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Nonlocal quark bilinear operators connected by link paths are used for studying parton distribution
functions (PDFs) and transversemomentum-dependent PDFs of hadrons using lattice QCD. The nonlocality
makes it difficult to understand the renormalization and improvement of these operators using standard
methods. In previous work, we showed that by introducing an auxiliary field on the lattice, one can
understand an on-axis Wilson-line operator as the product of two local operators in an extended theory. In
this paper, we provide details about the calculation in perturbation theory of the factor for conversion from
our lattice-suitable renormalization scheme to the MS scheme. Extending our work, we study Symanzik
improvement of the extended theory to understand the pattern of discretization effects linear in the lattice
spacing, a, which are present even if the lattice fermion action exactly preserves chiral symmetry. This
provides a prospect for an eventual OðaÞ improvement of lattice calculations of PDFs. We also generalize
our approach to apply to Wilson lines along lattice diagonals and to piecewise-straight link paths.
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I. INTRODUCTION

Calculating parton distribution functions (PDFs) of
hadrons using lattice QCD is challenging. The most
direct definition using a bilocal light cone operator is
not accessible because lattice QCD is formulated in
Euclidean space. The traditional approach is to compute
Mellin moments of PDFs, which are obtained from matrix
elements of local twist-two operators, but higher moments
are problematic because of mixing with lower dimensional
operators and increasing noise. In recent years, there has
been a renewed interest in alternative approaches that use
matrix elements of nonlocal operators that can be related to
PDFs via perturbatively computable factorization formulas
[1,2]. Of these, the most widely studied has been quasi-
PDFs, proposed in Ref. [3], which use matrix elements of
the nonlocal equal-time operator,

OΓðx; ξ; nÞ≡ ψ̄ðxþ ξnÞΓWðxþ ξn; xÞψðxÞ; ð1Þ

where ψ and ψ̄ are spatially separated by distance ξ in
direction n and connected by a straight Wilson line W.

In recent years two of us have been involved in studies of
quasi-PDFs by the Extended Twisted Mass Collaboration
(ETMC) [4–11]. Additional studies of quasi-PDFs and other
observables defined using OΓ are given in Refs. [12–27].
Some of the difficulties in the quasi-PDF approach arise

from the use of a nonlocal operator. In Refs. [28,29], the
auxiliary field approach [30,31] was used to represent the
nonlocal operator as the product of two local operators in
an extended theory.1 This makes it possible to understand
the renormalization properties of OΓ using standard tech-
niques applied to the local operators. Specifically, the
auxiliary field ζðξÞ, which is defined only along the line
xþ ξn, is given the Lagrangian

Lζ ¼ ζ̄ðn ·DþmÞζ; ð2Þ

and OΓ is obtained using the local operator ϕ≡ ζ̄ψ :

OΓðx; ξ; nÞ ¼ hϕ̄ðxþ ξnÞΓϕðxÞiζ; ð3Þ

for m ¼ 0 and ξ > 0.
Following the lattice theory for a static quark [35,36], in

Ref. [28] we also defined a lattice action for the auxiliary
field with n ¼ �μ̂ pointing along one of the lattice axes,
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1A similar analysis for gluonic Wilson-line operators in the
continuum was done in Refs. [31–34].
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Slatζ ¼ a
X
ξ

1

1þ am0

ζ̄ðxþ ξnÞ½∇n þm0�ζðxþ ξnÞ;

∇n ≡
�
n · ∇� ¼ ∇�

μ if n ¼ þμ̂;

n · ∇ ¼ −∇μ if n ¼ −μ̂;
ð4Þ

where ∇ and ∇� are the forward and backward lattice
covariant derivatives, respectively, and a is the lattice
spacing. This enabled us to identify that the operator
mixing observed in one-loop lattice perturbation theory
[37] is caused by mixing between ϕ and the operator =nϕ,
which is allowed when the lattice fermion action breaks
chiral symmetry.
In addition, we presented in Ref. [28] a scheme for

nonperturbative renormalization of OΓ, called RI-xMOM,
which proceeds by renormalizing the auxiliary field action
and the local composite operator ϕ. In Sec. II, we present
the calculation using perturbation theory of the scheme
conversion from RI-xMOM to MS, the result of which was
reported in Ref. [28].
In Sec. III we supplement our previous work by applying

the Symanzik improvement program [38] to analyze OðaÞ
lattice artifacts. Finally, in Sec. IV we present generaliza-
tions of the auxiliary field approach to operators with gauge
connections that are not straight lines and for off-axis gauge
connections. Conclusions are presented in Sec. V. In
Appendix A we relate our results on improvement to
previous work done for the static quark theory and in
Appendix B we compare with the improvement program
based on the whole-operator approach for OΓ.

II. SCHEME CONVERSION

In this section we summarize the approach for non-
perturbative renormalization that we introduced in Ref. [28]
and provide details of the perturbative calculation of the
conversion factor to the MS scheme. We stress that the
results in Sec. III, which deals with the improvement of the
auxiliary theory and of OΓ, and Sec. IV, which generalizes
our approach to a broader range of operators, do not depend
on the use of a particular renormalization scheme and that
the auxiliary field framework can be used quite broadly for
understanding Wilson-line operators.
The RI-xMOM scheme is based on a variant of the

Rome-Southampton method [39] for nonperturbative
renormalization. The essential feature is the definition of
renormalization conditions that can be imposed both non-
perturbatively on the lattice and in dimensionally regular-
ized perturbation theory, which allows for conversion to the
MS scheme. In Landau gauge, we make use of the position-
space bare ζ propagator,

SζðξÞ≡ hζðxþ ξnÞζ̄ðxÞiQCDþζ ¼ hWðxþ ξn; xÞiQCD; ð5Þ

the momentum-space bare quark propagator,

SψðpÞ≡
Z

d4xe−ip·xhψðxÞψ̄ð0Þi; ð6Þ

and the mixed-space bare Green’s function for ψ :

Gðξ; pÞ≡
Z

d4xeip·xhζðξnÞϕð0Þψ̄ðxÞiQCDþζ: ð7Þ

These renormalize as

SRζ ðξÞ ¼ Zζe−mjξjSζðξÞ; ð8Þ

SRψðpÞ ¼ ZψSψ ðpÞ; ð9Þ

GRðξ; pÞ ¼ Zϕ

ffiffiffiffiffiffiffiffiffiffiffi
ZζZψ

p
e−mjξjGðξ; pÞ: ð10Þ

For the quark field renormalization, we adopt the
standard RI0-MOM condition,

−i
12p2ZRI

ψ
Tr½S−1ψ ðpÞ=p�

����
p2¼μ2

¼ 1: ð11Þ

The remaining conditions are imposed at momentum p0

and distance ξ0, which define a family of renormalization
schemes at scale μ2 ¼ p2

0 that depend on the dimensionless
quantities y≡ jp0jξ0 and z≡ p0 · n=jp0j:

−
d
dξ

log TrSζðξÞ
����
ξ¼ξ0

þm ¼ 0; ð12Þ

ZRI
ζ

3

½TrSζðξ0Þ�2
TrSζð2ξ0Þ

¼ 1; ð13Þ

1

12

ZRI
ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ZRI
ζ ZRI

ψ

q ℜTr½S−1ζ ðξ0ÞGðξ0; p0ÞS−1ψ ðp0Þ� ¼ 1. ð14Þ

Note that the last two conditions have been formulated to
eliminate dependence on the linearly divergent counter-
term m.
For one-loop conversion to the MS scheme, we work

in d-dimensional Euclidean space with dimensional regu-
larization and use general covariant gauge with gauge para-
meter λ. At one-loop order, Sζ and Sψ are depicted in Fig. 1.

We generically define conversion factors asCX ≡ ZMS
X =ZRI

X .
In the case of the quark field, this has been computed e.g.,
in Ref. [40]: Cψ ¼ 1 − αsCF

4π λþOðα2sÞ, where CF ¼ 4=3
for QCD.

FIG. 1. One-loop corrections to the quark (left) and auxiliary-
field (right) propagators.
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The free gluon propagator takes the form

DAB
μν ðpÞ ¼

δAB

p2

�
δμν − ð1 − λÞpμpν

p2

�
: ð15Þ

For Sζ, we will use it in position space, which is given in
Ref. [31]:

Z
ddp
ð2πÞd e

ip·xDAB
μν ðpÞ ¼ δAB

1þ λ

2

δμνΓðd2 − 1Þ
4πd=2ðx2Þd=2−1

þ δABð1 − λÞ xμxνΓðd2Þ
4πd=2ðx2Þd=2 : ð16Þ

Together with the tree-level ζ propagator,

Streeζ ðξÞ ¼ θðξÞe−mξ; ð17Þ

the loop integral for the auxiliary-field propagator is
straightforward. We obtain the following in MS at scale μ:

SMS
ζ ðξ;μÞ¼e−mξ

�
1þαsCF

2π

�
2þð3−λÞ

�
γEþ log

ξμ

2

���
;

ð18Þ

where γE is the Euler-Mascheroni constant. This agrees
with the OðαsÞ term in Ref. [41]. Equation (13) implies

CζðyÞ ¼
SMS
ζ ðξ0; μÞ2

SMS
ζ ð2ξ0; μÞ

¼ 1þ αsCF

2π

�
2þ ð3 − λÞ

�
γE þ log

y
4

��
þOðα2sÞ:

ð19Þ

For the one-loop vertex function (Fig. 2), we use the
free quark and gluon propagators in mixed space: position
space parallel to n and momentum space for the d − 1
orthogonal dimensions. We decompose a general vector as
v≡ vnnþ v⊥, where vn ¼ n · v. The gluon propagator
takes the form

D̄AB
μν ðxn; p⊥Þ≡

Z
dpn

2π
eipnxnDAB

μν ðpÞ

¼ δAB
e−jxnjjp⊥j

2jp⊥j
�
δμν −

1 − λ

2jp⊥j2
ðjxnjjp⊥jp�

μp�
ν

þ p⊥μp⊥ν þ jp⊥j2nμnνÞ
�
; ð20Þ

where p� ≡ p⊥ þ isgnðxnÞjp⊥jn. Similarly, for the quark
propagator we obtain

S̄treeψ ðxn; p⊥Þ≡
Z

dpn

2π
eipnxn

−i=p
p2

¼ δabe−jxnjjp⊥j −i=p
�

2jp⊥j
:

ð21Þ

We write the quantity in Eq. (14) as

Λϕðξ; pÞ≡ S−1ζ ðξÞGðξ; pÞS−1ψ ðpÞ: ð22Þ

This is similar to an amputated vertex function, except that
the ζ-leg “amputation” is done in position space rather than
the usual momentum space. At one-loop order, this takes
the form

Λϕðξ; pÞ ¼ 1þ ðigÞ2μ4−dStreeζ ðξÞ−1
Z

ξ

0

dξ1

Z
dxneixnpn

Z
dd−1k⊥
ð2πÞd−1

× ½Streeζ ðξ − ξ1ÞTAnμStreeζ ðξ1ÞS̄treeψ ð−xn; p⊥ − k⊥ÞTBγνD̄AB
μν ðξ1 − xn; k⊥Þ�: ð23Þ

We simplify the calculation by restricting ourselves to the kinematics p⊥ ¼ 0 and pn > 0 (i.e., z ¼ 1), which leads to

1

12
TrΛϕðξ; pÞ ¼ 1 − g2μ4−dCF

Z
ξ

0

dξ1

Z
dxneixnpn

Z
dd−1k⊥
ð2πÞd−1

�
e−jk⊥jðjxnjþjξ1−xnjÞ

×
−1
4jk⊥j

�
1þ λ

2
sgnðxnÞ þ

1 − λ

2
jξ1 − xnjjk⊥j½sgnðxnÞ − sgnðξ1 − xnÞ�

��
: ð24Þ

FIG. 2. One-loop correction to the vertex function of the
bilinear ϕ.
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Eventually, we obtain

1

12
ℜTrΛMS

ϕ ðξ; p; μÞ ¼ 1þ αsCF

2π

�
λ

�
1þ log

μ

pn

�
− 2 log 2 −

1þ λ

2

sinpnξ

pnξ
−
1 − λ

4
ðcospnξ − 3Þ

þ
�
ðλ − 2Þ cospnξ

2
−
1 − λ

4
pnξ sin

pnξ

2

�
Ci

�
pnξ

2

�
þ 2CiðpnξÞ

�
; ð25Þ

where Ci is the cosine integral function, CiðzÞ≡
−
R∞
z

cosðtÞ
t dt.

The ϕ conversion factor can be evaluated using Cϕ ¼ffiffiffiffiffiffiffiffiffiffiffi
CζCψ

p
1
12
ℜTrΛMS

ϕ with the appropriate kinematics. In
Landau gauge (λ ¼ 0), we obtain

CϕðyÞ ¼ 1þ αsCF

2π

�
3

2
log

y
4
þ 3

2
γE − 2 log 2þ 7

4

−
cos y
4

−
�
2 cos

y
2
−
y
4
sin

y
2

�
Ci

�
y
2

�
þ 2CiðyÞ

�

þOðα2sÞ: ð26Þ

We also find an anomalous dimension consistent with the
leading term obtained first in the auxiliary field theory
[30,31] and later also for the static-light current [41–44].
To match the auxiliary field mass, one can use the higher-

order results from Ref. [41]. Comparing conventions, our
Sζ corresponds to their coordinate-space iS̃r and our Zζ

corresponds to their Z̃−1
Q . That reference gives

log SMS
ζ ðξ; μξÞ ¼ fζðαξÞ; ð27Þ

where μξ ≡ 2
ξ e

−γE , αξ ≡ αsðμξÞ, and fζðxÞ is a series in x

given up to Oðx3Þ. Together with the anomalous dimension

γ̃Q ≡ d log Z̃Q

d log μ and the beta function β≡ −1
2

d log αs
d log μ , we obtain

−
d
dξ

logSMS
ζ ðξ; μ0Þ ¼

1

ξ
½γ̃QðαξÞ − 2αξβðαξÞf0ζðαξÞ�; ð28Þ

which is independent of the scale μ0. Perturbatively, this is
limited by γ̃Q, which has been computed to order
α3s [41,45].

III. IMPROVEMENT

In the Symanzik approach [38,46], the lattice theory is
described by a continuum effective theory that is an
expansion in powers of the lattice spacing, where each
term has the same symmetries as the lattice theory. The
same is also done for composite operators. The idea of
improvement is to add higher dimensional operators in
order to tune the parameters of the Symanzik theory such
that the leading [e.g., OðaÞ] term in the continuum
extrapolation of every correlation function is eliminated.

For the lattice fermion action we take Wilson twisted
mass fermions, working in the twisted basis with the
fermion doublet χ, although we will also consider chiral
fermions. The leading continuum Lagrangian is twisted
mass QCD,

Lð0Þ
χ ¼ χ̄ð=Dþmq þ iμqγ5τ3Þχ: ð29Þ

At the next order Lð1Þ
χ contains terms that can be absorbed

into the parameters of the leading Lagrangian along with
one nontrivial one, the well-known “clover” term [46–48]
associated with chiral symmetry breaking. For the auxiliary
field in the continuum, we have

Lð0Þ
ζ ¼ ζ̄ðn ·DþmÞζ: ð30Þ

Exact symmetries of the lattice theory include the little
group of hypercubic rotations that preserve n and the Uð1Þ
charge symmetry for the auxiliary field. There are also
several spurionic symmetries [31,48,49]:
(1) General hypercubic rotations, together with the

rotation of n.
(2) Parity with respect to the axis n, i.e., the negation of

the part of space-time vectors orthogonal to n,
together with the negation of μq.

(3) Time reversal with respect to the axis n, together
with the negation of μq and n.

(4) Charge conjugation, together with the negation of n.
Specifically, the auxiliary field transforms as

ζnðxÞ → ζ̄−nðxÞT; ζ̄nðxÞ → ζ−nðxÞT: ð31Þ

(5) Flavor SUð2Þ, together with a rotation of the twisted
mass term μqτ

3 → μqeiα
aτaτ3e−iα

aτa .
(6) For a chiral fermion action, SUð2Þ axial transfor-

mations together with a rotation of the total mass
term mq þ iμqγ5τ3.

Following [50], the next-order auxiliary field Lagrangian
has the form

Lð1Þ
ζ ¼ aðbζm2

q þ b0ζμ
2
qÞζ̄ζ; ð32Þ

where bζ and b0ζ are Oðg40Þ. These terms produce a quark-
mass dependence in the auxiliary field mass counterterm.
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This effect could be significant if charm quarks are
included in the lattice action.

A. Local bilinear operator

To simplify the study of improvement, we consider a
bilinear defined in the twisted basis, ϕ ¼ ζ̄χ. The operator
=nϕ transforms in the same way under all of the above
symmetries except for SUð2Þ axial. Therefore at leading
order the renormalized operator is given by

ϕR ¼ Zϕðϕþ rmix=nϕÞ; ð33Þ

where rmix ¼ 0 for a chiral action.
For the OðaÞ contributions, we follow the study of the

static-light axial current in Ref. [50]. However, because of
the equation of motion ð=Dþmq þ iμqτ3γ5Þχ ¼ 0, there is
some freedom in defining the on-shell improvement terms.
In particular, we could use a derivative orthogonal to n,
=D⊥ ¼ ðδμν − nμnνÞγμDν as in Ref. [50]. However, for the
case of quasi-PDFs it may be better to use a derivative
along n: this would keep the improved operator from
extending across more than one time slice and could
potentially allow OðaÞ improvement to be applied to
existing data. Furthermore, we use the equations of motion2

for ζ to write ζ̄n ·Dχ ¼ n · ∂ðζ̄χÞ. At OðaÞ, we obtain the
improved operator,

ϕR;I ¼ Zϕðϕþ rmix=nϕþ aϕ1;m þ aϕ1;DÞ;
ϕ1;m ¼ ½ðbϕ þ b̄ϕ=nÞ=nmq þ ðb0ϕ þ b̄0ϕ=nÞ=niμqτ3γ5�ϕ;
ϕ1;D ¼ ðcϕ þ c̄ϕ=nÞn · ∂ϕ: ð34Þ

For a chiral action, b̄ϕ, b̄0ϕ, and c̄ϕ vanish and bϕ ¼ b0ϕ but
there still exist terms atOðaÞ that cannot be excluded. Note

that this expression assumes only a single doublet of
fermions is present; for additional nondegenerate fermions
there can be additional terms involving, for example, the
trace of the mass matrix, as discussed in Ref. [51].
For ϕ̄ ¼ χ̄ζ, we apply charge conjugation and then relabel
n → −n to obtain

ϕ̄R;I ¼ Zϕðϕ̄þ rmixϕ̄=nþ aϕ̄1;m þ aϕ̄1;DÞ;
ϕ̄1;m ¼ ϕ̄½mq=nðbϕ þ b̄ϕ=nÞ þ iμqτ3γ5=nðb0ϕ þ b̄0ϕ=nÞ�;
ϕ̄1;D ¼ −n · ∂ϕ̄ðcϕ þ c̄ϕ=nÞ: ð35Þ

One further consideration is if the lattice gauge links
used for the Wilson line are obtained using an anisotropic
smearing, which breaks some of the hypercubic rotations
and allows additional contributions. This is used in
calculations by ETMC, where (for n in a spatial direction)
the gauge links are smeared only in spatial directions
and not in time [9]. There is again some freedom in
defining the on-shell improvement due to the equations of
motion for χ. If smearing is not performed in the t
direction, then one possible form for the additional term
is ðc0ϕ þ c̄0ϕ=nÞγtζ̄Dtχ. We will not explicitly consider
this anisotropic case below, but the generalization is
straightforward.

B. Operator for quasi-PDFs

Using the fermion doublet χ, we consider the operator

OΓτðξÞ ¼ χ̄ðξnÞΓτWðξn; 0Þχð0Þ ¼ hϕ̄ðξnÞΓτϕð0Þiζ; ð36Þ

inserted at zero momentum, where Γ is a generic spin
matrix and τ is a generic flavor matrix. The improved,
renormalized operator is given (for ξ > 0) by

OR;I
Γτ ðξÞ ¼ hϕ̄R;IðξnÞΓτϕR;Ið0Þiζ

¼ Z2
ϕe

−mξ

�
χ̄ðξnÞXWðξn; 0Þχð0Þ þ a

∂
∂η ½χ̄ðξnÞWðξn; ηnÞð1þ rmix=nÞΓτðcϕ þ c̄ϕ=nÞχðηnÞ�

����
η¼0

− a
∂
∂ξ ½χ̄ðξnÞWðξn; 0Þðcϕ þ c̄ϕ=nÞΓτð1þ rmix=nÞχð0Þ�

�
þOða2Þ; ð37Þ

X ¼ Γτ þ rmixfΓ; =ngτ þ r2mix=nΓ=nτ þ amqð2b̄ϕΓτ þ ðbϕ þ rmixb̄ϕÞfΓ; =ngτ þ 2bϕrmix=nΓ=nτÞ
þ iaμqðb0ϕ½Γτ; =nγ5τ3� þ b̄0ϕfΓτ; γ5τ3g þ rmixðb̄0ϕ½=nΓ=nτ; =nγ5τ3� þ b0ϕf=nΓ=nτ; γ5τ3gÞÞ:

Since the operator is inserted at zero momentum, we can add a total derivative to finally obtain

2Note that the improved operators will be defined in the case where the bare massm of the ζ field is set to zero. In the case where it is
nonzero, the additional contribution here could be absorbed into Zϕ.
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OR;I
Γτ ðξÞ ¼ Z2

ϕe
−mξ

�
OXðξÞ − a

∂
∂ξOΓDτðξÞ

�
þOða2Þ þ total derivative;

ΓD ¼ 2cϕΓþ ðc̄ϕ þ cϕrmixÞfΓ; =ng þ 2cϕrmix=nΓ=n: ð38Þ

For specific choices of Γ and τ, this expression simplifies. Calculations of quasi-PDFs are typically done with a flavor
diagonal operator where τ commutes with τ3. It has become standard to compute unpolarized quasi-PDFs using Γ ¼ γν
with ν satisfying nν ¼ 0 and helicity quasi-PDFs using Γ ¼ =nγ5. In both of these cases, =nΓ=n ¼ −Γ and all of the
(anti)commutators vanish, so that the improved operator becomes

ðno-mixing caseÞ OR;I
Γτ ðξÞ ¼ Z2

ϕe
−mξ

�
1 − r2mix þ 2amqðb̄ϕ − bϕrmixÞ − 2ðcϕ − c̄ϕrmixÞa

∂
∂ξ

�
OΓτðξÞ; ð39Þ

i.e., only the derivative operator (and no other mixing)
contributes at OðaÞ and the only nontrivial effect of chiral
symmetry breaking is the dependence on amq. Transversity
quasi-PDFs are computed using an operator that has Γ ¼
=nγν in the physical basis. If μq ¼ 0, then Eq. (39) again
applies. On the other hand, when using twisted mass
fermions at maximal twist we must consider the corre-
sponding twisted-basis operator. For the case of a flavor
diagonal transversity operator, the twisted-basis operator
has Γ ¼ i=nγνγ5 and suffers from equal-dimensional mixing
because fΓ; =ng ¼ 2iγνγ5. Using a flavor-changing trans-
versity operator would be advantageous: it appears the
same in the physical and twisted bases and the form of the
improved operator is given by Eq. (39).

1. Maximal twist

In calculations done using Wilson twisted mass fer-
mions, many correlators benefit from automatic OðaÞ
improvement [48,52]. This means that when tuned to
maximal twist (mq ¼ 0), the OðaÞ contributions to those
correlation functions vanish and there is no need to
explicitly tune the improvement coefficients. For the case
considered here, the arguments behind automatic improve-
ment do not eliminate all of the OðaÞ contributions, but
they do eliminate the contributions that vanish for chiral
fermion actions.
We start by working at Oða0Þ and examining the equal-

dimensional mixing. To simplify the expressions, assume
=nΓ=n ¼ GΓΓ, where GΓ ¼ �1. We then write

OR
ΓτðξÞ ¼ Z2

ϕe
−mξ½ð1þ GΓr2mixÞOΓτðξÞ

þ rmixOfΓ;=ngτðξÞ� þOðaÞ; ð40Þ

OR
fΓ;=ngτðξÞ ¼ Z2

ϕe
−mξ½ð1þ r2mixÞOfΓ;=ngτðξÞ

þ 2ð1þ GΓÞrmixOΓτðξÞ� þOðaÞ: ð41Þ

Using these two equations we can eliminate OfΓ;=ngτ and

obtain

OΓτðξÞ ¼
emξ

Z̃2
ϕ;GΓ

�
OR

ΓτðξÞ −
rmix

1þ r2mix

OR
fΓ;=ngτðξÞ

�
þOðaÞ;

ð42Þ

where Z̃2
ϕ;G ¼ Z2

ϕð1 − r2mixÞð1 −Gr2mixÞ=ð1þ r2mixÞ.
We now consider the transformations

R1;2
5 ∶

�
χ → iγ5τ1;2χ

χ̄ → χ̄iγ5τ1;2;
ð43Þ

which are chiral symmetries of continuum twisted mass
QCD at maximal twist. Clearly, if OΓτ → ROΓτ (R ¼ �1)
under one of these transformations, then OfΓ;=ngτ →
−ROfΓ;=ngτ. Now, consider a correlation function involving

some hadronic interpolators and OΓτ that is invariant under
R1;2

5 . In the continuum, the corresponding correlation
function with OfΓ;=ngτ will vanish because it is odd under

R1;2
5 . On the lattice, for the renormalized operator OR

fΓ;=ngτ
the result must therefore be OðaÞ and this term can be
neglected in Eq. (42). Effectively, one can use
OR

ΓτðξÞ ¼ Z̃2
ϕ;GΓ

e−mξOΓτðξÞ þOðaÞ. This justifies the cal-
culation in Refs. [8,9], where equal-dimensional mixing for
the transversity operator was not explicitly treated.
Now, we move on to the OðaÞ contributions.

Specifically, we take the correlation function of the product
of OΓ inserted at zero momentum with a renormalized
OðaÞ-improved multilocal field Φ. The Symanzik expan-
sion of the lattice correlator is given by

hΦOΓτðξÞi ¼
emξ

Z̃2
ϕ;GΓ

	
Φ
�
OR

ΓτðξÞ−
rmix

1þ r2mix

OR
fΓ;=ngτðξÞ

�

0

−
emξ

Z̃2
ϕ;GΓ

a

	
Φ
�
OR

ΓτðξÞ−
rmix

1þ r2mix

OR
fΓ;=ngτðξÞ

�

×
Z

d4xLð1Þ
χ ðxÞ



0

þ ahΦOð1Þ
Γτ ðξÞi0 þOða2Þ;

ð44Þ
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where h� � �i0 is evaluated in the continuum theory and

Oð1Þ
Γτ ðξÞ contains the OðaÞ terms that appear in Eq. (38).

Assuming ΦOΓτ is invariant underR
1;2
5 and mq ¼ 0, many

of the terms vanish and we get

Z̃2
ϕ;GΓ

e−mξhΦOΓτðξÞi

¼ hΦOR
ΓτðξÞi0 þ

rmix

1þ r2mix

a

	
ΦOR

fΓ;=ngτðξÞ
Z

d4xLð1Þ
χ ðxÞ



0

þ a

	
Φ
�
c1;GΓ

iμqOR
½Γτ;=nγ5τ3�

ðξÞ þ c2;GΓ

∂
∂ξO

R
ΓτðξÞ

�

0

;

ð45Þ

for some prefactors c1;� and c2;�. If the fermion action is

OðaÞ improved by including a clover term,3 then Lð1Þ
χ

vanishes and one can effectively obtain OðaÞ improvement
by using

OR;I
Γτ ðξÞ ¼ Z̃2

ϕ;GΓ
e−mξ

�
OX̃ðξÞ − c̃ϕ;GΓ

a
∂
∂ξOΓτðξÞ

�
;

X̃ ¼ Γτ − ib̃0ϕ;GΓ
aμq½Γτ; =nγ5τ3�; ð46Þ

where six parameters remain: Z̃ϕ;þ, b̃0ϕ;þ, c̃ϕ;þ, Z̃ϕ;−, b̃
0
ϕ;−,

and c̃ϕ;−. Usually the operator will have a definite GΓ, so
that only half of the parameters can contribute, and for
many operators the commutator vanishes so that the term
proportional to aμq does not contribute. On the other hand,
if the fermion action is notOðaÞ improved, then the second
term in Eq. (45) can be eliminated either by explicitly
treating the Oða0Þ mixing or by choosing an operator such
that fΓ; =ng ¼ 0.
The term involving the OðaÞ part of the fermion action

survives in Eq. (45) because the connection between
dimensional counting and breaking of chiral symmetry,
which underlies the usual arguments for automatic
improvement, is broken by the equal-dimensional mixing
with OfΓ;=ngτ. This leads to another potential worry: if Φ is

notOðaÞ improved, as is typically the case for interpolating
operators, then an additional nonvanishing term of the form
ahΦð1ÞOR

fΓ;=ngτi0 can appear in Eq. (45). However, although

this is an OðaÞ contribution in the correlation function, it
can be argued that it will not contribute to the ground-state
hadronic matrix element determined at large Euclidean time
separations, since the latter is independent of the interpo-
lating operator. To see this, consider a correlation function
using local hadron interpolators that have been explicitly
OðaÞ improved. In this case, the Symanzik expansion is
given by Eq. (45) and the OðaÞ terms can be eliminated by

including a clover term in the fermion action and tuning the
improvement parameters in Eq. (46). Once the correlation
function is free of OðaÞ effects, then, following the argu-
ments in Sec. 3.2 of Ref. [52], we find that the matrix
element obtained at large time separations will be free of
OðaÞ effects. As the same ground-state matrix element can
be obtained using any interpolating operator, the OðaÞ-
improved ground-state matrix element can thus be obtained
from the large-time-separation limit of a correlation func-
tion even if the interpolator is not OðaÞ improved.

C. Determining improvement coefficients

In principle, parameters associated with breaking of
chiral symmetry (rmix, b̄ϕ, b̄0ϕ, bϕ − b0ϕ, and c̄ϕ) can be
determined using improvement conditions derived from
chiral Ward identities [46]; this approach was used for
nonperturbative determinations of closely related parame-
ters in the static quark theory in Refs. [56–58]. For the
remaining improvement coefficients bϕ and cϕ, the sit-
uation is more difficult as there is no simple continuum
physics condition to match onto: one would have to
numerically study the continuum extrapolation of suitably
chosen observables and tune the parameters to eliminate the
linear dependence on a. Alternatively, the parameters could
be computed in lattice perturbation theory, which has been
done for the static quark theory using a few different lattice
actions [50,58–63].4

IV. GENERAL LINK PATHS

In this section we generalize our use of the auxiliary field
approach on the lattice to describe paths that have corners
and paths that are not along a lattice axis. In part, this will
serve to understand under which circumstances the
assumption made in Refs. [64–67] (and studied empirically
in Ref. [68]), that the continuum renormalization pattern
[31] applies to lattice calculations, is valid.

A. Piecewise straight paths

Nonlocal operators with link paths that are not straight
are also used for hadron structure; in particular, staple-
shaped gauge connections have been used for studying
transverse momentum-dependent (TMD) PDFs. If the path
is made from a finite number of segments, each of which is
a Wilson line propagating along a lattice axis, then it is
straightforward to accommodate the nonlocal operator in
the lattice auxiliary field framework. An auxiliary field ζn
must be introduced for each segment, where n is the
corresponding direction. In addition to suitable bilinears
ϕni ≡ ζ̄niψ and ϕ̄nf for the end points, one must also

3Note that the more recent twisted mass lattice ensembles
generated by ETMC, including those at the physical pion mass,
do include a clover term [53–55].

4The parameter rmix can also be determined from the pertur-
bative study ofOΓðξÞ in Ref. [37]. For the gauge actions common
to both calculations, that reference agrees with Ref. [60].
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introduce cusp operators [30,69] Cn0;n ¼ ζ̄n0ζn for each
transition between segments.
To be concrete, consider the TMD operator with quark

fields separated by the four-vector b and the staple of height
η in the direction of the unit vector v that is orthogonal to b
(see Fig. 3):

OTMD
Γ ¼ ψ̄ð0ÞΓWð0; ηvÞWðηv; ηvþ bÞWðηvþ b; bÞψðbÞ:

ð47Þ

We introduce the auxiliary fields ζv, ζ−v, and ζ−b̂, and
obtain

OTMD
Γ ¼ hϕ̄−vð0ÞΓC−v;−b̂ðηvÞC−b̂;vðηvþ bÞϕvðbÞiζ: ð48Þ

In addition to renormalizing the action for the auxiliary
fields and the bilinears ϕ, the cusp operators must also be
renormalized. The latter are not expected to mix. However,
since the operators ϕv and ϕ̄−v connect to auxiliary fields
propagating in opposite directions, the mixing pattern
allowed by chiral symmetry breaking is different from
the straight-line operators used for quasi-PDFs: OTMD

Γ can
mix with OTMD

½Γ;=v� . This was pointed out by one of us in

Ref. [70] and later confirmed at one-loop order in lattice
perturbation theory [71]. The latter calculation also found
that more generally, the pattern of mixing depends only on
the direction with which the Wilson lines hit the quark
fields, which is consistent with the prediction of the
auxiliary field approach. We note that a numerical study
of nonperturbative renormalization of staple-shaped oper-
ators was recently done in Ref. [72].
A RI-xMOM renormalization condition for cusp oper-

ators is straightforward to formulate. This requires the
position-space Green’s function for the cusp operator,

GCðξ0; ξÞ≡ hζn0 ðξ0n0ÞCn0;nð0Þζ̄ð−ξnÞiQCDþζ

¼ hWðξ0n0; 0ÞWð0;−ξnÞiQCD: ð49Þ

Performing a position-space amputation, a possible con-
dition is

1

3

ZC

Zζ
Tr½S−1ζn0 ðξ0ÞGCðξ0; ξÞS−1ζn ðξÞ� ¼ 1; ð50Þ

when ξ0 ¼ ξ ¼ μ−1.

B. Off-axis paths

It is possible to somewhat relax the constraint that n
points along a lattice axis. For example, let n ¼ 1ffiffi

2
p ðx̂þ ŷÞ.

On the lattice, one definition of the straight-line operator
is [65]

Olat
Γ ð0; ξ; nÞ≡ ψ̄ðξnÞΓ 1

2
½Wxyðξn; 0Þ þWyxðξn; 0Þ�ψð0Þ;

ð51Þ

where Wxy is formed from the zigzag product of gauge
links alternating between the x and y directions and vice
versa forWyx (see Fig. 4). This average is necessary so that
the operator has a simple transformation under n-parity.
These zigzag Wilson lines can be obtained as propagators
of auxiliary fields ζxy and ζyx that are defined using two-
link covariant derivatives along the n direction, e.g.,

∇xyfðxÞ ¼
1ffiffiffi
2

p
a
½fðxÞ −U†

yðx − aŷÞU†
xðx − aðx̂þ ŷÞÞ

× fðx − aðx̂þ ŷÞÞ�: ð52Þ

Because of rotational symmetry breaking on the lattice, the
mass counterterm mxy ¼ myx will in general be different
from the on-axis case.5 The quark bilinear takes the form

Olat
Γ ð0; ξ; nÞ ¼

	
1

2
½ϕ̄xyðξnÞΓϕxyð0Þ þ ϕ̄yxðξnÞΓϕyxð0Þ�



ζ

;

ð53Þ

where ϕxy ¼ ζ̄xyψ , etc. Defining φ� ≡ 1ffiffi
2

p ðϕxy � ϕyxÞ, this
can be rewritten as

Olat
Γ ð0; ξ; nÞ ¼ hφ̄�ðξnÞΓφ�ð0Þiζ; ð54Þ

where the additional cross terms involving e.g., hζxyζ̄yxi
vanish. Under n-parity, φ� → �=nφ�.

FIG. 3. Staple-shaped operator.

5In the continuum, the case of an auxiliary field propagating
along a multicusp curve that approximates a smooth one was
considered in Ref. [30]. In that case, when the number of cusps
goes to infinity the action is equal to that of a field propagating
along the smooth curve with an added mass term that accounts for
the effect of the cusps. This is analogous to the situation here,
where a straight line is approximated by zigzags that become
infinitely many as the lattice spacing goes to zero.
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We find that additional mixing can occur. Defining
v ¼ 1ffiffi

2
p ðx̂ − ŷÞ, φþ mixes with =nφþ, =vφ−, and =n=vφ−, the

last of which is a chiral-even mixing. This leads to
correlation functions of the form hφ̄þφ−i, which contain
a difference of Wilson lines Wxy −Wyx. One expects that
this difference will vanish in the continuum limit. This
expectation can be justified in the auxiliary field approach:
in the continuum, there is anSUð2Þ flavor symmetry relating
ζxy and ζyx. It is broken in the next order of the Symanzik
expansion, where a term of the form aζ̄xyGμνnμvνζxy −
aζ̄yxGμνnμvνζyx can appear in the Lagrangian; this implies
that hφ̄þφ−i is OðaÞ. Therefore, even though the mixing
between φþ and operators containing φ− is equal dimen-
sional, the most serious new mixing effect in correlation
functions is suppressed by at least OðaÞ. The remaining
effect is that even when using a chiral fermion action,
renormalization will be different for operators where =v=nΓ=n=v
is equal to þΓ and those where it equals −Γ.
An alternative definition is to average the paths locally.

Taking the average of the two local link paths,

UavgðxÞ≡ 1

2
½UxðxÞUyðxþ ax̂Þ þ UyðxÞUxðaþ aŷÞ�;

ð55Þ

the lattice action for ζavg is defined using the covariant
derivative,

∇avgfðxÞ¼
1ffiffiffi
2

p
a
½fðxÞ−U†

avgðx−aðx̂þ ŷÞÞfðx−aðx̂þ ŷÞÞ�:

ð56Þ

Again, themass countertermwill in general be different from
the previous case. Then, using the bilinear ϕavg ¼ ζ̄avgψ, the
bilocal operator hϕ̄avgðξnÞΓϕavgð0Þiζ effectively averages

over 2N link paths, where ξ ¼ ffiffiffi
2

p
Na. In this case, the pattern

of equal-dimensional mixing is the same as the on-axis case.

V. CONCLUSIONS

The auxiliary field approach is an invaluable tool for
understanding the renormalization and improvement of
Wilson-line operators on the lattice. Generically, these
nonlocal operators can be represented using local operators
in an extended theory involving auxiliary fields. We have
shown how this can be done for a variety of operators,
beyond the simplest ones involving straight on-axis link
paths used for quasi-PDF studies.
Using the Symanzik expansion, we were able to study

discretization effects and the form of the improved oper-
ators. As foreseen in Ref. [28], we find that the leading
effects are linear in a even if chiral symmetry is preserved
on the lattice. Likewise, we find that working at maximal
twist does not automatically eliminate the effects linear
in a, but it can remove some of the contributions and it can
produce some simplification by reducing the number of
improvement coefficients. Our analysis provides a general
framework for theOðaÞ improvement of nonlocal operators
used in the quasi-PDF approach for computing PDFs on
the lattice.
In order to apply this improvement to a lattice calculation

of quasi-PDFs, the relevant coefficients for the choice of
lattice action must be determined. For some actions, many
of these are already known from lattice perturbation theory
calculations done for the static quark theory. There are
plans to determine the coefficients for actions used by
ETMC [73], and we intend to study the effect of improve-
ment on the approach to the continuum limit. It will be
important to establish that discretization effects in quasi-
PDF calculations can be controlled.
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APPENDIX A: RELATION TO STATIC
QUARK THEORY

The static quark theory [35,36] is defined using a spinor
Q that satisfies Q ¼ PþQ, where P� ¼ ð1� γ0Þ=2. Its 2
spin degrees of freedom do not couple in its action, and its
propagator is the same as the ζ-field propagator with n ¼ t̂,
multiplied by Pþ. This means that, after accounting for the
projector, the static quark and auxiliary field theories can be
identified with each other. It will be convenient to define
the projected bilinears ϕ� ¼ 1

2
ð1� =nÞϕ, where the projec-

tors become P� when n ¼ t̂. In our approach, neglecting a
twisted mass term, the renormalized OðaÞ-improved oper-
ators take the form

ϕ�
R;I ¼ Z�

ϕ ð1� b�ϕamq þ c�ϕan · ∂Þϕ�; ðA1Þ

where Z�
ϕ ¼ Zϕð1� rmixÞ, b�ϕ ¼ ðbϕ � b̄ϕÞ=ð1� rmixÞ,

and c�ϕ ¼ ðcϕ � c̄ϕÞ=ð1� rmixÞ.

FIG. 4. Off-axis operator with two different discretizations of
the Wilson line.
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In Ref. [50], the time components of the static-light axial
and vector currents are defined as

Astat
0 ≡ ψ̄γ0γ5Q ¼ −ψ̄P−γ5Q; ðA2Þ

Vstat
0 ≡ ψ̄γ0Q ¼ ψ̄PþQ: ðA3Þ

By identifying which projector is contracted with ψ̄ , this
lets us make the identifications

Astat
0 → −ϕ̄−γ5; Vstat

0 → ϕ̄þ; ðA4Þ

and the corresponding renormalization factors can be
equated: Zstat

A ¼ Z−
ϕ and Zstat

V ¼ Zþ
ϕ . For the static-light

axial current, Ref. [50] identifies four possible OðaÞ
improvement operators:

ðδAstat
0 Þ1 ≡ ψ̄D⃖jγjγ5Q ¼ ψ̄ =⃖D⊥P−γ5Q; ðA5Þ

ðδAstat
0 Þ2 ≡ ψ̄γ5D0Q ¼ ψ̄P−γ5D0Q; ðA6Þ

ðδAstat
0 Þ3 ≡ ψ̄D⃖0γ5Q ¼ −ψ̄D⃖0γ0P−γ5Q; ðA7Þ

ðδAstat
0 Þ4 ≡mqψ̄γ0γ5Q ¼ −mqψ̄P−γ5Q: ðA8Þ

At leading order, the equations of motion for Q give
ðδAstat

0 Þ2 ¼ 0 and those for ψ give ðδAstat
0 Þ1 − ðδAstat

0 Þ3 þ
ðδAstat

0 Þ4 ¼ 0; these are used to eliminate ðδAstat
0 Þ2;3. The

improved, renormalized operator is then given by

ðAstat
R Þ0 ¼ Zstat

A ð1þ bstatA amqÞðAstat
I Þ0;

ðAstat
I Þ0 ¼ Astat

0 þ acstatA ðδAstat
0 Þ1: ðA9Þ

We can make the identification

ðδAstat
0 Þ2 þ ðδAstat

0 Þ3 ¼ ∂0ðψ̄P−γ5QÞ → n · ∂ϕ̄−γ5: ðA10Þ

To relate Eq. (A1) with Eq. (A9), we need to use the
equations of motion to eliminate ðδAstat

0 Þ1 and insert
ðδAstat

0 Þ2. Our identification allows us to equate the
improvement coefficients at leading order: b−ϕ ¼
cstatA − bstatA and c−ϕ ¼ cstatA . Likewise, Ref. [50] gives the
improved, renormalized vector current as

ðVstat
R Þ0 ¼ Zstat

V ð1þ bstatV ÞðVstat
0 þ acstatV ψ̄D⃖jγjQÞ; ðA11Þ

and by again using the equations of motion we obtain at
leading order bþϕ ¼ cstatV þ bstatV and cþϕ ¼ cstatV . For a chiral

action, our identification leads to Zstat
A ¼ Zstat

V , cstatA ¼ cstatV ,
and bstatA ¼ −bstatV , consistent with Ref. [60].

APPENDIX B: COMPARISON WITH
WHOLE-OPERATOR APPROACH

In Ref. [49], the symmetry properties of dimension-
three operators of type OΓðξÞ and similar dimension-four
nonlocal operators were studied in order to understand
mixing andOðaÞ effects.We find the same pattern of mixing
with three-dimensional operators and four-dimensional
operators proportional to mq. However, in general it is
much less constraining to consider the operator as a whole
rather than using the auxiliary field approach to represent it
using two local operators. This leads to the following
differences:
(1) The auxiliary field approach implies that for a chiral

fermion action, the renormalization of OΓðξÞ is
independent of Γ and depends only on two param-
eters Zϕ andm. When chiral symmetry is broken, the
splitting between different Γ and the mixing are
controlled by a single parameter, rmix. In contrast,
the whole-operator approach implies a generic ξ-
dependent and Γ-dependent renormalization.6

(2) In the auxiliary field approach, the four-dimensional
operators with derivatives can only have those deriv-
atives inserted in either local operator, i.e., effectively
at either end of the Wilson line.7 By using the
equations of motion for the fermion field and the
auxiliary field, the number of improvement terms
with derivatives can be significantly reduced. On the
other hand, Ref. [49] found operators with =D⊥ or
=nðn ·DÞ inserted at any point ξ0 ∈ ½0; ξ� along the
Wilson line. This large number of operators makes it
appear impractical to attempt OðaÞ improvement.

(3) The local operator ϕ ¼ ζ̄ψ transforms under the
fundamental irrep of the fermion flavor symmetry
group. This means that there is no mixing ofOΓ with
nonlocal gluonic operators of the type discussed in
Ref. [34]. On the other hand, the whole-operator
approach would predict that those gluonic operators
could have a divergent Oða−1Þ contribution from a
flavor singlet nonlocal quark operator OΓ.

6Note that whole-operator nonperturbative renormali-
zation done using RI-MOM type schemes [6,9,15,72] has
generically found a dependence on Γ. However, this is by
construction in the definition of observables used for imposing
renormalization conditions. Once converted to a minimal
scheme such as MS, the pattern predicted by the auxiliary
field approach is recovered [37], up to the precision of the
scheme conversion.

7Insertions in the Wilson line can occur as a result of higher-
dimensional corrections to the action of the auxiliary field.
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