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A dynamical quantum simulation of SU(2) non-Abelian gauge field theory on a digital quantum
computer is presented. This was enabled on current quantum hardware by introducing a mapping of the
field onto a register of qubits that utilizes local gauge symmetry while preserving local constraints on the
fields, reducing the dimensionality of the calculation. Controlled plaquette operators and gauge-variant
completions in the unphysical part of the Hilbert space were designed and used to implement time
evolution. The new techniques developed in this work generalize to quantum simulations of higher
dimensional gauge field theories.
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Non-Abelian gauge field theories play a central role in
the description of the known forces of nature. Since the
early 1970s, the strong interactions that define the nuclear
forces and the dynamics of quarks and gluons in the early
universe are known to emerge from an unbroken SU(3)
local gauge symmetry, defining quantum chromodynamics
(QCD) [1–3]. Similarly, the electroweak interactions are
known to result from the spontaneous breaking of
SUð2ÞL ⊗ Uð1ÞY local gauge symmetries [4–7]. Great
success has been achieved in computing the properties
and low-energy dynamics of hadronic systems using the
numerical technique of lattice QCD [8,9] on the world’s
largest supercomputers. Current lattice QCD calculations at
the physical quark masses have resulted from a sustained
codevelopment effort over the last ∼50 years. Those
developments began with calculations on small lattices,
with unphysical quark masses, and with large lattice
spacings using computers available during the 1970s [9].
While good progress is being made in designing Hilbert
spaces for [10–28], creating detailed hardware-specific
proposals for [29–44], and implementing [45–50] quantum
field theories on quantum devices, non-Abelian gauge
theories have not yet been simulated on today’s limited
and noisy hardware. It is in the spirit of the early days of
lattice gauge theory that we develop an improved algorithm
to evolve a string of SU(2) plaquettes, and use it to simulate
a non-Abelian gauge field theory on IBM’s digital quantum
hardware.
The Hamiltonian formulation of lattice gauge theories

[51] includes exponentially-large sectors of unphysical [52]
Hilbert space in order to maintain spatially-local

interactions while satisfying gauge constraints. The hard-
ware error rates and gate fidelities of current NISQ-era [53]
quantum devices, and the lack of error correction capabil-
ities, allow quantum states to disperse into these unphysical
sectors. To avoid such dispersion, previous quantum simu-
lations of lattice gauge theories have employed various
procedures to remove the unphysical Hilbert space from
the embedding onto quantum devices [45–47,50,54].
However, these techniques do not scale efficiently, and a
generic description for multidimensional lattices with
nontrivial gauge groups in terms of only local, physical
degrees of freedom is not currently known. A variety of
approaches for quantumly simulating gauge theories are
being pursued—reformulating the interactions, lattice
structure, and degrees of freedom by designing Hilbert
space bases of group elements, Schwinger bosons, duality
transformations, loop variables, tensor networks, and more
[23,25,26,30,36,39,51,55–78]—often with the explicit goal
of mitigating unphysical degrees of freedom. Reductions
have been obtained by solving Gauss’s law, which is related
to loop formulations where the fundamental degrees of
freedom are gauge invariant [58,64,79–89]. Proposed for
both analog and digital quantum implementation, progress
is being made toward using renormalization group methods
to connect quantum link models [13,32,35,90–94] to
continuum theories of importance [93,95–97]. Classical
numerical explorations of truncation errors arising from
gauge field digitization in lattice QCD calculations [25],
and exploring the use of the crystal groups associated with
SU(3) to discretize the gluon fields for quantum simula-
tions have begun [28]. Here marks the introduction of an
explicit quantum algorithm for digital implementation of
dynamics with generalizable operator structures.
In this work, the angular momentum basis [51,55,56]

is utilized, which is made computationally feasible on
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quantum devices by exploiting the local gauge symmetry to
remove the angular momentum alignment variables. A
similar reduction in degrees of freedom has been suggested
to be an advantageous mapping for quantum simulations
[18], and has been employed in calculations using matrix
product states. The associated qubit mapping, along with
the flexibility of the introduced gauge variant completion
(GVC), has made possible the exploration of operator
structures necessary for generalization to larger lattices and
higher dimensions on current hardware. As an explicit
example, time evolution of a one-dimensional string of two
SU(2) plaquettes is implemented on IBM’s Tokyo [98]
quantum device with employed error mitigation techniques.
The new mappings and techniques that we introduce here
generalize to quantum simulations of gauge field theories in
higher numbers of spatial dimensions.
The Hamiltonian of spatially-discretized Yang-Mills

gauge theory is [51] (in lattice units)

Ĥ ¼ g2

2

X
links

Ê2 −
1

2g2
X
□

ð□̂þ □̂
†Þ ð1Þ

where Ê2 is the local gauge-invariant Casimir operator, □̂ is
the gauge-invariant plaquette operator contracting closed
loops of link operators, and □̂ ¼ □̂

† for SU(2). On a square
lattice, the single plaquette operator is

□̂ ¼
X1

2

α;β;γ;δ¼−1
2

Ûαβ Ûβγ Ûγδ Ûδα ð2Þ

where Ûαβ is a j ¼ 1=2 link operator with definite starting
and ending points oriented around a plaquette. In the limit
of strong coupling, g2 → ∞, this Hamiltonian is dominated
by the electric contributions and fluctuations between
configurations of definite link angular momentum vanish.
In weak coupling, the magnetic contributions dominate and
a theory of dynamical loops emerges.
The angular momentum basis describes the quantum

state of a generic link by its irreducible representation,
j, and associated third-component projections at the left
and right end of the link in the 2 and 2̄ representations,
jj; m;m0i≡ jj; mi ⊗ jj;m0i, respectively. In one dimen-
sion, SU(2) lattice gauge theory can be spatially discretized
onto a string of plaquettes (see Fig. 1). With periodic
boundary conditions (PBCs), only three-point vertices
contribute to such a plaquette chain. To form gauge
singlets, components of the three links at each vertex are
contracted with an SU(2) Clebsch-Gordan coefficient.
While these coefficients are conventionally incorporated
into the state space allowing plaquette operators to be
localized to four active links, the qubit Hilbert space is
more naturally structured as an unconstrained grid. Thus
the Clebsch-Gordan coefficient at each vertex will be here
included in the plaquette operator itself. This decision

delocalizes the plaquette operator at the scale of immedi-
ately neighboring links as shown in Fig. 1, where the
green, circular parts of the operator denote the depen-
dence of the operator on the quantum state of qubits on
neighboring links.
To calculate the plaquette operator, the state is first

structured with Clebsch-Gordans at each vertex such that
the wave function has the form

V ∼
X
b;c;e

hj1; b; j2; ejq; cijj1; a; bi ⊗ jq; c; di ⊗ jj2; e; fi;

ð3Þ

where indices b, c, and e are located at the vertex. By
focusing on a system with an even number of plaquettes,
matrix elements of the arbitrary plaquette operator may be
determined. The wave function of a lattice with an even
number of plaquettes in one dimension with PBCs in the
link angular momenta basis is

jχi ¼N
X
fmg

YL
i¼1

hjti;mt
i;R; j

t
iþ1;m

t
iþ1;Ljqi;mt

qii

× hjbi ;mb
i;R; j

b
iþ1;m

b
iþ1;Ljqi;mb

qii
× jjti;mt

i;L;m
t
i;Ri⊗ jjbi ;mb

i;L;m
b
i;Ri⊗ jqi;mt

qi ;m
b
qii ð4Þ

with jLþ1 ¼ j1, mLþ1 ¼ m1, and normalization N ¼Q
iðdimðqiÞÞ−1 with dimðqÞ ¼ 2qþ 1. Referring to the

plaquette string’s ladder structure, on links located as rungs
of the ladder, angular momentum values are labeled by q.
Thus, a plaquette string is created by two strings of j-type
registers connected periodically by rungs of q-type regis-
ters. The contraction with Clebsch-Gordan coefficients at
each vertex ensures the local gauge singlet structure
required by Gauss’s law. The link operator acts on the
degrees of freedom at each end of a link and is a source of
j ¼ 1=2 angular momentum,

FIG. 1. (top) Diagram of the lattice distribution of
⌈ log2ð2Λj þ 1Þ⌉-qubit registers and the action of □̂ on SU(2)

plaquettes in one dimension. □̂ operates on the four qubit
registers in the plaquette and is controlled by the four neighboring
qubit registers to enforce the Gauss’s law constraint. (bottom) The
plaquette operator with labeled angular momentum registers.
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Ûαβjj;a;bi¼
X
⊕J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðjÞ
dimðJÞ

s
jJ;aþα;bþβi

×

�
j;a;

1

2
;α

����J;aþα

��
j;b;

1

2
;β

����J;bþβ

�
; ð5Þ

which contains nonvanishing contributions only for J ¼
j� 1

2
[65]. By acting this operator on the above wave

function of Eq. (4) and summing over alignment variables,
that matrix elements of the plaquette operator in one
dimension and in the tensor product basis of magnetic
quantum numbers, j, are calculated to be

hχ���;jt;bl ;qlf;j
t;b
af ;qrf;j

t;b
r ;���j□̂jχ���;jt;bl ;qli;j

t;b
ai ;qri;j

t;b
r ;���i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðjtaiÞdimðjtafÞdimðjbaiÞdimðjbafÞ

q
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðqliÞdimðqlfÞdimðqriÞdimðqrfÞ

q
× ð−1Þjtlþjblþjtrþjbrþ2ðjtafþjbaf−qli−qriÞ

×

�jtl jtai qli
1
2

qlf jtaf

��jbl jbai qli
1
2

qlf jbaf

��jtr jtai qri
1
2

qrf jtaf

��jbr jbai qri
1
2

qrf jbaf

�
ð6Þ

where the indices jt;bl ; qli; qlf; j
t;b
a ; qri; qrf, and jt;br are

used to indicate the j-values relevant for the single
plaquette operator (as depicted in Fig. 1) and the brackets
indicate Wigner’s 6-j symbols. The four registers jt;bl;r
outside the plaquette are not modified by the action of
the plaquette operator. However, their inclusion as control
registers is necessary to maintain Gauss’s law. The sums
over alignment in each gauge-invariant space yield a
dramatically reduced Hilbert space to be mapped onto
a quantum device, characterized entirely by the jji’s
(rather than the jj; m;m0i’s [18]) incrementing naturally
by half-integers. As a result, the Hilbert space dimension
scales with the number of links, L, as ð2Λj þ 1ÞL—a small
asymptotic savings in terms of qubit number, but an
important savings for noisy devices where survival prob-
abilities in the physical subspace are imperfect. This
concept is here exemplified by embedding a four dimen-
sional physical subspace into a sixteen dimensional com-
putational space rather than into what would be a
≥ 54-dimensional Hilbert space in the jj; m;m0i basis.
The qubit representation of the periodic plaquette string
is shown on the top panel of Fig. 1, where each link
contains a ⌈ log2ð2Λj þ 1Þ⌉-qubit register with Λj the
angular momentum truncation per link.
Quantum circuits were devised for the plaquette operator

with angular momentum truncation Λj ¼ 1=2. For time
evolution beginning in the strong-coupling (empty) vac-
uum, the top and bottom j values are equivalent with this
cutoff and the plaquette operator reduces to a five-qubit
operator.
While the value of plaquette operator matrix elements

connected to the physical Hilbert space are important for
implementation of accurate time evolution, those within
the unphysical space are not. Thus, significant freedom
exists in designing the operator in the unphysical space

to hardware-specifically optimize quantum computation.
Operators with equivalent physical matrix elements but
differing in their unphysical operation will be described as
different gauge variant completions (GVCs) of the same
physical operator. For example, here it is convenient to use
a GVC within the set of Pauli operators to minimize the
quantum gate resource requirements. Observing the pla-
quette operator matrix elements in Table I, states are
connected when ql; ja, and qr experience a qubit inversion
with a matrix element dependent on the jl; jr-sector. Such a
controlled operator is depicted schematically at the bottom
of Fig. 1 (with top and bottom j’s identified) and may be
written as

□̂
ð1=2Þ ¼ Π0XXXΠ0 þ

1

2
Π0XXXΠ1

þ 1

2
Π1XXXΠ0 þ

1

4
Π1XXXΠ1 ð7Þ

with Π0 ¼ 1
2
ðI þ ZÞ and Π1 ¼ 1

2
ðI − ZÞ, the j ¼ 0ð1

2
Þ state

mapped to quantum state j0iðj1iÞ, and the Hilbert spaces
ordered as in the heading of Table I. With this GVC, the
plaquette Hamiltonian has 24 nonzero couplings between

TABLE I. Matrix elements of the Λj ¼ 1=2, Hermitian pla-
quette operator □̂ð1=2Þ, as calculated in Eq. (6) with jtl;a;r ¼ jbl;a;r.
All other matrix elements between physical states are zero.

hjlfqlfjafqrfjrfj□̂ð1=2Þjjliqlijaiqrijrii
h00000j□̂ð1=2Þj0 1

2
1
2
1
2
0i 1

h000 1
2
1
2
j□̂ð1=2Þj0 1

2
1
2
0 1
2
i 1

2

h1
2
1
2
000j□̂ð1=2Þj 1

2
0 1
2
1
2
0i 1

2

h1
2
0 1
2
0 1
2
j□̂ð1=2Þj 1

2
1
2
0 1
2
1
2
i 1

4
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unphysical states that would otherwise vanish in the
evaluation of Eq. (6) [99]. One possible digital qubit
implementation of the associated time evolution operator
with the GVC above is shown explicitly in Fig. 4 of
Appendix B. As written, this operator acts equivalently
throughout the one-dimensional string of plaquettes to
implement time evolution of the lattice. We anticipate that
the concept of GVC will play an important role in quantum
simulations of quantum field theories in higher dimensions,
and other physical systems with conserved quantities or
constraints.
Specializing to the two-plaquette system with PBCs,

only the matrix elements in the first and last rows of Table I
remain. The second plaquette operator in the two-plaquette
system reduces to the following four-qubit operator,

□̂
ð1=2Þ
2 ¼ Π0XXX þ 1

4
Π1XXX: ð8Þ

Digital implementation of this operator is shown in Fig. 2.
The reduced linear combination structure defined by the
first and fourth rows and columns of the matrix shown
in Eq. (B1) produces the vector β̃ appearing in Fig. 2.
A natural qubit representation of the electric operator is

Ĥð1=2Þ
E ¼ g2

2

X
links

3

4

�
I − Z
2

	
; ð9Þ

including 12 nonzero elements in the unphysical
Hilbert space.
Real-time evolution of two plaquettes with PBCs (see the

right panel of Fig. 2) and truncation Λj ¼ 1=2 has been
here implemented on IBM’s quantum device Tokyo,
selected for its available connectivity of a four-qubit loop.
The top panel of Fig. 3 shows time-evolved expectation
values of the energy contributions from the first electric
plaquette calculated with one and two Trotter steps [100].
The electric contributions, being localized in their meas-
urement to the four-dimensional physical subspace, are
well determined after a small number of samples. In
contrast, measuring the energy contributions from the
magnetic Hamiltonian requires increased sampling due
to the operator’s natural representation in the Pauli-X basis
of the ql; ja, and qr qubit registers—distributing the wave
function’s amplitude throughout the Hilbert space. Results

have been corrected for measurement error by the con-
strained inversion of a 16-dimensional calibration matrix
informed by preparation of each of the 16 computational
basis states prior to calculation. The resulting probabilities
are linearly extrapolated in the presence of quantum
controlled-NOT operation (CNOT gate), postselected
within the gauge-invariant space, and renormalized. The
linear extrapolation is informed by r ¼ 1, 2, where r ¼ 1 is
the circuit in Fig. 2 and r ¼ 2 stochastically inserts a pair of
CNOTs accompanying each of the three CNOTs either in
the first or second half of the plaquette operator. The

FIG. 2. Digital circuit implementation of the plaquette operator centered on ja for a truncated lattice with Λj ¼ 1=2, two plaquettes,
and PBCs as depicted at the right. The angles β̃ defining this circuit are given in Eq. (B1) to be β̃ ¼ ð3=8; 5=8Þ.

FIG. 3. (top) Expectation value of the electric energy contri-
bution of the first plaquette in the two-plaquette lattice with PBCs
and coupling g2 ¼ 0.2 computed on IBM’s Tokyo. The dashed
(purple) and dot-dashed(blue) lines are the NTrot ¼ 1, 2 Trot-
terized expectation values, while the thick gray line is the exact
time evolution. (bottom) Measured survival probability to remain
in the physical subspace for one and two trotter steps, NTrot, and
one and two r values indicating stochastically inserted 2r − 1
CNOTs per CNOT in the digital implementation. Uncertainties
represent statistical variation, as well as a systematic uncertainty
estimated from reproducibility measurements. The icons (defined
in Ref. [48]) denote computations performed on quantum
devices.
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combined noise and gate fidelity of the device were found
to limit the ability to extrapolate further in CNOT noise,
even with a single Trotter step. These error mitigation
techniques have allowed calculation of the electric energy
associated with the SU(2) gauge field to the precision
obtained after a single Trotter step.
It is important to determine the feasibility of retaining

gauge-invariant Hilbert spaces with near-term quantum
hardware. For our calculations on IBM’s Tokyo quantum
device, before CNOT extrapolation, the ðNTrot; rÞ ¼ ð1; 1Þ
measurements were found to remain in the gauge invariant
space with a survival population of ∼45%, as shown in the
bottom panel of Fig. 3. After linear extrapolation in the
probabilities, this was increased to ∼65%, with survival
population decreasing as evolution time increases. The
survival population for NTrot ¼ 2 was found to be ∼25%,
consistent with loss of quantum coherence of a four-
dimensional physical space embedded onto four qubits,
precluding CNOT extrapolation. This observable is a
diagnostic of the calculation. As it approaches the decorre-
lated limit (25%), CNOT extrapolations become less
reliable, leading to the underestimate of systematic uncer-
tainties in Fig. 3. Because neither the proposed qubit
representation nor the subsequent Trotterization produce
gauge-variant error contributions, the observed decay of
population in the physical subspace is a measure of the
device’s ability to robustly isolate Hilbert subspaces. This is
likely to be an essential capability for evolving lattice gauge
theories and other systems with conserved quantities, as
well as for quantum error correction.
When increasing Λj, the plaquette operator must be

calculated and designed over 8 registers of qubits, each
containing ⌈ log2 ð2Λj þ 1Þ⌉ qubits. The classical compu-
tational resources required to define this operator with
Eq. (6) scales with the number of unique nonzero matrix
elements, which is polynomial in Λj. When constructing
the time evolution operator for Λj > 1=2, the combination
of Trotterization and Pauli decomposition of the 4-register
operators in jl;r-controlled sectors generically generates
interactions breaking gauge invariance [62,74,101]. While
a unitary operator preserving gauge invariance exists, it
will generically require an exponential amount of quan-
tum resources to implement and classical resources to
define. The breaking of gauge invariance will be important
to control if this decomposition is used in future
calculations.
For the simulated system, the SU(2) Hilbert space

associated with each link and the spatial lattice are
significantly truncated. This work represents an early step
along the long road ahead for quantum simulations of
gauge field theories. As Hamiltonian operators are local in
such field theories, thoughtful design and optimization of
quantum operators in small, classically manageable sys-
tems will impact the design and execution of future
quantum simulations of larger dimensionality. The impact

of the truncation on the continuous-field system of two
plaquettes (for the value of g2 used in this work) is
presented in Table II of Appendix A. We find that the
employed truncation of Λj ¼ 1=2 leads to a ∼56% change
to the ground state energy and a much larger change to the
“glueball” mass. A larger value of g2 would lead to smaller
deviations in both quantities, as the system becomes more
amenable to perturbative methods. At the selected value of
g2, where the system is nonperturbative, enlarging the
simulation to include three qubits per link (a cutoff of
Λj ¼ 7=2), rather than one qubit per link (Λj ¼ 1=2),
causes these low-energy observables to become calculable
with an accuracy exceeding 2% using the basis discussed in
this paper. The fidelity of the ground state in the enlarged
simulation is ∼90% with respect to the untruncated ground
state. The convergence properties of this formulation of
gauge theories, and others intended for quantum simula-
tion, are important topics of future research.
Developing quantum computation capabilities for non-

Abelian gauge field theories is a major objective of nuclear
physics and high-energy physics research. We have pre-
sented the first quantum simulation of a non-Abelian gauge
field theory on a digital quantum computer, which required
the development of a number of new techniques. One of the
challenges facing such calculations is that the mapping of
the gauge theory onto the register of a digital quantum
computer involves a digitization of the gauge fields. We
have presented calculations of the dynamics of a one-
dimensional SU(2) plaquette string with implementation on
IBM’s Q Experience superconducting hardware. This was
made feasible by an improved mapping of the angular
momentum basis states describing link variables and
recognizing the utility of gauge-variant completions. Our
design of the plaquette operator for digital quantum devices
requires local control from qubit registers beyond the active
plaquette. This key feature is expected to persist in future
developments of quantum computing for gauge theories.
Extension of this analytic reduction beyond one dimension
is naturally suited to lattices with three-point vertices, but
generalizes to n-point vertices and thus to quantum
simulations in higher dimensions. Comparisons, at the
level of explicit digital implementation, of this mapping
with proposed alternatives will be of importance for
realizing physically relevant quantum computations of
non-Abelian gauge theories.
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APPENDIX A: TWO PLAQUETTE
HAMILTONIAN AND DATA TABLES

For the two-plaquette lattice with periodic boundary
conditions and truncation Λj ¼ 1=2, the Hamiltonian
implemented in the full 16-dimensional Hilbert space with
the gauge variant completion (GVC) discussed in the main
text is

ðA1Þ

with matrix elements of the four-dimensional physical sub-
space highlighted. For the chosen coupling of g2 ¼ 0.2, the
ground state energy density per plaquette, through exact
(classical) diagonalization, is calculated to be −3.5658 and
the lowest energy gap (the observable associated with the
“SU(2)-glueball” mass in the infinite volume limit) is

calculated to be 7.4139. Numerical values for these low-
energy observables with increasing Λj truncation are
provided in Table II where percent-level convergence is
achieved with three qubits per SU(2) gauge link.
For the quantum simulated system of two plaquettes with

Λj ¼ 1=2, the structure of the ground state wave function is

ðA2Þ

On each link, a single line corresponds to j ¼ 0 and a double line corresponds to j ¼ 1=2. The first electric, single plaquette
operator in the full 16-dimensional space is diagonal

E2
□1

¼ g2

2
diag

�
0;
3

4
; 0;

3

4
;
3

4
;
3

2
;
3

4
;
3

2
;
3

2
;
9

4
;
3

2
;
9

4
;
9

4
; 3;

9

4
;3

	
; ðA3Þ
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TABLE III. Numerical values of the expectation value of the
single electric plaquette energy contribution for time evolutions
implemented with 1,2 Trotter steps as measured on IBM’s
quantum device Tokyo shown in the top panel of Fig. 3.
Uncertainties represent statistical variation, as well as a system-
atic uncertainty estimated from reproducibility measurements.

NTrot ¼ 1

Time hHE;□1
i

0.02 0.009(9)
0.07 0.052(6)
0.12 0.127(7)
0.17 0.201(12)
0.22 0.261(10)
0.27 0.282(7)
0.32 0.278(8)
0.37 0.254(6)

NTrot ¼ 2

Time hHE;□1
i

0.02 0.027(14)
0.07 0.074(14)
0.12 0.124(14)
0.17 0.159(10)
0.22 0.186(15)
0.27 0.177(12)
0.32 0.144(20)
0.37 0.093(18)

TABLE II. Convergence of the ground state energy density and
the energy gap to the first excited state, ΔE, of a two-plaquette
SU(2) lattice with periodic boundary conditions as the truncation
in the maximum excitation on any single link, Λj, is increased.
Columns two and three show the number of states included in the
basis of physical states below truncation and the number of
nonzero matrix elements in the single plaquette operator.

Electric
cutoff (2Λj)

Physical
dimension

Plaquette matrix
elements

GS energy
density ΔE

1 4 2 −3.5658 7.4139
2 27 31 −5.6437 2.0970
3 95 192 −6.8020 0.9285
4 304 790 −7.4258 0.5024
5 769 2494 −7.7527 0.3096
6 1784 6537 −7.9159 0.2220
7 3664 15028 −7.9921 0.1929
8 7081 31200 −8.0241 0.1885
9 12704 59894 −8.0355 0.1893
10 21823 107823 −8.0388 0.1900
11 35659 184268 −8.0396 0.1902
12 56420 301326 −8.0398 0.1902

TABLE IV. Survival probabilities in the physical subspace as
measured on IBM’s quantum device Tokyo shown in the bottom
panel of Fig. 3. The label indicates ðNTrot; rÞ values. The linear
extrapolation is determined by extrapolation of computational
basis state probabilities in r for NTrot ¼ 1. Uncertainties represent
statistical variation, as well as a systematic uncertainty estimated
from reproducibility measurements.

ðNTrot; rÞ ¼ ð1; 1Þ
Time Survival probabilities

0.02 0.47(1)
0.07 0.49(2)
0.12 0.48(2)
0.17 0.47(2)
0.22 0.43(1)
0.27 0.41(2)
0.32 0.39(1)
0.37 0.37(1)

ðNTrot; rÞ ¼ ð1; 2Þ
Time Survival probabilities

0.02 0.29(2)
0.07 0.31(3)
0.12 0.28(2)
0.17 0.27(1)
0.22 0.25(1)
0.27 0.25(2)
0.32 0.23(1)
0.37 0.21(1)

ðNTrot; rÞ ¼ ð2; 1Þ
Time Survival probabilities

0.02 0.23(1)
0.07 0.24(2)
0.12 0.26(2)
0.17 0.24(1)
0.22 0.25(2)
0.27 0.23(2)
0.32 0.22(1)
0.37 0.22(1)

ðNTrot; rÞ ¼ ð2; 2Þ
Time Survival probabilities

0.02 0.27(1)
0.07 0.27(1)
0.12 0.24(1)
0.17 0.26(1)
0.22 0.25(2)
0.27 0.26(1)
0.32 0.28(1)
0.37 0.26(1)

Linear extrapolation

Time Survival probabilities

0.02 0.630(14)
0.07 0.640(16)
0.12 0.659(25)
0.17 0.647(33)
0.22 0.572(17)
0.27 0.554(14)
0.32 0.535(17)
0.37 0.527(17)
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with matrix elements serving as weights of the measured
probabilities in the measurement of the electric energy
expectation value as shown in Fig. 3. The the data
appearing in Fig. 3 are presented in Tables III and IV.

APPENDIX B: PLAQUETTE OPERATOR
FOR Λj = 1=2 LATTICES OF

ARBITRARY PLAQUETTE NUMBER
IN ONE DIMENSION

While the circuit implementation of the plaquette oper-
ator has been shown in Fig. 2 for the two-plaquette
truncated lattice with periodic boundary conditions and
Λj ¼ 1=2, the operator for lattices of larger size may be
implemented with 14 nearest-neighbor CNOT entangling
gates as shown in Fig. 4. This circuit is a massaged version
of the circuit of four two-qubit-controlled X ⊗ X ⊗ X
operators with coefficients f1; 1=2; 1=2; 1=4g for control
states j0i; j1i; j2i; j3i in the combined Hilbert space
of jl and jr. Just as in the main text, rotations are defined
by linear combinations of □̂

ð1=2Þ matrix elements, as
established in Ref. [48], described by the following matrix
structure:

β⃗ ¼

0
BBB@

1 1 1 1

1 −1 −1 1

−1 −1 1 1

−1 1 −1 1

1
CCCA

−10BBB@
1

1=2

1=2

1=4

1
CCCA;

β̃ ¼
�

1 1

−1 1

	−1� 1

1=4

	
; ðB1Þ

such that β⃗ ¼ ð3=16; 1=16; 3=16; 9=16Þ and β̃ ¼
ð3=8; 5=8Þ.

APPENDIX C: ALTERNATE PLAQUETTE
GAUGE VARIANT COMPLETION

The optimality of the operator decomposition in the
physical subspace is hardware-specific. For simple com-
parison to the GVC used on superconducting hardware in
this work, a more naïve choice of plaquette operator
implementation for the two-plaquette lattice would be to
use the operator exactly as defined by the matrix elements
in Eq. (6) with no modifications in the unphysical space
(i.e., different charge superselection sectors). In this case,
the Pauli decomposition contains eight operators

□̂ ¼
�
5

32
I þ 3

32
Z

	
⊗ X ⊗ X ⊗ X þ

�
−

3

32
I −

5

32
Z

	
⊗ X ⊗ Y ⊗ Y

þ
�
−

5

32
I −

3

32
Z
	

⊗ Y ⊗ X ⊗ Y þ
�
−

3

32
I −

5

32
Z
	

⊗ Y ⊗ Y ⊗ X; ðC1Þ

and it remains convenient for the Trotterization that these eight operators commute. However, the number of CNOT gates
required to implement this operator increases by a factor of four compared to the operator structure of Fig. 2, implemented
now in four different bases

FIG. 4. Digital circuit implementation of the plaquette operator centered on ja for a truncated lattice with Λj ¼ 1=2. The circuit
elements appearing in this circuit are the Hadamard, CNOT, and Z-axis single-qubit rotation implementing a Z-to-X basis change, a
controlled bit flip, and a relative phase, respectively.
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ðC2Þ

This makes clear that the quantum resources for operator implementation depends even on the unphysical details of the
calculation design—the choice of gauge invariant completion allows hardware-specific optimization leveraging this
sensitivity.
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