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In view of the expectation that the existence of complex poles is a signal of confinement, we investigate
the analytic structure of the gluon, quark, and ghost propagators in the Landau gauge QCD and QCD-like
theories by employing an effective model with a gluon mass term of the Yang-Mills theory, which we call
the massive Yang-Mills model. In this model, we particularly investigate the number of complex poles in
the parameter space of the model consisting of gauge coupling constant, gluon mass, and quark mass for the
gauge group SUð3Þ and various numbers of quark flavors NF within the asymptotic free region. Both the
gluon and quark propagators at the best-fit parameters for NF ¼ 2 QCD have one pair of complex
conjugate poles, while the number of complex poles in the gluon propagator varies between zero and four
depending on the number of quark flavors and quark mass. Moreover, as a general feature, we argue that the
gluon spectral function of this model with nonzero quark mass is negative in the infrared limit. In sharp
contrast to gluons, the quark and ghost propagators are insensitive to the number of quark flavors within the
current approximations adopted in this paper. These results suggest that details of the confinement
mechanism may depend on the number of quark flavors and quark mass.
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I. INTRODUCTION

Color confinement, absence of color degrees of freedom
from the physical spectrum, is one of the most fundamental
and significant features of strong interactions. It is a long-
standing and challenging problem in particle and nuclear
physics to explain color confinement in the framework of
quantum field theory (QFT). Understanding analytic struc-
tures of the correlation functions will be of crucial
importance to this end because a QFT describing physical
particles can be reformulated in terms of correlation
functions [1], and there are some proposals of confinement
mechanisms whose criteria are expressed by them, e.g., [2].
In particular, the analytic structures of propagators encode
kinematic information as the Källén-Lehmann spectral
representation [3], which will be useful toward under-
standing confinement.
In the past decades, numerous studies of both the lattice

and continuum approaches have focused on the gluon,

quark, and ghost propagators in the Landau gauge of the
Yang-Mills theory and quantum chromodynamics (QCD).
In the Yang-Mills theory, or the quenched limit of QCD, the
so-called decoupling and scaling solutions of the gluon and
ghost propagators are observed based on the continuum
approaches [4]. The recent numerical lattice results support
the decoupling solution [5]. The decoupling solution has an
impressing feature that the running gauge coupling stays
finite and nonzero for all nonvanishing momenta and
eventually goes to zero in the limit of vanishing momen-
tum, which cannot be predicted from the standard pertur-
bation theory that is plagued by the Landau pole of the
diverging running gauge coupling.
A low-energy effective model of the Yang-Mills theory is

proposed following the decoupling behavior of the gluon
propagator, which provides the gluon and ghost propaga-
tors that show a striking agreement with the numerical
lattice results by including quantum corrections just in the
one-loop level [6,7]. This effective model is given by the
mass-deformed Faddeev-Popov Langrangian of the Yang-
Mills theory in the Landau gauge, or the Landau gauge
limit of the Curci-Ferarri model [8], which can be shown to
be renormalizable due to the modified Becchi-Rouet-Stora-
Tyutin (BRST) symmetry, and we call it the massive Yang-
Mills model for short. This effective mass term could stem
from the dimension-two gluon condensate [9–13] or could
be taken as a (minimal) consequence of avoiding the
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Gribov ambiguity [14,15]. Moreover, it has been shown
that the massive Yang-Mills model has “infrared safe”
renormalization group (RG) flows on which the running
gauge coupling remains finite for all scales [7,15,16]. The
three-point functions [17] and two-point correlation func-
tions at finite temperature [18] in this model were compared
to the numerical lattice results, showing good agreements.
Moreover, the two-loop corrections improve the accor-
dance for the gluon and ghost propagators [19]. These
works indicate the validity of the massive Yang-Mills
model as an effective model of the Yang-Mills theory.
The gluon and ghost propagators for unquenched lattice

QCD with the number of quark flavors NF ¼ 2; 2þ 1; 2þ
1þ 1 have been studied, for instance [20], and exhibit the
decoupling feature as well. The massive Yang-Mills model
with dynamical quarks can reproduce the numerical lattice
gluon and ghost propagators for QCD as well [21].
However, it is argued that higher-loop corrections are
important for the quark sector in this model [22,23].
Despite this shortcoming, it appears that the effective gluon
mass term captures some nonperturbative aspects of QCD.
What is more, QCD phases have been extensively studied
in a similar model with the effective gluon mass term of the
Landau-DeWitt gauge [24].
Apart from the realistic QCD, it is also interesting to study

gauge theories with many flavors of quarks. For many quark
flavors, the infrared conformality is predicted [25,26] and
well-studied in linewith the walking technicolor for physics
beyond the standard model [27], for example, [28–30].
Some argue that chiral symmetry restores while color
degrees of freedom are “unconfined” in the conformal
window. For a better understanding of the confinement
mechanism, observing NF dependence will be thus
extremely valuable.
All works on the correlation functions described above

were implemented in the Euclidean space. Considerable
efforts have been devoted to reconstructing the spectral
functions from the Euclidean data based on the Källén-
Lehmann spectral representation, e.g., [31,32]. On the other
hand, several models of the Yang-Mills theory [14,33–39],
including the (pure)massiveYang-Millsmodel [40,41], and a
way of the reconstruction from the Euclidean data [42]
predict complex poles in the gluon propagator that invalidate
theKällén-Lehmann spectral representation.The existence of
complex poles of the propagators of the confined particles is a
controversial issue, see, e.g., [43]. The complex singularities
invalidate the standard reconstruction from a Euclidean field
theory to a relativistic QFT [1] and might correspond to
unphysical degrees of freedom in an indefinite metric state
space [44]. Therefore, complex poles are expected to be
closely connected to the confinement mechanism.
In this paper, we investigate the analytic structure of the

QCD propagators for various NF based on the massive
Yang-Mills model, mainly focusing on complex poles by
utilizing the general relationship between the number of

complex poles and the propagator on timelike momenta
from the argument principle [40]. This investigation
extends the previous result [40] obtained for the pure
Yang-Mills theory with no flavor of quarks NF ¼ 0 that the
gluon propagator has a pair of complex conjugate poles
and the negative spectral function while the ghost propa-
gator has no complex pole. In this article, we will see the
following results. Both the gluon and quark propagators at
the “realistic” parameters forNF ¼ 2QCD have one pair of
complex conjugate poles as well as the gluon propagator in
the zero flavor case. By increasing quark flavors, we find a
new region in which the gluon propagator has two pairs of
complex conjugate poles for light quarks with the inter-
mediate number of flavors 4≲ NF < 10. However, the
gluon propagator has no complex poles if very light quarks
have many flavors NF ≥ 10 or both of the gauge coupling
and quark mass are small. In the other regions, the gluon
propagator has one pair of complex conjugate poles. On the
other hand, the analytic structures of quark and ghost
propagators are nearly independent of the number of quarks
within this one-loop analysis.
This paper is organized as follows. In Sec. II, we

present machinery to count the number of complex poles
as an application of [40]. In Sec. III, we review the calculation
of the massive Yang-Mills model with quarks of [21],
consider the infrared safe trajectories of this model, and
argue the infrared negativity of the gluon spectral function.
Then, in Sec. IV, we analyze the analytic structures of the
gluon, quark, and ghost propagators at the best-fit parameters
of [21], and investigate the number of complex poles for
various parameters and the number of quarks NF. Finally,
Sec. V is devoted to conclusion, and Sec. VI contains further
discussion. InAppendixA,we provide a generalization of the
proposition of Sec. II for various infrared behaviors.
Appendix B gives complementary one-loop analyses for
Sec. IVA.

II. COMPLEX POLES IN PROPAGATORS

To elucidate the starting point, we review a generaliza-
tion of the spectral representation for a propagator so as to
allow complex poles. We then develop a method for
counting the number of complex poles from the data on
timelike momenta, e.g., the spectral function, as a straight-
forward application of the general relation [40].

A. A generalization of the spectral representation

We introduce some definitions and underlying assump-
tions on propagators adopted in this article. Given a
propagator defined in the Euclidean space, we analytically
continue the propagator to the whole complex k2 plane
from the Euclidean momenta. In the complex k2 plane, we
call points on the negative real axis Euclidean momenta
and points on the positive real axis timelike momenta. We
will study the gluon, quark, and ghost propagators in the
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Landau gauge. We assume each propagator of the gluon,
quark, and ghost has the following generalized spectral
representation allowing the presence of complex poles1:

Dðk2Þ ¼
Z

∞

0

dσ2
ρðσ2Þ
σ2 − k2

þ
Xn
l¼1

Zl

zl − k2
; ð1Þ

where ρðσ2Þ ≔ 1
π ImDðσ2 þ iϵÞ is its spectral function, zl

stands for the position of a complex pole, and Zl is the
residue associated with the complex pole.
This representation can be derived under the following

conditions using the Cauchy integral formula for the closed
contour C̃ presented in Fig. 1 [40,46]:

(I) DðzÞ is holomorphic except for singularities on the
positive real axis and a finite number of simple
poles.

(II) DðzÞ → 0 as jzj → ∞.
(III) DðzÞ is real on the negative real axis.
If we replace the condition (I) with the more strict condition

(I’) DðzÞ is holomorphic except for singularities on the
positive real axis, namely has no complex poles,

the three conditions (I’), (II), and (III) lead to the Källén-
Lehmann form [3],whichpropagators for unconfinedparticles
are supposed to obey. In this sense, Eq. (1) gives a generali-
zation of the Källén-Lehmann spectral representation.

B. Counting complex poles

We present a procedure to count complex poles from the
propagator on the timelike momenta based on [40].
We apply the argument principle to a propagator on the

contour C presented in Fig. 1. Then the winding number
NWðCÞ of the phase of the propagator Dðk2Þ along the
contour C is equal to the difference between the number of
zerosNZ and the number of polesNP in the region bounded
by C,

NWðCÞ ≔
1

2πi

I
C
dk2

D0ðk2Þ
Dðk2Þ

¼ 1

2π

I
C
dðargDðk2ÞÞ

¼ NZ − NP: ð2Þ

The winding number NWðCÞ can be calculated from the
propagator on timelike momenta Dðk2 þ iϵÞ and infrared
(IR) and ultraviolet (UV) asymptotic forms.

In what follows, we assume the following asymptotic
form for the propagator.

(i) 2 In the UV limit jk2j→∞,Dðk2Þ has the same phase
as the free one, i.e., argð−DðzÞÞ→arg1z as jzj → ∞.

(ii) In the IR limit jk2j → 0, Dðk2 ¼ 0Þ > 0.
Let us comment on these assumptions. The first assumption
is satisfied by the gluon, quark, and ghost propagators in
the Landau gauge, which follows from the RG analysis for
asymptotic free theories. The RG argument of Oehme and
Zimmermann [47] provides the following UV asymptotic
form for the propagators, as jk2j → ∞,

Dðk2Þ ≃ −
ZUV

k2ðln jk2jÞγ ; ð3Þ

where ZUV is a positive constant and γ ¼ γ0=β0 is the ratio
between the first coefficients γ0, β0 of the anomalous
dimension and the beta function, respectively. For the gluon
propagator of Yang-Mills theories with NF quarks in the
Landau gauge, γ is computed as follows.

γ ¼ γ0
β0

;

γ0 ¼ −
1

16π2

�
13

6
C2ðGÞ −

4

3
CðrÞ

�
;

β0 ¼ −
1

16π2

�
11

3
C2ðGÞ −

4

3
CðrÞ

�
; ð4Þ

FIG. 1. Contour C̃ on the complex k2 plane avoiding the
singularities on the positive real axis and the complex poles.
The contour C̃ consists of the large circle C1, the path wrapping
around timelike singularities C2, and the small contours γl that
clockwise surround the complex poles at zl. The propagatorDðk2Þ
is holomorphic in the region bounded by the contour C̃ ¼
C ∪ fγlgnl¼1, where we denote the closed contour C1 ∪ C2 by C.

1This generalization can be related to the fact that complex
spectra for confined particles need not be excluded in an
indefinite metric state space [44]. Such complex spectra of a
Hamiltonian can give rise to the complex poles. The kinematic
aspects of complex poles will be discussed elsewhere. Inciden-
tally, another generalization for the QCD propagators within the
framework of tempered distribution is proposed in [45].

2This assumption (i) is the same as assumption (i) of the
assertions in Sec. III in [40].
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where C2ðGÞ and CðrÞ ¼ NF=2 are the Casimir invariants
of the adjoint and fundamental representations of the gauge
group G, respectively.
We restrict ourselves to asymptotically free theories:

β0 < 0, or NF < 11
2
C2ðGÞ, which is essential to derive the

above UV asymptotic expression for the propagator (3).
Note that the sign of γ is determined depending on the

number of quarks as follows.
(a) γ > 0 if CðrÞ < 13

8
C2ðGÞ. For the gauge group

SUð3Þ with C2ðGÞ ¼ 3, in particular, γ > 0 if
NF ¼ 1;…; 9 < 13

4
C2ðGÞ ¼ 39

4
.

(b) γ < 0 if 13
8
C2ðGÞ < CðrÞ < 11

4
C2ðGÞ. For the gauge

group SUð3Þ with C2ðGÞ ¼ 3, in particular, γ < 0

if NF ¼ 10;…; 16 < 11
2
C2ðGÞ ¼ 33

2
.

This determines the sign of the gluon spectral function
ρðσ2Þ in the ultraviolet region [47]. The spectral function of
the gluon for SUð3Þ in the UV limit takes negative values
for NF ¼ 1;…; 9 and positive values for NF ¼ 10;…; 16.
Additionally, the one-loop corrections give no contribu-

tion to the quark anomalous dimension γψ in the Landau
gauge: γψ ¼ Oðg4Þ. Therefore, the quark propagator
behaves in the UV limit as the free one because of the
asymptotic freedom and the vanishing of the first coefficient
γ0ψ of the order g2 of the quark anomalous dimension.
The second assumption (ii) indicates the massivelike

behavior for the propagator, which corresponds to the
decoupling solution for the Euclidean gluon propagator.
For the general cases Dðk2Þ → ZIRð−k2Þα as jk2j → 0 with
a real exponent α, e.g., the scaling solution for the pure
Yang-Mills gluon and a massless propagator, there is an
additional contribution to the expression of NWðCÞ
described below (9). See Appendix A for the details of
the additional term. From here on, we simply assume (ii)
and will verify this assumption when we compute NWðCÞ
for each propagator employed.
Let us add notes on the relationships between the number

NWðCÞ and the spectral function [40]. With the assump-
tions (i) and (ii), the positive spectral function implies
NWðCÞ ¼ 0 and the negative one implies NWðCÞ ¼ −2.
Since the winding number is a topological invariant,
NWðCÞ is invariant under continuous deformations. For
example, if the spectral function is “quasinegative,” i.e., the
spectral function is negative ρðk20Þ < 0 at all real and
positive zeros k20 of ReDðk2Þ i.e., ReDðk20Þ ¼ 0 (k20 > 0),
then the propagator has NWðCÞ ¼ −2. Actually, this is the
case of the massive Yang-Mills model with NF ¼ 2 quarks
at the realistic parameters analyzed below.
In order to calculate the winding number NWðCÞ in a

numerical way, we divide the interval ½δ2;Λ2� on the
positive real axis into (N þ 1) segments x0; x1;…; xNþ1

such that the following condition on fDðxn þ iϵÞgNn¼1 at
points fk2 ¼ xn þ iϵgNn¼1 is satisfied.
(iii) fk2 ¼ xn þ iϵgNn¼0 is sufficiently dense so that

Dðk2 ¼ xþ iϵÞ changes its phase at most

half-winding (�π) between xn þ iϵ and xnþ1 þ iϵ,
i.e., for n ¼ 0; 1;…; N,����

Z
xnþ1

xn

dx
d
dx

argDðxþ iϵÞ
���� < π; ð5Þ

where we denote sufficiently small x0 ¼ δ2 > 0 and
sufficiently large xNþ1 ¼ Λ2, on which we will take
the limits δ2 → þ0 and Λ2 → þ∞.

Let us now calculate NWðCÞ from the data fDðxn þ
iϵÞgNn¼1 under the above assumptions, by evaluating
NWðC1Þ and NWðC2Þ separately, where C1 stands for the
large circle and C2 for the path around the positive real axis
depicted in Fig. 1.
The first assumption (i) yields

NWðC1Þ ¼ −1: ð6Þ
For NWðC2Þ, from the Schwarz reflection principle,

½DðzÞ�� ¼ Dðz�Þ, we have,

NWðC2Þ ¼ 2

Z
∞

0

dx
2π

d
dx

argDðxþ iϵÞ: ð7Þ

Notice that we have used the second assumption (ii) to
eliminate the contribution from the small circle around the
origin. The third assumption (iii) transforms the integral (7)
into a discrete sum as

NWðC2Þ ¼ 2
XN
n¼0

1

2π
Arg

�
Dðxnþ1 þ iϵÞ
Dðxn þ iϵÞ

�
; ð8Þ

where Arg is the principal value of the argument
(−π < Argz < π).
To sum up, we have the expression for NWðCÞ,

NWðCÞ ¼ −1þ 2
XN
n¼0

1

2π
Arg

�
Dðxnþ1 þ iϵÞ
Dðxn þ iϵÞ

�
: ð9Þ

Though we have to know the number of complex zeros for
counting the exact number of complex poles NP from the
winding number NWðCÞ, note that it suffices to verify
NWðCÞ < 0 in order to show the existence of complex
poles because NP ¼ NZ − NWðCÞ ≥ −NWðCÞ. Moreover,
since NWðCÞ is invariant under continuous deformations,
we can expect that NWðCÞ should be robust under some
approximations. We will consider complex poles of the
QCD propagators using an effective model and the relation
(9) based on this expectation.

III. MASSIVE YANG-MILLS MODEL
AS AN EFFECTIVE MODEL

The massive Yang-Mills model [6,7] to be defined
shortly is an effective model of the Yang-Mills theory in
the Landau gauge, which captures some nonperturbative
aspects by introducing a phenomenological mass term for
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the gluon. The mass term may be generated by the effect of
the dimension-two gluon condensate [9–13] or by avoiding
the Gribov ambiguity [15]. For the latter effect, intuitively,
some effect suppressing

R
dDxAA

μAA
μ should be taken into

account due to the Gribov copies, and the most infrared
relevant term of this effect will be the mass term. The
massive Yang-Mills model reproduces the numerical lattice
results of the gluon and ghost propagators well and has a
renormalization condition such that there are RG trajecto-
ries whose running gauge coupling remains finite in all
scales. Moreover, the massive Yang-Mills model gives a
correct UV asymptotic behavior [47] by RG improvement,
as we will see in Sec. III C. Therefore, although we expect
the massive Yang-Mills model is a low-energy effective
model, this model can describe Yang-Mills theory in all
scales to some extent. One might worry about the absence
of the nilpotent BRST symmetry. Although the massive
Yang-Mills model suffers from the problem of physical
unitarity [8,48] as a consistent QFT, we insist that this
model will suffice for our purpose of investigating analytic
structures, as it gives the well-approximating propagators
with a sensible and straightforward mass-deformation.
Moreover, by adding effective quark mass term, this

model has good accordance with the numerical lattice
results for the unquenched gluon and ghost propagators and
can also reproduce the quark mass function qualitatively
[21]. In this section, we review the results on the one-loop
computations of the massive Yang-Mills model with
quarks, prepare expressions that we will use in the inves-
tigation of the analytic structures of the propagators in the
next section, and study asymptotic behaviors of the
propagators of this model using RG.
In the Euclidean space, the Lagrangian of the model is

given by [6,7,21]

LmYM ¼ LYM þLGF þLFP þLm þLq; ð10Þ

LYM ¼ 1

4
FA

μνFA
μν;

LGF ¼ iNA∂μAA
μ

LFP ¼ C̄A∂μDμ½A�ABCB

¼ C̄A∂μð∂μCA þ gbfABCAB
μCCÞ

Lm ¼ 1

2
M2

bA
A
μAA

μ ;

Lq ¼
XNF

i¼1

ψ̄ iðγμDμ½A� þ ðmbÞq;iÞψ i

¼
XNF

i¼1

ψ̄ iðγμð∂μ − igbAA
μ tAÞ þ ðmbÞq;iÞψ i; ð11Þ

where we have introduced the bare gluon, ghost, anti-
ghost, Nakanishi-Lautrup, and quark fields denoted by
AA

μ ;CA; C̄A;NA;ψ i respectively, the bare gauge coupling

constant gb, the bare quark mass ðmbÞq;i, and the bare
effective gluon mass Mb, while fABC stands for the
structure constant associated with the generators tA of
the fundamental representation of the group G.

We introduce the renormalization factors ðZA; ZC; ZC̄ ¼
ZC; Z

ðiÞ
ψ Þ; Zg; ZM2 ; Zmq;i

for the gluon, ghost, anti-ghost, and

quark fields ðAμ;C; C̄;ψ iÞ, the gauge coupling constant g,
and the gluon and quark mass parameters M2; mq;i respec-
tively:

Aμ ¼
ffiffiffiffiffiffi
ZA

p
Aμ

R; C ¼
ffiffiffiffiffiffi
ZC

p
CR;

C̄ ¼
ffiffiffiffiffiffi
ZC

p
C̄R; ψ i ¼

ffiffiffiffiffiffiffi
ZðiÞ
ψ

q
ψR;i;

gb ¼ Zgg; M2
b ¼ ZM2M2; ðmbÞq;i ¼ Zmq;i

mq;i

ð12Þ

Throughout this article, for simplicity, we employ this model
with degenerate quark masses, mq ≔ mq;i, and therefore

Zψ ≔ ZðiÞ
ψ and Zmq

≔ Zmq;i
.

A. Strict one-loop calculations

We review the strict one-loop results for the gluon,
quark, and ghost propagators here and the RG functions in
the next subsection [21].
For the gluon, ghost, and quark, we introduce the two-

point vertex functions Γð2Þ
A , Γð2Þ

gh , and Γð2Þ
ψ , the transverse

gluon propagator DT, the ghost propagator Δgh, the quark
propagator S, dimensionless gluon and ghost vacuum
polarizations Π̂ and Π̂gh, and the scalar and vector part

of the quark two-point vertex function Γð2Þ
s ;Γð2Þ

v as

Γð2Þ
A ðk2EÞ ≔ ½DTðk2EÞ�−1

¼ M2½sþ 1þ Π̂ðsÞ þ sδZ þ δM2 �
≕M2½sþ 1þ Π̂renðsÞ�; ð13Þ

Γð2Þ
gh ðk2EÞ ≔ −½Δghðk2EÞ�−1

¼ M2½sþ Π̂ghðsÞ þ sδC�
≕M2½sþ Π̂ren

gh ðsÞ�; ð14Þ

Γð2Þ
ψ ðkEÞ ≔ SðkEÞ−1

¼ i=kEðΓð2Þ
v ðk2EÞ þ δψÞ þ ðΓð2Þ

s ðk2EÞ þmqδmq
Þ

¼ i=kEΓren
v ðk2EÞ þ Γren

s ðk2EÞ; ð15Þ

where kE is the Euclidean momentum,

s ≔
k2E
M2

; ð16Þ
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and δZ ≔ ZA − 1, δM2 ≔ ZAZM2 − 1, δC ≔ ZC − 1,
δψ ≔ Zψ − 1, δmq

≔ ZψZmq
− 1 are the counterterms.

The bare vacuum polarizations computed by the dimen-
sional regularization read [7,21], for gluons,

Π̂ðsÞ ¼ Π̂YMðsÞ þ Π̂qðsÞ ð17Þ

Π̂YMðsÞ ¼
g2C2ðGÞ
192π2

s

��
9

s
− 26

��
ε−1 þ ln

�
4π

M2eγ

��

−
121

3
þ 63

s
þ hðsÞ

	

Π̂qðsÞ ¼ −
g2CðrÞ
6π2

s

�
−
1

2

�
ε−1 þ ln

�
4π

m2
qeγ

��

−
5

6
þ hq

�
ξ

s

�	
; ð18Þ

for ghosts,

Π̂ghðsÞ ¼
g2C2ðGÞ
64π2

s

�
−3

�
ε−1 þ ln

�
4π

M2eγ

��

− 5þ fðsÞ
�
; ð19Þ

where ε ≔ 2 −D=2, γ is the Euler-Mascheroni constant,
CðrÞ ¼ NF=2,

ξ ≔
m2

q

M2
; ð20Þ

and,

hðsÞ≔−
1

s2
þ
�
1−

s2

2

�
ln s

þ
�
1þ 1

s

�
3

ðs2 − 10sþ 1Þ lnðsþ 1Þ

þ 1

2

�
1þ 4

s

�
3=2

ðs2 − 20sþ 12Þ ln
� ffiffiffiffiffiffiffiffiffiffi

4þ s
p

−
ffiffiffi
s

p
ffiffiffiffiffiffiffiffiffiffi
4þ s

p þ ffiffiffi
s

p
�
;

hqðt̃Þ≔ 2t̃þ ð1− 2t̃Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
4t̃þ 1

p
coth−1ð

ffiffiffiffiffiffiffiffiffiffiffiffi
4t̃þ 1

p
Þ;

fðsÞ≔−
1

s
− s ln sþ ð1þ sÞ3

s2
lnðsþ 1Þ; ð21Þ

with

t̃ ≔
ξ

s
¼ m2

q

k2E
: ð22Þ

For the quark sector [21],

Γð2Þ
v ðk2EÞ ¼ 1þ Σvðk2EÞ;

Γð2Þ
s ðk2EÞ ¼ mq þ Σsðk2EÞ ð23Þ

Σvðk2EÞ¼
g2C2ðrÞ

64π2M2k4E

�
K2f2M4þM2ðk2E−m2

qÞ

−ðm2
qþk2EÞ2gQ−2M2k2Eð−2M2þm2

qþk2EÞ

−2f2M6þ3M4ðk2E−m2
qÞþðm2

qþk2EÞ3g ln
�
mq

M

�

−2ðm2
qþk2EÞ3 ln

�
m2

qþk2E
m2

q

��
; ð24Þ

Σsðk2EÞ ¼ −
3g2C2ðrÞmq

8π2

�
−
2

ϵ
þ ln

�
Meγ=2ffiffiffiffiffiffi

4π
p

�
−
2

3

−
K2

4k2E
Qþ 1

2k2E
ðM2 −m2

q þ k2EÞ ln
�
mq

M

��
; ð25Þ

where

K2 ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 þ 2M2ðk2E −m2

qÞ þ ðm2
q þ k2EÞ2

q
;

Q ≔ ln

�ðK2 − k2EÞ2 − ðm2
q −M2Þ2

ðK2 þ k2EÞ2 − ðm2
q −M2Þ2

�
; ð26Þ

and C2ðrÞ ¼ N2−1
2N for G ¼ SUðNÞ and fundamental quarks.

Henceforth, we adopt the “infrared safe renormalization
scheme” by Tissier and Wschebor [7], which respects the
nonrenormalization theorem ZAZCZM2 ¼ 1 [49], in the
one-loop level,

8>>>>>>>><
>>>>>>>>:

ZAZCZM2 ¼ 1

Γð2Þ
A ðkE ¼ μÞ ¼ μ2 þM2

Γð2Þ
gh ðkE ¼ μÞ ¼ μ2

Γren
v ðμ2Þ ¼ 1

Γren
s ðμ2Þ ¼ mq

⇔

8>>>>>>>><
>>>>>>>>:

δC þ δM2 ¼ 0

Π̂renðs ¼ νÞ ¼ 0

Π̂ren
gh ðs ¼ νÞ ¼ 0;

Γren
v ðμ2Þ ¼ 1

Γren
s ðμ2Þ ¼ mq

ð27Þ

combined with the Taylor scheme [50] ZgZ
1=2
A ZC ¼ 1 for

the coupling, where

ν ≔
μ2

M2
: ð28Þ

In this renormalization scheme, the running coupling of
some RG flows turns out to be always finite, which implies
that the perturbation theory will be valid to some extent.
By imposing the above renormalization condition, we

have the renormalized two-point vertex functions,

Π̂TW
ren ðsÞ ¼ Π̂TW

YM;renðsÞ þ Π̂TW
q;renðsÞ; ð29Þ

Π̂TW
YM;renðsÞ ¼

g2C2ðGÞ
192π2

s

�
48

s
þ hðsÞ þ 3fðνÞ

s
− ðs → νÞ

�
;

ð30Þ
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Π̂TW
q;renðsÞ ¼ −

g2CðrÞ
6π2

s

�
hq

�
ξ

s

�
− hq

�
ξ

ν

��
; ð31Þ

Π̂TW
gh;renðsÞ ¼

g2C2ðGÞ
64π2

s½fðsÞ − fðνÞ�; ð32Þ

ΓTW;ren
v ðk2EÞ ¼ 1þ Σvðk2EÞ − Σvðμ2Þ; ð33Þ

ΓTW;ren
s ðk2EÞ ¼ mq þ Σsðk2EÞ − Σsðμ2Þ: ð34Þ

Note that the gluon propagator exhibits the decoupling
feature and satisfies the condition (ii) of the previous
section,

DTðk2E ¼ 0Þ ¼ 1

M2½1þ Π̂TW
ren ð0Þ�

> 0: ð35Þ

Indeed,

Π̂TW
q;renðs ¼ 0Þ ¼ 0;

Π̂TW
YM;renðs ¼ 0Þ ¼ g2C2ðGÞ

192π2

�
3fðνÞ − 15

2

�
> 0; ð36Þ

where we have used hqðt̃ → ∞Þ ¼ Oð1Þ, hðsÞ ¼
− 111

2s þOðln sÞ, fð0Þ ¼ 5=2, and the fact that fðsÞ is a
monotonically increasing function.
Finally, note that the one-loop expression of gluon

propagator will have disagreement at momenta far from
the renormalization scale μ. Indeed, in the UV limit, the
strict one-loop expression has the wrong asymptotic form:

DTðk2Þ ≃ −½g2γ0k2 ln jk2j þOðk2Þ�−1; ð37Þ

while the RG analysis yields

DTðk2Þ ≃ −
ZUV

k2ðln jk2jÞγ ; ð38Þ

where we have analytically continued the gluon propagator
from Euclidean momentum k2 ¼ −k2E to complex k2, γ0
and γ ¼ γ0=β0 are given in (4), and ZUV > 0.
However, for γ ¼ γ0=β0 > 0, the phase of the gluon

propagator on UV momenta is qualitatively correct despite
the wrong exponent of the logarithm. Furthermore, both of
the propagators have negative spectral functions ρðσ2Þ ¼
1
π ImDTðσ2 þ iϵÞ < 0 in the UV limit. Therefore, we expect
the one-loop expression will provide a good approximation
of the phase of the gluon propagator for γ > 0 based on the
robustness of the winding number. In Sec. IV, we indeed
confirm that the RG improved and strict one-loop gluon
propagators yield the same NWðCÞ for qualitatively the
same parameter region.

B. Renormalization group functions

Here we present the renormalization group functions
for ðg;M2; mq; ZA; ZC; ZψÞ [7,21]. For later convenience,
we put

λ ≔
C2ðGÞg2
16π2

: ð39Þ

The beta functions βα and anomalous dimensions γΦ are
defined for the masses and coupling α ¼ g;M2; mq; λ and
for the fields Φ ¼ A;C;ψ i renormalized at a scale μ as

βα ≔ μ
d
dμ

α; γΦ ≔ μ
d
dμ

lnZΦ; ð40Þ

where the bare masses and the bare coupling are fixed in
taking the derivative.
From the nonrenormalization theorems, ZAZCZM2 ¼ 1

and Zg
ffiffiffiffiffiffi
ZA

p
ZC ¼ 1, βλ, or equivalently βg, and βM2 are

expressed by γA and γC:

βλ ¼ λðγA þ 2γCÞ; βM2 ¼ M2ðγA þ γCÞ: ð41Þ

The other RG functions, γC, γA, γψ and βmq
are computed

as follows within the one-loop approximation. By differ-
entiating the counterterms, γΦ ¼ μ d

dμ δΦ, we have for
ghosts, [7]

γC ¼ −
λ

2ν2
½2ν2 þ 2ν − ν3 ln ν

þ ðν − 2Þðνþ 1Þ2 lnðνþ 1Þ�; ð42Þ

for gluons, [7,21]

γA ¼ γYMA þ γquarkA ð43Þ

γYMA ¼ −
λ

6ν3

�
ð17ν2 − 74νþ 12Þν − ν5 ln ν

þ ðν − 2Þ2ðνþ 1Þ2ð2ν − 3Þ lnðνþ 1Þ
þ ν3=2

ffiffiffiffiffiffiffiffiffiffiffi
νþ 4

p ðν3 − 9ν2 þ 20ν − 36Þ

× ln

� ffiffiffiffiffiffiffiffiffiffiffi
νþ 4

p
−

ffiffiffi
ν

p
ffiffiffiffiffiffiffiffiffiffiffi
νþ 4

p þ ffiffiffi
ν

p
��

;

γquarkA ¼ 16λCðrÞ
3C2ðGÞ

�
6t2 lnð

ffiffiffiffiffiffiffiffi
4tþ1

p þ1ffiffiffiffiffiffiffiffi
4tþ1

p
−1Þffiffiffiffiffiffiffiffiffiffiffiffiffi

4tþ 1
p − 3tþ 1

2

�
; ð44Þ

where

t ≔
m2

q

μ2
; ð45Þ

and, for quarks, [21]
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γψ ¼ g2C2ðrÞ
32π2μ4M2

�
Q
K2

�
μ8 þ μ6ðm2

q þM2Þ þ 2ðM2 −m2
qÞ3ðm2

q þ 2M2Þ þ μ4ð−2M2m2
q − 3m4

q þ 3M4Þ

þ μ2ðM2 −m2
qÞð6M2m2

q þ 5m4
q þ 7M4Þ

�
þ 2μ2M2ðμ2 − 2m2

q þ 4M2Þ þ 2ðμ6 − 3μ2m4
q − 2m6

qÞ ln
�
μ2

m2
q
þ 1

�

þ 2

�
μ6 − 3μ2ðm4

q þM4Þ − 2ð−3M4m2
q þm6

q þ 2M6Þ
�
ln

�
mq

M

�	
: ð46Þ

Since Zmq
¼ 1þ δmq

− δψ in the one-loop level, we obtain
the beta function for the quark mass mq [21],

βmq
¼ mqγψ þ 3g2C2ðrÞmq

16π2

�
−2þ 2ðM2 −m2

qÞ
μ2

ln

�
mq

M

�

−
ðμ2ðm2

q þM2Þ þ ðM2 −m2
qÞ2ÞQ

μ2K2

�
; ð47Þ

where Q and K2 are given in (26) with k2E ¼ μ2.

The flow diagram of ðλ¼C2ðGÞg2
16π2

;u¼M2=μ2;t¼m2
q=μ2Þ

for NF ¼ 3 is depicted in Fig. 2. In Fig. 2, the infrared
safe trajectories are shown as the blue curves, while the
green curves terminate at an infrared Landau pole. The red
one is not ultraviolet asymptotic free in the sense that the

running coupling λðμÞ does not vanish in the UV limit
μ → ∞ on the RG flow. As the pure Yang-Mills case, the
diagram has the infrared safe trajectories, on which the
running gauge coupling λ is always finite in the all scales.
One can confirm that the qualitative feature is the same
for NF ≤ 16.

C. Asymptotic behaviors of infrared safe trajectories

From the flow diagram Fig. 2, the infrared safe trajecto-
ries possess the following features: (i) In the UV limit
μ → ∞, the parameters ðλ; u; tÞ tend to ðλ → 0; u → 0;
t → 0Þ, (ii) In the IR limit μ → 0, they tend to
ðλ → 0; u → ∞; t → ∞Þ. In this subsection, we study their
asymptotic behaviors within the one-loop level.
Beforehand, there is a caveat on this discussion. In the

RG analysis of Oehme and Zimmermann [47], the param-
eter of the theory is only the gauge coupling g, which
guarantees that the higher-loop effects are suppressed in the
ultraviolet region precisely. Then, the one-loop RG gives a
strong argument on asymptotic behaviors and enables us to
establish the UV negativity of the gluon spectral function
for NF < 10. However, the massive Yang-Mills model has
the mass parameter, which can potentially invalidate the
perturbation theory in λ even though λ → 0 asymptotically.
Here, we assume that the perturbation theory “works well.”
In particular, we assume that the spectral function is
dominated by the one-loop contribution in both UV and
IR limits.
In the pure Yang-Mills case, a similar discussion on the

RG functions and Euclidean propagators can be found in
e.g., [16]. In what follows, we study asymptotic behaviors
of the RG functions, Euclidean propagators, and spectral
functions in the massive Yang-Mills model described in the
previous subsections.

1. UV limit

We consider the UV limit and confirm that the asymp-
totic behaviors of the massive Yang-Mills model is con-
sistent with those of the Faddeev-Popov Lagrangian.
Taking the limit u; t → 0, we have

γA →

�
−
13

3
þ 8CðrÞ
3C2ðGÞ

�
λþOðu; tÞ; ð48Þ

FIG. 2. RG flows in the parameter space ðλ ¼ C2ðGÞg2
16π2

;
u ¼ M2=μ2; t ¼ m2

q=μ2Þ for NF ¼ 3. The arrows indicate infra-
red directions μ → 0. The blue trajectories are infrared safe. The
green ones end at an infrared Landau pole. The red one is not
ultraviolet asymptotic free.
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γC → −
3

2
λþOðu ln uÞ; ð49Þ

which reproduce the standard one-loop beta function:

βλ ¼ λðγA þ 2γCÞ → β0;λλ
2; ð50Þ

β0;λ ≔ −
22

3
þ 8CðrÞ
3C2ðGÞ

< 0; ð51Þ

recovering the UV asymptotic behavior of the gauge
coupling λ ∼ −β0;λ= lnðμ=ΛÞ with some constant scale Λ.
On the other hand, the beta functions for the masses read,
for gluons,

βM2 ¼ M2ðγA þ γCÞ → β0;M2λM2;

β0;M2 ≔ −
35

6
þ 8CðrÞ
3C2ðGÞ

; ð52Þ

and for quarks,

βmq
→ −

6C2ðrÞ
C2ðGÞ

λmq þOðu ln u; t ln tÞ: ð53Þ

Notice that at G ¼ SUð3Þ, the gluon mass is suppressed
logarithmically for β0;M2 < 0, or NF < 35

8
C2ðGÞ ¼

105=8 ≈ 13.1 and enhanced logarithmically for 14 ≤ NF ≤
16, while the correction to the quark mass always
suppresses the quark mass in the logarithmic way.
Note that u ¼ M2=μ2 → 0 and t ¼ m2

q=μ2 → 0 expo-
nentially faster than λ → 0. This justifies a posteriori taking
the limit u; t → 0 in the first step.
Next, let us consider the propagators on the Euclidean

momenta. From the nonrenormalization theorems, ZA ¼
ZλZ−2

M2 and ZC ¼ ZM2Z−1
λ , which yield together with the

renormalization conditions (27), [7],

DTðk2E; μ20Þ ¼
λ0
M4

0

M4ðk2EÞ
λðk2EÞ

1

k2E þM2ðk2EÞ
;

Δðk2E; μ20Þ ¼ −
M2

0

λ0

λðk2EÞ
M2ðk2EÞ

1

k2E
; ð54Þ

where μ0 is the renormalization scale, andM0 and λ0 are the
mass and coupling at μ0. In the UV limit k2E → ∞,

DTðk2E; μ20Þ ∼ ½λðk2EÞ�
2β

0;M2

β0;λ
−1 1

k2E
∼

1

k2Eðln k2EÞ
γ0;A
β0;λ

;

Δðk2E; μ20Þ ∼ −½λðk2EÞ�−
β
0;M2

β0;λ
þ1 1

k2E
∼ −

1

k2Eðln k2EÞ
γ0;C
β0;λ

; ð55Þ

in accordance with the asymptotic form [47], where we

have defined γ0;A ≔ − 13
3
þ 8CðrÞ

3C2ðGÞ ¼ 2β0;M2 − β0;λ and

γ0;C ≔ − 3
2
¼ β0;λ − β0;M2 . These lead to the superconver-

gence relations for the gluon spectral function when
γ0;A < 0, and also for the ghost spectral function. For
quarks, one can find γψ ¼ Oðλ2; u; tÞ, which gives no
logarithmic correction to the quark propagator.
One can see the UV negativity for the gluon spectral

function and UV positivity for the ghost spectral function
from (55) combined with the analyticity or RG improve-
ment with respect to jk2j in the complex k2 plane [47].
Thus, it turns out that the massive Yang-Mills model can

describe the correct UV behavior by RG improvement from
the above observations, although we have regarded the
massive Yang-Mills model as a low-energy effective model.

2. IR limit

Next, we consider the IR limit of the infrared safe
trajectories: λ → 0; u → ∞; t → ∞. Taking the limit
u; t → ∞, we have

γA →
1

3
λþOðu−1; t−1Þ;

γC → 0þOðu−1 ln uÞ; ð56Þ

as those of the pure Yang-Mills case shown in [16]. This
indicates that the infrared gluon and ghost sector is
insensitive to the quark flavor effect except the case of
“massless quark” mq ¼ 0. As shown in [16], we find
βλ=λ ¼ βM2=M2 ¼ λ=3, which leads as μ → 0 to

M2 ∼ λ ∼
1

ln μ−1
: ð57Þ

The quark mass mq runs according to

βmq
→ Oðu−1 ln u; u−1 ln t; t−1Þ; ð58Þ

which indicates absence of logarithmic correction to the
quark mass in the infrared. Since u ¼ M2=μ2 → ∞ and
t ¼ m2

q=μ2 → ∞ exponentially increase more rapidly than
λ ∼ 1

ln μ → 0, the above evaluation is consistent.
From (57) and (54), the infrared safe trajectories describe

the decoupling solution, i.e., the massive gluon and the
massless free ghost in the IR limit as those in the pure
massive Yang-Mills model of [16].
Finally, we examine the spectral functions. In the gluon

vacuum polarization, the quark loop affects the gluon
spectral function in the region of ð2mqÞ2 < k2 < ∞ as
hqðt̃Þ has the branch cut only on −1=4 < t̃ < 0. Therefore,
the IR spectra of the gluon and ghost are the same as those
in the pure Yang-Mills case within the one-loop level
because the quark mass will be finite in the infrared as can
be seen from (58).
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As s → 0, the vacuum polarizations are

Π̂TW
YM;renðsÞ ¼

λ

12

�
3fðνÞ − 15

2
þ s ln sþOðsÞ

�
;

Π̂TW
gh;renðsÞ ¼

λ

4
s

��
5

2
− fðνÞ

�
− s ln sþOðs2Þ

�
: ð59Þ

From the assumption that the higher loop terms are
suppressed as μ → 0, i.e., the running u and t do not
invalidate the perturbation theory in λ, the following
approximation holds in the IR limit jk2j → 0,

DTðk2; μ20Þ ≃ ZAðjk2j; μ20ÞD1−loop
T ðk2; jk2jÞ;

Δðk2; μ20Þ ≃ ZCðjk2j; μ20ÞΔ1−loopðk2; jk2jÞ ð60Þ

where ZAðjk2j; μ20Þ and ZCðjk2j; μ20Þ are the renormalization

factors and ZAðμ2; μ20Þ ¼ λ0
M4

0

M4ðμ2Þ
λðμ2Þ , ZCðμ2; μ20Þ ¼ M2

0

λ0

λðμ2Þ
M2ðμ2Þ

from the nonrenormalization theorems. As μ2 → 0,

ZAðμ2; μ20Þ ∼M2ðμ2Þ; ZCðμ2; μ20Þ ∼ const: ð61Þ

Therefore, the spectral functions originating from the
branch cut on timelike momenta have the IR asymptotic
forms σ2 → þ0: for gluons,

ρðσ2Þ ¼ 1

π
ImDTðσ2 þ iϵ; μ20Þ

≃ ZAðσ2; μ20Þ
1

π
ImD1−loop

T ðσ2 þ iϵ; σ2Þ

∼ Im
1

½1þ sþ Π̂TW
ren ðsÞ�

����
s¼− σ2

M2−iϵ

∼ −ImΠ̂TW
ren

�
−

σ2

M2
− iϵ

�

∼ −
λðσ2Þ
M2ðσ2Þ σ

2 ∼ −σ2 < 0; ð62Þ

and for ghosts,

ρghðσ2Þ ¼
1

π
ImΔðσ2 þ iϵ; μ20Þ

≃ ZCðσ2; μ20Þ
1

π
ImΔ1−loopðσ2 þ iϵ; σ2Þ

∼ −Im
1

M2ðσÞ½sþ Π̂TW
gh;renðsÞ�

����
s¼− σ2

M2−iϵ

∼ const > 0: ð63Þ

These results demonstrate the IR negativity of the gluon
spectral function and the IR positivity of the ghost spectral
function for the infrared safe trajectories with mq > 0. The
ghost spectral function has a delta function at σ2 ¼ 0 with a

negative coefficient associated to the negative norm mass-
less ghost state and shows the finite positive spectrum in the
limit σ2 → þ0. Although we assume that the running u and
t do not invalidate the asymptotic perturbative expansion in
λ, the IR negativity of the gluon spectral function will be a
remarkable consequence from the infrared safety.
As an alternative evidence for the IR negativity

of the gluon spectral function, we can utilize the IR
behavior of the Euclidean propagator. For example,
although this relation gives a trivial result in this
model, it is worthwhile to note that they are related as
limkE→þ0

d
dkE

DTðk2EÞ ¼ −π limσ→þ0
d
dσ ρðσ2Þ [32]. Let us

consider the IR asymptotic behavior of the gluon propa-
gator. The Euclidean propagator (54) can be rewritten
as [16],

DTðk2EÞ ¼
Z−1
C ðk2EÞ

1þ k2E=M
2ðk2EÞ

; ð64Þ

from which we have

k2E
d
dk2E

DTðk2EÞ ≃
1

2
Z−1
C ðk2EÞ½−γC − 2u−1�

≃
1

2
Z−1
C ðk2EÞu−1

�
λ

2
u−1 ln u − 2

�

∼ −k2E ln k2E > 0; ð65Þ

where we have used γC → − λ
2
u−1 ln uþOðλuÞ and λðμÞ ≃

− 6
ln μ2 as μ → 0. Therefore, as kE → 0, we have

d
dk2E

DTðk2EÞ ∼ j ln k2Ej → þ∞: ð66Þ

This logarithmic divergence is precisely consistent with the
IR spectral negativity of ρðσ2Þ ∼ −σ2 < 0. Indeed, if
ρðσ2Þ ∼ −σ2 < 0, then, from the (generalized) spectral
representation, as kE → þ0,

d
dk2E

DTðk2EÞ ≃ −
Z

∞

0

dσ2
ρðσ2Þ

ðσ2 þ k2EÞ2
∼ j ln k2Ej; ð67Þ

which shows the coherency between the approximation of
(60) in the complex k2 momentum and the IR asymptotic
behavior of the Euclidean propagator of (54). Both of the
two arguments imply the IR negativity of the gluon spectral
function. As negativity of a spectral function in a weak
sense leads to complex poles [40], the IR and UV negativity
of the gluon spectral function supports the existence of
complex poles in the gluon propagator.
For the quark propagator, the one-loop expression gives

no nontrivial IR spectrum from (25). This is rather clear
from the facts that the Feynman diagram indicates ImΣ has
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nonvanishing value only for k2 > m2
q and that mqðμÞ is

constant in the IR limit.
Incidentally, let us comment on the nontrivial infrared

fixed point to give the Gribov-type scaling solution [16]. In
themassiveYang-Millsmodel of the pureYang-Mills theory,
a non-trivial fixed point in ðλ; uÞ plane appears, where the
gluon and ghost exhibit the Gribov-type behavior. One can
find a similar fixed point in the massive Yang-Mills model
with “massless quarks”mq ¼ 0. For instance, the fixed point
lies at ðλ; u; tÞ ¼ ð4.0; 1.6; 0Þ in NF ¼ 3. However, this
scaling-type fixed point has an infrared unstable direction.
Therefore, with quarks mq > 0, the unstable scaling-type
fixed point disappears due to the running of the quark mass.

IV. NUMERICAL RESULTS ON ANALYTIC
STRUCTURES

In this section, we present results on the number of
complex poles of the gluon and quark propagators in the
massive Yang-Mills model with quarks at the one-loop
approximation and its RG improvements. Without quarks,
we found the gluon propagator has NP ¼ −NWðCÞ ¼ 2 for
all parameters ðg2;M2Þ due to the negativity of the spectral
function [40]. Surprisingly, it turns out that the model with
many light quarks has NP ¼ 0, 2, 4 regions, depending on
the number of quarks NF and the parameters ðg2;M2; m2

qÞ.
In particular, for NFð4≲ NF ≤ 9Þ light quarks, the NP ¼ 4
region, where the gluon propagator has two pairs of
complex poles, covers a typical value of coupling g,
e.g., g ∼ 4 in the setting to be described shortly, and the
model with NFðNF ≥ 10Þ very light quarks has the region
with no complex poles around the typical value of
coupling g.
From here on, we set G ¼ SUð3Þ and the renormaliza-

tion scale μ0 ¼ 1 GeV. With the RG improvements, the
best fit parameters reported in [21] are g ¼ 4.5,
M ¼ 0.42 GeV, and the up and down quark masses mu ¼
md ¼ 0.13 GeV for the case of NF ¼ 2 while g ¼ 5.3,
M ¼ 0.56 GeV, and mu ¼ md ¼ 0.13 GeV for NF¼2þ
1þ1 (with the assumption on the strange and charm quark
masses of ms ¼ 2mu and mc ¼ 20mu). Notice that the
“quark mass”mq of this model should not be confused with
the current quark mass. The quark mass parameter mq will
be chosen to reproduce the propagators. Rather, mq will be
of the same order of the constituent quark mass, since we
renormalized this model at μ0 ¼ 1 GeV. In particular, the
massless quarks will differ from the “massless quarks”
mq ¼ 0 due to the spontaneous breakdown of the chiral
symmetry.
First, we investigate NWðCÞ of the strict one-loop gluon

propagator, mainly at fixed typical values of the parameters
g ¼ 4 and M2 ¼ 0.2 GeV2 to see a qualitative overview of
the analytic structures of this model. Next, we consider the
RG improvements of these results and evaluate the gluon
spectral function at the best-fit parameters for NF ¼ 2.

Comparing the strict one-loop and RG-improved results
could support the robustness of NWðCÞ. Further-
more, we discuss the complex poles of the quark propa-
gator and comment on the ghost propagator.

A. Gluon propagator: Strict-one-loop analysis

Based on the strict one-loop gluon propagator (13)
combined with (29), (30), and (31) of Sec. III, we compute
the winding number NWðCÞ for NF ≤ 9 according to the
procedure (9) of Sec. II. Notice that the strict one-loop
gluon propagator satisfies the conditions (i) and (ii) in

Sec. II. Since the two-point vertex function Γð2Þ
A ¼ ½DT �−1

is finite, the gluon propagator has no zeros, NZ ¼ 0. Thus
we can count the number of complex poles by computing
NWðCÞ ¼ −NP.

1. The number of complex poles at the typical ðg;MÞ
As a first step, we investigate the ðNF; ξ ¼ m2

q=M2Þ
dependence of NP at the fixed typical values of the
parameters to obtain an overview.
Figure 3 displays the contour plot of NWðCÞ on the

ðNF; ξ ¼ m2
q

M2Þ plane at the fixed g ¼ 4 andM2 ¼ 0.2 GeV2.
This figure is restricted to 0 ≤ NF < 10, since the one-loop
approximation will be not reliable for NF ≥ 10. Indeed, the
naive one-loop UVasymptotic form (37) for γ0 > 0, i.e., for

FIG. 3. Contour plot of NWðCÞ for the gluon propagator on the
ðNF; ξÞ plane at g ¼ 4 and M2 ¼ 0.2 GeV2, which gives the
number of complex poles through the relation NP ¼ −NWðCÞ. In
the NP ¼ 0, 2, 4 regions, the gluon propagator has zero complex
pole, one pair, and two pairs of complex conjugate poles,
respectively. The vertical dashed lines at NF ¼ 3 and NF ¼ 6
correspond to the top and bottom figures of Fig. 5, respectively.
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NF ≥ 10, shows the existence of a Euclidean pole together
with the fact that DTð0Þ > 0 and DTðk2Þ has no zeros.
This result illustrates that the gluon propagator has four

complex poles in the region colored with dark gray
(4≲ NF ≤ 9, 0.2≲ ξ≲ 0.6). It predicts that the transition
occurs from the NP ¼ 2 region to NP ¼ 4 region by adding
light quarks since NWðCÞ is a topological invariant. In the
NP ¼ 4 region, the gluon propagator has two pairs of
complex conjugate poles if we exclude the possibility of
Euclidean poles on the negative real axis.
To see details of the NP ¼ 4 region and its boundary, let

us look into positions of complex poles.

2. Location of complex poles

Here we take a further look into positions of complex
poles and the transition of NWðCÞ. We will report the ratio
w=v for a position of a complex pole k2 ¼ vþ iw and
trajectories of complex poles for varying ξ.
First, we focus on the ratio w=v at the complex pole

k2 ¼ vþ iw, on which we set w ≥ 0 without loss of
generality from the Schwarz reflection principle, in order
to see whether or not the gluon presents a particlelike
resonance. Since the gluon propagator has at most two
pairs of complex conjugate poles, it is sufficient to find
maxw=v and minw=v.
The results are demonstrated in Fig. 4. In general, the

ratio w=v of a complex pole decreases as NF increases.
This implies that the gluon exhibits more particlelike
behavior for larger NF. Note that the ratio minw=v rapidly
decreases near the boundary between NWðCÞ ¼ −2 and
NWðCÞ ¼ −4.
Second, we examine trajectories of complex poles for

NF ¼ 3 and NF ¼ 6. Figure 5 plots the pole location with
varying ξ. In the case of NF ¼ 3, no transition changing NP
occurs; the pole moves gradually and lowers its real part v as
increasing ξ. On the other hand, the trajectory of complex
poles is completely different at NF ¼ 6 where the transition
occurs. The pole moves continuously from the position of
ξ ¼ 0, but is absorbed into the branch cut at ξ ≈ 0.6.
Beforehand, the newpole arises at ξ ≈ 0.2 from thebranch cut.
These observations demonstrate that (i) the gluon propa-

gator has a pole at timelike momentum, which could
correspond to a physical particle, on the boundary between
the NP ¼ 2 and NP ¼ 4 regions and that (ii) the pole
bifurcates and becomes a new pair of complex conjugate
poles in the NP ¼ 4 region. This appearance of the new
pair of complex conjugate poles from the branch cut on the
real positive axis is compatible with the rapid decrease of
minw=v on the boundary between the NP ¼ 2 and NP ¼ 4
regions in Fig. 4.

3. (g,M) dependence

We have seen that the gluon propagator changes its
number of complex poles when many light quarks are

incorporated at the fixed typical values of the parameters of
g ¼ 4 and M2 ¼ 0.2 GeV2. Therefore, we have to check
whether or not the existence of the transition is insensitive
to choices of the parameters ðg;MÞ.
One can verify that the NWðCÞ ¼ −4 region in the

parameter space ðλ ¼ C2ðGÞg2
16π2

; u ¼ M2=μ20; ξ ¼ m2
q

M2Þ largely
expands by changing NF from NF ¼ 3 to NF ¼ 6. At
NF ¼ 6, the NWðCÞ ¼ −4 region dominates the parameter
region around the typical value g ∼ 4,M2 ∼ 0.2 GeV2 with

0.2≲ m2
q

M2 ≲ 0.6. See Appendix B for details.

FIG. 4. Contour plots of minw=v (top) and maxw=v (bottom)
for a complex pole at k2 ¼ vþ iw; w ≥ 0 of the gluon propagator
on the ðNF; ξÞ plane. The regions of w=v > 1, 1 > w=v > 0.1,
0.1 > w=v > 0.01, and 0.01 > w=v are represented by different
levels of gray. The vertical dashed lines at NF ¼ 3 and NF ¼ 6
correspond to the top and bottom figures of Fig. 5, respectively.
The region of minw=v < 0.01 appears around the transition
between NWðCÞ ¼ −2 and NWðCÞ ¼ −4. As NF increases, the
ratio w=v tends to be small.
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Thus our qualitative conclusion will be valid: this model
has the transition of NP, and the gluon propagator has four
complex poles in the presence of NFð4≲ NF ≤ 9Þ light

quarks with mq satisfying 0.2≲ m2
q

M2 ≲ 0.6.
Incidentally, to compare the results with those of the RG

improved gluon propagator, we show in Fig. 6 contour
plots of NWðCÞ at u ¼ M2=μ20 ¼ 0.2.

B. Gluon propagator: RG improved analysis

So far, we have studied the gluon propagator in the strict
one-loop level, relying on the robustness of the winding
number. To make this robustness more reliable and to study
the structure of the gluon propagator for NF ≥ 10, it is
important to survey thewinding number for the RG improved
gluon propagator. Moreover, this model reproduces the
numerical lattice results with the RG improved propagators
at the “realistic” parameters g ¼ 4.5, M ¼ 0.42 GeV, and
mq ¼ 0.13 GeV at μ0 ¼ 1 GeV and NF ¼ 2 [21]. In this
subsection, we investigate the analytic structure of the one-
loop RG improved gluon propagator for the realistic param-
eters and its parameter dependence for each number of quark
flavors NF.

The RG equation for the gluon propagator is

DTðk2E; αðμ2Þ; μ2Þ ¼ Z−1
A ðμ2; μ20ÞDTðk2E;αðμ20Þ; μ20Þ ð68Þ

where α denotes the set of gauge coupling and masses α ¼
ðλ; u ¼ M2=μ2; t ¼ m2

q=μ2Þ and ZAðμ2; μ20Þ is the renorm-
alization factor computed by the anomalous dimension. We
then approximate the gluon propagator to avoid the large
logarithms as

DTðk2; αðμ20Þ; μ20Þ
≈ ZAðjk2j; μ20ÞD1−loop

T ðk2; αðjk2jÞ; jk2jÞ ð69Þ

Although the RG improvements only for the modulus jk2j
on the complex k2 plane may break the analyticity, this will

FIG. 5. Positions of poles of the gluon propagator at NF ¼ 3

(top) and NF ¼ 6 (bottom) for varying 0 < ξ ¼ m2
q

M2 < 0.8.
As ξ increases, the poles move in the direction shown by the
arrows. At NF ¼ 3 (top), the pole moves continuously from the
position of ξ ¼ 0. In contrast, at NF ¼ 6 (bottom), the pole from
the position of ξ ¼ 0 goes behind the branch cut at ξ ≈ 0.6.
Moreover, the new pole (v ≈ 0.16 GeV2) appears from the branch
cut at ξ ≈ 0.2.

FIG. 6. Two-dimensional slice of equi-NWðCÞ volume of the
strict one-loop gluon propagator at NF ¼ 3 (top) and NF ¼ 6

(bottom) in the ðλ ¼ C2ðGÞg2
16π2

; u ¼ M2=μ20 ¼ 0.2; ξ ¼ m2
q

M2Þ space.
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give a better approximation than the strict one-loop
approximation for the propagator on the timelike momenta.
First, let us see the gluon propagator for the realistic

parameters. Figure 7 plots the real and imaginary parts of the
gluon propagator on the timelike momenta. The spectral
function is quasinegative, i.e., the spectral function is
negative ρðk20Þ < 0 at all timelike zeros k20 of ReDðk2Þ.
Then, NWðCÞ ¼ −2 from the invariance of NWðCÞ under
continuous deformation [40]. Since the gluon propagator
has no zerosNZ ¼ 0 from the fact that the RG improvement
only affects the renormalization factor and the running
couplings, we deduce the gluon propagator of this model
has one pair of complex conjugate poles as in the pure Yang-
Mills case. Incidentally, notice that the spectral function
ρðσ2Þ decreases linearly with respect to σ2 in the IR limit
σ2 → þ0, which is a general feature for the infrared safe
trajectories with mq > 0 in this model as shown in (62).
Next, we investigate the number of complex poles NP in

the whole parameter space for each NF. Since NZ ¼ 0
within this approximation as before, NP can be computed
as NP ¼ −NWðCÞ. Note that different points on a same
renormalization group trajectory in the three dimensional
parameter space, e.g., Fig. 2, provide the same analytic
structure. Indeed, they are exactly connected by the scale
transformation from the dimensional analysis and the
anomalous dimension: under a scaling κ,

DTðk2; αðκ2μ20Þ; μ20Þ
¼ κ2Z−1

A ðκ2μ20; μ20ÞDTðκ2k2; αðμ20Þ; μ20Þ; ð70Þ

which shows thatDTðk2;αðκ2μ20Þ;μ20Þ andDTðk2;αðμ20Þ;μ20Þ
have the same number of complex poles. Therefore, it
suffices to compute in the two-dimensional slice of the
renormalization group flow, see Fig. 2. From here on, we
employ the two dimensional slice at u ¼ M2=μ2 ¼ 0.2.
Figures 8 and 9 reveal the results for NF ¼ 3, 6, 9, 10.

Note that, since the analytic structure of the gluon

propagator approaches to that of the pure massive Yang-
Mills model asmq → ∞, the gluon propagator has one pair
of complex conjugate poles NP ¼ 2 for large ξ. At NF ¼ 3,
the NP ¼ 2 region dominates the region of the parameters.
At NF ¼ 6, in the presence of light quarks, the NP ¼ 4
region, on which the gluon propagator has two pairs of
complex conjugate poles, occupies the larger region,
especially around a typical coupling λ ∼ 0.3. On the other
hand, at NF ¼ 9, the NP ¼ 0 region, on which the gluon
propagator has no complex poles, expands and the NP ¼ 4
region shrinks. At NF ¼ 10, notably, the NP ¼ 4 region
disappears, and the NP ¼ 0 region appears in the larger
region of λ for the very light quark mass mq=M ≪ 1.
Note that the strict one-loop gluon propagator and the

RG improved one provide almost the same result for

FIG. 7. Real part (blue) and imaginary part (orange) of the
gluon propagator at the realistic parameters for NF ¼ 2 [21] on
the positive real axis. This shows its spectral function is quasi-
negative, from which NWðCÞ ¼ −2. Notice that the spectral
function exhibits the linear decrease with respect to k2 in
agreement with (62) in the IR limit.

FIG. 8. Two-dimensional slice of equi-NWðCÞ volume of the
gluon propagator at NF ¼ 3 (top) and NF ¼ 6 (bottom) in the

ðλ ¼ C2ðGÞg2
16π2

; u ¼ M2=μ20 ¼ 0.2; ξ ¼ m2
q

M2Þ space. Besides the re-
gion with the Landau poles (white), these plots have almost the
same structure as Fig. 6.
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NF ¼ 3, 6 by a comparison between Figs. 6 and 8. This
supports the robustness of the winding number NWðCÞ.
It is remarkable that the parameter dependence of the

analytic structure drastically changes between NF ¼ 9 and
NF ¼ 10. The extension of NP ¼ 0 region for very light
quarkmass can be seen from theUV positivity of the spectral
function forNF ≥ 10 [47], since the positivity in aweak sense
indicates NWðCÞ ¼ 0 [40]. In a similar sense, the disappear-
ance ofNP ¼ 4 region could be related to theUVpositivity of
the spectral function, which might lower NWðCÞ.

C. Quark propagator

As pointed out in [21], the one-loop RG computation is
not enough to reproduce the quark wave function renorm-
alization, although the one-loop quark mass function
exhibits a qualitative agreement with lattice results. The

higher loop corrections or other ignored effects are thus
highly significant to describe the quark sector well. Here,
we try to examine the quark propagator within the
framework of the one-loop RG to catch the qualitative
feature as a first attempt.
Let us consider the vector and scalar parts of the quark

propagator:

Svðk2EÞ ¼
Γren
v

k2EðΓren
v Þ2 þ ðΓren

s Þ2 ;

Ssðk2EÞ ¼
Γren
s

k2EðΓren
v Þ2 þ ðΓren

s Þ2 : ð71Þ

We define the spectral functions associated to these
propagators,

ρvðσ2Þ ¼
1

π
ImSvðk2E ¼ −σ2 − iϵÞ;

ρsðσ2Þ ¼
1

π
ImSsðk2E ¼ −σ2 − iϵÞ: ð72Þ

Note that the positivity of the state space would imply

ρvðσ2Þ > 0; σρvðσ2Þ − ρsðσ2Þ > 0: ð73Þ
We use the same improvement scheme as (69). The scalar

and vector parts of the quark propagator at the realistic
values of the parameters are plotted in Fig. 10. Both of the
propagators have negative spectral functions and therefore
have one pair of complex conjugate poles like the gluon
propagator. Notice that both the conditions for the positivity
(73) are violated. The former condition can be seen from the

FIG. 9. Two-dimensional slice of equi-NWðCÞ volume of the
gluon propagator at NF ¼ 9 (top) and NF ¼ 10 (bottom) in the

ðλ ¼ C2ðGÞg2
16π2

; u ¼ M2=μ20 ¼ 0.2; ξ ¼ m2
q

M2Þ space. The white region
shows RG trajectories with the Landau poles.

FIG. 10. Real (blue) and imaginary (orange) parts of the scalar
part (top) and the vector part (bottom) of the quark propagator on
the positive real axis at the realistic parameters for NF ¼ 2 [21].
Their spectral function are negative, from which NWðCÞ ¼ −2
for both the scalar and vector parts.
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vector part of the quark propagator in Fig. 10. Figure 11
shows the violation of the latter one.
Next, we investigate the number of complex poles with

various parameters ðNF; g;M;mqÞ. The results on the
winding number NWðCÞ at NF ¼ 3 and NF ¼ 12 are
shown in Fig. 12. We numerically checked that both of
the scalar and vector parts of the quark propagator (71)
yield the same NWðCÞ on the region shown in Fig. 12, from
which NZ ¼ 0 for the both parts.
The quark sector does not exhibit a new structure by

addingNF quarks. The qualitative insensitivity of the quark
sector to NF is evident in the sense that the strict one-loop
expression is, of course, independent of NF and that the
quark propagator will only be influenced indirectly by NF
via the running parameters. However, it is worthwhile to
note that the region with NP ¼ 0 extends slightly as NF
increases, in particular for very light quarks ξ ≪ 1, which is
a common feature with the gluon one.

D. Ghost propagator

Finally, let us add some comments on the ghost propa-
gator. The strict one-loop propagator is not affected by the
dynamical quarks. Therefore, from the proposition (Case
III) of [40], the value NWðCÞ ¼ 0 for ghosts will hold after
the RG improvements unless the RG trajectory has a Landau
pole. Therefore, we conclude that the analytic structure of
the ghost propagatorwithin this approximation is insensitive
to NF and that the ghost propagator has no complex poles.

V. CONCLUSION

Let us summarize our findings. The argument principle
for a propagator relates the propagator on the timelike
momenta and the number of complex poles. The winding
number NWðCÞ ¼ NZ − NP can be computed numerically
from a propagator on timelike momenta according to (9),
where NZ and NP stand for the number of complex zeros
and poles respectively.
To study the analytic structures of the QCD propagators,

we have employed an effective model of QCD, the massive
Yang-Mills model. We have found that the infrared safe
trajectories, on which the running coupling is finite in all
scales, reproduce the UV asymptotic behavior (55) origi-
nally obtained by Oehme and Zimmermann [47] and that
the gluon spectral function is negative in the IR limit
ρðσ2Þ ∼ −σ2 for quarks with the quark mass parameter of
this model for mq > 0 (62). The UV negativity of Oehme-
Zimmermann and IR negativity of the gluon propagator
argued in this paper supports the existence of complex
poles in the gluon propagator from the general relationship
claiming that a negative spectral function in a weak sense
leads to complex poles [40].
In the “realistic” parameters used in [21] to fit the

numerical lattice results, both the gluon and quark propa-
gators have quasinegative spectral functions and one pair of

FIG. 11. The quark spectral function σρvðσ2Þ − ρsðσ2Þ is
plotted at the realistic parameters. The positivity condition is
violated below 0.8 GeV2.

FIG. 12. Two-dimensional slice of equi-NWðCÞ volume of the
quark propagator at NF ¼ 3 (top) and NF ¼ 12 (bottom) in the

ðλ ¼ C2ðGÞg2
16π2

;M2=μ20 ¼ 0.2; ξ ¼ m2
q

M2Þ space. Both of the scalar and
vector parts provide the same NWðCÞ.
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complex conjugate poles, while the ghost propagator has no
complex poles.
Finally, we have investigated the number of complex poles

in this model with many quarks by computing NWðCÞ for
various parameters. For the gluon, there are several interesting
features. First, the NP ¼ 2 region dominates the parameter
region if ξ ¼ m2

q=M2 is not so small orNF ≲ 4. In this region,
the gluon propagator has one pair of complex conjugate poles
as in the pure Yang-Mills case [40]. Second, the NP ¼ 4
region, where the gluon propagator has two pairs of complex
conjugate poles, expands by adding light quarks. A typical set
of the parameters (g ≈ 4, M2 ≈ 0.2 GeV2) is covered by the
NP ¼ 4 region when 4≲ NF ≤ 9; 0.2≲ ξ≲ 0.6. These
features hold in the computations both for the strict one-loop
and the RG-improved one-loop results. Third, the strict one-
loop result on the locations of complex poles indicates that the
gluon tends to be “particlelike” as NF increases. Fourth, for
NF≥10, the one-loop RG-improved gluon pro-
pagator has no NP ¼ 4 region. Moreover, the gluon propa-
gator with NFðNF ≥ 10Þ very light quarks ξ ≪ 1 has no
complex poles even for a typical value of the gauge coupling.
The existence of complex poles invalidates the Källén-

Lehmann spectral representation, which is a fundamental
consequence of QFT describing physical particles.
Therefore, the existence of complex poles of the gluon
and quark propagators could be a signal of confinement of
the elementary degrees of freedom in QCD.
In conclusion, the above results imply that the confine-

ment mechanism may depend on the number of quarks and
quark mass since complex poles represent a deviation from
physical particles and will be related to confinement.
Furthermore, the drastic change between NF ¼ 9 and
NF ¼ 10 quarks could be possibly related to the “decon-
finement” in line with the conformal window.

VI. DISCUSSION AND FUTURE WORK

Several comments regarding these results are in order.
First, let us mention a comparison with a similar

approach [38,39], where the analytic structures of gluon
and quark propagators are investigated with a massive-type
model in light of the variational principle and optimization.
In there, the gluon propagator has two pairs of complex
conjugate poles, while the quark propagator has a timelike
pole and no complex poles in NF ¼ 2 QCD. These
structures are different from ours, in which the gluon
and quark propagators have one pair at the “realistic”
parameter. Although the quark sector of both models lacks
accuracy, the difference will be relevant in light of the
confinement of quark degrees of freedom3; a timelike pole

might correspond to a physical one-particle state even after
some confinement mechanism works. In this sense, the
absence of a timelike pole will be favored.
Second, we comment on the NF dependence of the

condensation. We have studied the mass-deformed model
as an effective model for QCD or QCD-like theories based
on the facts that the gluon mass can minimally improve the
gauge fixing procedure and that the effective potential for the
operator AμAμ calculated by the local composite operator
technique indicates the condensation of this operator
[12,13]. The former argument can give a masslike effect
independently upon NF. However, the latter one will be
substantially affected by the presence of quarks. The
effective potential of [13] appears to be “unbounded” for
γ0 > 0, or NF ≥ 10 for G ¼ SUð3Þ. The “unboundedness”
follows from the fact that the coefficient of the Hubbard-
Stratonovich transformation ζ runs into the negative infinity
ζ → −∞ in the UV limit μ → ∞ due to additive counter-
terms for NF ≥ 10 even if it is set to be a positive value at
some scale. This problemmight indicate the limitation of the
perturbative treatment for the local composite operator.
Therefore, we have no cogent argument supporting the
dimension-two gluon condensate for NF ≥ 10.
Third, related to the second remark, the validity of our

results will be questionable for large NF. For instance, two-
loop corrections will be important if the first coefficient of
the beta function is small as in the original argument of the
infrared conformality [25,26]. Moreover, the results from
the truncated Schwinger-Dyson equation [29] show that the
gluon and ghost propagators seem to obey a scaling-type
power law in a wide range of momentum in the conformal
window; the description by the massive Yang-Mills model
will be inappropriate above the critical value of NF.
However, we can expect that the massive Yang-Mills
model will be valid in the QCD-like phase, or below the
critical value of NF. Therefore, the massive Yang-Mills
model may capture some information on the transition from
the QCD-like phase.
Fourth, NF ¼ 10, where the first coefficient of the gluon

anomalous dimension changes its sign, is the value at which
the analytic structure of the gluon propagator changes
drastically in our analysis. This value appears in various
perspectives. For example, there has been some proposal
that the negativity of the gluon anomalous dimension is
crucial for confinement [51]. NF ≈ 10 can be the critical
value of the conformal phase transition [30].
Finally, the investigation of the analytic structures by

model calculations is speculative and should be taken as
an attempt toward capturing some aspects of the intricate
dynamics of QCD. Many works of literature have different
claims. For example, Ref. [52] claims that the quark propa-
gator has a pole at a timelike momentum while the gluon
propagator has complex poles by using some parametriza-
tions for the propagators and the numerical solution of
truncated Dyson-Schwinger equation. The gluon propagator

3The confinement of quark degrees of freedom, which stands
for absence of the quark one-particle state from the physical
spectrum, should not be confused with the well-studied “quark
confinement” that means an external quark source requires
infinite energy or the linear rising quark-antiquark potential.
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obtained by solving the truncatedDyson-Schwinger equation
on the complexmomentumplane in pureYang-Mills theory is
shown to have no complex poles [43].A recent reconstruction
technique indicates complex poles in the gluon propagator
[42]. Pursuing the rich analytic structure of the QCD
propagators deserves further investigations because a QFT
describing confined particles is not yet well understood.
On a formal side, a local QFT cannot yield complex

poles in the standard perspective, see, e.g., [53]. One might
assert that complex poles correspond to short-lived exci-
tations and break the locality and unitarity in the level of
propagators [34,35]. However, if we analytically continue4

a propagator with complex poles not in the complex
momentum but in the complex time from the Euclidean
space to the Minkowski one, the resulted propagator can be
interpreted as a propagator of a QFT with an indefinite
metric state space having complex spectra that can satisfy
local commutativity, e.g., [54]. Notice that such theories
with complex spectra and an indefinite metric are out of the
scope of the axiomatic quantum field theory because their
Wightman functions are not tempered distribution due to
complex energies, and the theorems derived by assuming
the temperedness are not applicable to the “propagators
with complex poles.” Then, complex poles would not lead
to the nonlocality and just represent unphysical degrees of
freedom. Further discussion on this issue is reserved for
future works. As discussed in [36,55], it would also be
interesting to study how the complex poles are “canceled”
in the physical propagator.
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APPENDIX A: COUNTING COMPLEX POLES
FOR VARIOUS INFRARED BEHAVIORS

Here, we generalize the IR asymptotic condition
(ii) Dðk2 ¼ 0Þ > 0 to derive the formula (9) in Sec. II.
This will be relevant for the scaling solution of the gluon
propagator or a propagator having massless singularity.
Incidentally, in regard to the IR behavior of the gluon

propagator, there is an argument on the gluon propagator in
the Landau gauge [56]: If one restricts the configuration
space inside the first Gribov region, the gluon propagator
satisfies limk→þ0 kd−2DðkÞ ¼ 0, where d is the spacetime
dimension. This excludes the massless free behavior for the
gluon propagator irrespective of NF for d ≤ 4. Note that,

however, this proposition is shown for theories avoiding the
Gribov ambiguity by the restriction; this proposition is not
applicable to theories that fix the gauge by schemes
averaging over Gribov copies like [15] or some justification
of the standard Faddeev-Popov Lagrangian.
The generalization of (9) is as follows.
Suppose that the propagator Dðk2Þ and its data fDðxn þ

iϵÞgNn¼1 satisfies the following three conditions:
(i) In the UV limit jzj → ∞, Dðk2Þ has the same phase

as the free propagator, i.e., argð−DðzÞÞ → arg 1
z as

jzj → ∞.
(ii’) Dðk2Þ → ZIRð−k2Þα as jk2j → 0, where α is a real

number.
(iii) fk2 ¼ xn þ iϵgNn¼0 is sufficiently dense so that

Dðk2 ¼ xþ iϵÞ changes its phase at most half-
winding (�π) between xn þ iϵ and xnþ1 þ iϵ, where
we denote sufficiently small x0 ¼ δ2 > 0 and suffi-
ciently large xNþ1 ¼ Λ2, on which we will take the
limits δ2 → þ0 and Λ2 → þ∞.

Then, the winding number NWðCÞ is expressed as

NWðCÞ ¼ −α − 1þ 2
XN
n¼0

1

2π
Arg

�
Dðxnþ1 þ iϵÞ
Dðxn þ iϵÞ

�
: ðA1Þ

Let us derive this expression. First, we decompose the
path around the positive real axis C2 into three pieces
C2 ¼ C2;þ ∪ Cδ ∪ C2;−, where C2;� stands for the path
along the positive real axis of C2;� ¼ fx� iϵ; δ2 < x <
Λ2g and Cδ for the small circle whose center is the origin
k2 ¼ 0. Accordingly, the winding number can be decom-
posed into the integrals

NWðCÞ ¼ NWðCδÞ þ NWðC1Þ þ NWðC2;−Þ þ NWðC2;þÞ:
ðA2Þ

The integral NWðC1Þ þ NWðC2;−Þ þ NWðC2;þÞ can be
evaluated as before,

NWðC1Þ þ NWðC2;−Þ þ NWðC2;þÞ

¼ −1þ 2
XN
n¼0

1

2π
Arg

�
Dðxnþ1 þ iϵÞ
Dðxn þ iϵÞ

�
: ðA3Þ

For the contribution from the small circle, note that
Dðk2�iϵÞ
jDðk2�iϵÞj ¼ e∓iπα as k2 → þ0. Therefore the phase factor

D=jDj varies from eþiπα to e−iπα, from which

NWðCδÞ ¼ −α: ðA4Þ
To sum up, we obtain (A1). Note that the IR suppression

contributes negatively to NWðCÞ ¼ NZ − NP.

APPENDIX B: DETAILED RESULTS ON THE
ONE-LOOP GLUON PROPAGATOR FOR

VARIOUS PARAMETERS

Here, we show detailed analyses on the results given
in Sec. IVA 3 on the strict one-loop gluon propagator. To

4To our knowledge, a method to reconstruct a QFT from a
given Euclidean field theory has not been established in the
presence of complex poles. The standard reconstruction does not
work due to the violation of the reflection positivity. [1,41]
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check the insensitivity of the transition, we shall
compute NWðCÞ in the three dimensional parameter space

ðλ¼C2ðGÞg2
16π2

;u¼M2

μ2
0

;ξ¼m2
q

M2Þ.

FIG. 13. Boundary surfaces of equi-NWðCÞ volume at NF ¼ 3

(top) and NF ¼ 6 (bottom) in the ðλ ¼ C2ðGÞg2
16π2

; u ¼ M2

μ2
0

; ξ ¼ m2
q

M2Þ
space. Their cross sections at several values of ξ are shown in
Figs. 14 and 15. The gluon propagator has four complex poles
inside the green surface and no complex poles inside the blue
surface; otherwise the gluon propagator has two complex poles.
At NF ¼ 3, the black dot shows a typical set of the parameters
(g ¼ 4, M2 ¼ 0.2 GeV2, and ξ ¼ 0.1) and the gluon propagator
has two complex poles around there. On the other hand, at

NF ¼ 6, the gluon propagator has NP ¼ 4 for 0.2≲ m2
q

M2 ≲ 0.6
around the typical values g ∼ 4, M2 ∼ 0.2 GeV2.

FIG. 14. Contour plots of NWðCÞ ¼ −NP of the gluon propa-

gator on the two-dimensional parameter space ðλ ¼ C2ðGÞg2
16π2

; u ¼
M2

μ2
0

Þ at ξ ¼ 0.1, 0.3, 0.5 for NF ¼ 3.
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Figure 13 plots the boundary surfaces of equi-NWðCÞ
volume at NF ¼ 3 and NF ¼ 6 in the three-dimensional
parameter space ðλ; u; ξÞ. The gluon propagator has four
complex poles inside the green surface (0.2≲ ξ≲ 0.6)
and no complex poles inside the blue surface (with
small λ and ξ), and two complex poles except these
regions.
Contour plots for selected ξ are displayed in Fig. 14

for NF ¼ 3 and in Fig. 15 for NF ¼ 6. They give two-
dimensional slices at fixed ξ ¼ 0.1, 0.3, 0.5 of Fig. 13.
The regions colored with light gray (NP ¼ 0) in Figs. 14
and 15 are two-dimensional cross sections at fixed ξ of
the volumes inside the blue surfaces in the top and
bottom figures of Fig. 13, respectively. Similarly, the
regions colored with dark gray (NP ¼ 4) in Figs. 14 and
15 are those of the volumes surrounded by the green
surfaces in the top and bottom figures of Fig. 13,
respectively.
Figure 13 demonstrates the NWðCÞ ¼ −4 region

inside the green surface expands from NF ¼ 3 to
NF ¼ 6. In the figure of NF ¼ 3 (top of Fig. 13), the
set of the typical values (g ¼ 4, M2 ¼ 0.2 GeV2, and
ξ ¼ 0.1) is shown as a black dot, of which Fig. 3 is
computed at ðg;M2Þ. The NWðCÞ ¼ −4 region occupies

the region 0.2≲ m2
q

M2 ≲ 0.6 around the typical values of the
parameters (g ∼ 4, M2 ∼ 0.2 GeV2) at NF ¼ 6. From these
observations, we deduce that the existence of the transition
is insensitive to a detailed choice of g and M2. Therefore,
the rough investigation in Sec. IVA will be qualitatively
valid in this model.
In addition, since the gluon propagator acquires a pole at

timelike momentum on the boundary of the NP ¼ 4 region
and its poles will move like Fig. 5, w=v for the pole of the
gluon propagator decreases as NF increases. Hence, the
gluon will become more particlelike in the presence of
many light quarks, irrespectively of a detailed choice of the
parameter ðg;MÞ.

FIG. 15. Contour plots of NWðCÞ ¼ −NP of the gluon propa-

gator on the two-dimensional parameter space ðλ ¼ C2ðGÞg2
16π2

;

u ¼ M2

μ2
0

Þ at ξ ¼ 0.1, 0.3, 0.5 for NF ¼ 6.
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