to U(2N;) = U(1),x
SU(2Ny). For example, in the N, =2 case that
approximates QCD, in the J = 1 sector, four of the
I =1 states (the two lightest p, the a;, and the b;)
and four of the I = 0 states (the two w/¢, the f1/f%,
and the h;/h}) have been measured to become
degenerate, which would be compatible with
forming a complete 16-dimensional adjoint repre-
sentation of the U(1) x SU(4) enhanced global
symmetry group [119-126]. In the J =0 sector,
this symmetry is not manifest: the z and a, combine
with the f,/f{, and the /5’ to form 2N)2c degenerate
states, the adjoint of the symmetry group U(N ), x
U(Ny)g. [t would require an additional 2N7 com-
ponents, two copies of the adjoint of U(N;), to
complete the adjoint of U(2N).]

(ii) The SU(2N;)/Sp(2N;) cosets can emerge, at

T =0, from theories with pseudoreal representa-
tions, for example the Sp(2N) gauge theories with
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N, Dirac fundamental fermions. In addition, the
anomalous U(1), is also spontaneously broken.
What would have been the unbroken U(1), asso-
ciated with the baryon number in the case of
complex representations is now a subgroup of the
nonanomalous Sp(2N ;). Going to a high temper-
ature, the symmetry is expected to be first restored
and then enhanced to Sp(4N). For example, in the
N; = 2 case, in the J = 1 sector of the spectrum, the
ten V and ten T mesons (which include both the
correspondent of the p and w/¢ of QCD), the five
AV mesons (corresponding to the a;), the ten AT
mesons (which include both states corresponding to
the b; and hy/h} of QCD) and the singlet vector
state (corresponding to the f/f) form a complete,
36-dimensional adjoint representation of Sp(8). The
J = 0 sector is not expected to show high-7" sym-
metry enhancement. PS flavored states combine
with the singlet to form the antisymmetric repre-
sentation (in the QCD analogy, they correspond to
the 7 and the f,/f}), and their U(1), partners (the
ay and the n/7' in QCD) combine to form the
complex, antisymmetric 2-index representation of
SU(2N;), which has dimension 2 x N;(2N; — 1).
[It would require finding an adjoint representation of
SU(2Ny) of dimension 4N7 — 1, to yield a total of
8N} — 2Ny — 1, which is the 2-index antisymmetric
of Sp(4Ny). In the N, = 2 case, the antisymmetric
of Sp(8) decomposes as 27 = 15 + 6 in terms of
SU(4), and the 15 is missing.]

(iii) The SU(2n;)/SO(2n;) cosets can emerge, at
T = 0, from theories with real representations, for
example the Sp(2N) gauge theories with 1, Dirac
fermions transforming as the 2-index antisymmetric
representation. At high temperatures, the restoration
of the symmetry is expected to be followed by its
enhancement to a global SO(4n). For example, if
ny =3, in the spin-1 flavored sector the 15 v, 15t
and 15 at mesons sourced by the operators in
Table IV will be degenerate with the 20" av mesons.
In addition, a flavor-singlet vector will also be
degenerate and together will yield the 66-dimen-
sional antisymmetric (adjoint) representation of
SO(12), with spin J = 1. In the spin J = 0 sector,
the 20’ ps and 20’ s mesons, together with the 1 + 1
flavor singlets form the 21 representation of SU(6).
[It would require an additional 35, the adjoint of
SU(6), to make the 2-index symmetric traceless 77-
dimensional representation of SO(12).]

APPENDIX F: BILINEAR OPERATORS
AS SOURCES

We collect in this Appendix technical clarifications about
gauge-invariant operators O,,, written in terms of the four-

component fermions Q and W, to be used as sources in the
lattice calculations of the spectrum of composite states. We
consider the Sp(2N) gauge theory, without specifying N.
When possible, we also write our expression in a form that
applies to Sp(2N) and SO(2n,) groups with general N,
fundamental and n; antisymmetric Dirac fermions. For
concreteness, in Appendix F 1 we explicitly identify the
irreducible representations of the unbroken global Sp(4)
group of relevance in the context of CHMs, as well as their
SU(2), x SU(2)g decompositions.

In the case of N, Dirac spinors transforming in the
fundamental representation of the gauge group Sp(2N), the
fermion bilinear operators are written as in terms of Ny x
N block matrices, built from the N Dirac fermions

w qia
Q - (_Qab(Cqu+i*)b>’ (Fl)

and, following the same lines leading to Eqs. (A12), their
conjugate Dirac fermion as

23’ = ﬂ’sQabC(Q_iT)b = —J’sgabCVO(Qi*)b

(aion)

Notice a difference, with respect to the definition leading to
Eq. (A12), in how we define the conjugate spinor: the factor
of —ysQ9 is introduced, in order to make the decom-
position in LH and RH chiral components of Q and Q take
the same form. We stress that Q' is physically equivalent to
Q', and hence one can identify the N ¢ Dirac fermions
with Q'.

We write explicitly the form of the general 2N, x 2N
matrices built as bilinears in spinors, both in two-compo-
nent and four-component notation, which read

0¥P,O™ | QPO

J(): frm— ) —_— ia
Q“PLQ | Q"P,QL
g T Cql ’ Gt GNP
ye) F3
ab qN,+iaTC‘qu ‘ qN/—}—iaTCqN‘/-Fjb ( )
g (@0 | OFrPLOE
QPO | QEr'PLOY
A R I e s (F4)
= qu+itl'I'[7/4qja ‘ qu-‘ria'I'&/,thf-&-ja 5
and
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o _ [QEoPLO" | OFomPLOE
" \over 0l | QP OF

g qiaT@UZUqub ‘ qiaTCGIvaqN,Jrjb
gVrHiaTCot gl ‘ GgNrHATEl gN b

(F5)

The symplectic matrix QzN is defined as a 2N X 2N
antisymmetric matrix such that (QzN )= —Tyy,. Because of
the contraction with Q,;,, J, is antisymmetric. ‘This bilinear
condenses, and hence the unbroken subgroup is Sp(2N).
The decomposition of Jy, J/| and J’l‘, in their irreducible
representations is 2N, @ 2N; = [N;(2N; - 1) - 1] @
1 ® Ny(2N; +1):

Jorr = S (Uorr = U «)T)+%Tr{9 Joiv}
0,1,1 2 0,1,1 0,1,1 2Nf 2Nf 0,1,1

QzN, 1
- Tr{Qy Jorr} += orr + Joar)T
N, r{Qy, 0,1,1}+2( o+ (Jorr)?)

A 1 S
=g a0 g (F6)

We highlighted here the fact that the symmetric part of J,
vanishes identically. Notice also that the singlets are anti-
symmetric. Both the J; and J;; decompose into symmetric
and antisymmetric parts, the latter expected to be related to
heavier states. For the SU(2N;)/Sp(2N) coset the oper-
ators in Table IV are identified as follows:

OT — J&;S‘) N
(F7)

OPS:JE]A), OV:J(IS>, OAV:JEA),

with the Og and O, operators being the U(1), conjugates
of Opg and O, respectively.

With matter content including n; Dirac fermions in
the antisymmetric representation of Sp(2N) (for N > 1)
we introduce the analogous jj ; - operators built from the
fermions

) l//mb
piab — . ) , (FS)
_Qacgbd(cwnfﬂ )cd

with i = 1, ..., ny, together with their conjugates

\Pigb = Qacgbdc(q—;iT)cd = QacgbdcyO(\Pi*)cd

ll/anrmh
- (_Qacgbd Cv i* ) (F9)
( "4 )cd

We conventionally align the vacuum with the matrix w,,, o

the 2n, x 2n; symmetric matrix such that (w,, f)z =1,, "

generalizing Eq. (5). We decompose jj; 1 in irreducible
representations as 2n, ® 2n; = [nf(2nf +hH-1leel1e

1 . . T wZn
= (o + Goaa)") =5~ Tr{wa, jo1.1}
2 2n 4

ny

Jo1.1n =

) : 1. :
+ Z—HfTr{wanJO,l,l’} T3 (o = (oaa)")
nj

=+ i (F10)
We highlighted the fact that the antisymmetric part of j,
vanishes. In this case, the singlets are symmetric matrices.

We write these operators in ny x ny blocks as matrix
representations of the global SU(2n;) symmetry:

(WP i | Wb p Wi
Jo = \PiabPLleab ‘ lebPL"P{jab

Wbt Cyricd ‘ il Eynrticd
= Qe i HiabT &y icd ‘ g HiabT Gy ny tcd

(F11)

\Ijiabprqujab ‘ Tiab}’”PLlP]gb

i
L\ Wi i | Wby, W)
l/jiab’r5uwjab ’ WiabTéyll/anrjab
= , F12
an +iabt 5;41”]'(117 ’ ll/nf +iabT5;4wnf+jab ( )
and
o Wb p, Wik | Pih g p) @b
v lPiabUyuPLLPjab \PiaboﬂuPL\Png
o o wiabTCO.ZVLchd ‘ WiabTCvo.Zvanfﬂcd
=3&gqc84pd an+iabT(~;OJZ’/ijcd an+iabTC().Z’/Lwnf+jcd .

(F13)

In the SU(2n,)/SO(2n;) case, the operators in Table IV

are identified as follows:

(S (A (S
Op=i, 0,=jM, 0,=i" o=V (F4)
Again, O, and O, operators are the U(1), conjugates of
Ops and O, respectively.

As explained also in Appendix E, operators J, that
source spin-0 states, and operators J; sourcing spin-1 states
can be classified in terms of the original global SU(2N)
(enlarged) symmetry, according to which the former
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transform as 2N ®2N;=[N;(2N;—1)|®[N;(2N;+1)],
and the latter as 2N, ® 2N, =1 @ [4N7 —1] of SU(2N/).
Only once the SU(2N ;) is broken to its Sp(2N ;) group, J,
and J; decompose in the same set of irreducible represen-
tations of the subgroup. Similarly, operators J- couple LH to
RH components of the Dirac fields, and hence while they
source particles with the same spin as Jy, they transform
under SU(2N ;) in the same way as J,. Once the symmetry is
broken, mixing between the particles sourced by J; and Jy/
will ensue, but in general these are different sources for
different SU(2N ;) particles. The same considerations apply
to the jy 1 - operators and their decompositions in irreduc-
ible representations of the SO(2n,) subgroup.

One can now explicitly decompose the matrices Jg 1/
(and jp ;1) into a given basis of the U(N) [and U(n/)], by
making a choice of generators 74 (and %) of the group. We
devote the next subsection to showing the result of this
process in the SU(4)/Sp(4) case, for some of the interest-
ing operators.

1. SU(4)/Sp(4) composite operators

We focus on the Sp(2N) theory with N, =2 funda-
mental fermions, and its SU(4)/Sp(4) coset, which is
relevant in the CHM context (see also the discussion
in [55]).

The pions in Eq. (C3) are sourced by the antisymmetric

Ops =J, (()A) operators. We can add to the Lagrangian density
in Eq. (16) the following source term:

\/_f

L, =2 Tr[Jy=* + Heel, (F15)

where X = ¢¥7//Q is the antisymmetric matrix defined
in Eq. (12). We can expand for small 7/ f and make use of
the antisymmetry in flavor space of J,. We make explicit
use of the generators as written in Eq. (B.4) of Ref. [50].
Looking at the decomposition of the 5 according to
SO(4)~SU(2), x SU(2)g c Sp(4), we find that the
SO(4)-singlet 7z is sourced by the operator Opg; =
i6L,/on° that reads

Ops 3 = (1113 i3 —iJ3t + i + c.c.)

\o]]

= (0" Q' - Q5 0*), (F16)
where we made abundant use of Eqgs. (A13). The 4 of
SO(4) are sourced by the following operators Opg s =

i5L, /87" given by’

9We remind the reader that the sources for 7!, 72 and 7° would
be the same sources as for the coset SU(2), x SU(2)x/SU(2)y.
The additional pions are due to the symmetry enhancement in
replacing SU(2N) with Sp(2N) as the gauge group.

Ops.1 =3 (+zJ'4 iJ§ + I3 — i3+ c.c.)

(Qla 5Q2a+Q2a},5Qlu)
Opsa = l (=I5 + T3 + T

—J¥ +cc.)

2
( lQla 5Q2a_f_i@7/5Qla)7
i
2

Opsq == (HJP =T = T¥# + I +cc.)
_Z(QlaQZa +@Qla)’
Opss = E( I+ g3 — a3t + I +ec)
= i(~iQ" Q% + iQ¥Q"). (F17)
The additional operator given by
1
Opso = ~3 IR+ I3 =T —JP +cc)
— (@Qla + QZaQZa) (F18)

is aligned along €, in the internal space. It is the operator
that develops a nontrivial VEV. It sources the Sp(4) singlet,
which has the same role as the f,(500) of QCD (see
Table VIII). Notice that these 6 operators put together
transform as the antisymmetric representation of the global
SU(4), before the decomposition in Sp(4) irreducible
representations as 6 = 1 + 5.

Six additional operators Og ; can be obtained by replac-
ing 1, — iy> from the operators Ops,; fori =0, ...,5. Such
operators are related to the former by the (anomalous)
global U(1), ~O(2) symmetry. [In QCD, the U(1),
partners of the 7 and f(500) particles are, respectively,
the aq and /%’ particles.]

The sources of the spin-1 fields are given in terms
of the operators in J4. In Sec. IIC we introduced the
fields A, = >"12 | A4T" (we drop here the subscript 6),
with 74 the Hermitian generators of SU(4) normalized as
TrTATE =154, As in Ref. [50], it is convenient to label
the broken generators with A = 1, ..., 5 and the unbroken
ones with A =6, ..., 15. We hence add to the Lagrangian
density the following source term:

L, = V2Tr[J{Al] + Hec.. (F19)
Starting from the AV sources, we find that O} , = ‘;ﬁA are

given by the following:
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Ohvi = % P+ R+ T TP ) = Q1p Q™ + Q' Q'

Oy = %( 122 i - B e = —iQMyr S Q% 4+ iQMyrS Q1

Ohvs = % I = TR+ IP = J¥ +ec) = QMpy Q1 — QXS 0%,

Ohys = %( i B — i Y fec) = -0 0% 4 iQXy Q"

Oy = LU = J3 = 2 4 1 4 cic) = D740 + T (F20)

where we used relations such as Q2y*P, QL4 =(Q¥y1P, Q)T =

—Qy"PRQ¥, or Qy'PLO¥ =0y PLOY) =

— Q% Yt PRQ', and (Q¥y*P, Q)" = Ql4y#P; 0% It hence turns out that the SO(5) fundamental 5 decomposes as 4 + 1
of SO(4), with the singlet being sourced by O,y 3, while the 4 is sourced by Oy |, Ohyor Ohy, and Oy 5. For
completeness, Oyy |, Oy, and Oy 3 would be the generators that are used in the SU(2); x SU(2)g/SU(2)y coset.

Similar expressions hold for the ten operators sourcing the V mesons. We adopt the same basis as in Ref. [50], and within

these conventions we find the following:

1 : : : .
0/\41,6 — 5( l.]13 ZJ%4 + lJZ]%l + ZJ41¥2 + C.C.) (Qlay[l SQ + Q2ay/4 Q2a Q },/4 SQla Q%ayﬂ},Sth)’
1 : : : — — .
O/\llj — 5( l.]14 l]%?’ + 1J?2 + ljéltl + C.C.) — _5 (QlayuySQ%a + Qzayﬂ},SQ Q yﬂ 5Q2a _ %uyﬂySQla)’
1 - —
Oy =5 (=77 =i+ T+ 7P+ cc) = —iQley Q™ 4 iQ Q'
1 i i — -
0/\4/’9 — 5( lJ13 + ZJ24 + l.]31 ZJ41¥2 + C.C.) — _ (QMJ/”VSQlca _ Q2ayﬂ},5Q2a Q y/l SQla + Qz")/” Q2a)
V2 V2
06,10:7(”34'-’?1"‘00-) (Qlu}’” 50U + QS Q')
. 1
11 :E(J%4_|_J%3 _|_J.;)2_|_J4111 ~|—C.C.) (QlaJ/” SQZa + Q2ayﬂ SQ + Q ]/M 5Q2a _I_Q2ay;4 SQIa)
V2 V2~ —5a
OVp =5 U P +cc) = (@77 0 + 0¢r'r° 0*),
1 S —
Oy =5 WP =+ I = JP fee) = QlphQ* + Q¥ Q'
i 1 ‘Ala, 24,
b= g U1 TR = TP 4T ee) = 0pQ1e - 0o,
1 - —
O’\J/.IS — 5(J%l +J%2 _ _]?3 _ J41¥4 + C.C.) — Qlanyla + QZay;tQZa_ (FZI)
|
The SO(5) adjoint 10 decomposes as 4 + 6 of SO(4): the  U(1) x SU(4), by adding the generator 7° = 2\/-1]4 We
fundamental 4 is sourced by O 5, Oy, O 1y and OY 13, hence identify the additional operator
with the adjoint 6 sourced by the other six operators. Again,
for completeness, O’\lﬂ?, (9’\’,,13 and (9’\',,14 would be the o, El(]ll IR B )
unbroken generators in the SU(2), x SU(2),/SU(2)y 072
coset, corresponding to the p mesons in QCD, in which = QlaymySQla 4 @yyys 0. (F22)

case Oy ;5 would be associated with baryon number and
would source the w/¢ in QCD.

We can introduce an additional vector field A,(Z, to
complete the adjoint SU(4) to the adjoint of the whole

One can recognize this operator to be aligned with the
generator of the anomalous U(1),,. It sources the equivalent
of the f,(1285) of QCD (see Table VIII).
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These 16 operators do not have a U(1), partner. But a

second set of sources of spin-1 states T is built from J (I,S)
states, with the ¢** tensor. Their U(1), partners (corre-
sponding to the more exotic states b, and &, /h} mesons of
QCD) are sourced by operators AT involving the
tensor ¢y (see also [55]). We do not show this explicitly,
as it requires performing again the same exercise illustrated
in the previous pages. Sourcing even more exotic states
such as z; may require using derivatives and nonlocal
operators [126], which is beyond our current purposes.

APPENDIX G: NUMERICAL RESULTS OF
LATTICE MEASUREMENTS

In this Appendix we present the numerical details and
results of lattice measurements for meson masses and decay

constants. In Table IX we first list the name of each
measurement QB/FMj at given values of f and m, for
fundamental (quenched) fermions and present the time
intervals corresponding to the asymptotic region for the
cases of PS, V, AV and S mesons along with the values of
1%/ N 4of» which reflect the quality of the numerical fits using
Egs. (35) and (36). Similar results for T and AT mesons are
shown in Table X. Analogously, in the case of antisymmetric
(quenched) fermions, labeled as QBiASMj, we presented
the results in Table X1 for the cases of ps, v, av and s mesons
and in Table XII for t and at mesons.

In Table XIII we present the extracted values of PS
masses and decay constants, as well as S masses. In the
table we also present the results of mpgl and fpgL.
Similarly, in Table XIV we show the results of the masses
and decay constants of V and AV mesons. For presentation

TABLE IX. Technical details about PS, V, AS, and S lattice correlation functions. For each ensemble and each choice of bare mass
amy, we show the fitting intervals of the Euclidean time Iy, = [t;, /] between the minimum time 7; and maximum time ¢, retained in the
single-exponential fit to the measured correlators of mesons made of fundamental Dirac fermions. We carry out a correlated fit via
standard y? minimization. We report the values of y? (normalized by the number of degrees of freedom) at the minima. In the case of AV
and S states, we leave blank some entries for which the numerical data do not exhibit a plateau in the effective mass plots, because of

numerical noise.

PS \Y AV S

2 2 2 2
Measurement amg I A)](d — 1\)’(4 - I 1\}/2 — I A),rd —
QBI1FM1 -0.7 14-24 1.2 13-24 1.1 9-13 0.1 9-15 0.6
QBIFM2 -0.73 14-24 1.3 13-24 1.2 9-16 0.2 9-16 0.8
QBIFM3 -0.75 14-24 1.3 13-24 1.3 9-15 0.3 9-15 1.1
QB1FM4 -0.77 14-24 1.0 12-24 1.8 8-11 0.2 8-10 0.3
QBI1FMS5 —-0.78 14-24 1.0 12-24 1.5 8-12 0.3 8-10 0.03
QB1FM6 —-0.79 14-24 0.7 12-24 1.9 811 0.7
QB2FM1 -0.73 15-30 0.9 15-30 0.5 11-15 1.6 10-12 0.2
QB2FM2 -0.75 15-30 0.9 15-30 0.6 11-15 1.4 9-11 0.4
QB2FM3 —-0.76 15-30 1.0 15-30 0.6 11-14 0.8
QB3FM1 -0.6 22-30 0.6 19-30 0.7 13-26 0.9 13-28 0.9
QB3FM2 —0.65 20-30 0.5 19-30 0.5 13-22 0.3 13-22 1.5
QB3FM3 —0.68 22-30 0.9 21-30 0.7 1522 0.8 14-22 0.8
QB3FM4 -0.7 20-30 0.7 19-30 0.7 13-20 0.2 10-14 0.6
QB3FM5 -0.71 18-30 1.1 20-30 0.6 11-15 0.8 10-13 0.6
QB3FM6 -0.72 18-30 0.9 17-30 0.9 11-15 0.3
QB3FM7 -0.73 17-30 1.0 19-30 0.6 11-15 1.0
QB4FM1 —-0.6 22-30 2.2 22-30 1.7 15-23 0.8 16-25 0.6
QB4FM2 —-0.625 22-30 1.7 22-30 1.6 15-23 0.6 16-22 0.4
QB4FM3 —0.64 22-30 1.5 22-30 1.1 15-23 0.7 15-22 0.6
QB4FM4 —-0.65 22-29 1.1 22-30 0.5 15-25 0.2 15-22 0.6
QB4FM5 —0.66 22-29 1.3 20-30 0.6 15-24 0.2 15-22 0.6
QB4FM6 -0.67 22-28 1.0 20-30 0.5 15-24 0.3 15-22 0.7
QB4FM7 —0.68 19-28 0.8 20-29 0.6 15-22 0.3 13-18 0.2
QB4FMS8 —-0.69 19-28 0.7 20-29 1.0
QB5FM1 —0.62 23-30 1.0 24-30 0.5 17-24 0.1 15-23 0.8
QB5FM2 —0.64 21-30 0.6 21-30 0.6 15-24 0.3 14-22 1.4
QB5FM3 —0.646 21-30 0.7 21-30 0.6 17-24 0.7
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purposes, we find it useful to show also the meson masses the PS decay constant j‘ps. Analogous results for the
in units of the PS decay constant, as well as the ratios of masses and decay constants of ps, s, v, av, t, and at mesons
fv/fps, in Table XV. In Table XVI we report the masses of ~ composed of antisymmetric fermions are presented in
T and AT states, both in units of the lattice spacing a and of =~ Tables XVII-XX.

TABLE X. Technical details about T and AT lattice correlation functions. For each ensemble and each choice of bare mass am,, we
show the fitting intervals of the Euclidean time Iy, = [t;, 7] between the minimum time 7; and maximum time 7, retained in the single-
exponential fit to the measured correlators of mesons made of fundamental Dirac fermions. We carry out a correlated fit via standard y>
minimization. We report the values of y? (normalized by the number of degrees of freedom) at the minima. In the case of the AT state, we
leave blank some entries for which the numerical data did not exhibit a plateau in the effective mass plots, because of numerical noise.

T AT
2 2

Measurement I Al](d - I A)/(M
QBIFM1 13-24 0.5 9-13 0.7
QB1FM2 12-24 0.5 9-13 0.2
QBIFM3 1224 0.7 8-13 0.1
QBIFM4 12-24 1.1 8-13 0.1
QBIFMS5 12-24 0.9 8-12 0.6
QBIFM6 12-24 1.2 8-12 0.4
QB2FM1 15-30 1.0 11-17 0.8
QB2FM2 15-28 1.4 11-16 1.4
QB2FM3 12-29 1.6 9-16 1.0
QB3FM1 20-29 0.5 13-26 0.9
QB3FM2 20-29 0.4 13-21 1.2
QB3FM3 19-30 1.0 13-22 0.4
QB3FM4 19-30 0.4 13-18 0.6
QB3FM5 19-30 1.5 14-18 0.9
QB3FM6 17-30 0.6 11-16 0.8
QB3FM7 13-26 1.1

QB4FM1 20-30 1.1 15-26 0.8
QB4FM2 20-30 1.1 15-22 0.3
QB4FM3 20-28 1.1 15-20 0.1
QB4FM4 22-30 0.9 14-19 0.3
QB4FM5 20-30 0.7 13-19 0.4
QB4FM6 22-30 0.5 13-19 0.6
QB4FM7 22-30 0.4 13-18 0.4
QB4FMS 17-30 0.6

QB5SFM1 24-30 0.6 15-23 0.6
QB5SFM2 20-27 0.6 15-22 0.3
QB5FM3 20-30 0.4 17-24 0.9
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TABLE XI. Technical details pertaining the measurements of the correlation functions of operators built with 2-index antisymmetric
fermions. For each ensemble and each choice of bare mass an, we show the fitting intervals of the Euclidean time I = [t;. 7] between
the minimum time #; and maximum time 7 retained in the single-exponential fit to the measured correlators of mesons made of
antisymmetric Dirac fermions. We carry out a correlated fit via standard y? minimization. We report the values of y> (normalized by the
number of the degrees of freedom) at the minima. In the case of the v, av and s states, we leave blank some entries for which the
numerical data do not exhibit a plateau in the effective mass plots, due to numerical noise.

ps v av S
Measurement mg Iy A)/r;f I ]ér:‘ I ]é(;f I ]é(dzf
QB1ASM1 —1.05 14-24 1.2 13-24 0.5 7-12 0.1 10-15 0.5
QB1ASM2 —1.08 12-24 1.9 12-24 0.5 7-10 0.1 7-13 1.8
QB1ASM3 —1.1 12-24 1.1 12-24 1.0 7-12 1.1 8-13 0.7
QB1ASM4 —-1.12 12-24 0.8 1220 0.5 7-11 0.5 7-11 0.2
QB1ASMS -1.13 11-24 1.6 12-19 0.3 8-11 0.6 7-11 0.4
QB1ASM6 -1.14 13-24 0.7 10-20 0.5 7-10 0.3

QB2ASM1 —1.05 16-30 1.2 14-25 1.1 9-15 0.7 11-17 0.6
QB2ASM2 —1.08 15-30 0.7 13-28 0.8 9-13 0.1 9-14 0.8
QB2ASM3 —-1.09 15-30 0.9 12-23 0.5 10-13 0.5 8-12 0.2
QB2ASM4 —1.1 15-30 1.0 12-21 0.4 8-12 0.2 9-12 0.2
QB2ASM5 —1.11 15-30 1.3 12-25 0.7 9-12 0.2 8-12 1.0
QB2ASM6 —-1.12 16-30 1.3

QB3ASM1 -1.03 16-30 1.5 16-27 0.4 10-15 0.2 10-18 0.6
QB3ASM2 -1.04 14-30 1.1 17-30 1.5 10-16 0.1 9-16 0.5
QB3ASM3 —1.05 16-30 0.8 14-30 0.5 9-12 0.2 9-15 0.5
QB3ASM4 -1.06 18-30 1.1 14-24 0.2 9-12 0.3

QB4ASMI -0.95 20-30 0.9 20-30 0.8 12-21 0.8 13-26 0.7
QB4ASM2 —0.983 19-30 1.6 20-30 0.9 12-19 0.7 11-22 0.7
QB4ASM3 —-0.99 19-30 1.6 17-23 0.8 10-18 0.4 12-19 0.4
QB4ASM4 —-0.99 19-30 1.6 17-23 0.8 10-18 0.4 12-19 0.4
QB4ASM5 —-1.01 18-30 0.7 17-28 1.1 10-16 0.1 9-12 0.5
QB4ASM6 -1.015 19-30 0.9 16-26 0.5 11-15 0.2

QB5ASM1 —-0.95 20-30 0.6 19-30 0.3 12-21 0.7 12-24 1.0
QB5ASM2 —0.961 19-30 1.7 20-30 0.2 12-19 0.2

TABLE XII. Technical details pertaining the measurements of the correlation functions of operators built with 2-index antisymmetric
fermions. For each ensemble and each choice of bare mass an, we show the fitting intervals of the Euclidean time I = [t;. 7] between
the minimum time #; and maximum time ¢ retained in the single-exponential fit to the measured correlators of mesons made of
antisymmetric Dirac fermions. We carry out a correlated fit via standard y? minimization. We report the values of y> (normalized by the
number of the degrees of freedom) at the minima. In the case of the at state, we leave blank some entries for which the numerical data did
not exhibit a plateau in the effective mass plots, due to numerical noise.

t at
2 2
Measurement I A)](dof I I\{i -
QBIASMI1 13-24 1.3 9-13 0.7
QBIASM2 11-24 0.8 7-11 1.8
QB1ASM3 10-20 0.2 7-10 0.1
QB1ASM4 10-21 1.0 8-11 0.1
QB1ASMS 11-24 0.4 7-9 0.1
QBIASM6 10-15 1.0 6-10 0.1
QB2ASM1 13-30 0.8 9-15 1.0
QB2ASM?2 14-24 0.7 9-14 1.3
QB2ASM3 11-20 1.3 8-13 0.3
QB2ASM4 11-26 1.2 7-12 0.2

(Table continued)
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TABLE XII. (Continued)

t at
2 2

Measurement I A)](dof I I\{i -
QB2ASMS 10-21 0.9 11-15 1.4
QB2ASM6

QB3ASMI1 19-30 0.8 11-15 0.1
QB3ASM2 13-30 1.0 8-13 0.2
QB3ASM3 1220 0.9 9-13 0.2
QB3ASM4 12-24 0.2 9-12 0.3
QB4ASM1 17-30 1.4 12-16 1.5
QB4ASM?2 22-29 0.5 11-19 0.3
QB4ASM3 17-30 0.7 10-16 0.7
QB4ASM4 15-30 0.8 10-18 1.0
QB4ASMS5 19-27 0.3 14-19 0.3
QB4ASM6 15-26 0.5

QB5SASMI1 17-30 0.6 11-16 0.3
QB5SASM2 14-26 0.5 10-15 0.1

TABLE XIII. Masses for flavored spin-0 (PS and S) mesons, made of Dirac fermions transforming in the fundamental representations
of Sp(4), and (renormalized) decay constant of the PS states. All results are obtained in the quenched approximation and presented
either in units of the lattice spacing a or volume L = N,a.

Measurement amps afps amsg mpg L SpsL

QBIFMI 0.5516(4) 0.08728(26) 0.925(9) 13.239(10) 2.095(6)
QBI1FM2 0.4816(5) 0.08206(28) 0.873(11) 11.558(11) 1.969(7)
QBIFM3 0.4309(5) 0.07801(29) 0.840(15) 10.342(12) 1.872(7)
QBI1FM4 0.3753(6) 0.0733(3) 0.838(14) 9.008(13) 1.760(8)
QB1FM5 0.3453(6) 0.0709(3) 0.839(19) 8.287(14) 1.702(8)
QB1FM6 0.3125(7) 0.0681(3) 7.501(16) 1.635(8)
QB2FM1 0.38340(15) 0.06957(9) 0.771(6) 18.403(7) 3.339(4)
QB2FM2 0.32442(17) 0.06482(10) 0.760(7) 15.572(8) 3.112(5)
QB2FM3 0.29148(18) 0.06222(11) 13.991(9) 2.986(5)
QB3FM1 0.55219(15) 0.07410(14) 0.7980(29) 26.505(7) 3.557(7)
QB3FM2 0.43873(16) 0.06705(13) 0.711(5) 21.059(7) 3.218(6)
QB3FM3 0.36129(20) 0.06099(12) 0.633(9) 17.342(10) 2.928(6)
QB3FM4 0.30373(21) 0.05644(14) 0.657(4) 14.579(10) 2.728(7)
QB3FM5 0.27138(20) 0.05406(10) 0.640(5) 13.026(10) 2.595(5)
QB3FM6 0.23560(25) 0.05128(13) 11.309(12) 2.461(6)
QB3FM7 0.19406(25) 0.04841(12) 9.315(12) 2.324(6)
QB4FM1 0.44146(16) 0.06150(13) 0.649(4) 21.190(8) 2.952(6)
QB4FM2 0.38068(19) 0.05752(13) 0.560(5) 18.272(9) 2.761(6)
QB4FM3 0.34147(20) 0.05471(13) 0.577(5) 16.390(10) 2.626(6)
QB4FM4 0.31413(23) 0.05293(13) 0.540(5) 15.078(11) 2.541(6)
QB4FM5 0.28472(25) 0.05064(13) 0.522(7) 13.666(12) 2.431(6)
QB4FM6 0.25306(27) 0.04816(14) 0.511(10) 12.147(13) 2.312(7)
QB4FM7 0.21806(24) 0.04539(11) 0.523(10) 10.467(11) 2.179(5)
QB4FMS8 0.17734(26) 0.04240(12) 8.512(12) 2.035(6)
QB5FMI1 0.2524(3) 0.04282(15) 0.449(4) 12.113(14) 2.055(7)
QB5SFM2 0.1850(4) 0.03740(16) 0.428(6) 8.881(17) 1.795(7)
QB5SFM3 0.1610(3) 0.03560(14) 7.727(16) 1.709(7)
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TABLE XIV. Masses and decay constants, computed in the quenched approximation, for flavored spin-1 (V and AV) mesons, made of
Dirac fermions transforming in the fundamental representations of Sp(4). All results are in units of the lattice spacing a. In parentheses
we report the statistical uncertainties.

Measurement amy afy ampuy afav
QB1FM1 0.6259(8) 0.1372(5) 0.971(9) 0.134(4)
QB1FM2 0.5721(11) 0.1351(7) 0.927(11) 0.138(5)
QBIFM3 0.5356(13) 0.1330(8) 0.902(14) 0.142(6)
QBIFM4 0.4981(18) 0.1302(10) 0.880(12) 0.148(4)
QBIFM5 0.4793(22) 0.1287(12) 0.865(14) 0.148(5)
QB1FM6 0.4592(27) 0.1262(14) 0.854(17) 0.149(6)
QB2FM1 0.4848(6) 0.1186(4) 0.784(8) 0.115(4)
QB2FM2 0.4474(9) 0.1162(6) 0.745(12) 0.113(5)
QB2FM3 0.4288(12) 0.1148(8) 0.726(15) 0.112(7)
QB3FM1 0.59445(24) 0.10405(21) 0.821(3) 0.0881(15)
QB3FM2 0.4988(3) 0.10087(29) 0.736(5) 0.0930(23)
QB3FM3 0.4394(7) 0.0973(5) 0.664(14) 0.088(8)
QB3FM4 0.4008(8) 0.0959(6) 0.655(11) 0.098(5)
QB3FM5 0.3800(16) 0.0932(11) 0.631(6) 0.0997(20)
QB3FM6 0.3640(15) 0.0944(9) 0.645(10) 0.110(4)
QB3FM7 0.339(4) 0.0874(24) 0.581(11) 0.095(4)
QB4FM1 0.4839(5) 0.08727(28) 0.680(4) 0.0789(17)
QB4FM2 0.4332(4) 0.0851(3) 0.633(5) 0.0809(20)
QB4FM3 0.4023(5) 0.0835(4) 0.605(5) 0.0821(24)
QB4FM4 0.3824(7) 0.0828(5) 0.566(7) 0.0746(28)
QB4FM5 0.3626(7) 0.0821(5) 0.543(8) 0.074(3)
QB4FM6 0.3421(10) 0.0806(6) 0.519(11) 0.072(4)
QB4FM7 0.3222(16) 0.0790(9) 0.492(15) 0.069(6)
QB4FMS8 0.303(3) 0.0771(18)

QB5SFM1 0.3112(7) 0.0665(5) 0.480(6) 0.0703(27)
QB5FM2 0.2680(15) 0.0637(8) 0.449(7) 0.0749(27)
QB5SFM3 0.2589(23) 0.0637(11) 0.406(16) 0.063(6)

TABLE XV. Some useful ratios of (quenched) masses and decay constants of mesons made of Dirac fermions transforming in the
fundamental representation. In parentheses we report the statistical uncertainties.

Measurement 7ty [ fitps inps/ fps iy / fes inav/ frs ins/ fres v/ frs
QBIFM1 1.1346(13) 6.320(17) 7.171(23) 11.13(11) 10.60(10) 1.572(7)
QBI1FM2 1.1880(20) 5.869(17) 6.972(27) 11.30(14) 10.64(13) 1.646(9)
QB1FM3 1.2429(29) 5.523(18) 6.86(3) 11.56(18) 10.77(18) 1.704(11)
QB1FM4 1.327(5) 5.120(19) 6.79(4) 12.01(17) 11.43(19) 1.776(15)
QBI1FM5 1.388(6) 4.869(20) 6.76(4) 12.20(20) 11.83(26) 1.815(17)
QBIFMS6 1.469(8) 4587(21) 6.74(5) 12.54(20) 1.852(21)
QB2FM1 1.2646(14) 5.511(7) 6.969(12) 11.26(12) 11.08(10) 1.705(6)
QB2FM2 1.3791(27) 5.005(7) 6.902(17) 11.50(18) 11.73(11) 1.793(9)
QB2FM3 1.471(4) 4.685(7) 6.891(22) 11.67(25) 1.845(12)
QB3FM1 1.0765(4) 7.452(14) 8.022(16) 11.08(5) 10.76(5) 1.404(3)
QB3FM2 1.1370(7) 6.544(12) 7.440(15) 10.97(8) 10.61(8) 1.505(4)
QB3FM3 1.2161(18) 5.924(10) 7.204(18) 11.70(11) 10.39(15) 1.596(9)
QB3FM4 1.3196(27) 5.343(12) 7.051(22) 11.52(19) 11.56(8) 1.687(10)
QB3FM5 1.400(6) 5.020(8) 7.03(3) 11.66(11) 11.84(10) 1.725(20)
QB3FM6 1.545(7) 4.595(11) 7.10(3) 12.41(15) 1.841(21)
QB3FM7 1.745(21) 4.009(9) 7.00(8) 12.01(24) 1.81(5)
QB4FM1 1.0961(6) 7.179(14) 7.868(17) 11.06(7) 10.55(7) 1.419(4)
QB4FM2 1.1381(10) 6.618(14) 7.532(18) 11.01(8) 10.42(10) 1.480(6)

(Table continued)
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TABLE XV. (Continued)

Measurement Tty [ ps fps / f'ps ity / fps Mav/fes s/ fps Jv/fes
QB4FM3 1.1782(14) 6.242(14) 7.354(20) 11.06(10) 10.54(11) 1.527(7)
QB4FM4 1.2175(20) 5.945(12) 7.226(21) 10.69(13) 10.19(10) 1.565(10)
QB4FM5 1.2735(25) 5.634(12) 7.160(24) 10.71(16) 10.31(13) 1.621((10)
QB4FM6 1.352(4) 5.255(12) 7.104(29) 10.77(22) 10.60(20) 1.674(13)
QB4FM7 1.478(7) 4.804(11) 7.10(4) 10.8(3) 11.53(21) 1.741(20)
QB4FMS 1.708(19) 4.183(11) 7.14(9) 1.82(4)
QB5FM1 1.2332(27) 5.894(18) 7.268(27) 11.21(15) 10.49(9) 1.552(10)
QB5FM2 1.449(8) 4.948(19) 7.17(4) 12.02(20) 11.44(18) 1.703(19)
QB5FM3 1.608(14) 4.522(18) 7.27(7) 11.4(4) 1.789(29)
TABLE XVI. Masses of T and AT states, in units of a and fpg, for each of the ensembles and bare masses m,. The Dirac fermions are
in the fundamental representation. In parentheses we report the statistical uncertainties.

Measurement amy ny/ Fos ampar it/ fps
QBI1FM1 0.6257(10) 7.169(23) 0.963(10) 11.03(11)
QB1FM2 0.5719(14) 6.969(28) 0.920(12) 11.21(15)
QBI1FM3 0.5350(18) 6.86(3) 0.899(10) 11.52(13)
QB1FM4 0.4978(25) 6.79(4) 0.863(14) 11.77(20)
QBI1FMS5 0.477(3) 6.73(5) 0.858(15) 12.09(23)
QB1FM6 0.459(4) 6.74(7) 0.834(19) 12.2(3)
QB2FM1 0.4838(9) 6.954(15) 0.775(10) 11.13(15)
QB2FM2 0.4465(15) 6.887(24) 0.741(15) 11.42(24)
QB2FM3 0.4307(15) 6.922(27) 0.754(8) 12.12(13)
QB3FM1 0.5944(3) 8.021(16) 0.8201(4) 11.07(6)
QB3FM2 0.4986(5) 7.437(17) 0.735(6) 10.96(9)
QB3FM3 0.4397(9) 7.209(12) 0.673(7) 11.04(12)
QB3FM4 0.3997(14) 7.03(3) 0.661(14) 11.63(26)
QB3FMS5 0.3806(23) 7.04(4) 0.596(20) 11.0(4)
QB3FM6 0.3649(26) 7.12(5) 0.672(12) 13.11(24)
QB3FM7 0.3532(29) 7.30(6)

QB4FM1 0.4844(4) 7.877(17) 0.675(4) 10.97(8)
QB4FM2 0.4336(5) 7.538(20) 0.626(6) 10.88(10)
QB4FM3 0.4023(7) 7.354(23) 0.595(7) 10.87(13)
QB4FM4 0.3824(11) 7.226(26) 0.581(7) 10.98(13)
QB4FM5 0.3617(15) 7.14(3) 0.657(6) 11.19(11)
QB4FM6 0.3405(23) 7.07(5) 0.547(7) 11.36(15)
QB4FM7 0.318(4) 7.01(9) 0.525(9) 11.59(20)
QB4FMS 0.303(4) 7.14(9)

QB5FM1 0.3111(14) 7.27(4) 0.488(5) 11.39(13)
QB5FM2 0.2685(23) 7.18(6) 0.450(9) 12.03(25)
QB5FM3 0.252(3) 7.08(9) 0.391(19) 11.0(5)
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TABLE XVII. Masses for flavored spin-O (ps and s) mesons, made of Dirac fermions transforming in the 2-index antisymmetric
representations of Sp(4), and decay constant of the PS states. All results are obtained in the quenched approximation and presented
either in units of the lattice spacing a, or volume L. In parentheses we report the statistical uncertainties.

Measurement anyg afops amy mys L SpsL
QBI1ASM1 0.6254(4) 0.1249(4) 1.045(28) 15.009(9) 2.99709)
QB1ASM2 0.5413(4) 0.1166(3) 1.036(10) 12.991(10) 2.798(8)
QB1ASM3 0.4789(4) 0.1107(4) 0.970(20) 11.495(9) 2.657(9)
QB1ASM4 0.4087(5) 0.1036(3) 0.953(16) 9.809(11) 2.487(8)
QB1ASMS 0.3693(5) 0.0998(4) 0.930(25) 8.863(12) 2.396(8)
QB1ASM6 0.3260(5) 0.0958(5) 7.823(13) 2.300(12)
QB2ASM1 0.50776(12) 0.10646(13) 0.894(11) 24.372(6) 5.110(6)
QB2ASM2 0.40809(14) 0.09668(18) 0.851(8) 19.588(7) 4.641(6)
QB2ASM3 0.37047(16) 0.09300(14) 0.860(7) 17.782(8) 4.464(7)
QB2ASM4 0.32896(16) 0.08898(14) 0.824(14) 15.790(8) 4.271(7)
QB2ASMS 0.28241(19) 0.08494(16) 0.842(14) 13.556(9) 4.077(8)
QB2ASM6 0.22727(22) 0.08108(22) 10.909(10) 3.892(10)
QB3ASM1 0.35682(16) 0.08149(13) 0.726(6) 17.127(8) 3.912(6)
QB3ASM2 0.31698(16) 0.07781(13) 0.704(5) 15.215(8) 3.735(6)
QB3ASM3 0.27265(21) 0.07361(18) 0.698(7) 13.087(10) 3.533(8)
QB3ASM4 0.22041(27) 0.06926(19) 10.580(13) 3.325(10)
QB4ASM1 0.44487(15) 0.08239(15) 0.692(4) 21.354(7) 3.945(7)
QB4ASM2 0.33323(16) 0.08239(15) 0.623(4) 15.995(8) 3.444(6)
QB4ASM3 0.30578(19) 0.06921(15) 0.611(7) 14.678(9) 3.322(7)
QB4ASM4 0.26323(18) 0.06536(15) 0.57909) 12.635(9) 3.137(7)
QB4ASMS 0.21375(20) 0.06080(17) 0.604(7) 10.260(10) 2.918(8)
QB4ASM6 0.18506(25) 0.05838(17) 8.883(12) 2.802(8)
QB4ASM1 0.22454(27) 0.05392(13) 0.484(5) 10.778(13) 2.588(6)
QB4ASM2 0.1666(3) 0.04851(15) 7.999(15) 2.329(7)

TABLE XVIII. Masses and decay constants, computed in the quenched approximation, for flavored spin-1 (v and av) mesons, made of
Dirac fermions transforming in the antisymmetric representations of Sp(4). All results are in units of the lattice spacing a. In parentheses
we report the statistical uncertainties.

Measurement am, af amy, afa
QB1ASMI 0.7457(11) 0.1970(11) 1.216(10) 0.196(5)
QBIASM2 0.6836(12) 0.1924(11) 1.146(13) 0.192(6)
QB1ASM3 0.6393(19) 0.1862(17) 1.082(18) 0.183(7)
QB1ASM4 0.595(3) 0.1842(25) 1.083(22) 0.205(11)
QB1ASMS 0.571(4) 0.179(3) 0.94(5) 0.148(18)
QB1ASM6 0.542(4) 0.1759(21) 1.01(4) 0.190(16)
QB2ASMI1 0.6378(7) 0.1726(7) 1.020(9) 0.159(5)
QB2ASM2 0.5679(8) 0.1645(7) 0.942(14) 0.154(7)
QB2ASM3 0.5466(10) 0.1646(7) 0.96(3) 0.174(22)
QB2ASM4 0.5222(12) 0.1615(8) 0.937(13) 0.172(6)
QB2ASMS 0.4921(22) 0.1548(14) 0.871(28) 0.152(13)
QB2ASM6

(Table continued)
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TABLE XVIII. (Continued)

Measurement am, af, any, af .
QB3ASMI1 0.4933(11) 0.1346(9) 0.800(10) 0.130(5)
QB3ASM2 0.4637(19) 0.1290(16) 0.785(12) 0.135(6)
QB3ASM3 0.4461(18) 0.1325(12) 0.778(11) 0.142(5)
QB3ASM4 0.417(3) 0.1276(20) 0.752(14) 0.141(6)
QB4ASM1 0.5287(6) 0.1221(6) 0.770(6) 0.1060(29)
QB4ASM2 0.4425(12) 0.1122(11) 0.691(10) 0.108(4)
QB4ASM3 0.4249(12) 0.1115(9) 0.700(5) 0.1222(19)
QB4ASM4 0.3960(20) 0.1076(15) 0.660(10) 0.115(4)
QB4ASMS5 0.3697(25) 0.1060(16) 0.629(10) 0.115(4)
QB4ASM6 0.348(4) 0.0995(19) 0.662(22) 0.134(11)
QB5ASMI1 0.3327(14) 0.0865(9) 0.558(7) 0.1006(28)
QB5ASM2 0.301(5) 0.0840(26) 0.499(9) 0.090(3)

TABLE XIX. Some useful ratios of (quenched) masses and decay constants of mesons made of Dirac fermions transforming in the
antisymmetric representation. In parentheses we report the statistical uncertainties.

Measurement rhV/ﬁ/lPS mps/f‘ps mv/}‘ps ﬁ’lav/}‘ps ms/}‘ps }‘v/}‘pv
QBIASMI1 1.1924(17) 5.009(14) 5.972(21) 9.74(8) 8.37(22) 1.578(10)
QB1ASM2 1.2629(23) 4.643(12) 5.864(19) 9.83(12) 8.89(9) 1.651(10)
QB1ASM3 1.335(4) 4.326(14) 5.774(25) 9.77(17) 8.76(18) 1.682(14)
QB1ASM4 1.457(8) 3.944(11) 5.75(3) 10.45(21) 9.20(15) 1.778(24)
QBI1ASMS 1.545(11) 3.699(12) 5.72(5) 9.4(5) 9.31(25) 1.79(3)
QB1ASM6 1.654(15) 3.401(16) 5.65(5) 10.5(4) 1.835(23)
QB2ASM1 1.2561(13) 4.770(5) 5.991(9) 9.57(9) 8.40(11) 1.621(6)
QB2ASM2 1.3916(21) 4.221(5) 5.874(12) 9.74(14) 8.81(8) 1.701(8)
QB2ASM3 1.4754(27) 3.983(5) 5.877(14) 10.3(4) 9.24(8) 1.770(8)
QB2ASM4 1.587(4) 3.697(5) 5.869(16) 10.53(15) 9.27(15) 1.815(10)
QB2ASMS 1.742(8) 3.325(5) 5.793(25) 10.3(3) 9.91(17) 1.823(16)
QB2ASM6 2.803(7)

QB3ASM1 1.382(3) 4.379(6) 6.053(15) 9.81(13) 8.91(8) 1.652(10)
QB3ASM2 1.463(6) 4.073(7) 5.959(27) 10.09(15) 9.05(7) 1.657(21)
QB3ASM3 1.636(7) 3.704(8) 6.061(28) 10.56(15) 9.48(10) 1.801(16)
QB3ASM4 1.891(15) 3.182(8) 6.02(5) 10.86(21) 1.843(29)
QB4ASM1 1.1884(13) 5.39909) 6.417(13) 9.35(8) 8.40(5) 1.482(7)
QB4ASM?2 1.328(4) 4.644(8) 6.168(20) 9.63(14) 8.67(6) 1.563(15)
QB4ASM3 1.389(4) 4.418(9) 6.139(21) 10.12(7) 8.83(10) 1.611(12)
QB4ASM4 1.504(8) 4.027(8) 6.06(3) 10.10(15) 8.86(14) 1.647(23)
QB4ASMS5 1.729(12) 3.516(9) 6.08(5) 10.35(16) 9.93(12) 1.743(28)
QB4ASM6 1.879(19) 3.170(8) 5.96(6) 11.4(4) 1.70(3)
QB5ASM1 1.482(6) 4.165(8) 6.170(29) 10.35(13) 8.98(9) 1.605(16)
QB5SASM2 1.805(28) 3.43509) 6.20(10) 10.29(20) 1.73(5)
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TABLE XX. Masses of t and at states, in units of a and f, for each of the ensembles and bare masses am,. The Dirac fermions

transform in the 2-index antisymmetric representation. In parentheses we report the statistical uncertainties.

Measurement am, M/ fps amy Mot/ fps
QB1ASMI1 0.7454(17) 5.970(24) 1.210(15) 9.69(12)
QB1ASM2 0.6850(18) 5.876(23) 1.132(19) 9.71(17)
QB1ASM3 0.6452(22) 5.828(29) 1.127(25) 10.18(23)
QB1ASM4 0.601(4) 5.80(4) 0.96(5) 9.34)
QBI1ASMS5 0.568(6) 5.69(6) 1.05(4) 10.6(4)
QB1ASM6 0.546(7) 5.70(7) 1.067(26) 11.13(28)
QB2ASM1 0.6375(7) 5.989(10) 1.027(12) 9.64(12)
QB2ASM2 0.5658(16) 5.852(18) 0.957(23) 9.90(24)
QB2ASM3 0.5488(15) 5.901(18) 0.986(17) 10.60(20)
QB2ASM4 0.5228(19) 5.876(24) 0.988(11) 11.11(12)
QB2ASM5 0.5022(29) 5.91(03) 0.94(3) 11.04)
QB2ASM6

QB3ASMI1 0.4884(25) 5.99(3) 0.781(24) 9.58(29)
QB3ASM2 0.4682(19) 6.016(25) 0.829(8) 10.65(10)
QB3ASM3 0.4447(24) 6.04(4) 0.799(21) 10.85((29)
QB3ASM4 0.423(4) 6.10(6) 0.77(3) 11.2(5)
QB4ASM1 0.5285(6) 6.415(13) 0.782(9) 9.49(12)
QB4ASM2 0.4402(26) 6.14(4) 0.712(10) 9.93(15)
QB4ASM3 0.4238(20) 6.12(3) 0.719(9) 10.38(14)
QB4ASM4 0.4028(22) 6.16(4) 0.675(12) 10.32(18)
QB4ASM5 0.349(7) 5.74(12) 0.59(4) 9.7(6)
QB4ASM6 0.350(6) 5.99(11)

QB5ASM1 0.3314(27) 6.15(5) 0.585(9) 10.84(18)
QB5ASM2 0.307(3) 6.32(7) 0.548(11) 11.30(24)
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