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The origin of the low-lying nature of the N�ð1440Þ, or Roper resonance, has been the subject of
significant interest for many years, including several investigations using lattice QCD. The majority of
lattice studies have not observed a low-lying excited state energy level in the region of the Roper resonance.
However, it has been claimed that chiral symmetry could play an important role in our understanding of this
resonance. The purpose of this study is to systematically examine the role of chiral symmetry in the low-
lying nucleon spectrum by directly comparing the clover and overlap fermion actions. To ensure any
differences in results are attributable to the choice of fermion action, simulations are performed on the same
set of gauge field configurations at matched pion masses. Correlation matrix techniques are employed to
determine the excitation energy of the first positive-parity excited state for each action. The clover and
overlap actions show a remarkable level of agreement. We do not find any evidence that fermion action
chiral symmetry plays a significant role in understanding the Roper resonance on the lattice.

DOI: 10.1103/PhysRevD.101.074504

I. INTRODUCTION

The true nature of the Roper resonance (Nð1440Þ1
2
þP11),

the first positive-parity excited state of the nucleon dis-
covered in 1964 via a partial-wave analysis of pion-nucleon
scattering data [1], is a long-standing source of debate. The
puzzlement surrounding the Roper resonance arises from
the discrepancy between the level ordering predicted by
otherwise successful quark model calculations, and the
energy of the resonance observed in nature. With an energy
of 1440 MeV the Roper resonance is the lowest-lying
resonance in the nucleon spectrum, sitting even below the
first negative-parity excitation, the (Nð1535Þ1

2
−S11) state.

This is a reversal of the ordering predicted by simple quark
models, which place the energy of the positive-parity P11

state well above that of the negative-parity S11 state.
This apparent discrepancy persists in lattice QCD cal-

culations, with the majority of lattice calculations obtaining
an energy level for the first positive-parity nucleon exci-
tation that sits high relative to that expected for the Roper
resonance, even near the physical quarkmass regime [2–11].
The exception to this is the χQCD Collaboration, which
using overlap fermions in combination with the sequential
empirical Bayes (SEB) analysis method [12] were able to
find a low-lying positive-parity excited state on the lattice

with an energy that in the chiral limit is consistent with the
Roper resonance in nature [13,14].
It is clear that some controversy persists regarding how

the Roper resonance in the continuum manifests on the
lattice [15–22]. The χQCD Collaboration advocates that
their result is directly associated with the use of overlap
fermions and stresses the importance of implementing
exact chiral symmetry when investigating the nucleon
spectrum. They motivate this by pointing towards the
success of chiral soliton models, based on spontaneous
chiral symmetry breaking, predicting the ordering of the
Roper resonance and S11 state observed in nature and the
contrasting failure of various, otherwise successful quark
models, to do the same [14,23].
Furthermore, motivated by the increased coupling of the

overlap action to ghost states in the quenched approxima-
tion, it has been postulated the overlap action may provide
better access to pion-nucleon physics on the lattice [13]. On
the other hand, even in the absence of a low-lying lattice
energy level, it has been shown using effective field theory
that it is possible to reconcile the lattice Wilson-type results
with experiment by describing the infinite-volume Roper
as a resonance generated dynamically through strongly
coupled meson-baryon channels [4,24].
In light of these differing perspectives, it is important and

of interest to perform a systematic investigation of the role of
chiral symmetry in the nucleon spectrum [25]. This is the
aim of this study, where we directly compare results
obtained from simulations respectively employing the over-
lap and clover fermion actions. To ensure that any discrep-
ancies between the respective simulations are entirely
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attributable to the choice of fermion action, both simulations
are performed on the same set of gauge field configurations,
at matched pion masses, and analyzed utilizing identical
correlation matrix techniques.
Calculations are performed at three values of the valence

quark mass. The lattice energies of the ground and first
positive-parity excited state are computed for each action
from variational analyses, additionally yielding effective
mass and eigenstate projected correlation functions which
are also compared. Our final analysis avoids the selection
of fit regimes, instead presenting the lattice results directly.
The paper is structured as follows. Section II briefly

reviews the background and methods used herein, and out-
lines the correlation matrix analysis technique. Section III
describes the simulation parameters and results, with con-
clusions presented in Sec. IV.

II. METHODOLOGY

A. Resonance physics from lattice QCD

The determination of resonance properties from lattice
QCD calculations requires a comprehensive understanding
of the spectrum of excited states in the finite periodic
volume of the lattice. In principle, this spectrum includes all
single, hybrid, and multiparticle contributions having the
quantum numbers of the resonance of interest. This finite-
volume spectrum then forms the input to the Lüscher
method [26] or its generalizations [4,24,27,28] which relate
the finite-volume energy levels to infinite-volume momen-
tum-dependent scattering amplitudes. The application
of these methods is a necessary step in connecting lattice
QCD results to the properties of resonances measured in
experiment.
Obtaining an accurate determination of the finite-volume

nucleon spectrum is challenging, requiring an extensive
set of baryon interpolating fields and robust correlation
function analysis techniques. Many collaborations have
explored the spectrum excited by local single-particle
operators [2–10], and hybrid nucleon interpolators have
been investigated in Ref. [11] where additional states
were found in the spectrum. Nonlocal multiparticle inter-
polating fields are necessary to determine the lattice energy
eigenstates to the level of accuracy that is required to
implement the Lüscher formalism and compare lattice
QCD results to experiment. Indeed, the main approach
has been to bring experimental results to the finite volume
of the lattice [4,24]. It is only recently that the first
applications of the Lüscher formalism to the baryon sector
have emerged [29,30].
In this work, our focus is on the finite-volume spectrum

and its dependence on the choice of fermion action as
described in the Introduction. We consider quasilocal
operators as these are sufficient to address this issue. We
acknowledge that these localized operators do not have
good overlap with multiparticle scattering states and as

such the energies obtained in our calculations may contain
contributions from more than one energy eigenstate of
QCD. The single-state ansatz of Ref. [5] used herein
minimizes this effect, which can shift the observed energies
within the width of the associated resonance. Moreover, we
note that this subtle issue of state mixing applies to both
fermion actions. Any differences which exist between the
actions will be apparent in the results presented, preserving
our ability to search for a nontrivial role for chiral
symmetry in the nucleon spectrum.

B. Lattice fermion actions

Nucleon spectroscopy on the lattice is typically per-
formed usingWilson fermions, with clover [31] and twisted
mass [32] being the most common variants used today. The
(unimproved) Wilson fermion matrix is given by

Dw ¼ =∇þ a
2
Δþmw; ð1Þ

where ∇ is the central finite difference operator, Δ is the
lattice Laplacian (or Wilson term), and mw is the Wilson
mass parameter [33]. The addition of the Wilson term
successfully circumvents the infamous fermion doubling
problem present in the naive lattice formulation. However it
also explicitly violates chiral symmetry. The challenge in
solving this dilemma is made manifest by the Nielsen-
Ninomiya no-go theorem [34–36], which prevents the
existence of a doubler-free, local, chirally invariant formu-
lation of fermions on the lattice that retains the correct
continuum limit. The Ginsparg-Wilson relation [37]

fD; γ5g ¼ 2aDγ5D; ð2Þ

where D is some lattice Dirac operator, offers a means to
circumvent the no-go theorem by providing a softly broken
implementation of chiral symmetry on the lattice.
Developed as a solution to the Ginsparg-Wilson relation,

the overlap formalism [38–43] is a formulation of fermions
on the lattice which satisfies an exact, lattice-deformed
chiral symmetry. The massless overlap Dirac operator is
given by

Do ¼
1

2a
ð1þ γ5ϵðHwÞÞ; ð3Þ

where ϵðHwÞ is the matrix sign function applied to the
kernel, Hw. Typically the kernel is chosen to be the
Hermitian form of the Wilson Dirac operator, Hw¼γ5Dw,
but other choices are valid and in particular the use of a
kernel that incorporates smearing can have numerical
advantages [44–50]. When used as a matrix kernel, the
Wilson mass parameter mw must be chosen to have a
negative value in order to be in the topological region, with
amw ¼ −1 being the canonical value at tree level [51,52].
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Due to the presence of the matrix sign function, simu-
lations which implement the overlap formalism are of the
order of 100 times more computationally expensive than
those with Wilson-type fermions. As such, it is far more
common to employ Wilson fermions in a hadron spectrum
calculation, where we expect the explicit breaking of chiral
symmetry on the lattice to have a negligible impact.
However, one cannot immediately dismiss the possible

role that the fermion action might play in examining the
nucleon excitation spectrum. It is known that the coupling
of interpolation fields to lattice hadron states is action
dependent, and so it may be the case that a low-lying
Roper-like state couples strongly with the overlap action
but weakly with Wilson-type actions.
The nonperturbatively improved clover action has been

used extensively in previous studies of the nucleon exci-
tation spectrum, and for this reason we choose to use this
form of Wilson fermions in our comparison. The clover
fermion matrix is given by

Dcl ¼ =∇þ a
2

�
Δ −

1

2
cswσ · F

�
þm; ð4Þ

where σ · F is the clover term and csw is the clover
coefficient, which can be nonperturbatively tuned to
remove OðaÞ errors. The quark mass for Wilson fermions
is usually specified by the hopping parameter,

κ≡ 1

8þ 2am
: ð5Þ

In this work the overlap matrix kernel used is the fat-link
irrelevant-clover (FLIC) fermion action [44,53],

Dflic ¼ =∇þ a
2

�
Δfl −

1

2
σ · Ffl

�
þmw; ð6Þ

where the Wilson and clover terms are constructed
from stout-smeared links with four sweeps of smearing
at ρ ¼ 0.1.
The massive overlap Dirac operator is defined as [54]

DoðμÞ ¼ ð1 − μÞDo þ μ; ð7Þ

where 0 ≤ μ ≤ 1 is the overlap fermion mass parameter,
representing a mass of μ

1−μ.
The external fermion propagator calculated using

overlap fermions requires the subtraction of a contact
term. After solving the linear system for a given fermion
source ψ ,

DoðμÞχ ¼ ψ ; ð8Þ
each solution vector is modified as

χc ≡ 1

2mwð1 − μÞ ðχ − ψÞ; ð9Þ

in order to construct the external overlap quark propagator
[41,55],

Sc ≡ 1

2mwð1 − μÞ ðD
−1
o ðμÞ − 1Þ: ð10Þ

Defining the bare mass m0 via

m0 ¼ 2mwμ; ð11Þ

through the above subtraction of the contact term, it is
possible to show that

S−1c ¼ S−1c jm0¼0 þm0 ð12Þ

and that exact chiral symmetry is obeyed

fγ5; Scjm0¼0g ¼ 0; ð13Þ

just as in the continuum [42].

C. Correlation matrix analysis

Previous studies by the χQCD Collaboration [13,14]
obtained the nucleon excitation spectrum from overlap
fermions with the SEB method [12]. The majority of results
from other groups use a variational analysis. Here we use
the same correlation matrix method to extract the nucleon
excitation spectrum for both actions in order eliminate any
other potential dependencies and perform a direct com-
parison of the results obtained from the clover and overlap
fermion actions.
Variational correlation matrix techniques [56,57] are

well-established methods for successfully producing
hadron spectra from correlation functions [58]. First, a
basis of N operators is chosen such that any states of
interest are contained within the span. An N × N matrix of
cross correlation functions,

Gijðp⃗; tÞ ¼
X
x⃗

e−ip⃗·x⃗hΩjχiðx⃗; tÞχ̄jð0⃗; tsrcÞjΩi; ð14Þ

is constructed, where χ̄j and χi are the creation and
annihilation operators of the interpolating fields, respec-
tively. The parity projection operator

Γ� ¼ 1

2
ðγ0 � IÞ; ð15Þ

projects out definite parity at p⃗ ¼ 0⃗. Defining Gijðp⃗; tÞ ¼
TrðΓGijðp⃗; tÞÞ, we can write the Dirac-traced correlation
function as a sum of exponentials,

GijðtÞ ¼
X
α

λαi λ̄
α
je

−mαt; ð16Þ

ROLE OF CHIRAL SYMMETRY IN THE NUCLEON EXCITATION … PHYS. REV. D 101, 074504 (2020)

074504-3



where λαi and λ̄αj are the couplings of χi and χ̄j at the sink
and source respectively, and mα is the mass of the αth
energy eigenstate. We search for a linear combination of
operators

ϕ̄α ¼ χ̄juαj and ϕα ¼ χivαi ; ð17Þ

such that ϕ and ϕ̄ ideally couple to a single energy
eigenstate. In practice, the energies observed in lattice
QCD calculations can be contaminated with states not
captured by the spanned basis. To minimize this effect,
improved analysis techniques have been developed [5].
From Eq. (16) we see that

Gijðt0 þ dtÞuαj ¼ e−mαdtGijðt0Þuαj ; ð18Þ

and note that we can now find uαj and v
α
i for a given choice

of variational parameters ðt0; dtÞ by solving

½G−1ðt0ÞGðt0 þ dtÞ�ijuαj ¼ cαuαi ; ð19Þ

and

vαi ½Gðt0 þ dtÞG−1ðt0Þ�ij ¼ cαvαj ; ð20Þ

the left- and right-handed eigenvalue equations with
eigenvalue cα ¼ e−mαdt. Gij is symmetric in the ensemble
average so the improved estimator 1

2
ðGij þ GjiÞ is

employed to ensure the left-handed and right-handed
eigenvalues match. As Gij is diagonalized by uαj and vαi
at t0 and t0 þ dt it is possible to write the eigenstate-
projected correlation function as

GαðtÞ ¼ vαi GijðtÞuαj : ð21Þ

To extract eigenstate masses, we construct the effective
mass function

Mα
effðtÞ ¼ ln

�
GαðtÞ

Gαðtþ 1Þ
�
; ð22Þ

and apply standard analysis techniques outlined
in Ref. [59].

III. RESULTS

A. Simulation parameters

Computations are performed on the 323 × 64 PACS-CS
2þ 1-flavor ensembles [60] at κ ¼ 0.13754 providing a
lattice spacing of a ¼ 0.0961 fm and a sea quark mass
corresponding to m2

π ¼ 0.1506ð9Þ GeV2 in the Sommer
scale with r0 ¼ 0.49 fm. The clover and overlap calcula-
tions employ identical sets of 100 configurations.
Antiperiodic boundary conditions in time are applied for

both actions. An operator basis is constructed for each action
using 16, 35, 100, and 200 sweeps of Gaussian smearing
[61] at the source and sinkwith smearing parameterα ¼ 0.7.
We select input parameters which minimize the computa-

tional cost of evaluating the matrix sign function of the
overlap kernel ϵðHÞ, whereH ≡ γ5Dflic andDflic is the FLIC
fermion matrix [44]. The Wilson term and clover links
benefit from four sweeps of stout-link smearing at ρ ¼ 0.1.
The Wilson mass parameter is set to amw ¼ −1.1, corre-
sponding to a hopping parameter value of κ ¼ 0.17241 in
the kernel. The evaluation of the inner conjugate gradient is
accelerated by projecting out the subspace corresponding to
the 80 lowest-lying eigenmodes of the overlap kernel and
evaluating the sign function explicitly. Overlap propagators
are calculated at three values of the overlap mass parameter
μ ¼ 0.0628, 0.1205, and 0.1815, corresponding to pion
masses of mπ ¼ 0.4347ð32Þ; 0.5776ð30Þ, and 0.6980
(31) GeV respectively. We note the lightest mass is similar
to that considered in Ref. [13].
We compute the pion correlation functions for each

action with 100 sweeps of source and sink smearing. To
ensure the pion masses of the respective actions match, we
tune the clover hopping parameter by performing a linear fit
to the square of the pion mass as a function of 1=κ. Solving
for the κ values corresponding to the overlap pion masses,
we obtain κ ¼ 0.13742726, 0.13703168, and 0.13661366.
The clover coefficient takes its nonperturbative value of
csw ¼ 1.715. Running the clover simulation with these
tuned input parameters, we obtain pion masses which
closely match those of the overlap simulation. Masses
for both actions are presented in Table I.
While the pion masses are carefully matched, both lattice

fermion actions have Oða2Þ errors that will lead to small
discrepancies in the nucleon mass spectrum. However,
these differences are small relative to the 300 MeV
differences discussed in Ref. [13].

B. Correlation matrix analyses

For our comparison, we employ the correlation matrix
techniques discussed in Sec. II C. As we are only concerned
with the ground state and first positive-parity excited state,
we construct a 4 × 4 correlation matrix from our operator
basis of source/sink Gaussian smearings (Nsm ¼ 16, 35,
100, 200) and select t0 ¼ 1 relative to the source at ts ¼ 0
and dt ¼ 3. Standard analysis techniques [59] provide the

TABLE I. Matched pion masses for the clover and
overlap actions.

Overlap Clover

μ mπ=GeV κ mπ=GeV

0.0628 0.4347(32) 0.13742726 0.4349(43)
0.1205 0.5776(30) 0.13703168 0.5769(40)
0.1815 0.6980(31) 0.13661366 0.6987(40)
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results reported in Table II and plotted in Fig 1. All
corresponding clover and overlap nucleon ground and first
excited state masses are in statistical agreement. The small
systematic differences are likely associated with the afore-
mentioned Oða2Þ errors in the fermion action.
These results are dependent on specific choices for the

variational parameters and fit windows. To make our results
more robust we investigate further, initially avoiding the
selection of fit windows. Here we compare the eigenstate
projected effective mass and correlation functions for each
action. Specifically, we compare how the first excited state
compares to the ground state for each action without fits.
We do this in two ways.
First, we consider the effective mass functions obtained

from the eigenstate projected correlators as in Eq. (22). We
then take the ratio

Rα=0ðtÞ ¼ Mα
effðtÞ=M0

effðtÞ; ð23Þ

for each action, whereM0
eff andM

α
eff are the ground and αth

excited state effective mass functions. This scales the
excited state mass function for each action in terms of
their respective ground states, eliminating any differences

which arise from ground state discrepancies and placing the
focus on the excitation energy. To compare the actions we
take the ratio

RαðtÞ ¼
Rclover
α=0 ðtÞ

Roverlap
α=0 ðtÞ : ð24Þ

As a second point of comparison, we consider the
eigenstate projected correlation functions directly. We take
the ratio

Gα=0ðtÞ ¼ GαðtÞ=G0ðtÞ; ð25Þ
for each action, where G0 and Gα are the ground and αth
excited state projected correlation functions. We construct
the effective mass splitting

ΔMα
effðtÞ ¼ ln

�
Gα=0ðtÞ

Gα=0ðtþ 1Þ
�
; ð26Þ

corresponding to the mass splitting of the αth excited state
and the ground state for each action, respectively. Taking
the difference

DαðtÞ ¼ ΔMα;clover
eff ðtÞ − ΔMα;overlap

eff ðtÞ; ð27Þ

we obtain the difference between the mass splittings
produced by each action.
Both D1ðtÞ andR1ðtÞ are plotted in Fig. 2 for each mass

regime. We note thatDαðtÞ ¼ 0 orRαðtÞ ¼ 1 correspond to
no difference in the excitation energies produced by the
clover and overlap fermion actions.
It is important to demonstrate that these highly correlated

ratios and differences can be described with the full

FIG. 1. Nucleon ground and first-excited state masses for clover
(blue, square) and overlap (red, circle) actions as a function ofm2

π .

TABLE II. Masses in GeV of the ground state and the first
positive-parity excited state for the clover and overlap actions at
the three valence quark masses considered.

Overlap Clover

Ground State 1.254(31) 1.195(31)
1.371(21) 1.335(18)
1.500(18) 1.479(16)

First Excited State 2.236(79) 2.366(76)
2.352(74) 2.448(70)
2.446(68) 2.532(65)

FIG. 2. D1ðtÞ in units of GeV (left) and R1ðtÞ (right) for three
different valence quark masses with the heaviest μ ¼ 0.1815, κ ¼
0.13661366 (top), μ ¼ 0.1205, κ ¼ 0.13703168 (middle), and
lightest μ ¼ 0.0628, κ ¼ 0.13742726 (bottom), for variational
parameters t0 ¼ 1, t ¼ t0 þ dt ¼ 4.
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covariance matrix χ2=d:o:f: ≈ 1. Hence, we evaluate the
agreement of the difference D1ðtÞ and the ratio R1ðtÞ with
the constants zero and one, respectively. The reduced χ2

values of each fit with 2 ≤ t ≤ 6 are reported in Table III.
These values confirm there is negligible difference between
the clover and overlap actions with respect to the nucleon
spectrum, and show no evidence for the existence of a low-
lying lattice excited state.
The next step in our comprehensive analysis is to explore

other variational parameters t0 and dt. Systematic errors in
the correlation matrix analysis enter as Oðe−ðENþ1−ENÞtÞ
for an N × N correlation matrix. To this end we require a
large t ¼ t0 þ dt. However, we also require a small t0 to
ensure statistically accurate information is captured from
excited state contributions before they are Euclidean-
time suppressed. Table IV presents the χ2=d:o:f. values
for the results discussed in Table III, this time focusing on
the lightest quark mass, closest to the sea quark mass.
Again, analyses of D1ðtÞ ¼ 0 andR1ðtÞ ¼ 1 return accept-
able χ2=d:o:f. values. Figure 3 displays results correspond-
ing to Fig. 2, this time for the variational parameters
t0 ¼ 2, dt ¼ 3.
Finally, we consider the second excited state. The energy

of the second excited state is ∼3 GeV [2]. With the limited
number of configurations used here, the correlation func-
tions decay to noise rapidly with our a ¼ 0.0961 fm lattice
spacing. Nonetheless, a solution of the generalized eigen-
value problem is found for variational parameters t0 ¼ 1,
dt ¼ 3 and results for D2ðtÞ and R2ðtÞ are presented in
Fig. 4. These results are similar to those presented forD1ðtÞ

and R1ðtÞ. While the statistical fluctuations are notably
larger, there is no evidence of a significant difference
between the fermion actions.

IV. CONCLUSIONS

In this paper, the role of chiral symmetry in the nucleon
excitation spectrum was systematically examined. Results
obtained from simulations employing nonchiral clover
fermions and chiral overlap fermions were compared. To
ensure that any observed differences or discrepancies in the
results are attributable to the choice of action the

FIG. 3. D1ðtÞ in units of GeV (left) and R1ðtÞ (right) for three
different valence quark masses with the heaviest μ ¼ 0.1815, κ ¼
0.13661366 (top), μ ¼ 0.1205, κ ¼ 0.13703168 (middle), and
lightest μ ¼ 0.0628, κ ¼ 0.13742726 (bottom), for variational
parameters t0 ¼ 2, t ¼ t0 þ dt ¼ 5.

TABLE III. χ2=d:o:f. for D1ðtÞ fitted to the constant 0 and
R1ðtÞ fitted to the constant 1, for each quark mass regime
with 2 ≤ t ≤ 6.

χ2=d:o:f.

μ κ D1ðtÞ R1ðtÞ
0.0628 0.13742726 0.619 1.002
0.1205 0.13703168 0.595 0.850
0.1815 0.13661366 0.842 0.757

TABLE IV. χ2=d:o:f. for D1ðtÞ ¼ 0 and R1ðtÞ ¼ 1, for the
lightest quark mass considered with variational parameters t0 and
t ¼ t0 þ dt relative to the source at ts ¼ 0.

χ2=d:o:f.

t0 t D1ðtÞ R1ðtÞ
1 4 0.619 1.002
1 5 0.493 0.930
2 4 0.816 0.962
2 5 0.528 0.843

FIG. 4. D2ðtÞ in units of GeV (left) and R2ðtÞ (right) for three
different valence quark masses with the heaviest μ ¼ 0.1815, κ ¼
0.13661366 (top), μ ¼ 0.1205, κ ¼ 0.13703168 (middle), and
lightest μ ¼ 0.0628, κ ¼ 0.13742726 (bottom), for variational
parameters t0 ¼ 1, t ¼ t0 þ dt ¼ 4.
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simulations were performed on the same set of gauge field
configurations at three matched pion masses.
All corresponding clover and overlap nucleon ground

and first excited state masses are in statistical agreement.
Further analysis was conducted, showing that the ratios of
the first excited and ground state effective mass functions
and mass splittings are the same for each action.
The results show a remarkable level of agreement

between the clover and overlap actions. Hence, we do
not find any evidence supporting the claim that chiral
symmetry plays a significant role in understanding the
Roper resonance on the lattice.
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