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Motivated by the fermion-bag approach, we construct a new class of Hamiltonian lattice field theories
that can help us to study fermionic quantum critical points, particularly those with four-fermion
interactions. Although these theories are constructed in discrete time with a finite temporal lattice spacing
ε, when ε → 0, conventional continuous-time Hamiltonian lattice field theories are recovered. The fermion-
bag algorithms run relatively faster when ε ¼ 1 as compared to ε → 0 but still allow us to compute
universal quantities near the quantum critical point even at such a large value of ε. As an example of this
new approach, here we study the Nf ¼ 1 Gross-Neveu chiral-Ising universality class in 2þ 1 dimensions
by calculating the critical scaling of the staggered mass order parameter. We show that we are able to study
lattice sizes up to 1002 sites when ε ¼ 1, while with comparable resources we can reach lattice sizes of only
up to 642 when ε → 0. The critical exponents obtained in both these studies match within errors.
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I. INTRODUCTION

The effort to understand quantum critical points resulting
from fermions that do not decouple at low energies and
long distances is an exciting area of research across energy
scales. In 2þ 1 dimensions, it is well known that relativ-
istic four-fermion models containing massless Dirac fer-
mions can exhibit the presence of such critical points [1].
These four-fermion models are usually referred to as either
Gross-Neveu models [2] or Thirring models [3], depending
on the type of interaction, and have been studied exten-
sively over the years [4–14]. The study of quantum critical
points in these four-fermion models has reemerged as an
exciting area of research [15], especially due to the recent
discovery that many materials can be described by Dirac
fermions in the low-energy limit and such materials can
have new phases and quantum critical points that separate
them [16,17]. Massless fermions can even help induce new
quantum critical points and multicritical points that do not
exist in purely bosonic models [18–21]. New analytical
studies of the Gross-Neveu transitions using ϵ expansions
[22–24], large-N expansions [25,26], functional renormal-
ization group (RG) techniques [27], and the bootstrap
approach [28] have been performed recently. This progress,
combined with new solutions to fermion sign problems
[29–35] and recent advances in numerical techniques for
lattice fermions [36–40], are allowing us, in particular, to
compute various critical exponents more accurately than
before [41,42]. In some cases, we have also discovered new
and unexpected universality classes [43,44], where it is

believed that the exotic critical points may be described by
non-Abelian gauge theories [45,46].
Despite the tremendous recent progress in the field,

properties of even the simplest fermionic quantum critical
points are very difficult to compute at the same level of
accuracy as their bosonic counterparts [47]. Focusing on
Gross-Neveu models, the critical points are often charac-
terized by the parameterNf (the number of four-component
Dirac fermion flavors) and the symmetry-breaking pattern
[which are usually classified as either Z2 (Ising), Uð1Þ
(XY), or SUð2Þ (Heisenberg)]. In some studies, the break-
ing of SUð2Þ × SUð2Þ symmetry has also been considered
[8,13]. For completeness, in the Appendix we discuss the
simplest three universality classes from a Hamiltonian
perspective and compile some of the critical exponents
obtained so far with Nf ¼ 1, 2 in Table IV. As can be seen
from the table, consistency between analytic results (using
techniques like the ϵ expansions, large-N expansions,
functional RG, and the bootstrap approach) and quantum
Monte Carlo (QMC) results (using lattice formulations) is
visible only for the Nf ¼ 1 chiral-Ising universality. Even
among the QMC results, there is often a lot of spread.
Because of limitations of convergence and difficulties to go
to higher orders in the expansion, continuum calculations
cannot easily be improved beyond what is currently
available. Similarly, errors in Monte Carlo calculations
arise due to the small lattice sizes used in the calculations.
In fact, most calculations have been performed on rather
small lattice sizes, with the total number of spatial lattice
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sites Ns ≈ 1000 or lower. Very few calculations with Ns ≈
2500 exist [48]. This should be compared to lattice
calculations of Ns > 10000 that are easily feasible at most
bosonic critical points. Thus, an important area of research
which motivates our study is alternative fermion
Monte Carlo methods.
Traditional Monte Carlo methods that are often used to

study relativistic four-fermion field theories can be classi-
fied into two types. The more popular method is the
auxiliary field quantum Monte Carlo (AFQMC) technique,
in which the time to complete a single sweep scales as
Ns

3β, where Ns is the spatial lattice volume and β is the
inverse temperature [49]. The other method is the hybrid
Monte Carlo (HMC) method, which was developed origi-
nally for lattice QCD calculations in the Lagrangian
formulation [50,51]. This method scales a lot better with
the system size when fermion masses are nonzero. Several
studies have recently used this method to study fermionic
critical behavior [52,53]. However, when extended to four-
fermion models in the massless limit, it still does not seem
to outperform the AFQMC method [54].
Alternatively, cluster QMC algorithms, which have long

provided an efficient way to solve a variety of bosonic
problems, were extended to fermions several years ago
using the meron cluster concept [55]. Recently, this was
extended to the notion of fermion bags [29,36]. This
extension was then used to perform calculations at a
fermionic quantum critical point with Ns ≥ 3600 in both
the Lagrangian formulation [43] and the Hamiltonian
formulation [39]. Although the Hamiltonian fermion-bag
method also scales as Ns

3β like the AFQMC method, the
prefactor turns out to be much smaller and, hence, allows us
to explore much larger lattices than the traditional AFQMC
method. Another feature of the algorithm is that it can be
formulated even in the continuous-time limit within the
Hamiltonian framework as was demonstrated in Ref. [39].
However, since quantum critical behavior should not, in
principle, depend on discrete-time errors, the continuous-
time limit may not be necessary. In this work, we thus
explore whether a discrete-time formulation of the
Hamiltonian fermion-bag approach can help to accelerate
the fermion-bag algorithm further. In doing so, we give
large lattice results for both continuous-time (Ns ¼ 4096)
and discrete-time (Ns ¼ 10000) formulations.
Our paper is organized as follows. In Sec. II, we first

explain how one can construct a new type of Hamiltonian
lattice field theory (HLFT) inspired by the fermion-bag
approach. We also explain the differences between our
HLFT with the traditional Lagrangian lattice field theory
(LLFT) that is often studied. In Sec. III, we explicitly
construct our HLFT for studying the Gross-Neveu chiral-
Ising critical point with Nf ¼ 1. We explain the differences
between the continuous-time and discrete-time models. In
Sec. IV, we describe how our new HLFT leads naturally to
the notion of fermion bags, and, in Sec. V, we explain how

one can use the fermion-bag ideas to speed up the
Monte Carlo updates. In Sec. VI, we explain the stabiliza-
tion procedures we have used during our calculations. Our
results are then presented in Sec. VII for both continuous-
time and discrete-time fermion-bag methods, and Sec. VIII
contains our conclusions.

II. HAMILTONIAN LATTICE FIELD THEORY

Relativistic four-fermion models are naturally formu-
lated using the Lagrangian formulation in the continuum,
since we can explicitly construct them to be invariant under
space-time rotations. An LLFT is then obtained as usual by
discretizing the continuum Lagrangian on a space-time
lattice which preserves a subgroup of this symmetry.
Unfortunately, a naive discretization results in the well-
known fermion-doubling problem [56], and to construct the
theory without fermion doubling while preserving impor-
tant chiral symmetries requires a more elaborate formu-
lation using domain wall or overlap fermions [57–60].
While these formulations take care of the doubling issue,
they are much more computationally intensive, and studies
that use them are likely to be limited to small lattice sizes in
the near future. Another approach that has been recently
explored is the use of SLAC fermions [61,62]. Because of
their nonlocality, one can, in principle, formulate any
number of two-component Dirac fermions while preserving
all the symmetries [63]. While it is well known that they
create many undesirable features in gauge theories [64,65],
there seems to be some optimism in the community that
they may give reliable results in four-fermion field theories.
In our opinion, this is far from clear and needs further
research. A cheaper and reliable alternative to study at least
a limited class of fermionic quantum critical points in LLFT
is to use the staggered fermion approach on a three-
dimensional cubic lattice. However, in this approach, we
can access only even numbers (Nf ¼ 2; 4;…) of four-
component Dirac fermions without using rooted staggered
fermions. The rooting of staggered fermions involves
assumptions that may not be valid for quantum critical
behavior of interest here [66–70]. Recently, this approach
was used to study critical points in Nf ¼ 2 models with
both Ising and chiral universality very accurately using the
fermion-bag algorithm [41,42]. Unfortunately, the stag-
gered fermion approach also breaks important flavor and
chiral symmetries, and there is some worry that the
universality classes may be affected due to such lattice
artifacts.
Instead of an LLFT, one can also construct a space-time

lattice field theory to study fermionic critical points starting
with a lattice Hamiltonian. We refer to this as a HLFT to
contrast it with LLFTs. By construction, a HLFT is
asymmetric between space and time and contains a param-
eter εwhich controls the temporal lattice spacing. Although
relativistic invariance seems to have been lost, it can be
recovered if the quantum critical point is relativistic where
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the dynamical critical exponent z ¼ 1. For fermionic
problems, a Hamiltonian approach can, in fact, help in
reducing the fermion doubling by a factor of 2. Consider,
for example, free lattice staggered fermions hopping on a
square lattice described by the Hamiltonian

H ¼ −t
X
x;d̂

XNf

a¼1

ηx;d̂ðc†x;acxþd̂;a þ c†
xþd̂;a

cx;aÞ; ð1Þ

where t is an energy scale and x labels spatial lattice sites on
a square lattice and d̂ a unit vector to the neighboring sites
in the positive direction. The staggered fermion phase
factors ηx;d̂ introduce a π flux on each square plaquette [71].
It is easy to argue that this lattice Hamiltonian describes Nf

four-component massless Dirac fermions in the continuum.
Note that, unlike LLFT, with HLFT we are no longer
restricted to an even number of four-component Dirac
flavors. However, the HLFT approach preserves only a
discrete Z2 chiral symmetry.
Constructions of lattice field theories starting from

Hamiltonians are not new and are often used in the
condensed matter literature. In particular, all previous
lattice Hamiltonian calculations using a discrete-time path
integral formulation should naturally be referred to as
HLFTs based on our definition above. However, while
one assumes ε is small in such an approach, this may not be
necessary to study properties of a quantum critical point. In
our work, we explore the possibility that we can perhaps
even choose ε ¼ 1 and think of HLFTs as new types of
lattice field theories with an asymmetry between space and
time built into their formulations. In HLFT, physical lattice
spacings in space and time are measured using physical
scales as usual. One obvious worry is whether the univer-
sality class could change at large temporal lattice spacings,
since we are far from the Hamiltonian limit. An important
result of our work is that this may not happen when ε ≈ 1,
suggesting that relativistic four-fermion field theories can
indeed be formulated with a reduced fermion doubling
using asymmetric space-time lattice formulations.
Another important aspect of our proposed HLFTs is that

the choice of Hamiltonian is inspired by the idea of fermion
bags. So in our approach to study Nf free massless four-
component Dirac fermions, instead of Eq. (1), we replace it
with

H ¼ −
X
x;d̂

Hx;d̂; ð2Þ

which is a sum of nearest-neighbor bond Hamiltonians,
given by

Hx;d̂ ¼ ωx;d̂e
2αx;d̂

PNf
a¼1

ðc†x;acxþd̂;aþc†
xþd̂;a

cx;aÞ: ð3Þ
Clearly, fermions described by Eq. (2) are no longer free,
but, since all four-fermion interactions are perturbatively

irrelevant in 2þ 1 dimensions, it is still easy to argue that
this modified Hamiltonian also describes Nf free massless
four-component Dirac fermions at long distances at suffi-
ciently small values of αx;d. In order to match with Eq. (1),
we choose 2ωx;dαx;d ¼ tηx;d̂ and tune αx;d to be small. We
have recently shown that there are no sign problems as long
as ωx;d > 0 [72].
Our approach is not computationally elegant to study the

free fermion critical point. On the other hand, our goal is
not to study that critical point but rather some other
interacting critical point connected to the free massless
fermion phase. For such a study, Eq. (2) is a useful base
Hamiltonian to begin with. For example, in the next
section, we will show how we can access an interesting
fermionic critical points using Eq. (2) by varying ωx;d and
αx;d as a function of a coupling V. We can also introduce
additional interactions and explore a richer phase diagram.
For example, we can add interactions of the form

HHubb ¼ U
X
x

�XNf

a¼1

ðnx;a − 1=2Þ
�

2

; ð4Þ

where nx;a ¼ c†x;acx;a is the fermion occupation number for
a given flavor a, and continue to use fermion-bag methods
to understand the physics.

III. Nf = 1 ISING CRITICALITY

Our main goal in this section is to show how one can
develop a fermion-bag inspired HLFT approach to study
fermionic quantum critical points. In order to explain our
approach, here we explicitly construct the HLFT for
studying the chiral-Ising critical point with Nf ¼ 1 four-
component Dirac fermions. The Hamiltonian we consider
is the one we introduced in Eqs. (2) and (3), and forHx;d̂ we
fix Nf ¼ 1, which gives us

Hx;d̂ ¼ ωx;d̂e
2αx;d̂ðc†xcxþd̂þc†

xþd̂
cxÞ: ð5Þ

It is easy to verify that, by choosing

ωx;d̂ ¼ ðt2=VÞð1 − ðV=2tÞ2Þ;
sinh 2αx;d̂ ¼ ðV=tÞ=ð1 − ðV=2tÞ2Þηx;d;
cosh 2αx;d̂ ¼ ð1þ ðV=2tÞ2Þ=ð1 − ðV=2tÞ2Þ; ð6Þ

our Hamiltonian is equivalent to

H ¼
X
x;d̂

�
−tηx;d̂ðc†xcxþd̂ þ c†

xþd̂
cxÞ

þV

�
nx −

1

2

��
nxþd̂ −

1

2

��
: ð7Þ
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When V is small, our model is in a massless fermion phase,
while, beyond some critical coupling Vc, the Z2 chiral
symmetry in our model breaks spontaneously and fermions
become massive.
We distinguish two types of HLFT partition function

depending on the temporal lattice spacing ε: one where
ε ≠ 0 (which we refer to as the discrete-time model) and the
other where ε → 0 (which we refer to as the continuous-
time model). The partition function of the HLFT for the
continuous-time model, Z ¼ Trðe−βHÞ, can be constructed
using the stochastic series expansion approach [38]:

Z ¼
X
k

Z
½dτ�

X
½hx;d̂i�

TrðHxk;d̂k
ðτkÞ…Hx2;d̂2

ðτ2ÞHx1;d̂1
ðτ1ÞÞ;

ð8Þ

where we defineHxk;d̂k
ðτkÞ≡Hxk;d̂k

at time τk and there are
k insertions of the bond HamiltonianHx;d̂ inside the trace at
times τ1 ≤ τ2 ≤ � � � ≤ τk. The symbol ½dτ� represents the k
time-ordered integrals and the bond configuration ½hx;d̂i�¼
½hx1;d̂1i;hx2;d̂2i;…hxk;d̂ki�. The trace in Eq. (8) is evalu-
ated in the fermionic Fock space. Note that a configuration
C in the “continuous-time” model is given by the set of k
bonds ½τ; x; d̂�. One such configuration with k ¼ 12 is
shown on the left in Fig. 1. It is important to note that two
bonds never appear at the same time in the continuous-time
model and are always time ordered.

We can use Eq. (8) to construct the partition function of
the HLFT for the discrete-time model with a temporal
lattice spacing ε ≠ 0 by replacing the integrals ½dτ� by a
sum. This then leads to the following expression for the
discrete-time partition function:

Z ¼
X0

½hτ;x;d̂i�
ðεÞkTrðHxk;d̂k

ðτkÞ…Hx2;d̂2
ðτ2ÞHx1;d̂1

ðτ1ÞÞ: ð9Þ

Here ε ¼ β=Nt, with Nt being a finite number of
time slices. We have also combined the sum over k, the
integral ½dτ�, and the sum over bond configurations ½hx; d̂i�
into a single sum over discrete-time bond configurations
½hτ; x; d̂i�. These configurations are similar to the continu-
ous-time configurations, except that bonds can exist only
on the allowed discrete-time coordinates. However, we now
allow several bonds to appear on the same time slice as long
as they do not touch each other. This is consistent with the
condition of time ordering τ1 ≤ τ2 ≤ � � � ≤ τk, since the
bond operators Hx;d that do not touch each other commute
with each other. Thus, the order of the bonds within a time
slice has no effect on the weight. These additional con-
straints are denoted by the prime symbol on the sum.
A discrete-time configuration is illustrated on the right in
Fig. 1. It is easy to argue that in the limit ε → 0 the discrete-
time partition function defined in Eq. (9) is equal to the
continuous-time partition function defined in Eq. (8), and
we have numerically verified this fact as well.

FIG. 1. Illustration of the continuous-time (left) and discrete-time (right) bond configurations ½τ; x; d̂� that define the respective
partition functions. In both images, the spatial coordinates are colored red and blue to denote the bipartite nature of the lattice. (Left) The
illustration shows a configuration with k ¼ 12. Spatial lattice site are shown on the horizontal axis, and the continuous imaginary time is
shown on the vertical axis. Each bond contains two nearest-neighbor spatial sites (but is defined by a site x and a direction d̂ in our
notation) and is assigned a time coordinate τ. (Right) The illustration shows a configuration again with k ¼ 12 but in the discrete-time
HLFT. Here there are Nt time slices in the model where bonds can exist. Importantly, multiple bonds can have the same time label τ so
long as they have no sites in common.
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We can now define the Boltzmann weight of every
configuration of bonds in both the continuous-time and
discrete-time models through the expression

Ωð½hτ; x; d̂i�Þ ¼ ðεÞkTrðHxk;d̂k
ðτkÞ…Hx2;d̂2

ðτ2ÞHx1;d̂1
ðτ1ÞÞ:
ð10Þ

It is clear from matching with Eq. (9) that, when ε and Nt
remain fixed, we get weights for the discrete-time model.
On the other hand, in the limit ε → 0, Nt → ∞ so that
Ntε ¼ β remains fixed, we get the continuous-time model.
In both cases, the fact that every Hx;d̂ operator is an
exponential of a fermionic bilinear operator is very useful
to compute the trace in the Fock space. We can use the well-
known Blankenbecler-Scalapino-Sugar (BSS) formula
[73], which in our case yields the following determinant:

Ωð½hτ; x; d̂i�Þ ¼
�Y

xk;d̂k

ðεωxk;d̂k
Þ
�

× det ð1þ hxk;d̂k…hx2;d̂2hx1;d̂1Þ ð11Þ

of an Ns × Ns matrix, where Ns is the number of spatial
lattice sites. In the above expression, each hxi;d̂i is an Ns ×
Ns matrix corresponding to the Hxi;d̂i

operator in the one-
particle basis. It is easy to verify that hxi;d̂i are identity
matrices except for a 2 × 2 blockHx;d̂, with entries located
at the intersections of the rows and columns of the spatial
sites that touch the bond hxi; d̂ii. The block is given by

Hx;d̂ ¼
�
cosh 2αx;d̂ sinh 2αx;d̂
sinh 2αx;d̂ coshαx;d̂

�
: ð12Þ

We emphasize that the unusual form of the Hamiltonian in
Eq. (3) or (5) was important to find a closed form
expression for the weight Ωð½τ; x; d̂�Þ which can also be
shown to be non-negative [31,33]. Furthermore, as we
will explain in the next section, the local nature of the
bond operators also helps us construct efficient fermion-
bag algorithms. Note also that the expression for
Ωð½hτ; x; d̂i�Þ is the same whether it is in discrete time or
continuous time as long as the bond configuration ½hτ; x; d̂i�
is the same. The quantum Monte Carlo algorithm then
consists of updating a Markov chain of bond configurations
½hτ; x; d̂i� by proposing changes to the current configuration
and accepting or rejecting the proposed change using
probabilities that satisfy detailed balance and are ergodic.
We discuss the details of the algorithm for the continuous-
time and discrete-time formulations in the next section.
The partition function of the discrete-time model Eq. (9)

can also be expressed as a Grassmann integral of an unusual
lattice field theory:

Z ¼
Z Y

x;t

½dψ̄x;tdψx;t�e−Sðψ̄ ;ψÞ; ð13Þ

where we imagine that at every space-time lattice site ðx; tÞ
there are two Grassmann values fields ψx;t, ψ̄x;t, and the
Euclidean action is given by

e−Sðψ̄ ;ψÞ ¼ e
P

x;t
ðψ̄x;tþ1−ψ̄x;tÞψx;t

×
Y
x;t;d̂

ð1þ εωx;d̂e
ðψ̄x;tþ1;ψ̄xþd;tþ1ÞðHx;d−1x;dÞðψx;t;ψxþd̂;tÞT Þ;

ð14Þ

where we define 1x;d as a 2 × 2 unit matrix in the same
space asHx;d. The Grassmann fields are assumed to satisfy
antiperiodic boundary conditions in Euclidean time as
usual. Note that it is difficult to identify the action
Sðψ̄ ;ψÞ in closed form for general values of ε, but when
ε becomes small (i.e., close to the continuum limit), we
obtain

Sðψ̄ ;ψÞ ¼ −
X
x;t

ðψ̄x;tþ1 − ψ̄x;tÞψx;t

−
X
x;t;d̂

εωx;d̂e
ðψ̄x;tþ1;ψ̄xþd;tþ1ÞðHx;d−1x;dÞðψx;t;ψxþd̂;tÞ: ð15Þ

The exponential terms in the action is related to the unusual
form of the Hamiltonian. Note that the action is still local
and asymmetric between space and time.

IV. FERMION BAGS

In addition to allowing us to compute the weight
Ωð½hτ; x; d̂i�Þ easily, the local bond operators in Eq. (3)
or (5) also help us in defining the notion of fermion bags in
HLFT, extending previous ideas discussed within the LLFT
approach [29,74]. Similar to the LLFT approach, defini-
tions of fermion bags are not unique, and the ideas we
present here must be considered as one among other
definitions that are possible. For example, it is possible
to extend the notion of meron clusters (defined in Ref. [55])
to the concept of fermion bags. In the definition we wish to
explore here, we first note that the bond operators commute
with each other:

½Hx;d̂; Hx0;d̂0 � ¼ 0; ð16Þ

so long as the bonds hx; d̂i and hx0; d̂0i do not share lattice
sites. This also means that for the same bonds

½hx;d̂; hx0;d̂0 � ¼ 0: ð17Þ
We can view Hx;d̂ as creating entanglement between the

two sites in the bond hx; d̂i, which means all spatial sites
that are connected by bonds to each other (at various times)

FERMION-BAG INSPIRED HAMILTONIAN LATTICE FIELD … PHYS. REV. D 101, 074501 (2020)

074501-5



become entangled with each other. We can then study how
spatial sites become entangled with each other as we focus
on a fixed time interval Δτ. Within this interval, we define
each such group of entangled spatial sites, which are
connected due to bonds that are within that time interval,
as a fermion bag. Note that we consider each site that is not
connected to any bonds (again, within the time interval) to
form its own fermion bag. This definition of a fermion bag
is dependent on the width of the time interval Δτ.
In the extreme case, if we set the time interval to be the

full extent of the imaginary time (i.e., Δτ ¼ β), typically all
spatial sites will fall into a single fermion bag. This can be
seen in Fig. 1, where we see that, in both the continuous-
time and discrete-time configurations, all sites become
entangled and, thus, belong to a single fermion bag. On the
other hand, by decreasing Δτ, we can reduce entanglement
and increase the number of decoupled fermion bags. This is
illustrated in Fig. 2. For the continuous-time model (left
figure), we show an example where we have chosen
Δτ ¼ β=4. There we note that the spatial lattice splits into
seven fermion bags. Similarly, in the discrete-time model
(right figure), we show the case Δτ ¼ 3ε, where the time
extent involves a bundle of three time slices. In this case,
we note that there are six different fermion bags.
There are similarities and differences between the

fermion bags we have defined above in the HLFTapproach
and those in the LLFT approach. In the LLFT approach the
size of the coupling controls the size of the fermion bags,
while in the HLFT definition above it is the temperature.
Near the quantum critical point, it is more natural to expect
that spatial entanglement decreases as the temperature
increases, which is captured in the above definition. This
feature can be used to construct fast updates even near
quantum critical points. For example, one of the steps in the
update process involves the calculation of the Ns × Ns

matrix h̃Δτ, which is the time-ordered product of hx;d
matrices corresponding to bonds that appear within the
time region Δτ. This matrix can be calculated very
efficiently if space-time is split into several decoupled
regions. Note that, if we choose Δτ ¼ β, we get

h̃β ¼ hxk;d̂k…hx2;d̂2hx1;d̂1 ; ð18Þ
which appears in Eq. (11). We could imagine dividing
the entire β into several smaller Euclidean time regions,
then computing h̃Δτ efficiently for each region, and
combining each of these results for computing h̃β. We will
devise such a strategy below, when we discuss the update
algorithms.
In the discrete-time formulation, we can speed up algo-

rithms even further due to another concept of fermion bags
defined in fixed background configurations [43]. For exam-
ple, consider the update of a single time slice in the discrete-
time formulation of the partition function. Since each bond
change appears through the matrix hx;d, which affects only
two rows and two columns, it is possible to show that the ratio
of the Boltzmann weights of a given background configura-
tion and another configuration where k bonds have been
updated on a single time slice is given by—at most—a
determinant of a 2k × 2k matrix independent of the spatial
sizeNs. Thus, these 2k sites can beviewed as a fermion bag in
a given background configuration. This additional fermion-
bag concept helps us build faster and more stable updates
within a time slice in the discrete-time formulation.
It iswell known thatmeasuring observables in theorieswith

massless fermions is tricky, since they can be singular.
Configurations that contribute to the partition function may
not be the sameones that contribute to the observable. The best
known example of such a singular behavior is the chiral
condensate in one-flavor QCD with massless quarks. While

FIG. 2. Illustration of fermion bags within a time interval Δτ in the continuous-time model (left figure) and in the discrete-time model
(right figure). There are seven fermion bags in the continuous-time model and six fermion bags in the discrete-time model. The time
interval Δτ contains three time slices in the discrete-time model. The matrix h̃Δτ is the time-ordered product of hx;d for the bonds that
appear within Δτ in each case and, hence, is block diagonal within regions of fermion bags.
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gauge field configurations with a topological charge do not
contribute to the partition function, the charge-one sector
contributes to the chiral condensate. Thus, an algorithm that
samples the configurationsof thepartition function alone is not
sufficient to measure the chiral condensate. This type of
singularity can also occur near fermionic critical points, and,
hence,webelieve it is important to develop algorithms for each
observable separately. Another issue is that it is important to
make sure that the fermion-bag concept remains applicable
even in configurations that contribute to the observables.
As we will see below, this is not difficult to achieve.
In this work, we focus on computing the equal-time

correlation function of the staggered mass order parameter
through the operator

C ¼ ð−1ÞL=2ðn0 − 1=2ÞðnL=2 − 1=2Þ ð19Þ
for the continuous-time limit and for the case with ε ¼ 1.
Note that ð−1Þxðnx − 1=2Þ is the “staggered mass” oper-
ator, which acts as the order parameter for the chiral-Ising
transition in the Nf ¼ 1 Gross-Neveu model. The corre-
lation function is given by the expectation value

hCi ¼ 1

Z
TrðCe−βHÞ: ð20Þ

Following the steps of the previous section, we can write

TrðCe−βHÞ ¼
X0

½hτ;x;d̂i�
ðεÞkTrðHxk;d̂k

ðτkÞ…

…CðτCÞ…Hx2;d̂2
ðτ2ÞHx1;d̂1

ðτ1ÞÞ; ð21Þ
where we have introduced the operator C at the Euclidean
time τC. Because of the cyclic property of the trace, the
operator C could be located anywhere in imaginary time.
However, for individual configurations ½hτ; x; d̂i�, as defined
in Sec. III, the operatorCwill cause a configuration to have a
different weight depending on where it is placed in imagi-
nary time, because it does not commute with the other
insertions of Hx;d̂. Hence, in our algorithm we enlarge our
configuration space by sampling two types of configuration:
½hτ; x; d̂i�, which contribute to the partition function, and
½hτ; x; d̂i; τC�, which defines the same configuration with an
additional imaginary time location of the C operator [75].
We can combine the two types of configuration by assuming
that in both cases we introduce a new operatorCn at the time
τC such that Cn¼0 ¼ 1 and Cn¼1 ¼ C. Thus, the configu-
ration space of our algorithm is always labeled using
½hτ; x; d̂i; τC�, and we define corresponding weights Ωn
for the two types of configuration as

Ωnð½hτ; x; d̂i; τC�Þ ¼ ðεÞkTrðHxk;d̂k
ðτkÞ…

…CnðτCÞ…Hx2;d̂2
ðτ2ÞHx1;d̂1

ðτ1ÞÞ:
ð22Þ

Similar to Eq. (11), we can again use the BSS formula to
computeΩnð½hτ; x; d̂i; τC�Þ, so long as C is also constructed
out of the exponential of fermionic bilinear operators.
Fortunately, we can use ðnx − 1=2Þ ¼ −eiπnx=2 to construct
C. With this choice, it is easy to see that

Ωnð½hτ; x; d̂i; τC�Þ

¼ 1

4

Y
xk;d̂k

ðεωxk;d̂k
Þ det ð1þ hxk;d̂kðτkÞ

…cnðτCÞ…hx2;d̂2ðτ2Þhx1;d̂1ðτ1ÞÞ; ð23Þ

where, in addition to hxi;d̂i , which we already encountered in
Eq. (11), we have introduced the Ns × Ns matrix cn, which
is the unit matrix for n ¼ 0 and the diagonal with þ1 at all
spatial sites except at x ¼ 0 and x ¼ L=2, where it is −1.
Using these definitions for the weights Ωnð½hτ; x; d̂i; τC�Þ,
the correlation function is given by

hCi ¼
P

½hτ;x;d̂i;τC�Ω1ð½hτ; x; d̂i; τC�ÞP
½hτ0;x0;d̂0i;τ0C�Ω0ð½hτ0; x0; d̂0i; τ0C�Þ

: ð24Þ

It is easy to note that the fermion-bag concepts we
introduced above for the n ¼ 0 sector are also valid for
the n ¼ 1 sector. This allows us to sample both n ¼ 0 and
1 sectors.
Unfortunately, the weights Ωnð½hτ; x; d̂i�; τCÞ are such

that it is not easy for the algorithm to tunnel between the
two sectors. In order to alleviate this problem, we use a
factor f > 0 to reweight the n ¼ 1 sector. Still, the
observable hCi suffers from large autocorrelation times,
since the ratio Ω1ð½hτ; x; d̂i�; τCÞ=Ω0ð½hτ; x; d̂i�; τCÞ can
fluctuate a lot. For this reason, instead of hCi, we measure
the ratio

N ¼ Ω1ð½hτ; x; d̂; i; τC�Þ
Ω0ð½hτ; x; d̂i; τC�Þ þ fΩ1ð½hτ; x; d̂i; τC�Þ

ð25Þ

for each configuration ð½hτ0; x0; d̂0i�; τ0CÞ that we generate
irrespective of the sector we are in. Taking a usual
Monte Carlo average then allows us to compute hN i,
which is given by the expression

hN i ¼
X

½hτ;x;d̂i;τC�
Ω1ð½hτ; x; d̂; i; τC�Þ

�
X

½hτ0;x0;d̂0i;τ0C�
ðΩ0ð½hτ0; x0; d̂0i; τ0C�Þ

þ fΩ1ð½hτ0; x0; d̂0i; τ0C�ÞÞ: ð26Þ

We then find the observable using the relation
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hCi ¼ hN i=ð1 − fhN iÞ: ð27Þ

This eliminates the large fluctuations and autocorrelations
in hCi. Unfortunately, this also limits us since we are able to
compute only one observable at a time, making additional
observables expensive to compute.

V. UPDATE ALGORITHMS

In this section, we will discuss the update algorithms in
detail, distinguishing between the updates for the continu-
ous-time and the discrete-time models. The former was
introduced earlier in Refs. [39,76]. Algorithms for both
models consist of four types of updates:
(1) The sector update flips the sector from n to 1 − n.

This means the configuration with the operator Cn
inserted at time τC is replaced by the operator C1−n.
This is accomplished through a Metropolis accept or
reject algorithm.

(2) The bond update changes the bond configuration
from ½hτ; x; d̂i; τC� to ½hτ0; x0; d̂0i; τC� without a
change in the operator insertion at τC. In the
continuous-time model, we divide β into several
smaller temporal regions Δτ. We then sequentially
pick every temporal region and perform bond
updates within that region. In the discrete-time
model, we go through every time slice in a sequence
and update the bonds on that time slice. Again, the
updates are performed using a local Metropolis
accept or reject step within the chosen time region
or the time slice.

(3) The time update changes the imaginary time location
τC where the operator Cn is introduced. All possible
time values for τC are chosen with equal probability.
To make the update easy, this update is performed
only in the n ¼ 0 sector, so that the new τC is always
accepted.

(4) The move update updates the temporal location of a
bond chosen at random with the constraint that it
never crosses another bond that shares one of its
sites. Such an update does not change the weight of
the configuration and is always accepted. For exam-
ple, in the continuous-time model configuration
shown in Fig. 1, the bond with coordinates x6, d̂6
at τ6 can be moved to any time between τ1 and τ10
without changing the configuration weight.

We define a sweep as accomplishing a fixed number of
each one of these four types of update. Among these
updates, the most time-intensive updates are the sector
update and the bond update, as they require us to compute
ratios of determinants that appear in the expressions for
Ωnð½hτ; x; d̂i; τC�Þ. Since these are similar to theweights one
encounters in theAFQMCmethods, wewill borrow some of
the ideas from there. However, for efficient computation we
will combine themwith techniques that use the fermion-bag

concept. For example, an important distinction between the
fermion-bag algorithms, on one hand, and the discrete-time
auxiliary field formulations, on the other, is that we can
update a configuration over a Δτ that is significantly larger
than the single time slice that is usually updated in AFQMC.
This leads to the ability for more freedom in terms of the
local updates, since they no longer have to be completely
sequential, and, thus, improvement in autocorrelation times;
however, larger Δτ can also lead to more stabilization
difficulties in updating GB, and we will show how fermion
bags can be helpful for dealing with this problem as well.
The time update and move update, on the other hand, are
easy to implement and do not require time-intensive
calculations.
Since both sector updates and bond updates use the

Metropolis accept or reject algorithm, we need to compute
the weight ratios R between the final and initial configu-
rations. For example,

R ¼ Ωnð½hτ0; x0; d̂0i; τC�Þ
Ωnð½hτ; x; d̂i; τC�Þ

ð28Þ

is necessary to compute the transition probabilities during
bond updates. Here we assume that the final configuration
obtained after the update, ½hτ0; x0; d̂0i; τC�, and the initial
configuration, ½hτ; x; d̂i; τC�, differ by bonds only within a
time region Δτ. For the sector update, the weight ratio is
mathematically similar except that the numerator will
instead be Ω1−nð½hτ; x; dii; τC�Þ. We now discuss how we
compute R for the bond update. The procedure for the
sector update is a straightforward generalization of our
discussion here.
Let us assume that the region Δτ where the bonds are

being updated lies after the bond at some initial time τi but
before the bond at some final time τf. Assuming the final
bond is at some time tk, we can define

h̃iB ¼ hxi;d̂iðτiÞhxi−2;d̂i−2ðτi−2Þ…hx1;d̂1ðτ1Þ;
h̃fB ¼ hxk;d̂kðτkÞhxk−1;d̂k−1ðτk−1Þ…hxf;d̂fðτfÞ; ð29Þ

for both initial and final configurations, since the bonds
outside the Δτ region do not change. Within the region
where the bonds do change, we define

h̃Δτ ¼ hxf−1;d̂f−1ðτf−1Þ…hxiþ1;d̂iþ1
ðτiþ1Þ ð30Þ

for the configuration ½hτ; x; d̂i; τC� and

h̃0Δτ ¼ hx0f−1;d̂0f−1ðτ
0
f−1Þ…h0

xiþ1;d̂
0
iþ1

ðτ0iþ1Þ ð31Þ

for the configuration ½hτ0; x0; d̂0i; τC�. It is then easy to
verify that
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R ¼ detð1þ h̃fBh̃
0
Δτh̃

i
BÞ

detð1þ h̃fBh̃Δτh̃
i
BÞ

¼ detð1þ h̃Bh̃
0
ΔτÞ

detð1þ h̃Bh̃ΔτÞ
; ð32Þ

where in the last step we have defined a single background
matrix h̃B ¼ h̃iBh̃

f
B which clearly does not change during

the update of bonds within the time slice Δτ.
As in AFQMCmethods, in order to efficiently obtain the

ratio R, the key quantity to compute is the Ns × Ns matrix
(often referred to as the Green’s function), which in our
case is given by

GB ¼ ð1þ h̃Bh̃ΔτÞ−1h̃Bh̃Δτ ð33Þ

¼ 1 − ð1þ h̃Bh̃ΔτÞÞ−1: ð34Þ

This Green’s function GB can be used for fast updates of
bonds within the interval Δτ, since we can express the
weight ratio as

R ¼ det ð1þ GBΔÞ; Δ ¼ ðh−1Δτh0Δτ − 1Þ: ð35Þ

The advantages of our fermion-bag inspired HLFT become
clear at this step. Notice that the matrixΔ in Eq. (35) is zero
everywhere except within a region obtained by the union of
all fermion bags touched by the updated bonds. We define
the size of this spatial region as s, which implies that the
matrix Δ is nonzero only within this s × s block. This
means the computation of R is reduced to the determinant
of an s × s matrix defined as

R ¼ det ð1s×s þ ðGBÞs×sðΔÞs×sÞ; ð36Þ

where ðGBÞs×s and Δs×s are matrices restricted to the s × s
block discussed above. Note that s is obtained by adding
the sites corresponding to the updated bonds plus the sites
belonging to fermion bags that touch those bonds. So when
the updates begin s ¼ 0, and, as more and more bonds are
updated, s begins to grow and the calculation of R becomes
more expensive. However, at no time does the entire spatial
size enter the computation, since all calculations are
restricted to an s × s block.
In the continuous-time model, the temporal region Δτ is

updated by choosing a random spatial block of sites at a
time, as illustrated by the shaded gray box in the left side of
Fig. 3. This limits the sites affected during the update. Of
course, we choose several random blocks to update the
entire spatial lattice. The size of each block is chosen to be
on the order of the average fermion-bag size. During the
block update, s is chosen to be equal to the number of sites
in the block plus any sites outside of the block but part of
fermion bags that are partially inside the block. We call this
larger set of sites a superbag, and s is its size. Thus, during
the Metropolis accept or reject step, rather than computing
the determinant of a full Ns × Ns matrix, we have to
compute only the determinant of an s × s matrix in
Eq. (36). Although s is usually small, the computation
Δ can still suffer from stabilization issues, which is well
known in AFQMC. One cannot naively compute it as a
product of the bond matrices hx;d that are being updated.
This stabilization problem must be handled carefully,
especially as Δτ intervals get larger. The problem is closely
related to the physics of the model. Fortunately, for the
model we are considering here, we can choose Δτ ≈ 1=4

FIG. 3. Illustration of the bond update procedure in the continuous-time model (left) and the discrete-time model (right). A spatial slice
with some width in time is first chosen where the bonds are updated. In continuous time, the width is Δτ obtained by dividing β into
several equal parts (left figure, where β is divided into four parts). While, in principle, the same procedure is also possible in discrete
time, we can also chose a single time slice (right figure). Next, the background matrix h̃B ¼ h̃iBh̃

f
B is computed. Bonds are updated in a

spatial block within the chosen temporal region (shown as a gray box). In continuous time this is a finite spatial region (left figure), while
in discrete time it is chosen to be the entire spatial lattice (right figure). Using concepts of fermion bags, fast updates are designed within
each region.
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and are able to deal with stabilization issues near the critical
point as discussed in the next section.
In contrast to the continuous-time model, the discrete-

time model with ε ¼ 1 offers new advantages. We can
update each time slice at a time, since it is equivalent to
choosing Δτ ¼ 1, which is much larger than what is
feasible in the continuous-time model due to stabilization
problems. The discrete-time model has no stabilization
problem during the computation of Δ, since bonds do not
touch on a single time slice. To see this, note that the weight
ratios [Eqs. (32) and (35)] are replaced by

R ¼ detð1þ h̃Bh̃
0
εÞ

detð1þ h̃Bh̃εÞ
¼ detð1þ GBΔÞ ð37Þ

for the update of a single time slice located at τε (see right
figure in Fig. 4). Here GBðτTÞ ¼ ð1þ h̃Bh̃τεÞ−1h̃Bh̃τε ,
where h̃B ¼ h̃iBh̃

f
B is similar to the matrix defined earlier

and is given by the product of all the bond matrices h̃x;d̂ðτÞ
that are not on the discrete time slice τε and h̃τε is the
product of matrices that are in that time slice.
Correspondingly, we haveΔ ¼ ðh̃−1ε h̃0ε − 1Þ, which is again
zero everywhere except for in an s × s block, where s now
is the number of sites where the bonds have changed (either
due to a new bond added or an old bond removed) as
compared to the initial configuration. Figure 4 gives an
illustration of a time slice update in the discrete-time model.
In this illustration, two bonds have been added and one
bond has been subtracted from the active time slice.
Because five sites are affected in total, s ¼ 5, and so the
determinant in Eq. (37) will be of a 5 × 5 matrix.
Computing hε or h0ε leads to no stabilization problems,
since bonds do not touch each other. Note that, in contrast

to the continuous-time version, the dimension of the matrix
will grow as updates are made rather than remaining
constant. This is similar to fermion-bag algorithms used
in the Lagrangian picture [43,77–79] and means that,
instead of limiting ourselves to one limited spatial block
at a time, we can update the background after s gets past a
maximum size that we set.

VI. STABILIZATION OF MATRIX
MULTIPLICATION

As is well known from traditional AFQMC methods
[80,81], the multiplication of many Ns × Ns matrices that
may become necessary in the calculation of R can suffer
from stabilization issues if performed naively. There are
three main numerical instabilities that we have to deal with:
(i) computing GB from scratch and then updating it as we
move on to subsequent time intervals Δτ or time slices τε,
(ii) updating GB as we change the spatial block or refresh
the background within the same time interval or time slice,
and (iii) updating Δ after adding or removing bonds. We
discuss our strategy for dealing with these three types of
problems below.
Let us first consider the problem of computing GB using

Eq. (34), which involves computing h̃B and h̃Δτ from the
matrices hx;d̂ðτÞ and then performing further matrix oper-
ations such as multiplications, addition of the identity
matrix, and computing inverses. Unfortunately, many of
these operations cannot be done using straightforward
matrix routines on a computer. The calculation may involve
numbers at different scales that can be orders of magnitude
apart, and the physics of the small scales can be completely
lost in the process. In a typical auxiliary field Monte Carlo
method, the operations are accomplished using the singular

FIG. 4. An illustration of a bond update in the discrete-time model on one of the chosen discrete time slices. The configuration shown
on the left is the initial configuration and that on the right is the final configuration. The bond labeled ðx7; d7Þ has been removed, and the
two bonds labeled ðx0; d0Þ and ðx00; d00Þ have been added. Since five sites are affected by the update, s ¼ 5 in this example, and the weight
ratio R can be written as the determinant of a 5 × 5 matrix.
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value decomposition (SVD) or Gram-Schmidt decompo-
sition of the individual matrices, and operations are con-
structed carefully so that the information about small scales
is not lost. This is time consuming, and it would be helpful
to avoid it as much as possible. In our case, since each h̃x;d̂
matrix is nontrivial only in a 2 × 2 block, we can indeed
multiply several such matrices at a time without worrying
about stabilization issues. Still, since the 2 × 2 blocks
contain exponential functions of the form coshð2αx;d̂Þ
and sinhð2αx;d̂Þ, multiplying more than 5–10 blocks can
potentially lead to stabilization problems. The choice of a
bundling parameter nb, which is an integer that gives how
many blocks can be combined stably at one time, is dictated
by this problem and depends on the parameters αx;d̂, with
larger values requiring a smaller nb size.
Once nb has been set, we think through the formation of

GB, which will involve a multiplication of all the h̃Δτ’s
together, which, in turn, may involve the multiplication of
several bundles worth of matrices hx;d̂ðτÞ (a new bundle is
started after the naive multiplication of nb matrices that
correspond to bonds that touch the same site). These steps
will need some kind of stabilization. Fortunately, we
can accomplish this without using SVDs, as discussed
below. First note that, given a generic matrix hi whose
matrix elements do not involve a large disparity of
scales, the Green’s function matrix Gi ¼ ð1þ hiÞ−1hi ¼
1 − ð1þ hiÞ−1 can be constructed without stability prob-
lems. Further Gi’s are very well-behaved matrices, and
operations involving them are quite stable without the need
of SVDs. Thus, given two generic matrices h1 and h2, we
can construct the Green’s function for their product h1h2
using the identity

ð1þ h1h2Þ−1 ¼ ð1 − G2Þðð1 −G1Þð1 −G2Þ
þG1G2Þ−1ð1 −G1Þ: ð38Þ

As noted above, the right-hand side of Eq. (38) does
not suffer from stabilization issues. Thus, we can sequen-
tially build GB from partial versions labeled as GΔτ ¼
ð1þ h̃ΔτÞh̃Δτ associated with each time region Δτ, which
were, in turn, built from one or more different GΔτ;nb pieces
corresponding to the different matrix bundles withinΔτ. As
will be described at the end of the section, we can further
split up these matrix combinations into smaller matrix
operations using the fermion-bag concept. We can also use
a similar procedure to update GB as we move to a different
time slice as long as the regions Δτ or τε are chosen
sequentially.
Let us now consider the type-(iii) instability that occurs

while computing h̃0Δτ which enters the block matrixΔ in the
continuous-time formula [Eq. (36)]. Here we assume GB
has been calculated and stored, and we need to compute Δ
for each accept or reject proposal. Instead of computing Δ

and then computing R using Eq. (36) or (37), we actually
compute the s × s matrix F ¼ ½GB�s×s½h̃−1Δτ �s×s½h̃0Δτ�s×s and
then calculate the ratio using the formula

R ¼ detð½1 −GB�s×s þ FÞ
¼ jdetð½1 −GB�s×sQT þRÞj; ð39Þ

where we are using the RQ factorization of matrix F into an
upper triangular matrix R and an orthogonal matrix Q.
Only the h̃0T matrices have to be updated each time, so we
store an RQ factorization of the ½GB�s×s½h̃Δτ�s×s product for
the duration of the update within a block for continuous
time or before a refresh for discrete time. This RQ
factorization allows for the separation of scales, similar
to the stabilization procedures used to compute Green’s
functions in AFQMC, and improves the precision for the
determinants. It is important when there are many changes
(and, thus, many matrices) in an updated block.
Finally, let us focus on the type-(ii) instability that occurs

while recomputing the backgroundmatrixGB every timewe
move to the new spatial block in the same time intervalΔτ in
the continuous-time model update. This instability can also
occurwhenwe refreshGBwithin the same time slice tε in the
discrete-time model. In both cases, GB changes due to
the changes in an s × s block in h0Δτ or hτε. Here we use the
Woodbury identity to make the computational cost for the
update to scale as OðsN2

sÞ while being careful about
stability. Assuming GB ¼ ð1þ h̃Bh̃ΔτÞ−1h̃Bh̃Δτ before the
update, we compute the new G0

B using the formula

1 −G0
B ¼ ð1þ h̃Bh̃Δτ þ h̃Bh̃Δτðh̃−1Δτ h̃0Δτ − 1ÞÞ−1
¼ 1 − GB þ f½GB�Ns×sð½1 − GΔτ −GB

þ 2ðGΔτÞGB�s×sÞ−1½1 − 2GΔτ�s×s½1 −GB�s×Ns
g;
ð40Þ

where we have defined the new Green’s function within the
time slice

GΔτ ¼ ð1þ h̃−1Δτ h̃
0
ΔτÞ−1h̃−1Δτ h̃0Δτ: ð41Þ

The symbols ½�s×s, ½�Ns×s, and ½�s×Ns
stand for the appropriate

blocks of matrices chosen. This expression is in a slightly
different form than the typicalWoodbury formula [82] and is
written specifically in terms ofGB and GΔτ, because they are
numerically stable to compute.
Using the idea of fermion bags can also help speed up the

calculation at various stages in both continuous-time and
discrete-time models. For example, when we compute h̃Δτ,
the calculations involve only multiplication of matrices
within fermion bags associated with the regionΔτ, and they
are all disconnected. This implies that, if a fermion bag has
f sites associated with it, then we can construct the Green’s
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function Gf for that fermion bag alone as a matrix with f
rows and f columns corresponding to the fermion-bag
sites. We can then combine theGf matrices for the different
fermion bags into the GΔτ matrix, which will naturally be
block diagonal. So we can buildGΔτ rather quickly even on
large spatial lattices. Thus, while GB is an Ns × Ns matrix,
the concept of fermion bags along with the identity (38)
helps reduce the number of operations needed.
As we build GB from the GΔτ matrices, various steps can

be stored either in computer memory or on the hard disk.
This information allows us to make fast updates to GB
when we move sequentially through the various Δτ regions
by having to combine only one or two matrices per update
of GΔτ. This allows us to keep the linear β scaling. More
details on how the storage scheme works can be found in
the Appendix of Ref. [37]. The time to complete a single
bond update on the whole space-time lattice scales as
OðβN3

sÞ for large system sizes. While this is identical to the
traditional AFQMC method, the idea of fermion bags
significantly reduces the prefactor, as seen in Fig. 5, which
we reproduce from the Appendix of Ref. [39]. This figure
shows sweep times for the two methods using a Δτ ¼ 0.1.
While these sweep times cannot be compared directly,
since they are not controlled for comparable precision in the
observable, the plot illustrates how a significant number of
the computations for the fermion-bag algorithm, which
would have normally had scaling of OðβN3

sÞ, are instead

replaced by computations with reduced scaling due to the
use of the fermion bags. This is why the scaling looks to be
smaller than OðβN3

sÞ for smaller lattices and then even-
tually goes to that expected scaling at large lattices, while
for the AFQMC it is constant throughout.

VII. RESULTS

We now present results from our study of the model
described by Eq. (7) near the quantum critical point that
separates the massless fermion phase at small values of V=t
from the massive fermion phase at large V=t values. In the
free limit, the theory describes massless Hamiltonian
staggered fermions, which gives Nf ¼ 1 free massless
Dirac fermions at long distances. Since the interaction
term is invariant under translations by one lattice spacing
and particle hole transformations, it forbids the staggered
fermion mass term ð−1Þx1þx2ðnx − 1=2Þ from being
generated by radiative corrections. Since four-fermion
interactions are also perturbatively irrelevant in 2þ 1
dimensions, at small couplings the fermions remain mass-
less. However, at large couplings the discrete symmetry
breaks spontaneously and fermions become massive. So the
long-distance physics of the quantum critical point model is
expected to be described by the 2þ 1-dimensional Nf ¼ 1

Gross-Neveu chiral-Ising universality class. Since the
nonzero value of ε does not change the symmetries of
the model, we expect that the temporal lattice spacing ε
does not change the universality class at least between
ε → 0 (continuous-time model) and ε ¼ 1 (discrete-time
model). Our main goal in this section is to confirm this.
Using the fermion-bag algorithms described in the

previous sections, we compute the two-point correlation
function of the staggered mass order parameter hCi [see
Eq. (20)] for both the models. Note that, while the
expectation value of the mass operator vanishes because
of the Ising symmetry, the correlation function remains
nonzero. For large lattice sizes L, we expect

hCi ∼

8>><
>>:

L−4; V < Vc;

1; V > Vc;

L−1−η; V ¼ Vc;

ð42Þ

and near the critical point we expect the critical scaling
relation

hCi ¼ 1

L1þη fððV − VcÞL1=ν=tÞ; V ≈ Vc; ð43Þ

to hold. In order to obtain the critical exponents, we
approximate fðxÞ ¼ f0 þ f1xþ f2x2 þ f3x3. Thus, in
the critical region, we expect our data must be described
by a seven-parameter fit.
Our results for the correlation function in the continuous-

time model near the critical region are given in Table I and

FIG. 5. Scaling comparison for the Hamiltonian discrete-time
fermion-bag algorithm (fermion bag) and the auxiliary field
algorithm (AFQMC) using the algorithms for lattice fermions
(ALF) software. The discrete time step is Δτ ¼ 0.1. Sweep times
were measured for equilibrated configurations. The solid lines are
τ1 ¼ 7.57467 × 10−8L7s for the fermion-bag algorithm and τ2 ¼
3.93116 × 10−7L7s for the auxiliary field algorithm.
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plotted in Fig. 6. In these calculations, we assume β ¼ L,
since the quantum critical point is expected to be relativistic.
Excluding the data forV=t ¼ 1.350 and 1.400, we are able to
perform a seven-parameter combined fit of the remaining
data. If we include only the smaller lattices (those L < 64
from Table I), we obtain η ¼ 0.54ð6Þ and ν ¼ 0.88ð2Þ with
the critical coupling Vc ¼ 1.279ð3Þt, as seen in Ref. [39].
By including the larger lattices, we have been able to reduce
the error for the critical exponents but find that they still
remain in the same range as our smaller lattice calculations.
The inclusion of larger lattices allows us to compute
η ¼ 0.51ð3Þ, ν ¼ 0.89ð1Þ, and Vc ¼ 1.281ð2Þt. The results
forL ¼ 64, obtained fromExtreme Science and Engineering

Discovery Environment (XSEDE) resources [83], help us to
reduce the error on the η exponent and rule out a particularly
high value for it. For example, in Fig. 6, we note that at
V ¼ 1.270t the data seem to be described by a single power
of the form L−ð1þηÞ for lattice sizes from L ¼ 20 up to
L ¼ 48. In fact, a fit of the data to this form (leaving out the
L ¼ 64 data) gives us η ¼ 0.74ð2Þ with a reasonable
χ2=DOF. However, once we include the L ¼ 64 data, we
no longer get a good fit, from which we are able to conclude
that V ¼ 1.270t is below the critical coupling.
Since the discrete-time model with ε ¼ 1 is a micro-

scopically different model, the critical value of V=t where
the phase transition occurs will be different. The results

TABLE I. Results for the correlation function hCi defined in Eq. (20), for the continuous-time model near the
quantum critical point. A seven-parameter fit of the data (after removing those marked with a “*”) to the form
Eq. (43) yields η ¼ 0.51ð3Þ, ν ¼ 0.89ð1Þ, Vc ¼ 1.281ð2Þt, f0 ¼ 0.72ð6Þ, f1 ¼ 0.29ð2Þ, f2 ¼ 0.051ð5Þ, and
f3 ¼ 0.0034ð5Þ, with a χ2 ¼ 0.90.

V=t L ¼ 20 L ¼ 24 L ¼ 32 L ¼ 48 L ¼ 64

1.200 0.00298(3) 0.00184(3) 0.00080(1) � � � � � �
1.250 0.00545(6) 0.00380(5) 0.00204(2) 0.00074(2) � � �
1.270 0.00699(8) 0.00517(7) 0.00315(4) 0.00151(3) 0.00085(1)
1.280 0.00787(9) 0.00590(9) 0.00377(4) 0.00204(3) 0.00130(2)
1.296 0.00946(10) 0.00740(9) 0.00512(6) 0.00339(5) � � �
1.304 0.01022(8) 0.00844(9) 0.00611(6) 0.00423(5) � � �
1.350 0.01705(16)* 0.01522(16)* 0.01426(18)* � � � � � �
1.400 0.02707(20)* 0.02630(35)* 0.02637(38)* � � � � � �

FIG. 6. The left plot shows hCi as a function of L (with β ¼ L) for different values of V in the continuous-time model near the critical
coupling. The solid lines show how the larger lattice data rule out V ¼ 1.296t and V ¼ 1.304 as critical couplings, and both of these
couplings are, in fact, in the broken phase. The right plot shows that most of the data displayed in the left plot collapse to a single critical
scaling function.
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near this critical point are given in Table II and plotted
in Fig. 7. Since the computations are faster, using
XSEDE resources we can now compute correlation func-
tions for lattices up to L ¼ 100 (with β=ε ¼ L). The seven-
parameter fit (where we drop the points marked with an
asterisk in Table II) gives Vc ¼ 1.420ð2Þ, η ¼ 0.49ð4Þ, and
ν ¼ 0.94ð3Þ. As expected, the critical coupling is different,
but the critical exponents are consistent with those for the
continuous-time model. Interestingly, we do not get a better
precision.
Recently, there have been a significant number of QMC

studies of the quantum critical behavior in the latticemodelwe
consider in Eq. (7) and other formulations [39,84–87]. Our
studies add to this growing literature, and, in particular, our
results are among the largest lattices ever studied. Calculations
of critical exponents of the associated 2þ 1-dimensional
Nf ¼ 1 Gross-Neveu chiral-Ising universality class have also
been performed over the years using continuum methods like

largeN, ϵ expansion, functional renormalizationgroup (FRG),
and bootstrap [7,23,24,28,88]. The most recent results are
from a four-loop calculation using the 4 − ϵ expansion [22].
Results for the critical exponents η and ν obtained from all
these methods are summarized Table III. Note that our results
are clearly consistent with the latest 4 − ϵ expansion results.
An important observation is that results from small

lattice-QMC calculations are not compatible with con-
tinuum-analytic results. Our results also help us understand
the reasons for the discrepancies. For example, if we
assume that the critical point is at Vc=t ¼ 1.296 or
1.304, as was found in some of the previous calculations
on smaller lattices, and fit our continuous-time data to the
form L−ð1þηÞ, after dropping larger values of L we get
η ¼ 0.41ð4Þ and η ¼ 0.31ð4Þ, respectively (see left plot in
Fig. 6). This agrees with the earlier results from smaller
lattices, and the fits for the corresponding smaller lattices in
our data are shown by the blue solid lines in the figure.

TABLE II. Results for the correlation function hCi defined in Eq. (20), for the discrete-time model near the quantum critical point. A
seven-parameter fit of the data (after removing those marked with a “*”) gives us η ¼ 0.49ð4Þ, ν ¼ 0.94ð3Þ, Vc ¼ 1.420ð2Þt,
f0 ¼ 0.22ð2Þ, f1 ¼ 0.08ð1Þ, f2 ¼ 0.013ð3Þ, and f3 ¼ 0.0010ð3Þ, with a χ2 ¼ 1.088.

V=t L ¼ 16 L ¼ 20 L ¼ 24 L ¼ 32 L ¼ 48 L ¼ 64 L ¼ 100

1.00 0.000217(6)* 0.000100(2)* 0.000048(1)* 0.0000150(5)* � � � � � � � � �
1.36 0.00237(3)* 0.00159(3) 0.00113(2) 0.000598(2) 0.000225(5) 0.000117(6) � � �
1.38 0.00276(4) 0.00188(3) 0.00134(2) 0.000767(2) 0.000318(6) 0.000172(7) � � �
1.40 0.00314(4) 0.00215(3) 0.00157(2) 0.00096(2) 0.000478(9) 0.000271(8) 0.000101(7)
1.42 0.00351(5) 0.00256(4) 0.00191(3) 0.00127(2) 0.00068(1) 0.00042(2) 0.00022(2)
1.44 0.00408(6) 0.00304(4) 0.00239(4) 0.00167(3) 0.00104(2) 0.00079(2) � � �
1.50 0.0061(1)* 0.00495(7)* 0.0042(1)* 0.00397(8)* 0.00404(8)* � � � � � �

FIG. 7. The left plot shows hCi as a function of L (with β=ε ¼ L) for different values of V in the discrete-time model near the critical
coupling. The right plot shows that most of the data displayed in the left plot collapse to a single critical scaling function.
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However, it is clear that the fits fail dramatically if data
from larger lattices L ¼ 32 and L ¼ 48 are included.

VIII. CONCLUSIONS

In this work, we construct a new type of HLFT starting
with a Hamiltonian that is written as a sum of exponential
operators [see Eq. (3)] involving nearest-neighbor hopping
terms. This form of the Hamiltonian is inspired by the
fermion-bag approach and can be used to study fermionic
quantum critical behavior involving Nf flavors of massless
Dirac fermions interacting with four-fermion interactions.
We concretely showed this by studying the critical behavior,
which falls in the Nf ¼ 1 Gross-Neveu chiral-Ising univer-
sality. For the lattice Hamiltonian studied in this work, we
constructed a path integral with a temporal lattice spacing ε
and discussed how the continuous-time model (ε → 0) and
the discrete-time model (ε ¼ 1Þ emerge. We explained how
the fermion-bag algorithm is constructed in both these cases
and how the idea of fermion bags can allow us to speed up
calculations over the traditional AFQMC approach. By
studying the finite size scaling of the order parameter
correlation function, we showed that the quantum critical
behavior in both these models belong to the same univer-
sality class. We further showed that it is feasible to study
lattices with up to Ns ¼ 100 × 100 lattice sites in the
discrete-time model. The effort to study such a large lattice
is roughly the same as the effort to studyNs ¼ 64 × 64 sites
in the continuous-time model. This can be partly attributed
to fewer stabilization steps necessary in the discrete-time
approach but mainly attributed to a much smaller average
number of bonds in equilibrated configurations for the large
ϵ ¼ 1. The discrete-time method also has the potential to
practically work in a larger parameter range than the
continuous-time method for models generically, due to
fewer stabilization issues. On the other hand, fluctuations

also seem larger in the discrete-time model for the lattice
Hamiltonian that we studied, and one has to run longer to get
comparable precision to that of the continuous-time model.
The critical exponents we obtain in both cases are consistent
with the recent four-loop 4 − ϵ expansion results.
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APPENDIX: GROSS-NEVEU
UNIVERSALITY CLASSES

From a field theoretic perspective, Gross-Neveu univer-
sality classes can be best understood through Yukawa field
theories, since then the relevant fixed point of interest
become accessible in 4 − ϵ expansion [23]. There is a lot of
literature on how these universality classes emerge, and
some of the recent discussions motivated from condensed
matter lattice models can be found in Refs. [91–93].
However, for easier reading of our paper, we define the
universality classes by discussing the symmetries explicitly
here. For a more complete discussion, we refer the reader to
the previous literature.
Since we are interested in 2þ 1 dimensions, we will

constrain ourselves to two spatial dimensions with position
r and define Nf four-component Dirac field operators
ψ iðrÞ, i ¼ 1; 2;…; Nf, and their Hermitian conjugates
ψ†
i ðrÞ≡ ðx; yÞ. We will focus on models that do not break

the SUðNfÞ flavor symmetries. In these models, the five
4 × 4 anticommuting Hermitian Dirac matrices γμ, μ ¼ 0,
1, 2, 3, 5, play an important role in our construction. We
will assume they are normalized so that γ2μ ¼ 1. The free
Dirac Hamiltonian with Nf flavors of massless fermions is
then given by

Hf
0 ¼

Z
d2r

XNf

i¼1

fψ†
i ðrÞ½ðγ0γ1Þ∂x þ ðγ0γ2Þ∂y�ψðrÞg: ðA1Þ

It is easy to verify that Hf
0 is invariant under “parity”

transformations

TABLE III. Critical exponents ν and η for the Nf ¼ 1 chiral-
Ising Gross-Neveu universality class, obtained from various
continuum-analytic and lattice-QMC methods. The last column
gives the maximum spatial lattice sizes Ns used in the QMC
calculations. The last two rows give results from our current
work.

Method ν η Ns

4 − ϵ [22] 0.898(30) 0.487(12) � � �
FRG [24] 0.93(1) 0.55 � � �
Large-N [7,88] 0.938 0.509 � � �
Bootstrap [89] 1.32 0.544 � � �
LCT-INT QMC [37] 0.80(3) 0.30(2) 2 × 182

LCT-INT QMC [84] 0.74(4) 0.275(25) 2 × 212

MQMC [90] 0.77(3) 0.45(2) 2 × 242

SLAC QMC [85] 0.912(34) � � � 322

CT-FB QMC 0.89(1) 0.51(3) 642

DT-FB QMC 0.94(3) 0.49(4) 1002
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x→−x; y→y; ψ iðrÞ→ γ1ψ iðrÞ; ψ†
i ðrÞ→ψ†

i ðrÞγ1;
x→x; y→−y; ψ iðrÞ→ γ2ψ iðrÞ; ψ†

i ðrÞ→ψ†
i ðrÞγ2;

ðA2Þ

and the following SUð2Þ transformations (which are
referred to as “chiral transformations” although perhaps
a misnomer):

ψ iðrÞ → eiθaSaψ iðrÞ; ψ†
i ðrÞ → ψ†

i ðrÞe−iθaSa ; ðA3Þ

where Sa, a ¼ 1, 2, 3, are three generators of SUð2Þ
transformations in the Dirac space given by

S1 ¼
1

2
γ3; S2 ¼

1

2
γ5; S3 ¼

−i
2
γ3γ5: ðA4Þ

If we wanted to make the fermions massive, there are four
possible Dirac mass terms, which we write

Hf
m ¼

Z
d2r

XNf

i¼1

fψ†
i ðrÞðiγ0γ3γ5Þ½m01þm1S1

þm2S2 þm3S3�ψðrÞg; ðA5Þ

out of which the terms multiplying m0 and m3 break parity,
while the other two are parity invariant. On the other hand,
the m0 term is invariant under chiral transformations, while
the other three terms transform as a 3-vector under the
SUð2Þ chiral transformations. To see this, it is helpful to
note that ðiγ0γ3γ5Þ commutes with all Sa’s. Thus, we learn
that it is possible to give the fermions in 2þ 1 dimensions a
chirally invariant mass term m0 ≠ 0, but such a term will
break parity. On the other hand, if we allow chiral
symmetry breaking, we can give the fermions a parity-
invariant mass.
Gross-Neveu models preserve some subgroup of the

SUð2Þ chiral transformations and parity so that none of the
mass terms are allowed. Hence, these models can, in
principle, be in two phases, either a massless fermion
phase or a massive fermion phase that breaks either chiral
symmetry or parity spontaneously. We will focus on those
models that generate a parity-invariant mass term. The
phase transition between the two phases is then charac-
terized by the Gross-Neveu universality class of the
appropriate symmetry-breaking pattern. Here we focus
on three types of symmetry-breaking pattern, which are
usually referred to in the literature as chiral-Ising, chiral-
XY, and chiral-Heisenberg. We construct Yukawa models
for each of these three universality classes by coupling the
free fermion theory with appropriate scalar fields.

1. Chiral-Ising symmetry

This model preserves a Z2 subgroup of the SUð2Þ
symmetry which then breaks to makes fermions massive.

To construct the Yukawa model, we introduce a single real
scalar field ϕðrÞ and its canonical conjugate field πðrÞ. The
bosonic Hamiltonian Hbðϕ; πÞ will be variant under the
discrete symmetry transformation ϕðrÞ → −ϕðrÞ and
πðrÞ → −πðrÞ. The Hamiltonian of the Yukawa model is
then given by

H ¼ Hbðϕ; πÞ þHf
0

þ g
Z

d2r
XNf

i¼1

fψ†
i ðrÞðiγ0γ3γ5Þ½ϕðrÞS3�ψ iðrÞg: ðA6Þ

It is easy to verify that H is invariant under the discrete
Ising subgroup of the SUð2Þ chiral transformations

ψ iðrÞ → eiπS1ψ iðrÞ; ψ†
i ðrÞ → ψ†

i ðrÞeiπS1 ;
ϕðrÞ → −ϕðrÞ; πðrÞ → −πðrÞ; ðA7Þ

which means that a nonzero expectation value of the scalar
field ϕðrÞ breaks this Ising symmetry and fermions can
become massive.

2. Chiral-XY symmetry

This model preserves a Uð1Þ subgroup of the SUð2Þ
symmetry which then breaks to makes fermions massive.
To construct the Yukawa model, we now introduce two real
scalar fields ϕaðrÞ, a ¼ 1, 2, and their canonically con-
jugate fields πaðrÞ. The bosonic HamiltonianHbðϕ; πÞ will
now be variant under theUð1Þ symmetry transformations in
which the complex fields ϕðrÞ ¼ ϕ1ðrÞ þ iϕ2ðrÞ and
πðrÞ ¼ π1ðrÞ þ iπ2ðrÞ transform as ϕðrÞ → e−iθϕðrÞ and
πðrÞ → e−iθπðrÞ. The Hamiltonian of the Yukawa model is
then given by

H ¼ Hbðϕ; πÞ þHf
0

þ g
Z

d2r
XNf

i¼1

fψ†
i ðrÞðiγ0γ3γ5Þ½ϕ1ðrÞS1

þ ϕ2ðrÞS2�ψðrÞg: ðA8Þ

It is easy to verify that H is invariant under the Uð1Þ
subgroup of the SUð2Þ chiral transformations

ψ iðrÞ → eiS3θψ iðrÞ; ψ†
i ðrÞ → ψ†

i ðrÞe−iθS3 ;
ϕðrÞ → e−iθϕðrÞ; πðrÞ → e−iθπðrÞ: ðA9Þ

A nonzero expectation value of the complex scalar field
ϕðrÞ then breaks the Uð1Þ chiral symmetry, and, thus,
fermions can become massive.

3. Chiral-Heisenberg symmetry

Here we introduce three real scalar fields ϕaðrÞ, a ¼ 1, 2,
3, and their canonically conjugate fields πaðrÞ. The bosonic
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TABLE IV. Critical exponents according to continuum methods and QMC methods. *There is some disagreement over the counting of
flavor numbers, as mentioned in Ref. [48], for the chiral-Heisenberg 4 − ϵ expansions. The number quoted for the (one-loop) calculation in
Ref. [6] agrees with the number in Ref. [23] but seems that it could be for one flavor of two-component fermions, instead of four-component
fermions, according to the way the conventions appear in the work. Using those conventions, the numbers would instead be ν ¼ 0.882,
ηϕ ¼ 0.800, and ηψ ¼ 0.3 for Ref. [6], as given in Ref. [48].We have usedmore recent values for 4 − ϵ expansion-based results in other parts
of the table, based on Refs. [22,23,96], but wanted to make clear this unresolved issue that could affect these Heisenberg class numbers.

Nf ¼ 1 four-component Dirac fermions

Z2 symmetry–chiral Ising Uð1Þ symmetry–chiral XY

Method ν ηϕ ηψ Method ν ηϕ ηψ

4 − ϵ (four loop with Borel
resummation) [22]

0.898(30) 0.487(12) 0.102(12) 4 − ϵ (two loop) [23,96] 0.883 0.574 0.25

FRG [24] 0.93(1) 0.5506 0.0654 4 − ϵ (four loop) [23] 0.909 0.781 0.306
Large-N [7,88] 0.938 0.509 0.1056 FRG [97] 1.21 � � � � � �
Conformal bootstrap [89] 1.32 0.544 0.084
CT-FB [39] QMC (staggered
fermions), here

0.89(1) 0.51(3) � � � SUð2Þ symmetry–chiral Heisenberg

DT-FB QMC (staggered
fermions), here

0.94(3) 0.49(4) � � � Method ν ηϕ ηψ

HMC (SLAC fermions) [85] 0.912(34) � � � � � � 4 − ϵ (one loop) [6,23]* 0.900 0.667 0.5
MQMC (honeycomb lattice) [90] 0.77(3) 0.45(2) � � � 4 − ϵ (two loop) [23] 1.04 0.730 0.462
MQMC (staggered fermions) [90] 0.79(4) 0.43(2) � � � 4 − ϵ (four loop) [23] 0.480 0.842 0.387
LCT-INT QMC (honeycomb
lattice) [37]

0.80(3) 0.302(7) � � � AFQMC (SLAC fermions) [62] 0.98(1) 0.53(1) 0.18(1)

LCT-INT QMC (staggered
fermions) [37]

0.80(6) 0.318(8) � � �

CT-INT QMC (honeycomb
lattice) [84]

0.74(4) 0.275(25) � � �

Nf ¼ 2 four-component Dirac fermions

Z2 symmetry–chiral Ising Uð1Þ symmetry–chiral XY SUð2Þ symmetry–chiral Heisenberg

Method ν ηϕ ηψ Method ν ηϕ ηψ Method ν ηϕ ηψ

4 − ϵ=2þ ϵ
(four loop,
Padé approx.,
Borel resum.)
[22]

1.01(3) 0.72(2) 0.043(1) 4 − ϵP½2=2�
(four loop) [23]

1.190 0.810 0.117 4 − ϵP½2=2�
(four loop) [23]

1.5562 0.9985 0.1833

Large-N [7,9,88] 1.050 0.743 0.044 4 − ϵP½3=1�
(four loop) [23]

1.189 0.788 0.108 4 − ϵP½3=1�
(four loop) [23]

1.2352 0.9563 0.1560

FRG [24] 1.006(2) 0.7765 0.0276 Large-N [98] 1.25 0.67 � � � FRG [99] 1.258 1.032 0.071
Conformal
bootstrap [89]

1.14 0.742 0.044 FRG [97] 1.160 0.88 0.062 FRG [100] 1.31 1.02 0.08

Lagrangian FB
QMC (staggered
fermions) [42]

0.83(1) 0.62(1) 0.38(1) AFQMC
(honeycomb
lattice) [98]

1.06(5) 0.71(3) � � � HMC
(honeycomb
lattice) [53]

1.162 0.872(22) � � �

HMC (staggered
fermions) [9]

1.00(4) 0.754(8) � � � Lagrangian FB
QMC
(staggered
fermions)
[41,42]

0.85(1) 0.64(1) 0.37(1) AFQMC
(SM-QSH
honeycomb
lattice) [94]

0.88(9) 0.79(5) � � �

HMC (SLAC
fermions) [85]

0.93(4) � � � � � � HMC (staggered
fermions) [101]

0.79(6) 0.86(6) � � � AFQMC
(staggered
fermions/honeycomb
lattice) [48]

1.02(1) 0.49(2) 0.20(2)

Designer model
fermionsþ bosons
QMC [102]

1.0(1) 0.59(2) 0.05(2) HMC (staggered
fermions) [103]

0.87(3) 0.64(3) � � � AFQMC
(staggered
fermions/honeycomb
lattice) [95]

0.84(4) 0.70(15) � � �

AFQMC (Dirac
fermionsþ spins) [104]

0.8(1) 0.65(3) � � �
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Hamiltonian Hbðϕ; πÞ will now be variant under the Oð3Þ
rotations of 3-vectors ϕ⃗ðrÞ and π⃗ðrÞ. The Hamiltonian of
the Yukawa model is then given by

H¼Hbðϕ;πÞþHf
0

þg
Z

d2r
XNf

i¼1

fψ†
i ðrÞðiγ0γ3γ5Þ½ϕ⃗ðrÞ · S⃗�ψ iðrÞg: ðA10Þ

It is easy to verify that H is invariant under the full SUð2Þ
chiral transformations

ψ iðrÞ ¼ eiθn̂·S⃗ψ iðrÞ; ψ†
i ðrÞ ¼ ψ†

i ðrÞe−iθn̂·S⃗;
ϕ⃗ðrÞ → Rðn̂; θÞϕðrÞ; π⃗ðrÞ → Rðn̂; θÞπ⃗ðrÞ; ðA11Þ

where the 3 × 3 matrix Rðn̂; θÞ rotates a 3-vector about the
axis n̂ by an angle θ. A nonzero expectation value of the
vector field ϕ⃗ðrÞ then breaks the SUð2Þ chiral symmetry
and makes fermions massive.
From the point of view of materials physics, Nf ¼ 2

plays an important role due to the property that electrons
have a spin half, and in many cases the SUð2Þ spin
symmetry can be treated as an internal symmetry. In such
cases, quantum phase transitions between massless and
massive fermion phases can be described by other types of
chiral Heisenberg models. For example, consider the
Hamiltonian given by

H¼Hbðϕ;πÞþHf
0

þg
Z

d2r
XNf

i¼1

fψ†
i ðrÞðiγ0γ3γ5Þ½ϕ⃗ðrÞ · σ⃗�ψ iðrÞg; ðA12Þ

where now σ⃗ are Pauli matrices in the flavor space. In this
case, the massive fermion phase breaks flavor symmetry
but preserves chiral symmetry. Such a Hamiltonian is

expected to describe the semimetal (SM) to quantum-
spin-Hall (QSH) insulator transition as was recently studied
in Ref. [94]. Since for Nf ¼ 2 the SUð2Þ chiral symmetry
and SUð2Þ flavor symmetries are equivalent, Eqs. (A11)
and (A12) can be mapped into one another.
On the other hand, most lattice formulations typically

break the SUð2Þ chiral symmetries to some subgroup while
preserving the SUð2Þ flavor symmetries. Hence, one can
look for other ways for generating mass terms with two
flavors. For example, the Hamiltonian

H ¼ Hbðϕ; πÞ þHf
0

þ g
Z

d2r
XNf

i¼1

fψ†
i ðrÞðiγ0γ3γ5Þ½ϕ⃗ðrÞ · σ⃗S3�ψ iðrÞg

ðA13Þ

preserves only a discrete subgroup of the SUð2Þ chiral
symmetry but is SUð2Þ flavor invariant. However, in the
massive phase, it breaks both the flavor and chiral sym-
metries. The phase transition in this model is expected to
describe the SM and an antiferromagnet (AFM) [48,95]. It
has been suggested that the SM-QSH phase transition and
SM-AFM transition could, in fact, belong to the same
universality class [93,94].
Estimates for the critical exponents have been obtained

from a variety of methods. While analytic methods can
control the symmetries and symmetry-breaking patterns,
lattice QMC methods are less reliable due to fermion-
doubling problems and breaking of chiral symmetries due
to lattice artifacts. However, one can try to roughly count
the fermion flavors and try to estimate the symmetry-
breaking patterns. Based on such estimates, in Table IV, we
tabulate the exponents obtained by various groups into the
above three universality classes with Nf ¼ 1 and
Nf ¼ 2.
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