
 

Dispersive construction of two-loop P → πππðP=K;ηÞ amplitudes

K. Kampf ,1,* M. Knecht ,2,† J. Novotný ,1,‡ and M. Zdráhal 1,§

1Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University,
V Holešovičkách 2, CZ-180 00 Prague 8, Czech Republic
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We present and develop a general dispersive framework allowing us to construct representations of the
amplitudes for the processes Pπ → ππ, P ¼ K, η, valid at the two-loop level in the low-energy expansion.
The construction proceeds through a two-step iteration, starting from the tree-level amplitudes and their S
and P partial-wave projections. The one-loop amplitudes are obtained for all possible configurations of
pion masses. The second iteration is presented in detail in the cases where either all masses of charged and
neutral pions are equal or for the decay into three neutral pions. Issues related to analyticity properties of the
amplitudes and of their lowest partial-wave projections are given particular attention. This study is
introduced by a brief survey of the situation, for both experimental and theoretical aspects, of the decay
modes into three pions of charged and neutral kaons and of the eta meson.
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I. INTRODUCTION

Our experimental knowledge of the Dalitz-plot structures
of the amplitudes for the processes P → πππ has substan-
tially improved during the last decades, for P ¼ K� [1–7],
P ¼ KL [8], or P ¼ η [9–18]. This situation is likely to
improve further still in the future [19,20]. The sizes of the
collected data samples in the case of the charged kaons, for
instance, outgrow by orders of magnitude those that were
available before. This general increase in statistics has
prompted various theoretical studies [21–43] of these decay
modes, often with an emphasis on isospin-breaking con-
tributions. Indeed, from the theoretical point of view, these
processes are interesting because they provide access to
fundamental quantities. For instance, the rates for the
decays η → πππ, which are forbidden in the isospin limit,
offer a good possibility to determine the value of the quark
mass ratio

R ¼ ms − m̂
md −mu

; ð1:1Þ

wheremu,md, andms denote themasses of the three lightest
quark flavors, while m̂¼ðmuþmdÞ=2. Furthermore, the
processes with two neutral pions in the final state exhibit
the so-called cusp effect, which contains information on the
ππ scattering lengths in the S-wave. Concerning this last
aspect, in particular, the decay modes K� → π�π0π0 and
KL → 3π0 have already been studied from this point of view
by the NA48 [1,6] and KTeV [8] collaborations, respec-
tively. The first attempts to measure the same effects in the
decays of the ηmeson into three neutral pions have also been
reported [12].1

Traditionally, the processes P → πππ are most of the
time being analyzed with a polynomial parametrization (in
terms of slopes and curvatures in appropriately chosen
Dalitz-plot variables) of the amplitude, and theoretical
expressions have often been given in this form as well.
It is clear that the study of nonanalytic features of the
amplitude, like a cusp, cannot be done within such a simple
framework. The aim of the work presented in this article is,
therefore, the construction of a model-independent form of
two-loop amplitudes of the processes mentioned above that
is valid up to two loops in the low-energy expansion
and that exhibits the correct unitarity parts coming from
the ππ intermediate states. These are the only states that, up
to that order, give rise to nonanalytic structures in the
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1Depending on the process, the cusp can be more or less
pronounced, and therefore more or less easy to measure. A
criterion allowing one to estimate the “visibility” of the cusp in
the different processes mentioned above has been proposed and
discussed in Ref. [36].
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corresponding decay amplitudes. Other two-meson inter-
mediate states correspond to more remote thresholds for
the Pπ → ππ scattering amplitudes that, inside the decay
region, can be quite appropriately approximated and
described by a polynomial. Intermediate states with more
than two mesons occur only at higher orders in the chiral
expansion, and will, therefore, not be considered here. Our
aim is, however, to include isospin-breaking effects induced
by the mass difference between charged and neutral pions,
without which no cusp would be seen in the decay
distribution. Note that the effects of electromagnetic inter-
actions other than those leading to isospin breaking in the
meson masses, i.e., exchanges of virtual photons between
charged states and photon emission, are not included in the
construction. A more complete discussion of this aspect is
given in Sec. 2.1 of Ref. [44].
Our construction is adapted from the “reconstruction

theorem,” first established in Ref. [45] for the case of the ππ
amplitude in the isospin limit. The authors of Ref. [45] have
shown that, up to two loops in the chiral expansion, the
analytical form of the amplitude is completely fixed by
general properties like relativistic invariance, unitarity,
analyticity, and crossing, supplemented by chiral counting
for the partial waves. Isospin symmetry was also invoked,
but its role merely served to reduce the scattering ampli-
tudes in the various channels to a single amplitude. The
construction of the analytical expression of the ππ ampli-
tude in this framework was then implemented explicitly in
Ref. [46]. The method is, however, more general and allows
for several extensions. First, it also applies to the scattering
amplitudes involving other pseudoscalar mesons [47].
Next, it generalizes in a straightforward manner to the
situation without isospin symmetry, the main difference
being that several independent amplitudes will be involved
in order to describe the different channels [44]. Finally, it
also applies to other observables, like form factors
[44,48,49]. The present work extends the general method
of the reconstruction theorem of Ref. [45] to the amplitudes
of the scattering processes Pπ → ππ, P ¼ K�; KL; KS; η,
in the threshold region. The amplitudes for the decay
processes P → 3π are then obtained by analytic continu-
ation below the threshold and inside the physical decay
region in the Mandelstam plane.
This is the first article devoted to the presentation of the

details of the construction of such analytical expressions for
the decay amplitudes P → πππ up to two loops in the low-
energy expansion. In the present article, we give the full
isospin-breaking result for all the amplitudes only at the
one-loop level, while at the first stage, the expressions of
the two-loop amplitudes are only worked out in the limit
where the masses of the neutral and charged pions are
equal. This allows describing some general features of our
construction in a simpler framework without having to deal,
in addition, with several kinematic complications that arise
only when the intermediate- and final-state pions have

unequal masses. Incidentally, this is the framework that we
have used in Ref. [36], devoted to the analysis of the decay
of the η meson into three pions. We also plan to update the
latter analysis, taking more recent data [15,16,18] into
account, but this will be left for a separate work [50]. A
rather simple extension of this framework, though, allows
dealing with isospin breaking in the pion masses in the
case of the decay channels into three neutral pions, which
we will treat in a second stage in the present article. The
results where all isospin-breaking effects due to the mass
difference between neutral and charged pions are included
up to two loops when the final state contains also charged
pions will be discussed in a forthcoming paper [51]. We
also do not address the possible violation of CP invariance,
for instance, in the K → πππ processes, although it could
be straightforwardly incorporated into our framework if
necessary.
The outline of this paper is then as follows. In the next

section, we briefly summarize all the processes in question
and list the existing studies of the last few years. Section III
recalls the main aspects and content of the reconstruction
theorem and introduces our notation. In Sec. IV, we write
the results of the first iteration of the reconstruction
theorem for the ππ scattering and the Pπ → ππ amplitudes.
Section V then gives the result of the second iteration in the
limit where the charged and neutral pion masses are
identical. These results are extended, for the decay modes
into three neutral pions, to the situation where the differ-
ence in the pion masses is taken into account in Sec. VI.
The final section is devoted to a summary and conclusions.
In order not to overload the main text with too many
technical issues and lengthy expressions, some of them
have been gathered in four Appendixes.
Some aspects of this work have also been discussed

in earlier preliminary reports [52–54]. A comprehensive
account with more details on some of the technical aspects
can also be found in Ref. [55].

II. PROCESSES IN QUESTION

Our analysis covers the following list of processes:

K� → π0π0π�; ð2:1aÞ

K� → π�π�π∓; ð2:1bÞ

KL → π0π0π0; ð2:1cÞ

KL → πþπ−π0; ð2:1dÞ

KS → πþπ−π0; ð2:1eÞ

η → π0π0π0; ð2:1fÞ

η → πþπ−π0: ð2:1gÞ
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The natural framework for describing the amplitudes of
these processes is three-flavor chiral perturbation theory
[56], extended, in the case of kaon decays, to also include
the weak nonleptonic decays [57]. At the lowest order, the
corresponding amplitudes are simply first-order polyno-
mials in the Mandelstam variables. Here, as already
mentioned, we will ignore CP-violating contributions, so
that the coefficients of these lowest-order polynomials are
real. The computation of higher orders meets technical
complications, as well as the necessity to consider an
increasing number of low-energy constants, which then
need to be determined independently.
In the rest of this section, we are going to describe the

present situation for the three types of processes, the decay
of a charged or of a neutral CP-odd kaon into three pions,
the similar decay modes of the η meson, and finally the
decay into three pions of a neutral CP-even kaon.

A. K� and K0
L decays into three pions

These decay amplitudes were computed using the
framework of chiral perturbation theory up to next-to-
leading order (NLO) already in 1991 [58], at that time
ignoring all the isospin-breaking effects. Explicit expres-
sions for the one-loop amplitudes in the isospin limit have
been given in Ref. [21]. The most comprehensive work also
including isospin breaking, but still stopping at NLO only,
is contained in the series of papers [22–24].
The interest for these processes has risen after the

observation of a unitarity cusp in the event distribution
with respect to the invariant mass of two neutral pions by
the NA48 Collaboration [1]. In Ref. [26], this cusp is
proposed as a potentially clean method allowing for the
determination of the combination a0 − a2 of ππ scattering
lengths. Elaborations on this idea appeared in Ref. [27].
Assuming a simplified analytic structure of the amplitude
and using unitarity of the scattering matrix allows express-
ing the decay amplitude in the vicinity of the cusp as an
expansion in the scattering lengths ai. In Ref. [28], the
same assumptions are made, but in addition, the isospin
symmetric NLO result of chiral perturbation theory is used
as an input for the real parts of the amplitudes.
It was pointed out by the authors of Refs. [29,31,37] that

the correct analytic structure of the amplitudes should be
more complicated than described in Refs. [27,28], and they
have constructed a representation of the amplitude within
the framework of nonrelativistic effective field theory,
based on a combined expansion in both the scattering
lengths and a formal nonrelativistic parameter ε. This
expansion is considered to remain valid over the whole
decay region, although the pions emitted at the edge of the
decay region are already relativistic. Finally, taking advan-
tage of working within a Lagrangian formulation, the
effects of real and virtual photons could also be accounted
for [33] within this nonrelativistic framework.

B. η decays into three pions

The decay modes η → πþπ−π0 and η → π0π0π0 are
ΔI ¼ 1 transitions, and thus require isospin breaking.
The latter is provided by two sources, electromagnetic
interactions on the one hand and the quark mass difference
md −mu on the other hand. As far as the former is
concerned, contributions of the order Oðe2E0Þ vanish
[59,60], and corrections of the order Oðe2mqÞ, q ¼ u, d,
s to the decay rate were found to be quite small [61,62].
Thus, to a very good approximation, the amplitudes for
the decay modes of the η meson into three pions are
proportional to the isospin-breaking quark mass difference
md −mu, e.g., Aη→πþπ−π0ðs; t; uÞ ¼ ð ffiffiffi

3
p

=4RÞfðs; t; uÞ,
with the quark-mass ratio R already defined in (1.1).
Measuring the corresponding decay rates thus directly
gives information on md −mu, provided one knows
fðs; t; uÞ sufficiently well.
The amplitude fðs; t; uÞ has been computed in the

chiral expansion, at orders OðE2Þ [60,63], OðE4Þ [64],
and OðE6Þ [30]. The convergence is, however, slow, due
to strong ππ rescattering effects. Furthermore, the two-
loop expression involves many unknown OðE6Þ low-
energy constants. The very long complete analytical
expression of the OðE6Þ amplitude has not been pub-
lished, but is available as a Fortran code from the authors
of Ref. [30]. Other approaches have, therefore, been
considered in order to improve the situation. For instance,
a more compact explicit representation of fðs; t; uÞ at
next-to-next-to-leading order (NNLO) can also be worked
out [35] within the nonrelativistic framework mentioned
above. Notice, however, that in the center of the Dalitz
plot, the momenta of the outgoing pions in the rest frame
of the decaying particle, which count as order OðεÞ, can
already represent 90% of their rest energy, which is
counted as order Oð1Þ.
Alternatively, the iterative resummation of the ππ

rescattering effects can be handled numerically in a dis-
persive framework [65,66]. In this second approach, one
writes unitarity relations with ππ intermediate states and
constructs dispersion relations of the Khuri-Treiman type
[67–73]. The amplitude is then obtained by finding the
numerically fixed-point solution of these relations. The
determination of the subtraction constants arises from
matching [65,66] with the NLO results of chiral perturba-
tion theory. A more recent analysis [40] within this
framework uses instead information from the chiral per-
turbation theory calculation at NNLO of Ref. [30].
All these studies, but the one of Ref. [35], address the

description of the amplitude fðs; t; uÞ in the isospin limit,
thus leaving out the possibility to discuss the effect of the
cusp in the π0π0 invariant mass of the decay of the η into
three neutral pions. Isospin-breaking effects in fðs; t; uÞ
can also be naturally included in the relativistic approach
we will develop in the present work.
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C. KS decay into three pions

Our procedure can easily be applied as well to the CP-
conserving part of the decay amplitude for the decay
KS → πþπ−π0. Nevertheless, the corresponding branching
ratio is very small, which makes it difficult to measure the
energy dependence of the decay distribution, although some
measurements exist [74,75]. Therefore, the only parameter
connected with this process that has been measured recently
[76] is the amplitude of the CP-conserving component of
the decay KS → πþπ−π0 relative to KL → πþπ−π0. From
the theoretical point of view, this process is also covered
by the chiral perturbation theory computations up to NLO
presented in Refs. [21–24].

III. GENERAL STRUCTURE OF THE
TWO-LOOP AMPLITUDES

As mentioned above, we will obtain the amplitudes
Mðs1; s2; s3Þ describing the decay processes

PðkÞ → πðp1Þπðp2Þπðp3Þ ð3:1Þ

from an analytic continuation into the subthreshold region
of the amplitude Mðs; t; uÞ of a corresponding scattering
process of the type

PðkÞπðp1Þ → πðp2Þπðp3Þ; ð3:2Þ

where k2 ¼ M2
P, p

2
i ¼ M2

i . In the first case, the variables
are defined as usual, si ¼ ðk − piÞ2, whereas in the
scattering region, we take s¼ðkþp1Þ2, t ¼ ðk − p2Þ2, u ¼
ðk − p3Þ2. These variables satisfy s1 þ s2 þ s3 ¼ 3s0 and
sþ tþ u ¼ 3s0, respectively, where

3s0 ¼ M2
P þM2

1 þM2
2 þM2

3: ð3:3Þ

Notice that, depending on the phase convention used for the
various states, this analytic continuation does not neces-
sarily boil down to a mere substitution of the variables
ðs; t; uÞ by ðs1; s2; s3Þ, but can also generate an additional
phase for the amplitude. We shall specify our convention in
that matter later in this section. For the time being, we use a
rather generic notation, in order to keep the discussion as
general as possible. Later on, when considering specific
processes, we shall refine the notation according to our
needs (see in particular Tables I and III below, which also
specify the phase conventions and the notation we will use
for the various meson masses).
From a practical point of view, and in order not to

obscure the line of reasoning with analyticity issues
connected with the fact that MP > 3Mπ, it is useful, at a
first stage, to replace MP by a fictitious mass M̄P, some-
what lower than 3Mπ0 , or than 3Mπ if isospin-breaking

effects are neglected.2 Then, the amplitudes possess the
usual analyticity properties. In particular, they are real
analytic [77]. After the construction of the two-loop ampli-
tude for this fictitious process is completed, one can perform
an analytic continuation in M̄2

P toward its physical value,
provided it is endowed with a small positive imaginary
part δ, M̄2

P → M2
P þ iδ. The issues related to this analytic

continuation will be discussed in Sec. V and Appendix B.
Notice simply, at this stage, that in the course of this process,
real analyticity is lost, and the real and imaginary parts of the
amplitude along its cuts actually become complex dispersive
and absorptive parts, respectively; i.e., schematically,

ReMðsÞ→DispMðsÞ¼ 1

2
½Mðsþ i0ÞþMðs− i0Þ�;

ImMðsÞ→AbsMðsÞ¼ 1

2i
½Mðsþ i0Þ−Mðs− i0Þ�;

ð3:4Þ

where 0 indicates an infinitesimal positive number. In order
to keep the notation simple, we will continue denoting the
mass of the meson P by MP, even when it is smaller than

TABLE I. For each process under consideration, we show the
amplitude Mðs; t; uÞ, and the corresponding amplitude
Muðs; t; uÞ in the crossed u-channel that appears in the
dispersion relation (3.5). The penultimate column gives the
appropriate crossing phase ϵ, and the last column displays, for
each process, the quantity 3s0. Here, Mπ and MK denote the
charged pion and kaon masses, respectively. CP violation is
ignored so that the same amplitude describes the CP-conjugate
processes. On the other hand, we keep the distinction between the
masses of the neutral kaons KL and KS.

Process M Mu ϵ 3s0

K�π� → π�π� Mþþ Mþ− þ1 M2
K þ 3M2

π

K�π∓ → π�π∓ Mþ− Mþþ þ1 M2
K þ 3M2

π

K�π∓ → π0π0 Mx M0þ −1 M2
K þM2

π þ 2M2
π0

K�π0 → π0π� M0þ Mx −1 M2
K þM2

π þ 2M2
π0

KLπ
0 → π�π∓ ML

x ML
þ0

−1 M2
KL

þ 2M2
π þM2

π0

KLπ
� → π�π0 ML

þ0 ML
x −1 M2

KL
þ 2M2

π þM2
π0

KLπ
0 → π0π0 ML

00 ML
00

þ1 M2
KL

þ 3M2
π0

KSπ
0 → πþπ− MS

x MS
þ0

−1 M2
KS

þ 2M2
π þM2

π0

KSπ
þ → πþπ0 MS

þ0 MS
x −1 M2

KS
þ 2M2

π þM2
π0

ηπ0 → π�π∓ Mη
x Mη

þ0 −1 M2
η þ 2M2

π þM2
π0

ηπ� → π�π0 Mη
þ0 Mη

x −1 M2
η þ 2M2

π þM2
π0

ηπ0 → π0π0 Mη
00 Mη

00 þ1 M2
η þ 3M2

π0

2The fact that the kaons are also unstable through their decay
into two pions is irrelevant here since this feature would only start
to play a role beyond the orders in the low-energy expansion we
are considering. The η meson is stable with respect to decay into
two pions if CP is conserved, which we have already assumed to
be the case.
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3Mπ . This slight abuse of notation should not cause any
confusion. Let us also point out that, even for values ofMP
lower than 3Mπ , the analytic properties of the partial-wave
projections are more involved than, say, in the ππ case,
where, besides the s-channel unitarity cut, there is only a
left-hand cut coming from the unitarity cut in the u channel.
In the case of the Pπ → ππ partial-wave projections, addi-
tional circular cuts can be present. For a more complete
discussion, we refer the reader to Refs. [78] and [68].
In order to proceed with the construction of the scattering

amplitudes Mðs; t; uÞ, we write, keeping the preceding
discussion in mind and following Ref. [45], thrice sub-
tracted, fixed-t, dispersion relations3

Mðs; t; uÞ ¼ aðtÞ þ ðs − uÞbðtÞ þ ðs − uÞ2cðtÞ

þ s3

π

Z
∞

sthr

dx
x3

AbsMðx; t; 3s0 − x − tÞ
x − s

þ u3

π

Z
∞

uthr

dx
x3

ϵAbsMuðx; t; 3s0 − x − tÞ
x − u

;

ð3:5Þ

where aðtÞ, bðtÞ, and cðtÞ are arbitrary subtraction func-
tions, whereas sthr and uthr denote the thresholds in the
corresponding channels. In the presence of anomalous
thresholds, the corresponding discontinuities should be
included. Otherwise, sthr and uthr are fixed by unitarity.
In this expression, ϵ denotes a crossing phase, which
depends on the phase convention adopted for the various
amplitudes; see Table I. We have chosen a phase con-
vention that reduces to the one of Condon and Shortley in
the isospin limit. In practice, this amounts to having a
minus sign for the crossing of a charged pion, whereas the
crossing of a neutral pion generates no phase. Furthermore,
Muðs; t; uÞ denotes the amplitude in the crossed u-channel.
The latter obeys a similar dispersion relation, with sub-
traction functions auðtÞ, buðtÞ, and cuðtÞ, and with M
replacing Mu in the u-channel integral.
Notice that for the applications we have in mind, we need

only to assume that the above dispersion relations are valid
in the region of the kinematic variables where the chiral
expansion makes sense. Then, they merely embody the
analyticity properties of the corresponding amplitudes
constructed by the usual Feynman diagram method in
the field-theoretic framework of chiral perturbation theory.
Thus, from this point of view, their existence is actually not

an issue in this context. This link with Feynman diagrams
will also provide the basis for the analytic continuation in
M2

P, which has been discussed previously.
The next step consists in writing, for each amplitude

Mðs; t; uÞ in Table I, a decomposition of the form

Mðs; t;uÞ¼ 16π½t0ðsÞþ3t1ðsÞcos θ̃�þMl≥2ðs; t;uÞ;
ð3:6Þ

where t0ðsÞ and t1ðsÞ denote the partial waves for angular
momentum l equal to 0 and 1, respectively. The contri-
butions from higher partial waves are contained in
Ml≥2ðs; t; uÞ. The scattering angle is given by

cos θ̃ ¼ 1

2KP1;23ðsÞ
�
2tþ s − 3s0 þ

ΔP1Δ23

s

�
ð3:7Þ

with ΔP1 ≡M2
P −M2

1 and Δ23 ≡M2
2 −M2

3. The function
KP1;23ðsÞ is defined by

K2
P1;23ðsÞ ¼

1

4s2
λP1ðsÞλ23ðsÞ; ð3:8Þ

where λP1ðsÞ ¼ λðs;M2
P;M

2
1Þ, λ23ðsÞ ¼ λðs;M2

2;M
2
3Þ are

expressed in terms of the Källen or triangle function
λðx; y; zÞ≡ x2 þ y2 þ z2 − 2xy − 2xz − 2yz. We will refer
to KP1;23ðsÞ as the Kacser function since it generalizes the
function introduced in Ref. [68] to the case where the mass
difference between neutral and charged pions is not
neglected. The Kacser function KP1;23ðsÞ as an analytic
function of s is unambiguously defined by its cuts, which
are conventionally placed at the real axis4 and by the
values of (3.8) as long as s corresponds to the scattering
region, s ≥ ðMP þM1Þ2. Eventually, we need to continue
the amplitude analytically to lower values of s. This will
require a careful study of the analytic properties of
KP1;23ðsÞ in the complex s plane for the different configu-
rations of pion masses in Secs. V and VI. The same also
applies to the partial-wave projections t0ðsÞ and t1ðsÞ. For
s ≥ ðMP þM1Þ2, they are defined as usual by the integrals

tlðsÞ¼
1

32π

Z þ1

−1
dcosθ̃ðcosθ̃ÞlMðs;t;uÞ; l¼0;1: ð3:9Þ

In order to construct the analytic continuations of the
partial waves outside of the region of definition consisting
of the portion of the real axis s≥ðMPþM1Þ2, the contour of
integration in Eq. (3.9) needs to be appropriately deformed
in the complex plane. This issue, which is rather well
documented in the literature [68,79,80] in the case where all

3Due to the Froissart bound and Regge phenomenology, two
subtractions are enough to ensure convergence of the dispersion
integrals [65,66]. However, as shown in Ref. [45], in order to
obtain a representation that correctly accounts for all two-
loop contributions, it is necessary to start from oversubtracted
dispersion relations. Two subtractions would be enough, though,
for the purpose of constructing a representation of the amplitudes
valid at one loop only. We will make implicit use of this last
remark in Sec. IV.

4For the case MP > M1 þM2 þM3, the cuts correspond to
the intervals ððM2 −M3Þ2; ðM2 þM3Þ2Þ and ððMP −M1Þ2;
ðMP þM1Þ2Þ.
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the pions have equal masses, requires a careful discussion,
and we address it when considering the second iteration of
the construction process in Sec. V (see also Appendix A).
For the moment, however, we proceed with our general
outline. To that effect, it is necessary to use our knowledge
about the dominant chiral behavior of the various quantities
appearing in Eq. (3.6). For the dispersive and absorptive
parts of the lowest partial-wave projections, we have

Disptl¼0;1ðsÞ ¼ OðE2Þ; DispMl≥2 ¼ OðE4Þ;
Abstl¼0;1ðsÞ ¼ OðE4Þ; AbsMl≥2 ¼ OðE8Þ: ð3:10Þ

Therefore, up to order OðE6Þ, only the S and P waves
contribute to the absorptive parts of the dispersion relations.
Imposing the crossing relations, the subtraction function
reduces to a polynomial Pðs; t; uÞ of at most third order in
the Mandelstam variables [45]. The amplitudes eventually
take the form

Mðs; t; uÞ ¼ Pðs; t; uÞ þ Uðs; t; uÞ þOðE8Þ; ð3:11Þ

where Uðs; t; uÞ denotes the nonanalytic unitarity part,

Uðs; t; uÞ ¼ 16π½W0ðsÞ þ 3ðt − uÞW1ðsÞ
þWt

0ðtÞ þ 3ðu − sÞWt
1ðtÞ

þWu
0ðuÞ þ 3ðt − sÞWu

1ðuÞ�: ð3:12Þ

The functions WlðsÞ, l ¼ 0; 1 are analytic in the complex
s plane, except for a right-hand cut, with discontinuities
provided by the absorptive parts along this same cut of the
partial-wave projections, for instance,

AbsW0ðsÞ¼
�
Abst0ðsÞþ3

ΔP1Δ23

s
Abst1ðsÞ
2KP1;23ðsÞ

�
θðs− sthrÞ;

AbsW1ðsÞ¼
Abst1ðsÞ
2KP1;23ðsÞ

θðs− sthrÞ: ð3:13Þ

Similar properties hold for the other functions Wt;u
l ðsÞ, but

their absorptive parts are now given in terms of the partial
waves of the amplitudes in the crossed channels. The
absorptive parts (3.13) do not completely fix the functions
W0;1ðsÞ. Without loss of generality, we shall require that
they satisfy the asymptotic conditions [46]

lim
jsj→∞

W0ðsÞ=s4 ¼ 0; lim
jsj→∞

W1ðsÞ=s3 ¼ 0 ð3:14Þ

up to arbitrary polynomials in s, of at most third order
for W0 or at most second order for W1, which are
absorbed into Pðs; t; uÞ. Note that, even after the imple-
mentation of these conditions, the ambiguity in the single-
variable polynomials is not entirely fixed; however,
the form of Pðs; t; uÞ is unique (up to inconsequential
ambiguities stemming from the condition sþ tþ u ¼ 3s0).

These expressions form the content of the reconstruction
theorem in the present context. Notice that, depending on
the symmetries of the amplitudeMðs; t; uÞ, these functions
are not all independent. Actually, making use of the
arbitrariness of the various functions W0;1ðsÞ, one can
achieve that Uðs; t; uÞ and Pðs; t; uÞ separately have the
same s, t, u symmetries as the full amplitude Mðs; t; uÞ.
Finally, as far as their structure is concerned, the amplitudes
of the processes involving the η meson can be obtained
from those involving the KL meson, upon changing the
corresponding labels. We thus need to consider only 13
distinct functions, which we choose as indicated in Table II.
Note that a given process involves at most only three
distinct functions.
It remains to transform these dispersive representations

into a tool that will lead to an explicit construction of the
two-loop amplitudes. For this, it is necessary to specify the
input for the absorptive parts of the partial waves that
appear in these expressions. This input will be provided by
unitarity. Up to and including two-loop order, these
absorptive parts result only from intermediate states com-
posed of two pseudoscalar mesons, ππ, Kπ, ηπ, etc. Except
for the ππ case, the singularities induced by these inter-
mediate states are far from the central region of the Dalitz
plot that describes the P → πππ decay processes. For a
description of the latter, and of the corresponding unitarity
cusps due to the ππ intermediate states, it is, therefore, not
necessary to explicitly retain the intermediate states corre-
sponding to these higher thresholds. Their contributions
can be expanded in powers of the Mandelstam variables
divided by the square of a scale, which is at least equal to
the kaon (or eta) mass, so that they will appear only in the
polynomial contributions to the amplitudes. Of course, this
approximation would not be suitable if we intended to

TABLE II. Expressions, for each Pπ → ππ scattering ampli-
tude, of the functions occurring in the representation of Eq. (3.12)
in terms of a set of 13 independent functions. The amplitudes
involving the η meson have the same structure as those involving
the KL meson, and follow upon replacing the label L by η.

M W0 W1 Wt
0 Wt

1 Wu
0 Wu

1

Mþþ Wþþ Wð0Þ
þ− Wð1Þ

þ− Wð0Þ
þ− Wð1Þ

þ−

Mþ− Wð0Þ
þ− Wð1Þ

þ− Wð0Þ
þ− −Wð1Þ

þ− Wþþ

Mx Wx −Wð0Þ
0þ −Wð1Þ

0þ −Wð0Þ
0þ −Wð1Þ

0þ
M0þ Wð0Þ

0þ Wð1Þ
0þ Wð0Þ

0þ −Wð1Þ
0þ −Wx

ML
x WL;x −Wð0Þ

L;þ0 −Wð1Þ
L;þ0 −Wð0Þ

L;þ0 −Wð1Þ
L;þ0

ML
þ0 Wð0Þ

L;þ0 Wð1Þ
L;þ0 Wð0Þ

L;þ0 −Wð1Þ
L;þ0 −WL;x

ML
00

WL;00 WL;00 WL;00

MS
x Wð1Þ

S;x Wð0Þ
S;þ0 Wð1Þ

S;þ0 −Wð0Þ
S;þ0 −Wð1Þ

S;þ0

MS
þ0 Wð0Þ

S;þ0 Wð1Þ
S;þ0 −Wð0Þ

S;þ0 Wð1Þ
S;þ0 −Wð1Þ

S;x

KAMPF, KNECHT, NOVOTNÝ, and ZDRÁHAL PHYS. REV. D 101, 074043 (2020)

074043-6



describe the scattering processes Pπ → ππ themselves. If
necessary, the formalism to be described below could
actually be extended to the full set of possible two-meson
states. Therefore, we have (recall that only the values
l ¼ 0; 1 need to be considered)

Absti→f
l ðsÞ¼

X
k

1

Sk

λ1=2k ðsÞ
s

ti→k
l ðsÞ½ff→k

l ðsÞ��θðs− sthrk Þ:

ð3:15Þ

The sum goes over all the possible two-pions intermediate
states k, ff→k

l ðsÞ denotes the partial-wave projection of the
corresponding ππ scattering amplitude f → k, while Sk is
the symmetry factor, Sk ¼ 2 for identically charged pions,
and Sk ¼ 1 otherwise. Note that for l ¼ 1, one always has
Sk ¼ 1. Furthermore, sthrk denotes the threshold at which the
channel k opens, and λkðsÞ is the triangle function that
describes the corresponding phase space. There are only
three possibilities, sthrk ¼ 4M2

π , ðMπ þMπ0Þ2, 4M2
π0
, depend-

ing on the channel under consideration [Mπ (Mπ0) denotes
the mass of the charged (neutral) pion].
Thus, as was to be expected, in order to complete our

program, we need to consider at the same time the ampli-
tudes Aðs; t; uÞ for the scattering processes πðp1Þπðp2Þ→
πðp3Þπðp4Þ in the various channels, but only at lowest and at
next-to-leading orders. It can be achieved following the
same path as for the Pπ → ππ amplitudes. The construction
of the amplitudes Aðs; t; uÞ in the presence of isospin
breaking has already been described in Ref. [44], so we
can remain brief, and refer the reader to this reference for
details. The starting point is again provided by thrice
subtracted, fixed-t, dispersion relations satisfied by the
amplitudes Aðs; t; uÞ,

Aðs; t; uÞ ¼ aðtÞ þ ðs − uÞbðtÞ þ ðs − uÞ2cðtÞ

þ s3

π

Z
∞

sthr

dx
x3

ImAðx; t;Σ − x − tÞ
x − s

þ u3

π

Z
∞

uthr

dx
x3

ϵImAuðx; t;Σ − x − tÞ
x − u

; ð3:16Þ

where aðtÞ, bðtÞ, and cðtÞ are arbitrary subtraction func-
tions, Σ stands for the sum of the squared masses of the
pions appearing in the process, and sthr and uthr denote the
thresholds in the corresponding channels.Although, in order
not to overburden the notation at this stage, we have used the
same symbols, these last quantities can, of course, be
different from the ones appearing in Eq. (3.5). Table III
shows the notation that will be used in the sequel when
specific channels are considered.
We now decompose the various amplitudes Aðs; t; uÞ

such as to single out the lowest, S and P, partial waves,

Aðs; t; uÞ ¼ 16π½f0ðsÞ þ 3f1ðsÞ cos θ� þAl≥2ðs; t; uÞ;
ð3:17Þ

where the scattering angle is given by a formula analogous
to (3.7),

cos θ ¼ sðt − uÞ þ Δ12Δ34

λ1=212 ðsÞλ1=234 ðsÞ
ð3:18Þ

withΔij ≡M2
i −M2

j ,Mi andMj being pion masses, so that
now the only possibilities are Δij¼0,�Δπ ,Δπ≡M2

π−M2
π0
.

Likewise, λijðsÞ is the Källen function involving the pion
masses Mi and Mj. The dominant chiral behavior of these
various pieces is given as in Eq. (3.10), with now f0;1ðsÞ
and Al≥2 replacing t0;1ðsÞ and Ml≥2, respectively, so that
again, only the S and P waves contribute to the absorptive
parts of the dispersion relations up to order OðE6Þ. After
imposing crossing, the amplitudes Aðs; t; uÞ eventually take
the form

Aðs; t; uÞ ¼ Pðs; t; uÞ þUðs; t; uÞ þOðE8Þ; ð3:19Þ

where Uðs; t; uÞ is the nonanalytic unitarity part,

Uðs; t; uÞ ¼ 16π½W0ðsÞ þ 3ðt − uÞW1ðsÞ
þWt

0ðtÞ þ 3ðu − sÞWt
1ðtÞ

þWu
0ðuÞ þ 3ðt − sÞWu

1ðuÞ�; ð3:20Þ

and Pðs; t; uÞ is a polynomial of at most third order in the
Mandelstam variables with the same s, t, u symmetries as
the amplitude Aðs; t; uÞ. Because of crossing relations
among subsets of the ππ amplitudes, it is possible to
express all the functions that appear in the representations
of the type (3.20) in terms of only seven distinct functions,

which we denote as W00ðsÞ, WxðsÞ, WþþðsÞ, Wð0Þ
þ−ðsÞ,

Wð1Þ
þ−ðsÞ, Wð0Þ

þ0ðsÞ, Wð1Þ
þ0ðsÞ. How these functions contribute

TABLE III. For each ππ scattering process, the table shows the
amplitude Aðs; t; uÞ and the corresponding amplitude Auðs; t; uÞ
in the crossed u-channel, which appears in the dispersion relation
(3.16). The penultimate column gives the appropriate crossing
phase ϵ, and the last column displays, for each process, the
quantity sþ tþ u. Here, Mπ denotes the charged pion mass, and
Σπ ≡M2

π þM2
π0
.

Process A Au ϵ sþ tþ u

π�π∓ → π�π∓ Aþ− Aþþ þ1 4M2
π

π�π� → π�π� Aþþ Aþ− þ1 4M2
π

π�π0 → π�π0 Aþ0 Aþ0 þ1 2Σπ

π�π0 → π0π� A0þ Ax −1 2Σπ

π�π∓ → π0π0 Ax A0þ −1 2Σπ

π0π0 → π0π0 A00 A00 þ1 4M2
π0
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to the various amplitudes can be gathered from Table IV.
The functions WlðsÞ, l ¼ 0; 1, are analytic in the complex
s plane, except for a right-hand cut, with discontinuities
given by the appropriate partial waves, e.g.,5

AbsW0ðsÞ ¼ ½Absf0ðsÞ þ 3
Δ12Δ34

λ1=212 ðsÞλ1=234 ðsÞ
Absf1ðsÞ�

× θðs − sthrÞ;
AbsW1ðsÞ ¼

s

λ1=212 ðsÞλ1=234 ðsÞ
Absf1ðsÞθðs − sthrÞ: ð3:21Þ

These discontinuities are again provided by unitarity,

Absfi→f
l ðsÞ¼

X
k

1

Sk

λ1=2k ðsÞ
s

fi→k
l ðsÞ½ff→k

l ðsÞ�⋆θðs− sthrk Þ:

ð3:22Þ

For reasons already explained above, only the contributions
of two-pion intermediate states need to be retained.
Within the framework we have just presented, the

amplitudes for the processes Pπ → ππ and ππ → ππ form
a closed set. This framework also allows for a two-
step iterative construction of the corresponding amplitudes
to two loops, along the lines described in detail in
Ref. [46]. The essential information is provided by the
chiral counting of the partial waves, Eq. (3.10) for the
amplitudes Mðs; t; uÞ, and similar relations [44–46] for
the ππ scattering amplitudes. Indeed, at lowest order, these
amplitudes, beingOðE2Þ, are real first-order polynomials in
the Mandelstam variables, entirely saturated by the S and P
partial waves,

flðsÞ ¼ DispflðsÞ þOðE4Þ ¼ φlðsÞ þOðE4Þ;
tlðsÞ ¼ DisptlðsÞ þOðE4Þ ¼ φ̃lðsÞ þOðE4Þ; ð3:23Þ

for l ¼ 0; 1. Subsequently, they provide the discontinuities
of the l ¼ 0; 1 partial waves along the unitarity cut at order
OðE4Þ,

Absfi→f
l ðsÞ ¼

X
k

1

Sk

λ1=2k ðsÞ
s

φi→k
l ðsÞφk→f

l ðsÞ

× θðs − sthrk Þ þOðE6Þ;

Absti→f
l ðsÞ ¼

X
k

1

Sk

λ1=2k ðsÞ
s

φ̃i→k
l ðsÞφk→f

l ðsÞ

× θðs − sthrk Þ þOðE6Þ; ð3:24Þ
from which the one-loop amplitudes can be constructed, up
to an ambiguity which reduces to a polynomial of at most
second order in the Mandelstam variables. From these one-
loop expressions, one may now compute the order OðE4Þ
dispersive parts of the lowest partial waves,

DispflðsÞ ¼ φlðsÞ þ ψlðsÞ þOðE6Þ;
DisptlðsÞ ¼ φ̃lðsÞ þ ψ̃lðsÞ þOðE6Þ; ð3:25Þ

for s ≥ sthr, which in turn will provide the corresponding
absorptive parts at order OðE6Þ,

Absfi→f
l ðsÞ ¼

X
k

1

Sk

λ1=2k ðsÞ
s

φi→k
l ðsÞ½φk→f

l ðsÞ þ 2ψk→f
l ðsÞ�

× θðs − sthrk Þ þOðE8Þ;

Absti→f
l ðsÞ ¼

X
k

1

Sk

λ1=2k ðsÞ
s

fφ̃i→k
l ðsÞ½φk→f

l ðsÞ þ ψk→f
l ðsÞ�

þ ψ̃ i→k
l ðsÞφk→f

l ðsÞg
× θðs − sthrk Þ þOðE8Þ: ð3:26Þ

These equations follow from Eq. (3.15), from the chiral
counting of the partial waves, combined with T invariance
and the fact that real analyticity holds for the ππ scattering
amplitudes, so that the quantities φlðsÞ and ψlðsÞ in
Eq. (3.25) are real. Note that the contributions of the
absorptive parts of the amplitudes on the right-hand sides
of these equations cancel, and so there appear effectively just
the dispersive parts of the partial waves. From (3.26), one can
then obtain the full two-loop amplitudes. This construction is
unique up to a polynomial contribution of at most third order
in the Mandelstam variables, with coefficients that remain
finite in the limit of vanishing pionmasses. Themain point of
this discussion is that in order to obtain the full two-loop
expressions of the amplitudes, only the dispersive parts of
the one-loop S and P partial waves need to be computed
directly. Extracting these partial-wave projections from the

TABLE IV. Expressions, for each ππ scattering amplitude, of
the functions occurring in the representation of Eq. (3.20) in
terms of the set of seven distinct functions.

A W0 W1 Wt
0 Wt

1 Wu
0 Wu

1

Aþ− Wð0Þ
þ− Wð1Þ

þ− Wð0Þ
þ− −Wð1Þ

þ− Wþþ
Aþþ Wþþ Wð0Þ

þ− Wð1Þ
þ− Wð0Þ

þ− Wð1Þ
þ−

Aþ0 Wð0Þ
þ0 Wð1Þ

þ0 Wx Wð0Þ
þ0 Wð1Þ

þ0

A0þ Wð0Þ
þ0 −Wð1Þ

þ0 Wð0Þ
þ0 Wð1Þ

þ0 Wx

Ax −Wx −Wð0Þ
þ0 Wð1Þ

þ0 −Wð0Þ
þ0 Wð1Þ

þ0

A00 W00 W00 W00

5Although real analyticity is preserved for the ππ scattering
amplitudes, even in the presence of isospin breaking, in order to
uniformize the notation, we also call the real and imaginary parts
dispersive and absorptive parts, respectively.
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corresponding one-loop amplitudes, however, constitutes
also the most demanding difficulty in this reconstruction
procedure, themain steps of which are summarized in Fig. 1.
Let us close this general overview by briefly specifying

the link with the usual framework of the three-flavor chiral
perturbation theory [56]. The latter considers an expansion
in the Mandelstam variables s, t, u and in the light-quark
masses, all counting as order OðE2Þ. In the approach
presented here, the expansion is in theMandelstam variables
and in the meson masses, which also count as orderOðE2Þ.
In the chiral perturbation framework, amplitudes areworked
out upon computing all the relevant Feynman diagrams
generated, at a given order, by the effective Lagrangian,
including tree-level and tadpole diagrams. In the dispersive
approach followed here, the absorptive parts of the Feynman
diagram are accounted for by the unitarity part Uðs; t; uÞ
[or Uðs; t; uÞ], whereas their dispersive parts contribute
both to Uðs; t; uÞ and Pðs; t; uÞ [or Uðs; t; uÞ and
Pðs; t; uÞ]. At two loops, these diagrams correspond to
the two topologies illustrated in Fig. 2, and describe direct
rescattering (diagram on the left) and rescattering in the
crossed channels (diagram on the right). Contributions from
tree or tadpole diagrams are accounted for solely by the
subtraction polynomial Pðs; t; uÞ [or Pðs; t; uÞ].

IV. FIRST ITERATION

In this section, we construct the one-loop expressions of
the amplitudes for ππ scattering and for the Pπ → ππ decay

processes, thus fulfilling the first step in our program. As a
starting point, we need the lowest-order expressions of the
corresponding amplitudes, which are, according to chiral
counting, of order OðE2Þ. It means that they are first-order
polynomials in the Mandelstam variables, with coefficients
that remain finite in the chiral limit. In the case of the ππ
amplitudes, for instance, this leads to

Aðs; t; uÞ ¼ 16π

�
aþ b

s − μþ
F2
π

þ c
t − u − μ−

F2
π

�
þOðE4Þ;

ð4:1Þ

where a, b, and c are constants,Fπ denotes the decay constant
of the charged pion, with Fπ ¼ fπ=

ffiffiffi
2

p ¼ 92.28ð10ÞMeV
from [81], and μ� specify some reference point in the
Mandelstam plane. In the chiral limit, a and μ� vanish,
while b and c remain nonzero and finite, so that the
corresponding amplitudes satisfy the current-algebra con-
sistency conditions [82,83]. Besides, fromapractical point of
view, the subtraction points μ� should lie in the region of the
Mandelstam plane where it makes sense to apply the chiral
expansion, but are otherwise arbitrary. Their choice will
depend on the applications one has in mind, and will also
determine the interpretation of the parameters a, b, and c.
For instance, in Ref. [46], the reference point was chosen

to be the center of the Dalitz plot (μþ ¼ 4M2
π=3, μ− ¼ 0 in

the isospin limit), which led to the interpretation of these
parameters as subthreshold coefficients. It might be an
appropriate choice if one wants to discuss quantities for
which the expansion in light quark masses converges
rapidly. Table V shows the corresponding parameters for
the ππ scattering amplitudes in the various channels. For
later use, we have defined values for μþ (μ− ¼ 0 in all
cases) even in the case where b vanishes. Notice also that
in the cases where there are two identical pions in the

FIG. 1. Schematic representation of the iterative two-steps reconstruction procedure for the Pπ → ππ amplitudes. The absorptive part
(of partial waves) denoted by Abs is defined in Eq. (3.4).

FIG. 2. The two-loop topologies that contribute to the absorp-
tive parts.
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initial and/or final state, Bose symmetry implies that the
coefficient c vanishes. All these parameters are not inde-
pendent since all the amplitudes involving a given total
number of, say, charged pions are related by crossing. In
terms of the parameters of Table V, these relations read

αþ− ¼ αþþ þOðE2Þ; αþ0 ¼ αx þOðE2Þ;
βþ− ¼ βþþ þOðE2Þ; βþ0 ¼ βx þOðE2Þ;
γþ− ¼ βþþ þOðE2Þ; γþ0 ¼ βx þOðE2Þ: ð4:2Þ

It is, however, more convenient to treat these quantities as
independent in a first stage, and to make the replacement,
including the corrections from higher orders indicated
above, only at the end of the calculation. It will also help
to visualize the origin of various contributions in the
higher-order expressions of the amplitudes.
On the other hand, subthreshold parameters are not

observables that are particularly suited for the discussion
of experimental data on ππ scattering. Furthermore, since
the aim of the present study is to provide a parametrization
of the P → π0π0π amplitudes which displays the depend-
ence of the cusp on the ππ scattering lengths, the latter
appears, in this context, as a better choice of parameters. In
this case, μ� are to be chosen such as to correspond to the

threshold values of s, t, and u. In order that the parameters a
in (4.1) retain their meaning as scattering lengths up to the
two-loop level, the subtraction polynomials have to be
adjusted appropriately. How this can be done has been
described in Appendix F of Ref. [44]. The various
parameters that enter the ππ amplitudes at the lowest order
are shown in Table VI. Again, there are crossing relations
among subsets of them. These relations, with next-to-
leading corrections included, are also displayed in
Appendix F of Ref. [44]. Notice that the normalization
of the scattering lengths differs by a factor of 2 from the one
usually adopted. The definition used here is in agreement
with the normalization of the partial-wave projections in
Eq. (3.17). However, when expressing these scattering
lengths in terms of the two S-wave scattering lengths a00
and a20 in the isospin limit, we shall use, for the latter, the
familiar normalization. According to Eqs. (2.18), (2.21),
and (2.22) of Ref. [84], at orderOðE2Þ, these relations read6

aþ− ¼ 2

3
a00 þ

1

3
a20 − 2a20

Δπ

M2
π
;

aþþ ¼ 2a20 − 2a20
Δπ

M2
π
;

aþ0 ¼ a20 − a20
Δπ

M2
π
;

ax ¼ −
2

3
a00 þ

2

3
a20 þ a20

Δπ

M2
π
;

a00 ¼
2

3
a00 þ

4

3
a20 −

2

3
ða00 þ 2a20Þ

Δπ

M2
π
; ð4:3Þ

where Δπ was defined after Eq. (3.18).
In the case of the P → πππ amplitudes, we shall adopt a

parametrization more akin to the usual description of their
Dalitz-plot structure in terms of, say, slopes and curvatures

TABLE VI. Definition of the parameters a, b, and c of Eq. (4.1)
for each ππ scattering process, in the case where one opts for a
description in terms of scattering lengths.

A a b c μþ μ−

Aþ− aþ− bþ− cþ− 4M2
π 0

Aþþ aþþ bþþ 0 4M2
π 0

Aþ0 aþ0 bþ0 þcþ0 ðMπ þMπ0Þ2 −ðMπ −Mπ0Þ2
A0þ aþ0 bþ0 −cþ0 ðMπ þMπ0Þ2 þðMπ −Mπ0Þ2
Ax ax bx 0 4M2

π 0

A00 a00 0 0 4M2
π0

0

TABLE V. Definition of the parameters a, b, and c of Eq. (4.1) for each ππ scattering process, in the case where one opts for a
description in terms of subthreshold parameters. In these expressions, we have defined Σπ ≡M2

π þM2
π0
, and μ− ¼ 0 in all cases. Also

shown are the expressions, in terms of the independent quantities λð1Þþ−, λ
ð2Þ
þ−, λ

ð1Þ
x , λð2Þx , and λð1Þ00 , of the constants λs;t;u appearing in the

subtraction polynomials Pðs; t; uÞ at one-loop order defined in Eq. (4.17).

A 16πaF2
π=M2

π0
16πb 16πc μþ λs λt λu

Aþ− 2αþ−=3 βþ−=2 γþ−=2 4M2
π=3 λð1Þþ− þ λð2Þþ− λð1Þþ− þ λð2Þþ− 2λð2Þþ−

Aþþ 2αþþ=3 −βþþ 0 4M2
π=3 2λð2Þþ− λð1Þþ− þ λð2Þþ− λð1Þþ− þ λð2Þþ−

Aþ0 αþ0=3 −βþ0=2 þγþ0=2 2Σπ=3 þλð2Þx þλð1Þx þλð2Þx

A0þ αþ0=3 −βþ0=2 −γþ0=2 2Σπ=3 þλð2Þx þλð2Þx þλð1Þx

Ax −αx=3 −βx 0 2Σπ=3 −λð1Þx −λð2Þx −λð2Þx

A00 α00 0 0 4M2
π0
=3 3λð1Þ00 3λð1Þ00 3λð1Þ00

6Our quantities a00 and a20 correspond to those denoted as
ða00Þstr and ða20Þstr, respectively, in Ref. [84].
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with respect to appropriately chosen kinematic variables.
Details will be provided in Sec. IV B.

A. ππ scattering

Since the construction of the ππ scattering amplitudes
with Mπ ≠ Mπ0 has already been discussed at some length
in Refs. [44,48], our account will remain brief. First, we
need to notice that at one loop, the discontinuities of these
functions are given by Eqs. (3.21) and (3.24). It is a
straightforward matter to extract the corresponding order
OðE2Þ S and P partial waves φlðsÞ, l ¼ 0; 1, from the
general representation (4.1) of the lowest-order ππ scatter-
ing amplitudes:

φ0ðsÞ ¼ aþ b
s − μþ
F2
π

−
c
F2
π

�
μ− þ Δ12Δ34

s

�
;

φ1ðsÞ ¼
c

3F2
π

λ1=212 ðsÞλ1=234 ðsÞ
s

: ð4:4Þ

In view of the form of φ1ðsÞ, it is useful to remember, as
evidenced by Eqs. (3.21) and (3.24), that the discontinuities
only involve the combination (in hopefully self-explanatory
notation)

φi→k
1 ðsÞφk→f

1 ðsÞ
λ1=2i ðsÞλ1=2f ðsÞ

¼ ci→kcf→k

9F4
π

λkðsÞ
s

: ð4:5Þ

One then obtains the following expressions:

W00ðsÞ¼ 16π

�
1

2
½φ00

0 ðsÞ�2J̄0ðsÞþ ½φx
0ðsÞ�2J̄ðsÞ

�
þOðE6Þ;

ð4:6Þ

WxðsÞ¼−16πφx
0ðsÞ

�
1

2
φ00
0 ðsÞJ̄0ðsÞþφþ−

0 ðsÞJ̄ðsÞ
�
þOðE6Þ;

ð4:7Þ

Wð0Þ
þ0ðsÞ¼16π

�
c2þ0

3F4
π
Δ2

π

�
1−2

Σπ

s
−3

Δ2
π

s2

�
þ½φþ0

0 ðsÞ�2
�
J̄�0ðsÞ

þ16π
4c2þ0

3F4
π

Δ4
π

s2
¯̄J�0ðsÞþOðE6Þ; ð4:8Þ

Wð1Þ
þ0ðsÞ ¼ 16π

c2þ0

9F4
π

λ�0ðsÞ
s

J̄�0ðsÞ þOðE6Þ; ð4:9Þ

WþþðsÞ ¼ 16π
1

2
½φþþ

0 ðsÞ�2J̄ðsÞ þOðE6Þ; ð4:10Þ

Wð0Þ
þ−ðsÞ¼16π

�
½φþ−

0 ðsÞ�2J̄ðsÞþ1

2
½φx

0ðsÞ�2J̄0ðsÞ
�
þOðE6Þ;

ð4:11Þ

Wð1Þ
þ−ðsÞ ¼ 16π

c2þ−

9F4
π
ðs − 4M2

πÞJ̄ðsÞ þOðE6Þ: ð4:12Þ

Here, J̄0ðsÞ, J̄ðsÞ, and J̄�0ðsÞ denote the dispersive
integrals7

J̄0ðsÞ ¼
s

16π2

Z
∞

4M2

π0

dx
x

1

x − s − i0
σ0ðxÞ;

J̄ðsÞ ¼ s
16π2

Z
∞

4M2
π

dx
x

1

x − s − i0
σðxÞ;

J̄�0ðsÞ ¼
s

16π2

Z
∞

ðM
π�þM

π0
Þ2
dx
x

1

x − s − i0
λ1=2�0 ðxÞ

x
; ð4:13Þ

with

σ0ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
π0

s

s
; σðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
π

s

r
; ð4:14Þ

and λ�0ðsÞ ¼ λðs;M2
π;M2

π0
Þ. Finally,

¯̄JðsÞ≡ J̄ðsÞ − sJ̄0ð0Þ; ð4:15Þ

and

Σπ ≡M2
π þM2

π0
: ð4:16Þ

The subtraction polynomials have the following form at
the one-loop order (cf. also footnote 3):

Pðs; t; uÞ ¼ 16π

�
aþ b

s − μþ
F2
π

þ c
t − u − μ−

F2
π

�
− w

þ λs
F4
π

�
s −

3

2
μþ

�
2

þ λt
F4
π

�
t −

3

2
μþ

�
2

þ λu
F4
π

�
u −

3

2
μþ

�
2

þOðE6Þ: ð4:17Þ

Crossing and Bose symmetry (when applicable) restrict to 5
the number of constants λs;t;u that are independent. Their

7These functions are dispersive representations of the two-
point one-loop integrals subtracted at s ¼ 0,

Jðp2;m1; m2Þ ¼
1

i

Z
d4k
ð2πÞ4

1

k2 −m2
1

1

ðk − pÞ2 −m2
2

;

J̄ðs;m1; m2Þ ¼ Jðs;m1; m2Þ − Jð0;m1; m2Þ

with J̄ðsÞ¼ J̄ðs;Mπ;MπÞ, J̄0ðsÞ¼ J̄ðs;Mπ0 ;Mπ0Þ, J̄�0ðsÞ ¼
J̄ðs;Mπ ;Mπ0Þ. Their closed forms are given, e.g., in Ref. [64].
We also use

J̄ð0Þ ¼ 0; J̄0ð4M2
π0
Þ ¼ 1

8π2
¼ J̄�0ðμþÞ þ J̄�0ðμ−Þ:
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expressions in terms of the independent parameters intro-
duced in Ref. [44] are shown in Table V. These expressions
also apply to the case where one opts for the parametriza-
tion in terms of scattering lengths, and the constraints
coming from the crossing properties have already been
accounted for. The contribution denoted by w is not a new
parameter, but is expressed in terms of the ones already
present. In the case one chooses to retain the parametriza-
tion in terms of the subthreshold parameters, w is fixed so
as to reproduce the expressions for the polynomials given
in Ref. [44], which were themselves constructed so that
they reproduce the polynomial part of the ππ amplitude in
the isospin limit as given in Ref. [46]. Explicitly, this means

wþ0 ¼ −wx ¼
Δ2

π

F4
π
× λð1Þx þOðE6Þ; ð4:18Þ

and w ¼ 0 in the remaining cases. For the parametrization
in terms of scattering lengths, the value of w is simply

w ¼ λs
4

μ2þ
F4
π
þ λt
F4
π

�
tthr −

3

2
μþ

�
2

þ λu
F4
π

�
uthr −

3

2
μþ

�
2

þ ReUðμþ; tthr; uthrÞ þOðE6Þ; ð4:19Þ

with tthr − uthr ¼ μ− and the values for μþ and μ− as given
in Table VI. This choice of w, therefore, ensures that the
parameter a in Eq. (4.1) indeed corresponds to the scatter-
ing length, i.e.,

ReAðμþ; tthr; uthrÞ≡ 16πaþOðE6Þ: ð4:20Þ

At next-to-leading order, the constraints arising from the
crossing property read

cþ− ¼ bþ−; bþþ þ 2bþ− ¼ 0; ð4:21Þ

aþ− − aþþ þ 4M2
π�

F2
π

bþþ

¼ 2

π
ðaþ−Þ2 −

ðaþþÞ2
π

þ 2

π

λð2Þþ− − λð1Þþ−

F4
π

M4
π

þ 16π
ðaxÞ2
2

ReJ̄0ð4M2
πÞ; ð4:22Þ

cþ0 ¼ −bþ0; ð4:23Þ

bx − 2bþ0 ¼
3

16π

λð2Þx − λð1Þx

F2
π

ðMπ −Mπ0Þð3Mπ þMπ0Þ;

ð4:24Þ

and

ax þ aþ0 − 4
M2

π�

F2
π
bx

¼ 2

π
axaþ− þ 2

π
a2þ0 þ 16π

axa00
2

ReJ̄0ð4M2
πÞ

− 16π
4

3

b2x
F4
π
M2

πΔ2
π J̄0ð0Þ

− 32π

�
a2x − 4M2

πax
bx
F2
π
þ 8

3

b2x
F4
π
M4

π

�
J̄�0ð−ΔπÞ

−
M2

π

π

λð2Þx ð3M2
π −M2

π0
Þ − 2λð1Þx M2

π0

F4
π

: ð4:25Þ

B. Pπ → ππ scattering

The implementation of the first iteration for the ampli-
tudes of the processes Pπ → ππ follows rather closely the
previous case of ππ scattering, so that the main use of this
section is to establish the notation in a more precise way.
The starting point is now given by the order OðE2Þ
expressions for the amplitudes in Table I that are (anti)
symmetric under exchange of t and u, which we now
parametrize in the following form:

Mþþðs; tÞ ¼ Aþþ þ Bþþ
s − s0
F2
π

;

Mxðs; tÞ ¼ Ax þ Bx
s − s0
F2
π

;

ML
x ðs; tÞ ¼ AL

x þ BL
x
s − s0
F2
π

;

ML
00ðs; tÞ ¼ AL

00;

MS
xðs; tÞ ¼ BS

x
t − u
F2
π

: ð4:26Þ

The crossing property then furnishes the remaining
amplitudes

Mþ−ðs; tÞ ¼ Aþþ −
Bþþ
2F2

π
½ðs − s0Þ þ ðt − uÞ�;

M0þðs; tÞ ¼ −Ax þ
Bx

2F2
π
½ðs − s0Þ þ ðt − uÞ�;

ML
þ0ðs; tÞ ¼ −AL

x þ BL
x

2F2
π
½ðs − s0Þ þ ðt − uÞ�;

MS
þ0ðs; tÞ ¼

BS
x

2F2
π
½3ðs − s0Þ − ðt − uÞ�: ð4:27Þ

The value of s0 depends on the process under consider-
ation; see (3.3). We have not written the amplitudes
describing the two processes involving the η meson. As
far as their structure is concerned, they can be obtained in
what follows from the amplitudes involving the KL meson,
upon replacing the mass of the latter by the mass of the
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former, and upon changing the notation for the coefficients
appearing in the polynomial part (e.g., Aη

x instead of AL
x ,

and so on). The computation of the OðE2Þ S and P partial
waves φ̃lðsÞ, l ¼ 0; 1, from the amplitudes (4.26) and
(4.27), presents no particular difficulty, and we merely
display the resulting expressions,8

φ̃þþ
0 ðsÞ ¼ 1

16π

�
Aþþ þ Bþþ

F2
π

�
s −

M2
K

3
−M2

π

��
;

φ̃þ−
0 ðsÞ ¼ 1

32π

�
2Aþþ −

Bþþ
F2
π

�
s −

M2
K

3
−M2

π

��
;

φ̃þ−
1 ðsÞ ¼ −

Bþþ
48π

KK∓;�∓ðsÞ
F2
π

; ð4:28Þ

φ̃x
0ðsÞ ¼

1

16π

�
Ax þ

Bx

3F2
π
ð3s −M2

K −M2
π − 2M2

π0
Þ
�
;

φ̃0þ
0 ðsÞ ¼ −

Ax

16π
−

Bx

96πF2
π

�
M2

K þM2
π þ 2M2

π0

− 3s −
3

s
ðM2

K −M2
π0
ÞΔπ

�
;

φ̃0þ
1 ðsÞ ¼ Bx

48π

KK0;0�ðsÞ
F2
π

; ð4:29Þ

φ̃L;x
0 ðsÞ ¼ 1

16π

�
AL
x þ BL

x

3F2
π
ð3s −M2

KL
− 2M2

π −M2
π0
Þ
�
;

φ̃L;þ0
0 ðsÞ ¼ −

AL
x

16π
−

BL
x

96πF2
π

�
M2

KL
þ 2M2

π þM2
π0

− 3sþ 3

s
ðM2

KL
−M2

πÞΔπ

�
;

φ̃L;þ0
1 ðsÞ ¼ BL

x

48π

KKL�;�0ðsÞ
F2
π

; ð4:30Þ

φ̃L;00
0 ðsÞ ¼ 1

16π
AL
00; ð4:31Þ

φ̃S;x
1 ðsÞ ¼ BS

x

24π

KKS0;þ−ðsÞ
F2
π

;

φ̃S;þ0
0 ðsÞ ¼ BS

x

32πF2
π

�
3s −M2

KS
− 2M2

π −M2
π0

þ 1

s
ðM2

KS
−M2

πÞΔπ

�
;

φ̃S;þ0
1 ðsÞ ¼ −

BS
x

48π

KKS�;�0ðsÞ
F2
π

: ð4:32Þ

In the case P ¼ K�, there are two independent channels
to consider, one involving charged pions only and the other
involving two neutral pions. The structure of the corre-
sponding two-loop amplitudes, as inferred from the
reconstruction theorem, is given by

Mþþðs;t;uÞ¼Pþþðs;t;uÞþ16πWþþðsÞ
þ16π½Wð0Þ

þ−ðtÞþ3ðu− sÞWð1Þ
þ−ðtÞ�

þ16π½Wð0Þ
þ−ðuÞþ3ðt− sÞWð1Þ

þ−ðuÞ�þOðE8Þ;
ð4:33Þ

and

Mxðs; t;uÞ¼Pxðs;t;uÞþ16πWxðsÞ
þ16π½Wð0Þ

0þðtÞþ3ðu− sÞWð1Þ
0þðtÞ�

þ16π½Wð0Þ
0þðuÞþ3ðt− sÞWð1Þ

0þðuÞ�þOðE8Þ:
ð4:34Þ

The various functions that appear in these expressions have
discontinuities that are given by unitarity. At the one-loop
order, and when restricted to two-pions intermediate states,
these read [cf. Eqs. (3.13) and (3.24)]

AbsWþþðsÞ¼
1

2
σðsÞφ̃þþ

0 ðsÞφþþ
0 ðsÞθðs−4M2

πÞþOðE6Þ;

AbsWð0Þ
þ−ðsÞ¼

�
σðsÞφ̃þ−

0 ðsÞφþ−
0 ðsÞθðs−4M2

πÞ

þ1

2
σ0ðsÞφ̃x

0ðsÞφx
0ðsÞθðs−4M2

π0
Þ
�
þOðE6Þ;

AbsWð1Þ
þ−ðsÞ¼ σðsÞ φ̃

þ−
1 ðsÞφþ−

1 ðsÞ
2KK∓;�∓ðsÞ

θðs−4M2
πÞþOðE6Þ;

AbsWxðsÞ¼
�
1

2
σ0ðsÞφ̃x

0ðsÞφ00
0 ðsÞθðs−4M2

π0
Þ

þσðsÞφ̃þ−
0 ðsÞφx

0ðsÞθðs−4M2
πÞ
�
þOðE6Þ;

AbsWð0Þ
0þðsÞ¼

λ1=2�0 ðsÞ
s

�
φþ0
0 ðsÞφ̃0þ

0 ðsÞ

−3
ΔπðM2

K −M2
π0
Þ

s
φþ0
1 ðsÞφ̃0þ

1 ðsÞ
2KK0;0�ðsÞ

�
×θðs− ðMπþMπ0Þ2ÞþOðE6Þ;

AbsWð1Þ
0þðsÞ¼

λ1=2�0 ðsÞ
s

φþ0
1 ðsÞφ̃0þ

1 ðsÞ
2KK0;0�ðsÞ

×θðs− ðMπþMπ0Þ2ÞþOðE6Þ: ð4:35Þ

Up to a polynomial ambiguity, this fixes then these
functions to read

8The remark made in Eq. (4.5) above also applies to the
product φ̃i→k

1 ðsÞφk→f
1 ðsÞ. In addition, when referring to the

Kacser function for a definite process, we denote the pions by
their charges, e.g., KKL�;�0ðsÞ or KK∓;00ðsÞ, and so on. For a
generic case, we write just KðsÞ.
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WþþðsÞ ¼ 16π
1

2
φ̃þþ
0 ðsÞφþþ

0 ðsÞJ̄ðsÞ þOðE6Þ;

Wð0Þ
þ−ðsÞ ¼ 16π

�
φ̃þ−
0 ðsÞφþ−

0 ðsÞJ̄ðsÞ þ 1

2
φ̃x
0ðsÞφx

0ðsÞJ̄0ðsÞ
�

þOðE6Þ;

Wð1Þ
þ−ðsÞ ¼ −

Bþþcþ−

18F4
π

ðs − 4M2
πÞJ̄ðsÞ þOðE6Þ; ð4:36Þ

and

WxðsÞ ¼ 16π

�
1

2
φ̃x
0ðsÞφ00

0 ðsÞJ̄0ðsÞ þ φ̃þ−
0 ðsÞφx

0ðsÞJ̄ðsÞ
�

þOðE6Þ;

Wð0Þ
0þðsÞ ¼

�
−
Bxcþ0

6F4
π

�
1 − 2

M2
π þM2

π0

s
− 3

Δ2
π

s2

�

× ðM2
K −M2

π0
ÞΔπ þ 16πφþ0

0 ðsÞφ̃0þ
0 ðsÞ

�
J̄�0ðsÞ

−
2Bxcþ0

3F4
π

ðM2
K −M2

π0
ÞΔ3

π

s2
¯̄J�0ðsÞ þOðE6Þ;

Wð1Þ
0þðsÞ ¼

Bxcþ0

18F4
π

λ�0ðsÞ
s

J̄�0ðsÞ þOðE6Þ: ð4:37Þ

We may proceed similarly in the case of the reactions
with P ¼ KL (or η). The amplitude for KLπ

0 → π∓π�
reads

ML
x ðs; t; uÞ ¼ PL;xðs; t; uÞ þ 16πWL;xðsÞ

− 16π
h
Wð0Þ

L;þ0ðtÞ þ 3ðu − sÞWð1Þ
L;þ0ðtÞ

i
− 16π

h
Wð0Þ

L;þ0ðuÞ þ 3ðt − sÞWð1Þ
L;þ0ðuÞ

i
þOðE8Þ; ð4:38Þ

whereas for KLπ
0 → π0π0, we obtain

ML
00ðs; t; uÞ ¼ 16π½WL;00ðsÞ þWL;00ðtÞ þWL;00ðuÞ�

þ PL;00ðs; t; uÞ þOðE8Þ: ð4:39Þ

At the one-loop order, the various functions that appear in
these expressions are given as

WL;xðsÞ¼16π

�
1

2
φ̃L;00
0 ðsÞφx

0ðsÞJ̄0ðsÞ

þ φ̃L;x
0 ðsÞφþ−

0 ðsÞJ̄ðsÞ
�
þOðE6Þ;

Wð0Þ
L;þ0ðsÞ¼

�
BL
x cþ0

6F4
π

�
1−2

M2
πþM2

π0

s
−3

Δ2
π

s2

�

× ðM2
KL

−M2
πÞΔπþ16πφþ0

0 ðsÞφ̃L;þ0
0 ðsÞ

�
J̄�0ðsÞ

þ2BL
x cþ0

3F4
π

ðM2
KL

−M2
πÞΔ3

π

s2
¯̄J�0ðsÞþOðE6Þ;

Wð1Þ
L;þ0ðsÞ¼

BL
x cþ0

18F4
π

λ�0ðsÞ
s

J̄�0ðsÞþOðE6Þ; ð4:40Þ

and

WL;00ðsÞ¼ 16π

�
1

2
φ̃L;00
0 ðsÞφ00

0 ðsÞJ̄0ðsÞþ φ̃L;x
0 ðsÞφx

0ðsÞJ̄ðsÞ
�

þOðE6Þ: ð4:41Þ

At the same one-loop accuracy, the polynomial
contributions to the four amplitudes that we have just
discussed, namelyMþþ,Mx,ML

x ,ML
00, can be written as

(cf. footnote 3)

Pðs; t; uÞ ¼ Aþ B
s − s0
F2
π

þ C
ðs − s0Þ2

F4
π

þ D
F4
π
½ðt − s0Þ2 þ ðu − s0Þ2� þOðE6Þ; ð4:42Þ

putting appropriate labels on the coefficients, e.g., Aþþ, Ax,
and so on. In the case of PL

00ðs; t; uÞ, the additional
restrictions BL

00 ¼ 0 andCL
00 ¼ DL

00, due to Bose symmetry,
apply. These coefficients are in one-to-one correspon-
dence with the Dalitz-plot parameters of the K → πππ
amplitudes.
Finally, it remains to discuss the case P ¼ KS briefly.

The corresponding two-loop amplitude for the process
KSπ

0 → πþπ− has the form

MS
xðs; t;uÞ¼PS;xðs;t;uÞþ48πðt−uÞWð1Þ

S;xðsÞ
þ16π½Wð0Þ

S;þ0ðtÞþ3ðu− sÞWð1Þ
S;þ0ðtÞ�

−16π½Wð0Þ
S;þ0ðuÞþ3ðt− sÞWð1Þ

S;þ0ðuÞ�þOðE8Þ:
ð4:43Þ

At the one-loop order, the functions involved in this
expression read

Wð1Þ
S;xðsÞ ¼

BS
xcþ0

9F4
π

ðs − 4M2
πÞJ̄ðsÞ þOðE6Þ; ð4:44Þ
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and

Wð0Þ
S;þ0ðsÞ¼

�
−
BS
xcþ0

6F4
π

�
1−2

M2
πþM2

π0

s
−3

Δ2
π

s2

�

× ðM2
KS

−M2
πÞΔπþ16πφþ0

0 ðsÞφ̃S;þ0
0 ðsÞ

�
J̄�0ðsÞ

−
2BS

xcþ0

3F4
π

ðM2
KS

−M2
πÞΔ3

π

s2
¯̄J�0ðsÞþOðE6Þ;

Wð1Þ
S;þ0ðsÞ¼−

BS
xcþ0

18F4
π

λ�0ðsÞ
s

J̄�0ðsÞþOðE6Þ: ð4:45Þ

The one-loop subtraction polynomial, in this case, is
given by

PS
xðs; t; uÞ ¼

t − u
F2
π

�
BS
x þDS

x
s0 − s
F2
π

�
þOðE6Þ: ð4:46Þ

Again, BS
x and DS

x are related to Dalitz-plot parameters of
the KS → π0πþπ− amplitude.

V. SECOND ITERATION: EQUAL-MASS PIONS

The construction of the scattering amplitudes for the
ππ → ππ and Pπ → ππ processes could be performed in a
rather straightforward manner at next-to-leading order:
from the expressions of their discontinuities at one loop,
the various functions WðsÞ and WðsÞ have been obtained
up to an ambiguity consisting in polynomials of at most
second order in the Mandelstam variables. The resulting
amplitudes at one loop display the correct analytic proper-
ties expected at this order, and satisfy all required crossing
relations. In order to proceed toward obtaining two-loop
expressions for all the Pπ → ππ amplitudes, it is necessary
to supplement the subtraction polynomials with OðE6Þ
terms. For Mþþ, Mx, ML

x , ML
00, we take the generic

form9

Pðs; t; uÞ ¼ Aþ B
s − s0
F2
π

þ C
ðs − s0Þ2

F4
π

þ D
F4
π
½ðt − s0Þ2 þ ðu − s0Þ2� þ E

ðs − s0Þ3
F6
π

þ F
F6
π
½ðt − s0Þ3 þ ðu − s0Þ3� þOðE8Þ ð5:1Þ

with appropriate labels. Due to the Bose symmetry, in the
case of PL

00ðs; t; uÞ, the additional constraint FL
00 ¼ EL

00

holds [in addition to the restrictions discussed after (4.42)].
For MS

x, the polynomial is

PS
xðs;t;uÞ¼

t−u
F2
π

�
BS
x þDS

x
s0−s
F2
π

þES
x
ðs0− sÞ2

F4
π

þFS
x

F4
π
ððs0− tÞ2þðs0−uÞ2Þ

�
þOðE8Þ: ð5:2Þ

Then, we start from the discontinuities of the functions
WðsÞ that hold at this order, as given by Eqs. (3.13), (3.21),
and (3.26). For instance, for the amplitude WL;00ðsÞ, it
gives

AbsWL;00ðsÞ¼
σ0ðsÞ
2

½φ̃L;00
0 ðsÞφ00

0 ðsÞþ φ̃L;00
0 ðsÞψ00

0 ðsÞ
þ ψ̃L;00

0 ðsÞφ00
0 ðsÞ�θðs−4M2

π0
Þ

þσðsÞ½φ̃L;x
0 ðsÞφx

0ðsÞþ φ̃L;x
0 ðsÞψx

0ðsÞ
þ ψ̃L;x

0 ðsÞφx
0ðsÞ�θðs−4M2

πÞþOðE8Þ: ð5:3Þ

As illustrated by this example, schematically these expres-
sions now involve, in addition to the lowest-order partial
waves represented by the functions φðsÞ and φ̃ðsÞ, the one-
loop dispersive part ψðsÞ [ψ̃ðsÞ] of the ππ → ππ (Pπ → ππ)
S and P partial-wave projections. These are to be obtained
from the one-loop expressions of these amplitudes that
have just been computed in the preceding section. As
compared to the leading-order case, their expressions at the
next-to-leading order are much more complicated. In the
case of the ππ scattering amplitudes, the difficulty is purely
algebraic, and explicit formulas can be obtained in rather
closed forms [44,48]. They essentially generalize the
results obtained in the case without isospin breaking
[46] to the situation where the pion mass difference is
taken into account. In the case of the Pπ → ππ amplitudes,
the situation is somewhat more involved, due to the
existence, in the central region of the Mandelstam plane,
of a bounded region corresponding to the decay process
P → πππ. This feature makes the analytic properties of
the amplitude less simple, and requires a more elaborate
analysis. In particular, when performing the partial-wave
projection by the usual integration over the variable t, one
has to be careful to find the appropriate prescription for
deforming the path of integration in order to avoid any
singularity. The situation has been well studied in the case
that corresponds to the isospin limit: the masses of the three
particles in the final state (i.e., pions for the cases at hand),
but also in the intermediate states, are identical. As
explained before, the appropriate procedure consists in
starting from the situation where MP < 3Mπ0 , so that the
decay region disappears. In this case, dispersion relations
exist under the usual conditions, and one can proceed as
outlined in Fig. 1. After that, one performs the analytic
continuation in the mass, M2

P → M2
P þ iδ, to the region

where MP > 3Mπ0 [68,79,80]. In practice, this analytic
continuation is provided by the prescription to deform the
contour of integration in the partial-wave projection. We

9Note that in Ref. [36] for the case of P ¼ η, we have used the
same form of the polynomial with a different normalization of the
coefficients Aη

x;…; Fη
x and Aη

00;…; Eη
00.
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show in Appendix A that this prescription, which was
shown to give the correct result in the limit of equal-mass
pions, also provides the appropriate prescription for the
processes involving three neutral external pions, even when
there appear pairs of heavier charged pions as intermediate
states. The more general situation, with also charged pions
in the external states, and lighter neutral pions as inter-
mediate states, involves anomalous thresholds and requires
a dedicated study. It will be the subject of a subsequent
article [51]. Therefore, our analysis in this section is
restricted to the case of equal-mass pions, in both final
and intermediate states. The common pion mass will be
taken as Mπ , the mass of the charged pion. The case
Pπ0 → π0π0, P ¼ KL; η, with Mπ0 ≠ Mπ , will be consid-
ered in the next section.
For equal-mass pions, the discontinuities of the functions

WðsÞ at next-to-leading order take the schematic form
[in the case of the functions Wð1ÞðsÞ, an additional factor
1=2KðsÞ is understood]

AbsWðsÞ∼σðsÞ½φ̃ðsÞφðsÞþ φ̃ðsÞψðsÞþ ψ̃ðsÞφðsÞ�: ð5:4Þ

This leads to the following convenient decomposition of
the functions WðsÞ at two loops,

WðsÞ ¼ W1 loopðsÞ þWππðsÞ þWPπðsÞ; ð5:5Þ

where each term results from the corresponding term in the
preceding decomposition of AbsWðsÞ. The preceding
section was devoted to the evaluation of the NLO ampli-
tudes W1 loopðsÞ, with AbsW1 loopðsÞ ∼ σðsÞφ̃ðsÞφðsÞ. The
next two terms give the contribution at NNLO, and their
computation10 will be addressed in turn in the remainder
of the present section. The results forWππðsÞ can be found
in Sec. VA [cf. (5.13)–(5.16)], whereas those for WPπðsÞ
are listed in Appendix D. Note that for P ¼ η, we reproduce
the expressions that were implicitly used (and the general
structure of which was shown) already in Sec. IV
of Ref. [36].

A. NLO ππ partial waves and the functions WππðsÞ
In the case where the pions have all a common massMπ ,

the partial-wave projections at one loop ψlðsÞ, l ¼ 0; 1, for
ππ scattering were already worked out quite some time ago
in Ref. [46]. We will use the expressions as given in
Ref. [44], with which we also share the normalization.
The partial-wave projections in the various channels are
expressed as combinations, weighted by the appropriate
Clebsh-Gordan coefficients, of the isospin projections
ψ IðsÞ, I ¼ 0, 1, 2, e.g., (with the Condon and Shortley
phase convention),

0
BBBBBBB@

ψþþ
0

ψþ−
0

ψx
0

ψþ0
0

ψ00
0

1
CCCCCCCA

¼

0
BBBBBBB@

0 1

1
3

1
6

− 1
3

1
3

0 1
2

1
3

2
3

1
CCCCCCCA
�
ψ0

ψ2

�
; ð5:6Þ

whereas ψþ−
1 ¼ ψþ0

1 ¼ ψ1=2. The isospin projections
ψ IðsÞ themselves are expressed in the form

ψ IðsÞ ¼ 2
M4

π

F4
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

s − 4M2
π

r X4
i¼0

ξðiÞI ðsÞkiðsÞ; ð5:7Þ

where the functions kiðsÞ read, for s ≥ 4M2
π,

k0ðsÞ ¼
1

16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4M2

π

s

r
; k1ðsÞ ¼

1

8π
LðsÞ;

k2ðsÞ ¼
1

8π

�
1 −

4M2
π

s

�
LðsÞ;

k3ðsÞ ¼
3

16π

M2
πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðs − 4M2
πÞ

p L2ðsÞ;

k4ðsÞ ¼
1

16π

M2
πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðs − 4M2
πÞ

p �
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

s − 4M2
π

r
LðsÞ

þ M2
π

s − 4M2
π
L2ðsÞ

�
; ð5:8Þ

with11

LðsÞ ¼ ln
1 −

ffiffiffiffiffiffiffiffiffiffi
s−4M2

π
s

q
1þ

ffiffiffiffiffiffiffiffiffiffi
s−4M2

π
s

q ½s ≥ 4M2
π�: ð5:9Þ

The polynomials ξðiÞI ðsÞ have been worked out in Ref. [46].
We will use them in the form given in terms of subthreshold
parameters in Eq. (C.8) of Ref. [44]. Their expressions in
terms of the scattering lengths can be obtained from the
formulas (F.8) to (F.11) given in Appendix F of that same
reference, upon taking the limit where the neutral and
charged pion masses coincide. Note that the function k4ðsÞ
appears only in the P-wave projection ψ1ðsÞ, and the

polynomials ξð4Þ0 ðsÞ and ξð4Þ2 ðsÞ vanish identically. Due to
the relation

�
s
M2

π
− 4

�
k4ðsÞ ¼ k0ðsÞ þ 2k1ðsÞ þ

1

3
k3ðsÞ; ð5:10Þ

10It is useful, for what follows, to keep in mind that the
functions φ̃ðsÞ and φðsÞ all simply become first-order polyno-
mials in s when Mπ0 ¼ Mπ .

11Note that for s ≥ 4M2
π, one has

J̄ðsÞ ¼ 1

16π2

�
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
π

s

r
ðLðsÞ þ iπÞ

�
:
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there is an ambiguity in the definition of the polynomials

ξðiÞ1 ðsÞ. This, however, does not matter in practice, and
ψ1ðsÞ is well defined.
Following Ref. [46], the expressions of the various

functions W0ðsÞ and W1ðsÞ can be written in terms of
integrals

K̄iðsÞ ¼
s
π

Z
∞

4M2
π

dx
x

kiðxÞ
x − s − i0

: ð5:11Þ

These integrals can be expressed in terms of the function
J̄ðsÞ, and the corresponding formulas are given in
Eq. (3.49) of Ref. [46].
We may now display, for each function WðsÞ appearing

in Table II, its NNLO contribution WππðsÞ. These expres-
sions read

WππþþðsÞ ¼ φ̃þþ
0 ðsÞM

4
π

F4
π

X3
i¼0

ξðiÞ2 ðsÞK̄iðsÞ;

Wð0Þππ
þ− ðsÞ ¼ 1

3
φ̃þ−
0 ðsÞM

4
π

F4
π

X3
i¼0

½2ξðiÞ0 ðsÞ þ ξðiÞ2 ðsÞ�K̄iðsÞ

−
1

3
φ̃x
0ðsÞ

M4
π

F4
π

X3
i¼0

½ξðiÞ0 ðsÞ − ξðiÞ2 ðsÞ�K̄iðsÞ;

Wð1Þππ
þ− ðsÞ ¼ −

Bþþ
96πF2

π

M4
π

F4
π

X4
i¼0

ξðiÞ1 ðsÞK̄iðsÞ; ð5:12Þ

Wππ
x ðsÞ ¼ 1

3
φ̃x
0ðsÞ

M4
π

F4
π

X3
i¼0

½ξðiÞ0 ðsÞ þ 2ξðiÞ2 ðsÞ�K̄iðsÞ

−
2

3
φ̃þ−
0 ðsÞM

4
π

F4
π

X3
i¼0

½ξðiÞ0 ðsÞ − ξðiÞ2 ðsÞ�K̄iðsÞ;

Wð0Þππ
0þ ðsÞ ¼ φ̃0þ

0 ðsÞM
4
π

F4
π

X3
i¼0

ξðiÞ2 ðsÞK̄iðsÞ;

Wð1Þππ
0þ ðsÞ ¼ Bx

96πF2
π

M4
π

F4
π

X4
i¼0

ξðiÞ1 ðsÞK̄iðsÞ; ð5:13Þ

Wππ
L;xðsÞ ¼

1

3
φ̃L;x
0 ðsÞM

4
π

F4
π

X3
i¼0

½2ξðiÞ0 ðsÞ þ ξðiÞ2 ðsÞ�K̄iðsÞ

−
1

3
φ̃L;00
0 ðsÞM

4
π

F4
π

X3
i¼0

½ξðiÞ0 ðsÞ − ξðiÞ2 ðsÞ�K̄iðsÞ;

Wð0Þππ
L;þ0 ðsÞ ¼ φ̃L;þ0

0 ðsÞM
4
π

F4
π

X3
i¼0

ξðiÞ2 ðsÞK̄iðsÞ;

Wð1Þππ
L;þ0 ðsÞ ¼

BL
x

96πF2
π

M4
π

F4
π

X4
i¼0

ξðiÞ1 ðsÞK̄iðsÞ; ð5:14Þ

Wππ
L;00ðsÞ¼

1

3
φ̃L;00
0 ðsÞM

4
π

F4
π

X3
i¼0

½ξðiÞ0 ðsÞþ2ξðiÞ2 ðsÞ�K̄iðsÞ

−
2

3
φ̃L;x
0 ðsÞM

4
π

F4
π

X3
i¼0

½ξðiÞ0 ðsÞ−ξðiÞ2 ðsÞ�K̄iðsÞ;

ð5:15Þ
and finally,

Wð1Þππ
S;x ðsÞ ¼ BS

x

48πF2
π

M4
π

F4
π

X4
i¼0

ξðiÞ1 ðsÞK̄iðsÞ;

Wð0Þππ
S;þ0 ðsÞ ¼ φ̃S;þ0

0 ðsÞM
4
π

F4
π

X3
i¼0

ξðiÞ2 ðsÞK̄iðsÞ;

Wð1Þππ
S;þ0 ðsÞ ¼ −

BS
x

96πF2
π

M4
π

F4
π

X4
i¼0

ξðiÞ1 ðsÞK̄iðsÞ: ð5:16Þ

B. NLO partial waves of the Pπ → ππ amplitudes
and the functions WPπðsÞ

Above the physical threshold [or equivalently for
M2

P < ð ffiffiffi
s

p
−Mπ;π0Þ2], the partial-wave projections of the

Pπ → ππ amplitudes in the form given by Eqs. (3.11) and
(3.12) are defined as integrals over the scattering angle,
cf. Eq. (3.9). This integration can be traded for an
integration over the Mandelstam variable t, upon using
relation (3.7). Starting from the one-loop expression of the
amplitude given in Sec. IV B, and written in the form
shown in Eqs. (3.11) and (3.12), this leads to

t0ðsÞ ¼ W0ðsÞ þ
1

64πKðsÞ
Z

tþ

t−

dt½Pðs; t; 3s0 − t − sÞ þ Pðs; 3s0 − t − s; tÞ�

þ 1

2KðsÞ
Z

tþ

t−

dtfWt
0ðtÞ þWu

0ðtÞ − 3ð2sþ t − 3s0Þ½Wt
1ðtÞ þWu

1ðtÞ�g;

t1ðsÞ ¼ 2KðsÞW1ðsÞ þ
1

128πK2ðsÞ
Z

tþ

t−

dtð2tþ s − 3s0Þ½Pðs; t; 3s0 − t − sÞ − Pðs; 3s0 − t − s; tÞ�

þ 1

4K2ðsÞ
Z

tþ

t−

dtð2tþ s − 3s0ÞfWt
0ðtÞ −Wu

0ðtÞ − 3ð2sþ t − 3s0Þ½Wt
1ðtÞ −Wu

1ðtÞ�g ð5:17Þ
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for the corresponding S- and P-wave projections. The
limits of integration are given by

t�ðsÞ ¼
3s0 − s

2
� KðsÞ; ð5:18Þ

where KðsÞ is the Kacser function defined in general by the
formula (3.8). This t-integral representation of the partial-
wave projections is well suited for the analytic continuation
in M2

P mentioned above.
In the above formulas, allW functions stand for the one-

loop expressions worked out in Sec. IV B. Making the
connection with the discussion at the end of Sec. III, the
contributions from direct rescattering (the first diagram in
Fig. 2) are contained in the functions W0;1ðsÞ, whereas
rescattering in the crossed channels (the second diagram,
with the fish topology, in Fig. 2) is contained in the
integrals involving the functions Wt;u

0;1ðtÞ. The integrals
over the polynomial parts present no difficulty. For the
polynomial given in Eq. (4.42), one obtains

1

4KðsÞ
Z

tþ

t−

dt½Pðs;t;3s0− t−sÞþPðs;3s0− t−s;tÞ�

¼AþB
s−s0
F2
π

þ
�
CþD

2

�ðs−s0Þ2
F4
π

þ2

3
D
K2ðsÞ
F4
π

; ð5:19Þ

and for the polynomial PS
xðs; t; uÞ given in Eq. (4.46),

1

4K2ðsÞ
Z

tþ

t−

dtð2tþ s − 3s0Þ½PS
xðs; t; 3s0 − t − sÞ

− PS
xðs; 3s0 − t − s; tÞ�

¼ 4

3

�
BS
x

F2
π
−
DS

x

F4
π
ðs − s0Þ

�
KðsÞ: ð5:20Þ

As for the remaining integrals, for equal-mass pions, some
simplifications occur. For instance, the three functions J̄ðsÞ,
J̄0ðsÞ, and J̄�0ðsÞ that appear in the expressions for the
one-loop amplitudes become identical and equal to J̄ðsÞ.
Furthermore, contributions involving the twice-subtracted
function ¯̄J�0ðsÞ vanish, being proportional to powers ofΔπ .
From the expressions obtained at NLO, the remaining
integrands can then be written as polynomials in t times the
loop function J̄ðtÞ,

fWt
0ðtÞ�Wu

0ðtÞ−3ð2sþ t−3s0Þ½Wt
1ðtÞ�Wu

1ðtÞ�gOðE4Þ

¼
�X2
n¼0

w̃ðnÞ
�

�
t
F2
π

�
n
þB�

3

sðt−4M2
πÞ

F4
π

�
J̄ðtÞ; ð5:21Þ

so that one obtains

t0ðsÞ ¼ W0ðsÞ þ
1

64πKðsÞ
Z

tþ

t−

dt½Pðs; t; 3s0 − t − sÞ þ Pðs; 3s0 − t − s; tÞ�

þ 1

2KðsÞ
Z

tþ

t−

dt
X2
n¼0

�
w̃ðnÞ
þ þ ð2 − nÞBþ

3

s
F2
π

�
−2

M2
π

F2
π

�
1−n�� t

F2
π

�
n
J̄ðtÞ; ð5:22Þ

t1ðsÞ ¼ 2KðsÞW1ðsÞ þ
1

128πK2ðsÞ
Z

tþ

t−

dtð2tþ s − 3s0Þ½Pðs; t; 3s0 − t − sÞ − Pðs; 3s0 − t − s; tÞ�

þ 1

4K2ðsÞ
Z

tþ

t−

dt
X2
n¼0

w̃ðnÞ
− ð2t − 3s0Þ

�
t
F2
π

�
n
J̄ðtÞ

þ s
4K2ðsÞ

Z
tþ

t−

dt
X2
n¼0

�
w̃ðnÞ
− þ B−

3

�
−2

M2
π

F2
π

�
1−n nðn − 3Þ23−nM2

π − ðn − 2Þðs − 3s0Þ
F2
π

��
t
F2
π

�
n
J̄ðtÞ: ð5:23Þ

The coefficients w̃ðnÞ
� and B� are process dependent, and

their expressions for the various channels are collected in
Appendix D.
Following the same path in the case of the partial-wave

projections of the ππ amplitudes, we would obtain the
expressions for the functions ψ IðsÞ explicitly; namely, in
the case of equal-mass pions, we would reproduce the
formulas (5.6)–(5.9) from the previous subsection. The
situation in the case of the processes Pπ → ππ is more
involved, for the reasons already explained previously. The
main difference from the case of ππ scattering (and the

source of the complication) lies in the integration itself. In
the case of ππ scattering, the above integrals are computed
in the usual way, with the limits of integration given by
tþðsÞ ¼ 0 and t−ðsÞ ¼ −ðs − 4M2

πÞ. In the case of the
partial-wave projections of the Pπ → ππ amplitudes, we
have to perform an analytic continuation inM2

P fromMP ¼
Mπ to MP > 3Mπ keeping s real and above the two-pion
unitarity threshold. During the process of this analytic
continuation, the physical threshold of the Pπ → ππ
scattering moves above the two-pion unitarity threshold,
and the unphysical region appears, where the limits of
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integration (5.18) become complex. Finally, also the
decay region emerges. The correct prescription for such
analytic continuation corresponds to approaching the real
values of M2

P from the upper complex half-plane, i.e.,
taking M2

P → M2
P þ iδ. It fixes the position of the end

points infinitesimally below or above the real axis when
necessary, as described in detail in Ref. [68] for the equal-
mass pions. As a result, we get in this case

t�ðsÞ ¼
3s0 − s

2
þK�ðsÞ; ð5:24Þ

where K�ðsÞ is defined as

K�ðsÞ ¼

8>>>>><
>>>>>:

∓ jKðsÞj; s > M2þ
�ijKðsÞj; M2þ > s > M2

−

�jKðsÞj � iδ; M2
− > s > 1

2
ΔPπ

�jKðsÞj þ iδ; 1
2
ΔPπ > s > 4M2

π;

ð5:25Þ

and KðsÞ denotes the Kacser function for the equal-mass
pions. According to the general definition (3.8), it reads

K2ðsÞ ¼ 1

4

�
1 −

4M2
π

s

�
λPπðsÞ: ð5:26Þ

In the above formulas, we have introduced the shorthand
notation M� ¼ MP �Mπ and ΔPπ ¼ M2

P −M2
π . At the

same time, the path of integration itself has to be deformed
into the complex-t plane in order that the integration avoids
the two-pion unitarity cut.
As shown in Appendix B, the required contour integrals

of tnJ̄ðtÞ, with n ¼ 0, 1, 2, 3, can be easily computed in
closed form. Note that the integrands of (5.22) and (5.23)
are analytic functions. A detailed analysis of the analytic
structure of these integrands reveals (cf. Appendix B) that
in the case of equal-mass pions, the above contour integrals
can be obtained upon taking the difference at the end points
of the primitives of the functions occurring in these
integrals. The results can be written compactly as (recall
that the condition s ≥ 4M2

π holds)

π

Z
tþðsÞ

t−ðsÞ
dttnJ̄ðtÞ ¼ 2KðsÞ

σðsÞ
X3
i¼0

κðnÞi ðsÞk̃iðsÞ; ð5:27Þ

where the functions k̃iðsÞ are similar to the functions kiðsÞ
introduced in Eq. (5.8) in the case of the ππ partial-wave
projections:

k̃0ðsÞ ¼
1

16π
σðsÞ; k̃1ðsÞ ¼

1

16π
LðsÞ;

k̃2ðsÞ ¼
1

16π
σðsÞs MðsÞ

λ1=2Pπ ðsÞ
;

k̃3ðsÞ ¼ −
1

16π
M2

π
MðsÞ
λ1=2Pπ ðsÞ

LðsÞ: ð5:28Þ

Actually, k0ðsÞ ¼ k̃0ðsÞ and k1ðsÞ ¼ 2k̃1ðsÞ, but we prefer
to keep different notations for them, such as to clearly
separate the present discussion from the case of the ππ
scattering amplitude; of course, in the limit MP → Mπ ,
k̃2ðsÞ → k1ðsÞ=2 and k̃3ðsÞ → −k3ðsÞ=3. These expres-
sions involve the functions σðsÞ and LðsÞ, already defined
in Eqs. (4.14) and (5.9), respectively. An additional
function MðsÞ appears. For s > 4M2

π, it is defined as

MðsÞ ¼ − ln

�
1 −

ΔPπ

s
þ λ1=2Pπ ðsÞ

s

�

− ln

�
1 −

ΔPπ

s
−
λ1=2Pπ ðsÞ

s

�−1

¼ −2 ln
�
1 −

ΔPπ

s
þ λ1=2Pπ ðsÞ

s

�
þ ln

4M2
π

s
: ð5:29Þ

Another issue is raised by these expressions, namely, the
determination of the square root of the triangle function
λPπðsÞ. Nevertheless, an inspection of the formula given
above for the function MðsÞ shows that the functions k̃iðsÞ
in Eq. (5.27) do not depend on the way one defines λ1=2Pπ ðsÞ.
Given the discussion preceding Eq. (5.27), it seems actually
natural to define λ1=2Pπ ðsÞ as the square root of the function
λðs;M2

P þ iδ;M2
πÞ, which we will assume to be the case in

the remainder of this section. The functions k̃nðsÞ for
n ¼ 2, 3 are represented in Fig. 10 in Appendix C, both for
MP < Mπ , where they are real, and forMP > Mπ, where an
imaginary part appears.12

The functions κðnÞi ðsÞ, for i ¼ 0, 1, 2, are not polynomials
in s, but have the following general structure,

κðnÞi ðsÞ ¼ κ̄ðnÞi ðsÞ þ cðnÞi
ΔPπ

s
þ dðnÞi

Δ2
Pπ

s2
; ð5:30Þ

where κ̄ðnÞi ðsÞ are now polynomials in s and cðnÞi , dðnÞi are

numerical coefficients. The polynomials κ̄ðnÞi ðsÞ are
given by

12Up to trivial changes in the labels and normalization factors,
k̃nðsÞ are identical with the functions F iðsÞ defined in Eqs. (A.7)
to (A.11) of Ref. [36]. For n ¼ 0, 1 they furthermore coincide
with the imaginary parts of the corresponding functions K̃nðzÞ
shown in Fig. 11.
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κ̄ð0Þ0 ¼3; κ̄ð1Þ0 ¼1

4
ð−5sþ5M2

Pþ11M2
πÞ;

κ̄ð2Þ0 ¼7

9
ðs−M2

PÞ2þ
9

2
M2

πðM2
PþM2

π−sÞ;

κ̄ð3Þ0 ¼721

144
s2M2

π−
1442

144
M2

PM
2
πs−

231

16
M4

πsþ
153

16
M6

π

þ883

144
M4

PM
2
πþ

195

16
M2

PM
4
πþ

9

16
ðM2

P−sÞ3;

κ̄ð0Þ1 ¼1

2
; κ̄ð1Þ1 ¼1

4
ðM2

PþM2
π−sÞ;

κ̄ð2Þ1 ¼1

6
½ðs−M2

PÞ2−M2
πð5sþ2M2

π−7M2
PÞ�;

κ̄ð3Þ1 ¼M2
π

24
½25s2−ð56M2

Pþ53M2
πÞsþ43M4

P

þ67M2
PM

2
π−53M4

π�þ
1

8
ðM2

P−sÞ3;

κ̄ð0Þ2 ¼1

2
; κ̄ð1Þ2 ¼−

1

4
ðs−2M2

PÞ;

κ̄ð2Þ2 ¼1

6
½s2−sð3M2

Pþ4M2
πÞþ3ðM4

Pþ2M2
PM

2
π−M4

πÞ�;

κ̄ð3Þ2 ¼M2
π

12
½11s2−10sð3M2

Pþ2M2
πÞþ30M4

P

þ18M2
PM

2
π−24M4

π�

−
1

8
ðs3−4s2M2

Pþ6sM4
P−4M6

PÞ;

κ̄ð0Þ3 ¼1; κ̄ð1Þ3 ¼M2
π; κ̄ð2Þ3 ¼2M4

π; κ̄ð3Þ3 ¼5M6
π: ð5:31Þ

The only nonvanishing coefficients dðnÞi are

dð3Þ1 ¼ M4
π

4
ΔPπ; dð2Þ2 ¼ M2

π

6
ΔPπ;

dð3Þ2 ¼ M2
π

12
ð3M2

P þ 5M2
πÞΔPπ; ð5:32Þ

while the nonvanishing coefficients cðnÞi read

cð2Þ0 ¼−
7

9
M2

πΔPπ; cð3Þ0 ¼−
M2

π

72
ð81M2

Pþ239M2
πÞΔPπ;

cð1Þ1 ¼−
1

2
M2

π; cð2Þ1 ¼−
1

2
M2

πðM2
PþM2

πÞ;

cð3Þ1 ¼−
1

4
M2

πð2M4
Pþ7M2

PM
2
πþM4

πÞ;

cð0Þ2 ¼−
1

2
; cð1Þ2 ¼−

ΔPπ

4
; cð2Þ2 ¼−

1

6
ðM2

Pþ5M2
πÞΔPπ;

cð3Þ2 ¼−
1

24
ð3M4

Pþ34M2
PM

2
πþ59M4

πÞΔPπ: ð5:33Þ

1. S-wave projections

From expression (5.22) for the one-loop S-wave pro-
jection, we can extract its dispersive part ψ̃0ðsÞ as

ψ̃0ðsÞ ¼ t1loop0 ðsÞ − iAbst1loop0 ðsÞ: ð5:34Þ

In accord with Eq. (3.13), for s > 4M2
π, we have

Abst1loop0 ðsÞ¼AbsW1loop
0 ðsÞ, where W1loop

0 ðsÞ denotes
the one-loop expression of W0ðsÞ constructed through
the first iteration in Sec. IV B. Then, using (5.22), we get
finally

σðsÞψ̃0ðsÞ¼
σðsÞ
16π

�
16πDispW1loop

0 ðsÞþ C
F4
π
ðs− s0Þ2

þ D
F4
π

�
2

3
K2ðsÞþðs− s0Þ2

2

��

þ 1

π

X3
i¼0

�X2
n¼0

w̃ðnÞ
þ

κðnÞi ðsÞ
F2n
π

þ Bþ
3F4

π

s
F2
π

κð1Þi ðsÞ−4M2
πκ

ð0Þ
i ðsÞ

F2
π

�
k̃iðsÞ: ð5:35Þ

The expression of AbsW0ðsÞ at next-to-leading order
involves the product

AbsW0ðsÞ ∼ σðsÞφ0ðsÞψ̃0ðsÞθðs − 4M2
πÞ; ð5:36Þ

where φ0ðsÞ is a first-order polynomial in s. The next step
consists in constructing a function in the complex-s plane,
which has a cut along the positive real axis, and whose
discontinuity is given by Eq. (5.36). This is straightforward
for the contribution between the first curly brackets in
Eq. (5.35) since

σðsÞReJ̄ðsÞ ¼ 8πImJ̄2ðsÞ: ð5:37Þ

For the remaining terms, given by the sum in Eq. (5.35),
this can be achieved in the following way. Let us introduce
functions defined through dispersive integrals of the
functions k̃iðsÞ,

K̃iðsÞ ¼
s
π

Z
∞

4M2
π

dx
x

k̃iðxÞ
x − s − i0

;

˜̃KiðsÞ ¼
s2

π

Z
∞

4M2
π

dx
x2

k̃iðxÞ
x − s − i0

¼ K̃iðsÞ − sK̃i
0ð0Þ: ð5:38Þ

Then, the function
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½φ0 ⊙ ξ̃0�ðsÞ

¼ 1

16π2F2
π
½φ0ðsÞ−φ0ð0Þ�

X2
n¼0

w̃ðnÞ
þ

X3
i¼0

κðnÞi ðsÞK̃iðsÞ

þ 1

16π2F2
π
φ0ð0Þ

X2
n¼0

w̃ðnÞ
þ

X3
i¼0

�
κðnÞi ðsÞ−dðnÞi

Δ2
Pπ

s2

�
K̃iðsÞ

þ sBþ
16π2F2

π
φ0ðsÞ

X3
i¼0

½κð1Þi ðsÞ−4M2
πκ

ð0Þ
i ðsÞ�K̃iðsÞ

þ 1

16π2F2
π
φ0ð0Þ

X2
n¼0

w̃ðnÞ
þ

X3
i¼0

dðnÞi
Δ2

Pπ

s2
˜̃KiðsÞ ð5:39Þ

has a discontinuity along the positive real axis given by the
sum in Eq. (5.35), multiplied by φ0ðsÞ. Notice that all
the functions k̃iðxÞ are bounded on the real axis by ln x
as x → þ∞ since

lim
x→þ∞

k̃iðxÞ ¼
�

1

16π
;
1

16π
ln
M2

π

x
;
1

16π
ln
M2

π

x
;

−
1

16π

M2
π

x
ln2

M2
π

x

�
: ð5:40Þ

Therefore, the once-subtracted dispersive integrals in

Eq. (5.38) are convergent, and the functions ˜̃KiðsÞ are

defined without ambiguity. Actually, the dispersive integral
for k̃3ðxÞ would already converge without subtraction.
Finally, one easily finds expressions in terms of J̄ðsÞ
[36,46] for the two first functions, i.e., K̃0ðsÞ ¼ J̄ðsÞ, and

K̃1ðsÞ ¼
1

2

s
s − 4M2

π

�
16π2J̄2ðsÞ − 4J̄ðsÞ þ 1

4π2

�
: ð5:41Þ

2. P-wave projections

The dispersive part of the P-wave projection can be
obtained as

ψ̃1ðsÞ ¼ t1loop1 ðsÞ − iAbst1loop1 ðsÞ
¼ t1loop1 ðsÞ − 2iKðsÞAbsW1loop

1 ðsÞ; ð5:42Þ

where we used (3.13). Starting from the structure of
AbsW1ðsÞ, i.e.,

AbsW1ðsÞ ∼ σðsÞ φ1ðsÞ
2KðsÞ ψ̃1ðsÞθðs − 4M2

πÞ; ð5:43Þ

one may notice that ψ̃1ðsÞ occurs in AbsW1ðsÞ through the
combination [φ1ðsÞ is proportional to s − 4M2

π]
13

σðsÞðs−4M2
πÞ

2KðsÞ ψ̃1ðsÞ¼
σðsÞðs−4M2

πÞ
32π

�
DispW1loop

1 ðsÞ−DS
x

F4
π
ðs− s0Þ

�
þ 1

π

X3
n¼0

w̃ðnÞ
−

X3
i¼0

2κðnþ1Þ
i ðsÞ−3s0κ

ðnÞ
i ðsÞ

F2n
π

sk̃iðsÞ
λPπðsÞ

þ 1

π

X3
i¼0

�X3
n¼0

w̃ðnÞ
−

κðnÞi ðsÞ
F2n
π

þ B−

3F4
π
½2κð2Þi ðsÞþðs−3s0−8M2

πÞκð1Þi ðsÞ−4M2
πðs−3s0Þκð0Þi ðsÞ�

�
s2k̃iðsÞ
λPπðsÞ

;

ð5:44Þ

The main difference from the previous case of the
S-wave projection lies in the presence of additional poly-
nomial λPπðsÞ in the denominator of the right-hand side.
This feature can be handled by writing

λPπðsÞ ¼ ðs −M2þÞðs −M2
−Þ; M� ¼ MP �Mπ;

ð5:45Þ

and by using the decomposition of a product of fractions.
As a result, we define the additional functions

K̃ðλÞ
i ðsÞ ¼ 1

4

�
M2

π

s −M2þ

�
K̃iðsÞ −

s
M2þ

K̃iðM2þÞ
�

−
M2

π

s −M2
−

�
K̃iðsÞ −

s
M2

−
K̃iðM2

−Þ
��

≡ s
π

Z
∞

4M2
π

dx
x
MPM3

π

λKπðxÞ
k̃iðxÞ

x − s − i0
; ð5:46Þ

which are actually characterized (but not entirely) by the

conditions K̃ðλÞ
i ð0Þ ¼ 0 and their absorptive parts along the

cut on the positive real axis

AbsK̃ðλÞ
i ðsÞ ¼ MPM3

π

λKπðsÞ
k̃iðsÞθðs − 4M2

πÞ: ð5:47Þ13In this formula, the second term in the rectangular brackets is
present only for KSπ

0 → πþπ− scattering; see Appendix D.
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Then, the discontinuity along the real positive axis of the
function

ξ̃1ðsÞ¼
1

π

X2
n¼0

sw̃ðnÞ
−

MPM3
π

X3
i¼0

K̃ðλÞ
i ðsÞ2κ

ðnþ1Þ
i þðs−3s0ÞκðnÞi ðsÞ

F2n
π

þ 1

π

X3
i¼0

B−

3
½2κð2Þi ðsÞþðs−3s0−8M2

πÞκð1Þi ðsÞ

−4M2
πðs−3s0Þκð0Þi ðsÞ� s2

MPM3
πF4

π
K̃ðλÞ

i ðsÞ ð5:48Þ

reproduces the terms displayed in Eq. (5.44).

VI. SECOND ITERATION: P → π0π0π0

WITH Mπ ≠ Mπ0

We next consider the second iteration in the case
where the difference between neutral and charged pion
masses is taken into account, but for the two processes
where all the external pions are neutral, i.e., KL → π0π0π0

and η → π0π0π0. These amplitudes are fully symmetric
under exchanges of the three Mandelstam variables, and are
described by the polynomial of the form (5.1)

Pðs;t;uÞ¼Aþ C
F4
π
½ðs− s0Þ2þðt− s0Þ2þðu− s0Þ2�

þ E
F6
π
½ðs− s0Þ3þðt− s0Þ3þðu− s0Þ3�þOðE8Þ

ð6:1Þ

and a single function (see Table II) that we call simply
WL;00ðsÞ. Its expression at one loop is given in Eq. (4.41).
According to (5.3), at two loops, the absorptive part of
WL;00ðsÞ is determined in terms of the dispersive parts of
the l ¼ 0 partial-wave projections of the one-loop ampli-
tudes ML

00, M
L
x and A00, Ax. However, these have now to

be calculated for Mπ ≠ Mπ0. Regarding the ππ amplitudes
A00, Ax, this has already been done in Ref. [44], where
explicit expressions can be found, see Sec. IVA therein. As
discussed below, in the case of the amplitudes ML

00 and
ML

x , this calculation does not raise any difficulties of
principle, although the resulting formulas become much
more complicated than in the case of the equal-mass pions.

A. NLO partial waves of the Pπ0 → π0π0 amplitude

The additional algebraic complexity generated by
Mπ ≠ Mπ0 is, in this case, compensated to some extent
by the absence of a P-wave. Discarding the contribution
from the polynomial part, which is trivial to handle, we
need to compute two types of integrals, cf. (4.41). The first
type is analogous to the one in Eq. (5.27), but involves now
the function J̄0ðsÞ instead of J̄, while at the same time the
limits of integration become

tπ
0

� ðsÞ ¼ 3sπ
0

0 − s
2

þKπ0;�ðsÞ; ð6:2Þ

with sπ
0

0 ≡M2
π0
þM2

P=3, andKπ0;�ðsÞ is the same function
as K�ðsÞ, defined in Eq. (5.25), but with the charged pion
mass replaced by the neutral one. The result of this
integration is given by the formula (5.27), provided one

replaces the functions κðnÞi ðsÞ and k̃iðsÞ by functions κðnÞπ0;i
ðsÞ

and k̃π
0

i ðsÞ, respectively, obtained from the former upon
performing everywhere the substitution Mπ → Mπ0 , e.g.,

π

Z
tπ
0

þ ðsÞ

tπ
0

− ðsÞ
dttnJ̄0ðtÞ ¼

2Kπ0ðsÞ
σ0ðsÞ

X3
i¼0

κðnÞ
π0;i

ðsÞk̃π0i ðsÞ: ð6:3Þ

The second type of integral that is needed is of a new type.
It involves the loop function J̄ðsÞ for charged pions, but
integrated with the kinematics corresponding to neutral
pions. This second integral can also be done analytically,
and the result is cast into the form

π

Z
tπ
0

þ ðsÞ

tπ
0

− ðsÞ
dttnJ̄ðtÞ ¼ 2Kπ0ðsÞ

σ0ðsÞ
X3
i¼0

κðnÞ∇;iðsÞk̃∇;iðsÞ: ð6:4Þ

The set of functions k̃∇;iðsÞ in terms of which it is expressed
differs from the set k̃iðsÞ given in Eq. (5.28). Explicitly,
they read

k̃∇;0ðsÞ¼
1

16π
σ0ðsÞ;

k̃∇;1ðsÞ¼
1

8π

σ0ðsÞ
M2

π
½tπ0þ ðsÞσþðsÞlnτþðsÞþtπ

0

− ðsÞσ−ðsÞlnτ−ðsÞ�;

k̃∇;2ðsÞ¼
1

8π
σðsÞs 1

λ1=2Pπ ðsÞ
½tπ0þ ðsÞσþðsÞlnτþðsÞ

−tπ0− ðsÞσ−ðsÞlnτ−ðsÞ�;

k̃∇;3ðsÞ¼−
1

16π

M2
π

λ1=2Pπ ðsÞ
½ln2τþðsÞ−ln2τ−ðsÞ�; ð6:5Þ

with σ�ðsÞ≡ σðtπ0� ðsÞÞ and, likewise, τ�ðsÞ≡ τðtπ0� ðsÞÞ,
where

τ�ðsÞ ¼
σ�ðsÞ − 1

σ�ðsÞ þ 1
: ð6:6Þ

In the limit Mπ0 → Mπ , one recovers the previous set of
functions:

k̃∇;0ðsÞ → k̃0ðsÞ; k̃∇;3ðsÞ → k̃3ðsÞ;

k̃∇;1ðsÞ →
�
3s0 − s
M2

π
− 4

ΔPπ

s

�
k̃1ðsÞ −

λPπðsÞ
sM2

π
k̃1ðsÞ;

k̃∇;2ðsÞ → k̃1ðsÞ þ
�
1 −

ΔPπ

M2
π

�
k̃2ðsÞ: ð6:7Þ
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As for the functions κðnÞ∇;iðsÞ, one has κðnÞ∇;3ðsÞ ¼ κðnÞ3 ðsÞ,
and the remaining ones are given by

κð0Þ∇;0¼3; κð1Þ∇;0¼
1

4
ð−5sþ5M2

Pþ15Mπ0 −4M2
πÞ;

κð2Þ∇;0¼
7

9
ðs−M2

PÞ2−
7

9
M2

π0
Δ2

Pπ0

s
−
1

6
½ðs−M2

PÞð28M2
π0
−M2

πÞ
þ12M4

πþ3M2
πM3

π0
−42M4

π0
�;

κð3Þ∇;0¼
9

16
ð3sπ00 −sÞ3−M2

π

18
ð3sπ00 −sÞ2− 5

12
M4

πð3sπ00 −sÞ

−5M6
π−

9

8
M2

π0
ð3sπ00 −sÞΔ

2
Pπ0

s
þ 1

18
M2

πM2
π0
Δ2

Pπ0

s
;

κð0Þ∇;1¼0; κð1Þ∇;1¼
M2

π

8
;

κð2Þ∇;1¼
M2

π

12
ðM2

πþ2M2
π0
−sÞ;

κð3Þ∇;1¼
M2

π

16
ðs−3sπ

0

0 Þ2þM4
π

24
ðs−3sπ

0

0 Þ

−
5

24
M6

π−
1

16
M2

πM2
π0
Δ2

Pπ0

s
;

κð0Þ∇;2¼
1

2
; κð1Þ∇;2¼−

1

8
ðs−M2

Pþ4M2
π−3M2

π0
Þ;

κð2Þ∇;2¼
1

12
ðs−3sπ

0

0 Þ2−1

6
M2

π0
Δ2

Pπ0

s

þM2
π

12
ðs−M2

P−3M2
π0
−12M2

πÞ;

κð3Þ∇;2¼
1

16
ð3sπ00 −sÞ3−M2

π

24
ð3sπ00 −sÞ2− 5

24
M4

πð3sπ00 −sÞ

−
5

2
M6

π−
3

16
M2

π0
ð3sπ00 −sÞΔ

2
Pπ0

s
þ 1

12
M2

πM2
π0
Δ2

Pπ0

s
:

ð6:8Þ

We were not able to find simpler expressions for the
functions k̃∇;iðsÞ, i.e., comparable to those given in
Eq. (5.28). The origin of the difficulty can, for instance,
be understood upon considering the square of the functions
σ�ðsÞ,

σ2�ðsÞ ¼
s

s − 4M2
π0

M2
π

M2
π0

�
s − 4M2

π0
� 2Kπ0ðsÞ

ΔPπ0

�2

−
Δπ

M2
π0

�
1 −

4M2
π0

s

�
; ð6:9Þ

and comparing it to the expression for σT�ðsÞ given in
Eq. (B22): as Δπ → 0, σ�ðsÞ → 1=σT�ðsÞ, but no such
simple expression is available when Δπ ≠ 0.

B. NLO S-wave projection of the
Pπ0 → π +π − amplitude

The one-loop representation of the Pπ0 → πþπ− ampli-
tude is given by Eqs. (4.38) and (4.40). In order to obtain
the corresponding S-wave projection, we need to compute
the contour integrals involving the functions J̄�0 with the
end points given by

tx�ðsÞ ¼
3sx0 − s

2
þKx;�ðsÞ; ð6:10Þ

where now 3sx0 ¼ M2
P þM2

π0
þ 2M2

π and

Kx;�ðsÞ ¼

8>>>>><
>>>>>:

∓ jKxðsÞj; s > M2þx

�ijKxðsÞj; M2þx > s > M2
−x

�jKxðsÞj � iδ; M2
−x > s > Mπ

MπþM
π0
ΔPπ0

�jKxðsÞj þ iδ; Mπ
MπþM

π0
ΔPπ0 > s > 4M2

π

:

ð6:11Þ
Here, M�x ¼ MP �Mπ0 , and KxðsÞ is the corresponding
Kacser’s function, given by

K2
xðsÞ ¼

1

4

�
1 −

4M2
π

s

�
λPπ0ðsÞ: ð6:12Þ

Since for s > 4M2
π the path corresponding to the movement

of tx�ðsÞ in the complex t plane does not cross the cut of the
function J̄�0ðtÞ, the contour integrals can be again calcu-
lated as the differences of the corresponding primitive
functions at the above end points, as described in
Appendix B. In analogy with (6.4), we express them in
terms of elementary functions k̃þ;iðsÞ as

π

Z
txþðsÞ

tx−ðsÞ
dttnJ̄ðtÞ ¼ 2KxðsÞ

σðsÞ
X3
i¼0

κðnÞþ;iðsÞk̃þ;iðsÞ: ð6:13Þ

The explicit form of the latter functions reads

k̃þ;0ðsÞ ¼
1

16π
σðsÞ; k̃þ;1ðsÞ ¼

1

16π
LðsÞ;

k̃þ;2ðsÞ ¼
1

16π
σðsÞs MðsÞ

λ1=2
Pπ0

ðsÞ
;

k̃þ;3ðsÞ ¼ −
1

16π

Σπ

2

MðsÞ
λ1=2Pπ0ðsÞ

LðsÞ;

k̃þ;4ðsÞ ¼ −
1

16π
Δπ

J ðτxþðsÞÞ − J ðτx−ðsÞÞ
λ1=2
Pπ0

ðsÞ
; ð6:14Þ

where Σπ ≡M2
π þM2

π0
, Δπ ≡M2

π −M2
π0
, and the functions

LðsÞ and σðsÞ are given by (5.9) and (4.14), respectively. In
the above formulas,

τx�ðsÞ¼
σ�0ðtx�ðsÞÞ−1

σ�0ðtx�ðsÞÞþ1
; σ�0ðtÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t− ðMπþMπ0Þ2
t− ðMπ −Mπ0Þ2

s
:

ð6:15Þ
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In the limit of equal-mass pions, we recover the functions
k̃i, namely, k̃þ;iðsÞ → k̃iðsÞ for i ¼ 1;…; 3. The new
function k̃þ;4ðsÞ, which vanishes in the limit Mπ0 → Mπ ,
is defined in terms of the function J ðτÞ,

J ðτÞ¼ log
Mπ0

Mπ
logτþLi2

�
1−

Mπ0

Mπ
τ

�
−Li2

�
1−

Mπ

Mπ0
τ

�
:

ð6:16Þ

Here, we assume the standard definition of the dilogarithm,
with a cut along the interval ð1;∞Þ of the real axis and
Li2ðxÞ ¼ Li2ðx − i0Þ for x > 1. Let us denote for short

ξ ¼ M2
π

Δπ

Δ2
Pπ0

Δ2
Pπþ

: ð6:17Þ

Then, the rational functions κðnÞþ;iðsÞ are given by

κð−2Þþ;0 ¼−
1

2ΔPπþΔπ

s
s−ξ

log
Mπ0

Mπ

�
s

s−ξ

s−2Σπ−ΔPπ0

ΔPπþ
þ1

�
; κð−1Þþ;0 ¼−

1

ΔPπþ

s
s−ξ

Σπ

Δπ
log

Mπ0

Mπ
;

κð0Þþ;0¼2−
Σπ

Δπ
log

Mπ0

Mπ
; κð1Þþ;0¼

1

4
½3ðM2

P−sÞþ4M2
πþM2

π0
�−1

2

Σπ

Δπ
log

Mπ0

Mπ

�
8
M2

πM2
π0

Σπ
þΔPπ0 −s

�
;

κð2Þþ;0¼
1

36

�
16s2−sð32ΔPπ0 þ61ΣπÞþ16Δ2

Pπ0 þΔ2
Pπ0ð77M2

πþ45M2
π0
Þþ4ð9Σ2

πþ4M2
πM2

π0
Þ−16M2

π

Δ2
Pπ0

s

�

−
1

6

Σπ

Δπ
log

Mπ0

Mπ

�
2s2þ2Δ2

Pπ0 −s

�
4ΔPπ0 þ5Σπþ12

M2
πM2

π0

Σπ

�
þΔPπ0

�
3Σπþ4

M2
πþ4M2

π0

Σπ

�
þ32M2

πM2
π0
−3M2

π

Δ2
Pπ0

s

�
;

κð−2Þþ;1 ¼ 1

2ΔPπþΔπ

1

s−ξ

�
s
2
−
2ΔPπ0M

2
π−sΔπ

Δπ

�
Σπ

Δπ
−

s
s−ξ

s−2Σπ−ΔPπ0

ΔPπþ

��
; κð−1Þþ;1 ¼2ΔPπ0M

2
π−sΔπ

2ΔPπþΔπðs−ξÞ; κð0Þþ;1¼
1

2
;

κð1Þþ;1¼
1

4s
ðs−2M2

πÞðΔPπ0 −sÞ; κð2Þþ;1¼
1

12

�
ðs−ΔPπ0Þ

�
2sþ2

ΔPπ0

s
−6

ΔPπþ

s
−ð2M2

Pþ9M2
πþ3M2

π0
Þ
�
−2M2

π0
ΔPπ0

s

�
;

κð−2Þþ;2 ¼ 1

4ΔPπþΔπ

�
s−ΔPπ0 þ

ΔPπ0Σπ−sΔπ

Δπ

�
Σπ

Δπ
−

s
s−ξ

s−2Σπ−ΔPπ0

ΔPπþ

��
; κð−1Þþ;2 ¼−

ΔPπ0Σπ−sΔπ

2ΔPπþΔπðs−ξÞ;

κð0Þþ;2¼
1

2

�
1−

ΔPπ0

s

�
; κð1Þþ;2¼−

1

4

�
s−2M2

Pþ
ΔPπ0

s

�
;

κð2Þþ;2¼
1

12

�
6M2

π0
Σπ

Δ2
Pπ0

s
þ
�
1−

ΔPπ0

s

��
2s2−sð4M2

Pþ5ΣπÞþ2Δ2
Pπ0

þΔPπ0ð7M2
πþ3M2

π0
Þþ6M2

π0
Σπþ2ð3M2

π0
Σπ−M2

πΔPπ0Þ
ΔPπ0

s

��
; κð−2Þþ;3 ¼0; κð−1Þþ;3 ¼−

1

Σπ
; κð0Þþ;3¼1;

κð1Þþ;3¼2
M2

πM2
π0

Σπ
; κð2Þþ;3¼2M2

πM2
π0
; κð−2Þþ;4 ¼2

M2
πM2

π0

Δ4
π

; κð−1Þþ;4 ¼ Σπ

Δ2
π
; κð0Þþ;4¼−1; κð1Þþ;4¼ κð2Þþ;4¼0: ð6:18Þ

Let us note that the single and the double poles that appear

in the coefficients κðnÞþ;i for s ¼ ξ for n < 0, are in fact
spurious artifacts corresponding to the partition of the
integrals in Eq. (6.13) into the individual terms. In the
full sum on the right-hand side of (6.13), the various
pole contributions cancel each other. Note also that the
analogous integrals which are necessary for the calculation
of the dispersive parts of the NLO partial-wave projections
of the pion scattering amplitudes A00 and Ax, and which are
given explicitly in Sec. IV B of Ref. [44], can be formally
obtained from the above formulas in the limit MP → Mπ0 .
This limit requires, however, enlarging the definition of the
function LðsÞ to the region 4M2

π0
< s < 4M2

π , namely, to
set in this region

LðsÞ ¼ log ð1 − σðsÞÞ − log ð1þ σðsÞÞ; ð6:19Þ

where we assume the principal branch of the logarithm with
a cut on the interval ð−∞; 0Þ along the real axis, and
logðxÞ ¼ logðxþ i0Þ for x < 0.
Using the above results for the integrals (6.3), (6.4), and

(6.13), it is now a straightforward task to calculate the
corresponding S-wave projections of the amplitudes ML

00,
ML

x at NLO and, with the help of (5.3), to construct the
absorptive part of the functionW00. The construction of the
full two-loop amplitudeML

00 then proceeds along the same
lines as in the case of equal-mass pions described in detail
in the previous section. Despite the higher algebraic
complexity, from a numerical perspective, the dispersive
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integrals similar to the ones that define the functions K̃iðsÞ,
but now featuring the functions k̃∇;iðsÞ and k̃þ;iðsÞ in the
role of absorptive parts, present no particular problem.

VII. CONCLUSIONS

The primary purpose of this studywas to present a detailed
account of the dispersive approach to the construction of
Pπ → ππ, P ¼ K�; KL; KS; η, scattering amplitudes that
possess all the correct analytic properties at the order two
loops in the low-energy expansion. It generalizes the repre-
sentation of the two-loop ππ amplitudes first constructed in
Ref. [45] to the case where the masses are distinct, and with
one of the mesons (P) unstable through decay into three
pions. As compared to ππ scattering, this last aspect makes
the discussion of the analytic properties significantly more
involved. We have, therefore, tried to provide the necessary
informationon these aspects.Most notably,wehave extended
the existing discussions [79,85] to the casewhere the charged
and the neutral pions have different masses. The most
remarkable feature is the apparition of an anomalous thresh-
old as soon as the final state contains charged pions. This
requires a modification of both the dispersion relations that
provide the starting point of our construction and of the
manner in which the projection on the partial waves of the
one-loop amplitudes is performed. We plan to come back to
these delicate issues in a forthcoming paper.
We would like to point out that our approach applies as

soon as an expansion under which the counting rules (3.10)
are valid is available. This is, in particular, the case of the
combined chiral and 1=NC expansion [56,86,87]. Within
this framework, our construction would apply to further
processes, like η0 → ηππ, which was recently studied in
high-precision experiments [88–90].
From a practical point of view, the two-loop amplitudes

constructed this way depend on a certain number of
subtraction constants, which can be put in one-to-one
correspondence with the Dalitz-plot parameters (slopes
and curvatures). These representations could, therefore,
be used in order to analyze experimental high-statistics data
for the decay distribution of the P → πππ processes. The
number of parameters to be fitted, for instance, is the same
as in the usual Dalitz-plot expansions, but the inclusion of
the correct analytic properties might allow for better fits.
Alternatively, these representations can also be useful in
order to extract information on fundamental quantities, like
the quark-mass ratio R, or the ππ scattering lengths, from
the data. In the former case, we have already illustrated this
in Ref. [36], and we plan to redo a similar analysis using
more recent high-statistics data on the Dalitz-plot distri-
bution of η → πππ [15–18].
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APPENDIX A: ANOMALOUS THRESHOLDS

In this Appendix, we summarize the analysis of the
physical-sheet singularities of the diagrams with the “fish”
topology; see Fig. 3. Whereas the analysis of Refs. [79,85]
addresses the situation where all the pions have the same
mass, the more general analysis presented here holds for
any combinations, allowed by conservation of the electric
charge, of charged and neutral pions as external and
internal states. This analysis rests on the study of the
Landau singularities [91,92], which is summarized in the
monography [77]. For more details of this analysis, we also
refer to Ref. [55].
We first recall that, as far as the structure of the

singularities is concerned, one can consider the following
dispersive representation of the fish diagram in terms of the
standard triangle diagram [85,93],

Z
∞

μ2
0

dμ2ρðμ2Þ
Z

d4q1
ð2πÞ4

1

ðk21−m2
1Þðk22−m2

2Þðk23−μ2Þ ; ðA1Þ

where the possible values of μ0 are 2Mπ0 , Mπ þMπ0 , or
2Mπ. The precise form of the spectral density ρðμ2Þ is not
important here. It suffices to know that it provides an
adequate renormalization of the ultraviolet divergence in
the subgraph, but brings in no further singularity, the only
additional singularity being a possible end point singularity
at the lower end of the μ2 integration. After the introduction
of Feynman parameters and integration over q1, one obtains
an integrand whose denominator D reads [94,95]

−D ¼ βTYβ − iϵ; ðA2Þ

where βT ¼ ðβ1; β2; β3Þ, 0 ≤ βi ≤ mi, and Y is the sym-
metric 3 × 3 matrix with entries

FIG. 3. The general diagram with the fish topology (left) and its
reduction to the corresponding triangle diagram (right).
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yii ¼ 1; yij ¼
m2

i þm2
j −P2

k

2mimj
; i≠ j; k≠ i;j: ðA3Þ

In what follows, the masses mi are real and strictly positive
numbers. The virtualities P2

k of the external lines can be
arbitrary complex numbers. Then, the path of integration
over the βi variables need not be distorted if one of the yij,
i ≠ j, is kept real, while the remaining two are given
negative imaginary parts. In this setting, the iϵ contribution
to D is not necessary, provided D is defined as the
boundary value when these imaginary parts tend to
zero [77].
The Landau conditions [91,92] read

βi
∂D
∂βi ¼ 0 for each internal line i ¼ 1; 2; 3; ðA4Þ

D ¼ 0: ðA5Þ

The first three equations can be rewritten as0
B@

β1 0 0

0 β2 0

0 0 β3

1
CAYβ ¼ 0: ðA6Þ

The leading Landau singularity (LLS), corresponding to
β1β2β3 ≠ 0, is then given by the condition

detY ¼ 1þ 2y12y23y31 − y212 − y223 − y231 ¼ 0: ðA7Þ

The nonleading Landau singularities (NLLSs), correspond-
ing to the vanishing of exactly one βi, require yjk ¼ �1,
j ≠ k, i ≠ j; k. They represent both normal and anomalous
thresholds. Finally, the second-type (or non-Landau) sin-
gularity (NLS) curve is given by

λðP2
1; P

2
2; P

2
3Þ ¼ 0: ðA8Þ

Not all the singularities derived from the Landau conditions
do occur on the physical sheet. Before starting a more
detailed analysis for the identification of the physical-sheet
Landau singularities, it is useful to identify the domains
where D never vanishes in the undistorted region of
parametric integration. Apart from the case already men-
tioned, when two yij variables are given negative imaginary
parts, such singularity-free domains are, for instance,

(i) SF1: domains where all the yij are real and positive;
this means (for all mi > 0) that all P2

k ≤ m2
i þm2

j ;
(ii) SF2: domains where, simultaneously, one of the

variables yij, i ≠ j, is greater than unity, a second
one is greater than zero, and the third one strictly
greater than −1.

We will split the discussion upon considering two types
of triangle diagrams; see Fig. 4. In the first one, we will call

it a π-diagram, the on-shell conditions for the external lines
are, say, P2

i ¼ M2
i , i ¼ 1; 2, where M1 and M2 are not

necessarily equal, but correspond to a pionmass,Mπ orMπ0,
whereas P2

3 ¼ s is a free variable. The second case corre-
sponds to, say, P2

2 ¼ M2
P, whereas P

2
1 ¼ M2

1 and P
2
3 ¼ s are

as before. We refer to this situation as a P-diagram. In both
cases, the internal lines are restricted to neutral or charged
pions. A brief discussion of other intermediate states is to be
found at the end of this Appendix. Furthermore, sincewe are
interested in the singularities as s varies in the complex
plane, all other quantities, like M1 and M2 will be kept at
their physical values, unless we are forced to modify them.
In particular, unless unavoidable, we will keep the integra-
tion over μ2 fixed to occur along the straight line μ2 ≥ μ20 on
the real axis. Since in any casewe have μ2 ≥ 4M2

π0
> Δπ , we

observe that the condition

y23 ≡m2
2 þ μ2 −M2

1

2m2μ
> 0 ðA9Þ

is always satisfied.

1. Physical-sheet singularities of the π-diagrams

The analysis for the π-diagrams, which, since the
momentum of the meson P is hidden inside the variable
s, will also hold for ππ scattering, turns out to be quite
straightforward. Indeed, in this case, we also have

y13 ≡m2
1 þ μ2 −M2

2

2m1μ
> 0: ðA10Þ

Combined with the conditions (A9) and SF1, we at once
conclude that we need to worry only about the singularities
occurring for s > m2

1 þm2
2.

FIG. 4. The two types of fish/triangle diagrams contributing to
the Pπ → ππ amplitudes. On the left diagram, the heavy external
meson line is combined with an external pion line into the
kinematic variable s (π-diagram). On the right diagram, the heavy
meson line is an isolated external line (P-diagram). All external
and internal lines are charged or neutral pion lines, except for the
thick external line corresponding to the P meson, and the internal
double line, which denotes to the dispersive loop corresponding
to the exchange of a pion pair.
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Next, conservation of the electric charge tells us either
that M1 ¼ M2 and m1 ¼ m2 hold simultaneously or that
M1 ≠ M2 and m1 ≠ m2 hold simultaneously. It leads only
to four possibilities for the charge assignments of the
corresponding states:

(i) M1¼M2¼m1 ¼m2≡M: Then, we study the am-
plitudes with fixed μ ≥ 2Mπ0 , and the singularity-
safe domain for the physical amplitude is for s≤ 2M2.
The LLS occurs for s¼0 and s ¼ 4M2 − μ2. The
NLLSs are s ¼ 0 and s ¼ 4M2 from y12 ¼ �1, and
μ2 ¼ 4M2 from y13;23 ¼ þ1, the case y13;23 ¼ −1
being excluded for positive masses, cf. Eqs. (A9) and
(A10). There appears no new singularity from pinch-
ing at infinity, Eq. (A8). At μ2 ¼ 4M2, there is no
singularity on the physical sheet. As expected, it
means that the only relevant singularities are in s, and
since only the normal threshold singularity s ¼ 4M2

does not belong to the safe region in s, the only
relevant singularity for the physical amplitudes is this
normal threshold.

(ii) M1 ¼ M2 ≡M, m1 ¼ m2 ≡m, M ≠ m: μ is fixed
with μ≥mþM¼Mπ0 þMπ� , so that y13 ≥ 1,
y23 ≥ 1 and the condition SF2 is satisfied for
s < 4m2. Therefore, physical-sheet singularities
only occur for s ≥ 4m2. On the other hand, the
possible singular points are the LLS at

s ¼ 0; or s ¼ −
λðμ2; m2;M2Þ

μ2
< 0 ðA11Þ

and the NLLSs at s ¼ 0, s ¼ 4m2 (from y12 ¼ �1),
or for μ2 ¼ ðM �mÞ2, and finally, there appears, in
addition, a NLS at s ¼ 4M2. Therefore, in this
case, in addition to the normal threshold s ¼ 4m2,
there occurs a NLS at s ¼ 4M2, i.e., at the beginning
of the physical region, provided M ¼ Mπ� and
m ¼ Mπ0 .

(iii) M1 ¼ m1 ¼ Mπ� , M2 ¼ m2 ¼ Mπ0 : again μ ≥
Mπ0 þMπ� , and no singularity appears on the
physical sheet for s < ðMπ� þMπ0Þ2. All the pos-
sible singularities are

s ¼ Δ2
π

μ2
; s ¼ 2Σπ − μ2; ðA12Þ

both bounded from above by ðMπ −Mπ0Þ2, from the
LLS and

s ¼ ðMπ �Mπ0Þ2; μ2 ¼ ðMπ �Mπ0Þ2 ðA13Þ

from the NLLSs and NLS. Thus, on the physical
sheet, we find only the normal threshold singularity
at s ¼ ðMπ þMπ0Þ2.

(iv) M1 ¼ m2 ¼ Mπ� , M2 ¼ m1 ¼ Mπ0 : μ ≥ 2Mπ0 ,
y13 ≥ 1, y23 > 0, and thus no singularity occurs

on the physical sheet for s < ðMπ� þMπ0Þ2. The
singularities in this case read

s ¼ Σπ −
μ2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ2 − 4M2

π�Þðμ2 − 4M2
π0
Þ

q
2

ðA14Þ

from the LLS, with both solutions smaller than
Σπ < ðMπ� þMπ0Þ2 whenever they are real, and

s¼ðMπ�Mπ0Þ2; μ2 ∈ f0;4M2
π;4M2

π0
g ðA15Þ

from the NLLSs, with no new constraint from the
NLS. The only singularity lying on the physical
sheet is the normal threshold s ¼ ðMπ þMπ0Þ2.

In conclusion, the only π-diagram where there
appears an anomalous threshold on the physical sheet is
the diagram with M1 ¼ M2 ¼ Mπ� , m1 ¼ m2 ¼ Mπ0 , and
μ0 ¼ Mπ� þMπ0 , which has a non-Landau singularity at
s ¼ 4M2

π� , close to the beginning of the physical
region s ≥ 4M2

π0
.

2. Physical-sheet singularities of the P-diagrams

We next consider the second type of diagrams from
Fig. 4, which we call P-diagrams and which needs more
careful analysis. Since μ0 ≥ 2Mπ0 > Δπ , the condition (A9)
is always satisfied. The singularities are most conveniently
discussed through their localization on curves lying in the
ðM2

P; sÞ plane.
In the following, we denote M1 ≡m5. For the LLS, we

obtain from Eq. (A7) (Δ25 ¼ m2
2 −m2

5, ΔP1 ¼ M2
P −m2

1)

Σ∶ 2μ2s ¼ −μ4 þ μ2ðM2
P þm2

1 þm2
2 þm2

5Þ þ Δ25ΔP1

� λ1=2ðμ2;M2
P;m

2
1Þλ1=2ðμ2; m2

2; m
2
5Þ: ðA16Þ

The subleading singularities read

σs�∶ s ¼ ðm1 �m2Þ2;
σP�∶ M2

P ¼ ðμ�m1Þ2;
σμ�∶ μ2 ¼ ðm2 �m5Þ2: ðA17Þ

The second-type singularity may occur on the curve

Γ∶ s ¼ ðMP �m5Þ2: ðA18Þ

As before, in the end, we are interested in the analytic
properties in s with MP and all the other masses fixed at
their physical value. However, in the case MP > 3Mπ, we
need to perform an analytic continuation in some other
variable from the values where the diagram is analytic.
Inspired by the analysis of Kacser and Bronzan [68,79], we
start by considering an analytic continuation in the external
variables P2

i , and we deform the integration contour in μ
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from the original line μ ≥ μ0 only when forced to do so.
The singularity curve σμ− is, therefore, again irrelevant, and
the curve σμþ, corresponding to the anomalous subleading
threshold, can be avoided, in the cases of interest here,
by the addition of a small imaginary part to μ2 without any
change of the analytic structure in s.
For the diagrams under consideration, the domains

where the β integrations do not need to be deformed from
the original physical integration contour are the following:
(a) Ims > 0 together with ImM2

P > 0.
(b) SF1 holds; the condition (A9) holds automatically, and

the domain y12, y13 ≥ 0 corresponds to s ≤ m2
1 þm2

2

together with M2
P ≤ μ2 þm2

1.
(c) SF2 holds; this happens, in particular, when
-(c1) μ ≥ ðm5 þm2Þ andM2

P ≤ μ2 þm2
1; we can go with

s up to s < ðm1 þm2Þ2;
-(c2) μ≥ðm5þm2Þ,M2

P < ðμþm1Þ2, and s ≤ m2
1 þm2

2;
-(c3) M2

P ≤ ðμ −m1Þ2, and s < ðm1 þm2Þ2;
-(c4) M2

P ≤ ðμþm1Þ2, and s ≤ ðm1 −m2Þ2.
Therefore, we see that the anomalous thresholds σs− and
σP− bring no singularity to the physical sheet, but for
MP > 3Mπ , there are always some parts of Σ and Γ which
do not belong to the regions (b) or (c), and thus we need to
perform the analysis very carefully, in order to see whether
it is possible to continue the amplitude there without the
appearance of singularities. The answer depends on the
relative positions of the individual singularity curves. An
important observation is that the remaining curves of
potential singularities meet only at the following points:

A1;2 ¼ Σ ∩ Γ:

M2
P ¼ μ2 þm2

1 þ
λðμ2; m2

2; m
2
5Þ

2m2
5

�
ðμ2 þm2

5 −m2
2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðμ2; m2

2; m
2
5Þ þ 4m2

1m
2
5

q
2m2

5

;

s ¼ sðA1;2Þ; ðA19Þ

B ¼ Σ ∩ σPþ:

M2
P¼ðμþm1Þ2; s¼m2

1þm2
2þ

m1

μ
ðμ2þm2

2−m2
5Þ;

ðA20Þ

C ¼ Σ ∩ σsþ:

M2
P ¼ μ2 þm2

1 þ
m1

m2

ðμ2 þm2
2 −m2

5Þ;

s ¼ m2
1 þm2

2 þ
m1

μ
ðμ2 þm2

2 −m2
5Þ; ðA21Þ

D1;2 ¼ Γ ∩ σPþ:

M2
P ¼ ðμþm1Þ2; s ¼ ðμþm1 �m5Þ2; ðA22Þ

E1;2 ¼ Γ ∩ σsþ:

M2
P¼ðm1þm2�m5Þ2; s¼ðm1þm2Þ2: ðA23Þ

We proceed with the analysis of the individual diagrams.
The distinct types of diagrams with the neutral P0 are
displayed in Fig. 5.

a. Analytic properties of the first diagram from Fig. 5

For the first of these diagrams (m2 ¼ m1,m5 ¼ Mπ0), the
singularity curves are [Δ10 ¼ m2

1 −M2
π0
]:

(1) LLS curve Σ:

2μ2s¼−μ4þμ2ðM2
PþM2

π0
þ2m2

1ÞþΔ10ΔP1

� λ1=2ðμ2;M2
P;m

2
1Þλ1=2ðμ2;M2

π0
;m2

1Þ: ðA24Þ

(2) NLLS curves:

σs−∶ s ¼ 0; σsþ∶ s ¼ 4m2
1;

σP�∶ M2
P ¼ ðμ�m1Þ2: ðA25Þ

(3) NLS curves:

Γ∶ s ¼ ðMP �Mπ0Þ2: ðA26Þ

The integration contour for the dispersive loop is the line
μ ≥ ðMπ0 þm1Þ. For m1 ¼ Mπ0, the situation simplifies
into the one studied by Kacser and Bronzan in
Refs. [68,79]. However, the relative position of the curves
is the same also for m1 ¼ Mπ� as is depicted in Fig. 6, and
one therefore expects that also the singularity structure
will remain the same.
Since μ ≥ ðMπ0 þm1Þ, the denominator D of the para-

metric integrand does not vanish for βi ≥ 0 also in the
regions (c1) and (c2), and the contribution of this diagram
is without singularities on the physical sheet for all s and
M2

P on the left of or below the dashed lines in Fig. 6. Since
the normal-threshold lines σsþ and σPþ correspond to the
singularity curves with one of the βi equal to zero and the
other two positive, the only part of the real section of
the singularity curve Σ where D vanishes for all βi > 0 is
the arc between the points B and C, and this remains true

FIG. 5. The P-diagrams contributing to the P0π → ππ ampli-
tudes. The assignments of the lines are as in Fig. 4.
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for the appropriate complex surface connected to this real
arc. All the other parts of Σ are nonsingular since we can
continue the integral analytically in the following way. We
start in the domain (c1), where the integration contour in βi
is the original one, and we add a small positive imaginary
part to both s andM2

P [coming so to the domain (a)], which
is nonsingular for any values of s andM2

P without the need
of deformation of the contour. This way, we can reach any
point where the singularity does not occur for positive βi,
upon letting the added imaginary parts tend to zero (without
deformation of the integration curve).
However, the arc BC is connected to the nonsingular

lower-left part of Σ by a continuous complex part of Σ [77].
Since all intersections of Σwith the other curves are just the
real points from above, by performing the analytic con-
tinuation from the lower-left part by the path along Σ, we do
not pass through any branch cut until we come to the real
arc BC, where either σPþ or σsþ have to be crossed.
Similarly, in all the points of Γ, the loop integral can be
defined by analytic continuation along this complex curve.
Therefore, there are no complex singularities in this case,
and the only singularities occurring for the diagram
considered on the physical sheet are the normal thresholds
σsþ and σPþ, together with the anomalous threshold on the
real arc BC, cf. Ref. [77]. (Note that on the section BC, the
loop integral can be made analytic without the appearance
of singularities by deforming the integration contour of the
parametric integration to β1β2 < 0.)
The singularity at this anomalous threshold occurs only

for M2
P ∈ ððμþm1Þ2; 2μ2 þ 2m2

1 −M2
π0
Þ. Upon adding to

μ2 a small negative imaginary part, we can avoid this
singularity. The only point where this is not possible is the
end point of the integration, μ ¼ Mπ0 þm1.
In conclusion, for the fish diagram connected with the

first diagram of Fig. 5, the anomalous threshold singularity
in the s plane appears only for M2

P ¼ ðMπ0 þ 2m1Þ2. Since
MP > 3.5Mπ for the physical values of the masses of the

K�, KL, KS, and η masses, this condition is never
fulfilled.14 For the physical masses, the only singularities
appearing for this diagram are, therefore, just the regular
normal thresholds. The important observation is that we
obtain the correct physical analytic continuation of the
amplitude also on the leading singularity curve by taking
M2

P → M2
P þ iδ, where δ is a small positive number.

b. Analytic properties of the second diagram
from Fig. 5

The singularity curves for the second of these diagrams
(m1 ¼ Mπ0 , m2 ¼ m5 ¼ Mπ�) read:
(1) LLS curve Σ:

2s ¼ M2
P þM2

π0
þ 2M2

π� − μ2

� λ1=2ðμ2;M2
P;M

2
π�Þσðμ2Þ: ðA27Þ

(2) NLLS curves:

σs�∶ s¼ðMπ�Mπ0Þ2; σP�∶M2
P¼ðμ�Mπ0Þ2:

ðA28Þ

(3) NLS curves:

Γ∶ s ¼ ðMP �Mπ�Þ2: ðA29Þ

For μ ≥ 2Mπ�, the relative position of these curves is again
the one depicted in Fig. 6, and thus, by the same procedure
as in the previous case, we obtain the contributions whose
singularities on the physical sheet are just the normal
thresholds. However, the integration in the dispersive loop
starts at μ ¼ 2Mπ0 < 2Mπ� . For these values of μ, the real
section of the curves moves into the situation depicted in
Fig. 7, and the analytic continuation proceeds as follows.
The original integration contour in parametric space is free
of singularities in the domain (b), i.e., on the left of and
below the dashed lines of Fig. 7. We can continue the
contribution of this diagram along the ellipsis Σ further up
to B and C without the appearance of the singularities on
the physical sheet, even without deforming the original
integration contour, similarly to the previous case, since the
only part of the real section of Σ which corresponds to
βi > 0 is the arc BC. In order to avoid singularities also on
this arc, we would need to deform the integration contour
there. However, all paths from the parts we have identified
to be nonsingular to the arc BC along Σ pass through a
singularity curve, either σPþ or σsþ. Since the curve Σ is

FIG. 6. The real sections of the singularity curves for the
diagrams without the occurrence of the anomalous threshold on
the physical Riemann sheet. For the labels of the curves, as well
as for those of the points of intersections, see the main text.

14Note that for the physical masses and for μ corresponding
to the end point, even the extremal value of the position of C,
M2

P¼5M2
π� þ

M
π�

Mπ0
ð5M2

π� −M2
π0
Þ corresponds toMP ≈ 423 MeV.

For the kaons and the eta, we can, therefore, altogether ignore this
complication with the BC section.
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here real for real M2
P, for any complex singularity curve in

β-space, there exists a complex conjugated one, and
therefore if we want to evade the complex singularities
on one side, we encounter the complex conjugated one,
cf. Ref. [77]. We have, therefore, no way how to avoid
singularities on the arc BC. This diagram thus possesses on
the physical sheet, in addition to the normal threshold, also
the anomalous threshold (A27) on the arc BC and on all the
corresponding complex surfaces.
We can try to avoid these singularities by the addition of

a small imaginary part also to μ2. However, this does again
not work for the end point of the μ2 integration, in this case
for μ ¼ 2Mπ0. Even though the real arc BC is again to the
left of the physical value of M2

P for both the kaons and the
eta, the singular complex surface connected with this arc
extends to the region whereMP > 3Mπ0 . We are, therefore,
left with two complex conjugated anomalous thresholds in
s for the physical MP > 3Mπ0 ,

2s ¼ M2
P þ 2M2

π� − 3M2
π0

� λ1=2ðM2
P;M

2
π� ; 4M

2
π0
Þσð4M2

π0
Þ: ðA30Þ

Thus, for the amplitudes to which this diagram contrib-
utes, the starting point of our construction, the dispersive
representation of Eq. (3.5), requires appropriate modifica-
tions in order to include the contributions from these
anomalous thresholds.

c. Analytic properties of further diagrams

We have seen that the appearance of the anomalous
thresholds on the physical sheet is connected with the
position of the real section of the curve Σ between the
subleading curves σs� and the σP�, in which case we
cannot evade the corresponding normal threshold branch
cuts when trying to avoid the singularities Σ on the complex
surfaces connected with the arc BC. We can, therefore,

observe a simple condition for this appearance of the
anomalous threshold. It occurs on the physical sheet only
in the case (A16) is real in the interval M2

P ∈ ððμ −m1Þ2;
ðμþm1Þ2Þ. Since the first triangle function appearing there
is imaginary on this interval, the condition means that the
second triangle function λðμ2; m2

2; m
2
5Þ has to be imaginary

as well. This happens in the interval μ2 ∈ ððm2 −m5Þ2;
ðm2 þm5Þ2Þ.
From this condition, we can formulate the following

simple rule of thumb, stating that the ππ fish diagram has
the anomalous threshold singularity on the physical sheet
in the variable s only in the case when in the correspond-
ing triangle diagram one of the other vertices (than the
one adjacent to s) is stable and the second one is unstable,
when we take for μ its end point value μ0. The vertex is
called unstable if the masses on the adjoining lines are
such that at least one of them is greater than the sum of
the other two. Note that this rule does not take into
account the singularity on the real arc BC of Fig. 6 (we
have found that for the pion lines, this singularity never
occurs) and the non-Landau singularities, as is obvious
from its application to the π-diagrams (the only unstable
mass there can be μ, which appears in both vertices;
i.e., this rule tells there is no anomalous threshold for all
π-diagrams). However, in our previous analysis, we have
also taken its existence into account, and it does not
change the above conclusion.
Since the vertex with MP in P-diagrams is always

unstable for μ ¼ μ0, the anomalous threshold appears only
in the case μ0 < ðm2 þm5Þ. Furthermore, since m2 and m5

are pion masses and conservation of the electric charge
has to be respected, the only possibility is μ0 ¼ 2Mπ0

and m2 ¼ m5 ¼ Mπ� .
In conclusion, the only P-diagrams possessing the

anomalous threshold singularity on the physical sheet
for the physical values of MP and of the pion masses
are those depicted in Fig. 8. These diagrams contribute to
the processes P0 → π0πþπ−, Pþ → π−πþπþ, and Pþ →
πþπ0π0. Therefore, besides the case Mπ ¼ Mπ0 , the only
P → πππ decay processes with Mπ ≠ Mπ0 where no such
singularity occurs are the processes P0 → π0π0π0, with
P0 ¼ KL or P0 ¼ η. Kacser’s prescription can be extended
to these cases; i.e., the required analytic continuation in

FIG. 7. The real sections of the singularity curves for the
diagrams where the anomalous threshold occurs on the physical
Riemann sheet. For the labels of the curves, as well as for those of
the points of intersections, see the main text.

FIG. 8. The complete set of P-diagrams possessing an anoma-
lous threshold singularity on the physical Riemann sheet for the
physical values of the masses MP, Mπ , and Mπ0 .
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M2
P, M̄2

P → M2
P þ iδ, M̄P < 3Mπ0 , δ > 0, can be per-

formed without encountering any singularity.

3. Fish diagrams with other-than-pion
internal lines

The same analysis can be performed for fish diagrams
containing other mesons, kaons, and η’s, in internal lines.
Naturally, then it can happen that there will occur anoma-
lous threshold singularity for some value of MP. However,
thanks to the hierarchy of the masses prohibiting decays
of the type P → P0π, where P and P0 are kaons or η’s, the
physical mass MP will each time be smaller than the mass
where such anomalous threshold singularity can occur. In
other words, in all the cases, the physical massMP is to the
left of the points B and C in one of the situations from
Figs. 6 and 7; i.e., it lies in the region where the anomalous
threshold singularity does not appear on the physical sheet.
The inclusion of these other internal lines does, therefore,
not change the conclusions of our analysis from the
previous sections.

APPENDIX B: INTEGRALS OF
THE J̄ FUNCTIONS

In order to compute the partial-wave projections of the
one-loop amplitudes, we need to perform the integrals
occurring in Eq. (5.17). Actually, in order to avoid the cuts
on the positive real axis, the integration has to be performed
along a path in the complex plane [79],

Z
tþðsÞ

t−ðsÞ
dt →

Z
Cðt−ðsÞ;tþðsÞÞ

dt; ðB1Þ

starting at t−ðsÞ and ending at tþðsÞ. It turns out that the
complex path Cðt−ðsÞ; tþðsÞÞ can always be chosen such
that there exists an open neighborhood of it that also avoids
the cut. This follows from the analysis of Ref. [79] in the
equal-mass case, and also holds for Mπ ≠ Mπ0 when the
singularities of the integrands consist only of the normal
branch cut, starting at s ¼ 4M2

π or s ¼ 4M2
π0
, i.e., when

there is no anomalous threshold [55]. Then, a result of
complex analysis [96] tells us that the integral is correctly
evaluated in the usual way, i.e., upon taking the difference
of the end point values of the primitive function, provided,
of course, that the latter exists. Given this result, our task in
this Appendix will be to construct the required primitive
functions, and then, as a second step, to evaluate them at the
end points t�ðsÞ. It will be enough to give the results for the
function J̄�0ðtÞ defined in Eq. (4.13); the expressions
corresponding to the two other cases, J̄ðtÞ and J̄0ðtÞ, can
easily be obtained upon taking the appropriate limits in the
pion masses. More specifically, we denote the ratio of the
pion masses by q,

q ¼ Mπ0

Mπ
; ðB2Þ

and the two other cases will be obtained simply by taking
the limit q → 1 in the end. We thus first need to know the
following primitive functions:

IðnÞ�0ðtÞ ¼ 16π2
Z

dttnJ̄�0ðtÞ; for n ¼ −1;…; 3;

Ið−2Þ�0 ðtÞ ¼ 16π2
Z

dt
¯̄J�0ðtÞ
t2

: ðB3Þ

These then need to be evaluated at the corresponding end
points. We address these two separate issues in turn in the
remainder of this Appendix.

1. Primitive functions

Writing the function J̄�0ðtÞ in the form

J̄�0ðtÞ ¼
1

16π2

�
1þ

�
Δq

t
−
Σq

Δq

�
ln q

þ t − μ−q
t

σqðtÞ ln
σqðtÞ − 1

σqðtÞ þ 1

�
; ðB4Þ

with

μq ¼ M2
πð1þ qÞ2; Σq ¼ M2

πð1þ q2Þ;
Δq ¼ M2

πð1 − q2Þ ðB5Þ

and

σqðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t − μq
t − μ−q

s
; ðB6Þ

suggests performing the following transformation of the
variable:

τ ¼ σqðtÞ − 1

σqðtÞ þ 1
: ðB7Þ

The function σqðtÞ is defined in the complex t plane, with a
cut on the real axis, from μ−q to μq, and with σqðt� iϵÞ ¼
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðμq − tÞ=ðt − μ−qÞ
p

when t lies on this cut. This
transformation then maps the complex plane with the cut
ðμ−q; μqÞ onto the unit disk. As illustrated in Fig. 9, the
points slightly above the cut (tþ iϵ) are mapped slightly
below the upper semicircle, while the points slightly below
this cut (t − iϵ) are mapped slightly above the lower
semicircle (the points lying exactly on the upper and on
the lower semicircles have to be identified). The ray
ðμq þ iϵ;∞þ iϵÞ, where the branch cut of the one-loop
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function is located, is mapped onto line segment
ð−1þ iϵ; 0þ iϵÞ. The inverse transformation

tðτÞ ¼ M2
πðτ − qÞ

�
1

τ
− q

�
; ðB8Þ

with

σqðtÞ ¼
1þ τ

1 − τ
; dt ¼ qM2

π

τ2
ð1 − τ2Þdτ; ðB9Þ

can be continued to the whole complex τ plane and satisfies

tðτÞ ¼ tð1=τÞ: ðB10Þ

This means that the points τ and 1=τ should be identified,
which also implies the identification of τ and τ⋆ ¼ 1=τ on
the unit-disk boundary of Fig. 9.
Expressed in terms of the variable τ, the one-loop

function J̄�0 reads

16π2J̄�0ðτÞ ¼ 1 −
Σq

Δq
logq −

τð1 − q2Þ
ðτ − qÞðτq − 1Þ log q

þ qð1 − τ2Þ
ðτ − qÞðτq − 1Þ log τ: ðB11Þ

Its analyticity in the unit disk with the segment h−1; 0i
removed and the symmetry property J̄�0ðτÞ ¼ J̄�0ð1=τÞ
become manifest in this expression. The expression that
mixes the two variables,

16π2J̄�0ðtÞ ¼ 1þ
�
Δq

t
−
Σq

Δq

�
log qþ q

M2
π

t
τ2 − 1

τ
log τ;

ðB12Þ

allows obtaining its derivative in a simple way,

16π2
d
dt

ðtJ̄�0ðtÞÞ ¼
1þ τ2

1 − τ2
log τ −

1þ q2

1 − q2
log q; ðB13Þ

which in turn makes it easy to check the primitive functions
given here. Finally, we introduce the following function,

J ðτÞ ¼ log q log τ þ Li2ð1 − qτÞ − Li2

�
1 −

τ

q

�
; ðB14Þ

which appears in the results of the integration.
Having prepared all the necessary ingredients, we

present here a list of all primitive functions that are needed
for the computation of the S and P partial waves of the
one-loop amplitudes:

Ið1Þ�0ðtÞ ¼ 8π2J̄�0ðtÞtðt − ΣqÞ þ
t2

4
− 2q2M4

πt
log q
Δq

þ q2M4
πlog2τ;

Ið2Þ�0ðtÞ ¼
8π2

3
J̄�0ðtÞtð2t2 − Σqt − ðΣ2

q þ 8q2M4
πÞÞ

þ t3

9
þ Σqt2

12
− 2q2M4

πt

�
t
3
þ Σq

�
logq
Δq

þ q2M4
πΣqlog2τ;

Ið3Þ�0ðtÞ ¼
t4

16
þ Σq

t3

18
þ t2

24
ðΣ2

q þ 6q2M4
πÞ

þ q2M4
πðΣ2

q þ q2M4
πÞlog2τ

− q2M4
πt

�
t2

3
þ 5Σqt

6
þ 2ðΣ2

q þ q2M4
πÞ
�
log q
Δq

þ 4π2

3
J̄�0ðtÞtð3t3 − Σqt2 − ðΣ2

q þ 6q2M4
πÞt

− ΣqðΣ2
q þ 26q2M4

πÞÞ;

Ið0Þ�0ðtÞ ¼ 16π2J̄�0ðtÞtþ tþ Σq

2
log2τ − ΔqJ ðτÞ;

Ið−1Þ�0 ðtÞ ¼ −16π2J̄�0ðtÞ −
1

2
log2τ − 2þ Σq

Δq
J ðτÞ;

Ið−2Þ�0 ðtÞ ¼ 8π2J̄�0ðtÞ
�
Σq

Δ2
q
−
1

t

�
−
Σq

Δ2
q
þ 13

36qM2
π

þ 2q2M4
π

Δ3
q

J ðτÞ: ðB15Þ

We have adjusted the free integration constants in these
primitive functions, such as to ensure that all of them
exhibit a smooth limit for the ratio of pion masses q going
to unity, and to make them vanish at t ¼ 0 (in this limit).

FIG. 9. Conformal transformation (B7) mapping the complex t
plane onto the unit disk in the τ plane. The points on the upper
and on the lower semicircles are identified. In the transformed
plane, the one-loop functions to which the transformation
corresponds have their branch cut located on the line segment
τ ∈ ð−1þ iϵ; 0þ iϵÞ.
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2. End point evaluation in the case Mπ0 =Mπ

In order to perform the explicit calculation of the partial-
wave projections, we should now evaluate the preceding
primitives at the end points given in Eq. (5.18). In general,
this procedure produces complicated expressions. However,
in particular cases, like for equal-mass pions, the situation
simplifies somewhat. We will, therefore, treat this case in
some detail in what follows. For definiteness, we consider
the case of the charged pion. The corresponding expressions
for the neutral pion are obtained from those given below by
substituting Mπ by Mπ0 in all formulas.
Introducing

T�ðsÞ ¼
4M2

π − t�ðsÞ
2M2

π
ðB16Þ

and

σT�ðsÞ ¼
1

σðt�ðsÞÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T�ðsÞ − 2

T�ðsÞ

s
; ðB17Þ

we obtain

τðt�ðsÞÞ ¼ T�ðsÞ − 1 − T�ðsÞσT�ðsÞ;
1

τðt�ðsÞÞ
¼ T�ðsÞ − 1þ T�ðsÞσT�ðsÞ ðB18Þ

and

LT�ðsÞ ¼ log τðt�ðsÞÞ≡ log

�
1 − σT�ðsÞ
1þ σT�ðsÞ

�
: ðB19Þ

Inserting these relations into the primitive functions
in the limit q ¼ 1, and using the simplification T�σ2T� ¼
T�−2, we arrive at rather simple expressions

Ið1Þðt�Þ¼M4
π½ðT�−2Þð5T�−8Þ

þ2T�ðT�−1ÞσT�LT� þL2
T��;

Ið2Þðt�Þ¼
M6

π

9
½2ðT�−2Þð7T�−8Þð11−4T�Þ

−12T�ðT�−3Þð2T�−1ÞσT�LT� þ18L2
T��;

Ið3Þðt�Þ¼
M8

π

9
½ðT�−2Þð81T�3−482T�2þ941T�−512Þ

þ6T�ð6T�3−34T�2þ59T�−15ÞσT�LT�

þ45L2
T��;

Ið0ðt�Þ¼M2
π½6ð2−T�Þ−2T�σT�LT� þL2

T��;

Ið−1Þðt�Þ¼−4−
2T�
T�−2

σT�LT� −
1

2
L2
T� ;

Ið−2Þðt�Þ¼
1

18M2
π

�
4ð2T�−1Þ
T�−2

þ 3T�2

ðT�−2Þ2 σT�LT�

�
:

ðB20Þ
Finally, it is also useful to notice the relations

16π2J̄ðt�Þ ¼ 2þ LT�
σT�

;

16π2 ¯̄Jðt�Þ ¼ 2þ LT�
σT�

−
t�
6M2

π
: ðB21Þ

The link with the expressions given in Eqs. (5.27),
(5.28), and (5.31) is then provided by the relations

σT�ðsÞ ¼
ΔPπσðsÞ

s − 4M2
π � 2KðsÞ ;

LT�ðsÞ ¼
1

2
½LðsÞ ∓ MðsÞ�: ðB22Þ

APPENDIX C: PROPERTIES OF THE
FUNCTIONS k̃iðsÞ AND K̃iðsÞ

In this Appendix, we discuss some properties of

the functions k̃iðsÞ, K̃iðsÞ, and K̃ðλÞ
i ðsÞ, introduced in

Eqs. (5.28), (5.38), and (5.46), respectively. We briefly
address their analytic properties and also provide graphical
representations. We display the functions k̃iðsÞ, with i ¼ 2,
3, on the real axis in Fig. 10 [the real parts of those with
i ¼ 0, 1 coincide with the imaginary parts of K̃iðzÞ].
The functions K̃iðzÞ are defined as dispersive integrals in

the complex plane,

K̃iðzÞ ¼
zn

π

Z
∞

4M2
π

dx
xn

k̃iðxÞ
x − z

; ðC1Þ

and the physical value corresponds to z ¼ sþ i0, which is
shown in Fig. 11. For z which is not located on the
integration contour, the only potential singularities of the
integrand are those of the function k̃iðxÞ where 4M2

π<x<
∞. The functions k̃0ðsÞ and k̃1ðsÞ do not present any
particular problem. They already occur in the simpler
situation provided by ππ scattering, and the two functions
K̃0ðsÞ and K̃1ðsÞ can be expressed in terms of the function
J̄ðsÞ [see Eq. (5.41)], which has no other singularity than a
cut along the positive-s real axis, starting at s ¼ 4M2

π. In the
case of k̃2ðsÞ and k̃3ðsÞ, there are two possibly problematic
points, namely, x ¼ ðMP �MπÞ2 ¼ M2

�. Closer inspection
reveals that only x ¼ M2

− corresponds to a singularity, as
can actually also be seen directly in Fig. 10. This singu-
larity is, however, integrable since the integrand in Eq. (C1)
behaves as ðx −M2

�Þ−1=2 in the vicinity of this point. It
means the K̃iðzÞ, defined by the original contour, is at least
analytic in the complex plane with the exception of the part
of the real axis for which z > 4M2

π . For z → 4M2
π, we have

a nonintegrable end point singularity. Therefore, this point
constitutes a branch point of K̃iðzÞ. For z real, z ≠ M2

� we
can deform the integration contour in (C1), such as to avoid
the singularity ðx − zÞ−1, in an appropriate way, depending
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on whether we approach the contour from below or from
above. The only dangerous point is the true singularity of

k̃iðxÞ, i.e., z ¼ M2
−. Because we made the analytic

continuation M2
P þ iδ, this singularity is, in fact, avoided

by contour deformation when we approach z ¼ M2
− from

the upper complex half-plane because then there is no pinch

(a) (b)

FIG. 10. The real (solid curve in blue) and the imaginary (dashed curve in magenta) parts of functions k̃2;3ðsÞ for MP ¼ 3.5Mπ þ i0.
For comparison, also the real part of these functions forMP ¼ 2.9Mπ (dotted curve in green) is plotted (in this case, their imaginary part
is zero). The abscissas show s in units of M2

π . The vertical lines indicate the positions of s ¼ M2
�.

(a) (b)

(c) (d)

FIG. 11. The real (solid curve in blue) and the imaginary (dashed curve in magenta) parts of functions K̃iðzÞ, z ¼ sþ i0, for
MP ¼ 3.5Mπ þ iδ. For comparison, the real (dotted curve in green) and the imaginary (dot-dashed curve in orange) parts of functions
K̃2;3ðsÞ for MP ¼ 2.9Mπ are also plotted. The abscissas show s in units of M2

π . The positions of s ¼ f4M2
π ;M2

−;M2þg are indicated by
the vertical lines.
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of the contour, and thus even this point is, in fact, regular.
However, when we approach this point from below, the
contour is pinched, and the singularity cannot be avoided
by means of the contour deformation. Nevertheless, this
singularity lies on the second sheet. Of course, these
arguments rest on the fact that the discontinuities k̃iðzÞ
have good analytic properties, which allows deforming the
contour without encountering other singularities of these
functions.

APPENDIX D: EXPRESSIONS OF THE
FUNCTIONS WPπðsÞ

In this Appendix, we give the expressions of the
functions WPπðsÞ, and of the corresponding coefficients

w̃ðnÞ
� and B� for each function listed in Table II, in the case

where the masses of charged and neutral pions are equal.
For the decay of a charged kaon into three charged pions,

we have

WPπþþðsÞ ¼
φþþ
0 ðsÞ
2

�ð16πÞ2
4

φþþ
0 ðsÞφ̃þþ

0 ðsÞJ̄2ðsÞ þ
��

Cþþ þ Dþþ
2

� ðs − s0Þ2
F4
π

þ 2

3
Dþþ

K2ðsÞ
F4
π

�
J̄ðsÞ

�

þ 1

2
½φþþ

0 ⊙ ξ̃þþ
0 �ðsÞ;

Wð0ÞPπ
þ− ðsÞ ¼ φþ−

0 ðsÞ
�ð16πÞ2

4
½2φ̃þ−

0 ðsÞφþ−
0 ðsÞ þ φ̃x

0ðsÞφx
0ðsÞ�J̄2ðsÞ

þ
�
1

4
ðCþþ þ 5DþþÞ

ðs − s0Þ2
F4
π

þ 1

3
ðCþþ þ DþþÞ

K2ðsÞ
F4
π

�
J̄ðsÞ

�
þ ½φþ−

0 ⊙ ξ̃þ−
0 �ðsÞ

þ φx
0ðsÞ
2

�ð16πÞ2
4

½2φ̃þ−
0 ðsÞφx

0ðsÞ þ φ̃x
0ðsÞφ00

0 ðsÞ�J̄2ðsÞ þ
��

Cx þ
Dx

2

� ðs − s0Þ2
F4
π

þ 2

3
Dx

K2ðsÞ
F4
π

�
J̄ðsÞ

�

þ 1

2
½φx

0 ⊙ ξ̃x0�ðsÞ;

Wð1ÞPπ
þ− ðsÞ ¼ cþ−

3F2
π

�
−
Bþþcþ−

18

16π

2

ðs − 4M2
πÞ2

F4
π

J̄2ðsÞþCþþ − Dþþ
6

ðs − 4M2
πÞðs − s0Þ
F4
π

J̄ðsÞ þ ξ̃þ−
1 ðsÞ

�
ðD1Þ

with

Bþ;þþ
2

¼ −B�;þ− ¼ −B−;þ− ¼ Bþþcþ−; B−;þþ ¼ 0; ðD2Þ

and

w̃ð0Þ
þ;þþ ¼

�
Ax −

Bx

3

M2
K þ 3M2

π

F2
π

��
ax − bx

4M2
π

F2
π

�
þ 2

�
Aþþ þ Bþþ

6

M2
K þ 3M2

π

F2
π

��
aþ− − bþ−

4M2
π

F2
π

�

þ 4

3
Bþþcþ−

M2
πðM2

K þ 3M2
πÞ

F4
π

;

w̃ð1Þ
þ;þþ ¼ bx

�
Ax −

Bx

3

M2
K þ 3M2

π

F2
π

�
þ Bx

�
ax − bx

4M2
π

F2
π

�
þ 2bþ−

�
Aþþ þ Bþþ

6

M2
K þ 3M2

π

F2
π

�

− Bþþ

�
aþ− − bþ−

4M2
π

F2
π

�
−
Bþþcþ−

3

M2
K þ 7M2

π

F2
π

;

w̃ð2Þ
þ;þþ ¼ Bxbx − bþ−Bþþ þ Bþþcþ−

3
; ðD3Þ
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w̃ð0Þ
�;þ− ¼

�
Ax

2
−
Bx

6

M2
Kþ3M2

π

F2
π

��
ax−bx

4M2
π

F2
π

�
þ
�
AþþþBþþ

6

M2
Kþ3M2

π

F2
π

��
aþ− −bþ−

4M2
π

F2
π

�

−
2

3
Bþþcþ−

M2
πðM2

Kþ3M2
πÞ

F4
π

�1

2

�
Aþþ−

Bþþ
3

M2
Kþ3M2

π

F2
π

��
aþþ−bþþ

4M2
π

F2
π

�
;

w̃ð1Þ
�;þ− ¼

bx
2

�
Ax−

Bx

3

M2
KþM2

πþ2M2
π0

F2
π

�
þBx

2

�
ax−bx

4M2
π

F2
π

�
−
Bþþ
2

�
aþ− −bþ−

4M2
π

F2
π

�

þbþ−

F2
π

�
AþþþBþþ

6

M2
Kþ3M2

π

F2
π

�
þBþþcþ−

6

M2
Kþ7M2

π

F2
π

�Bþþ
2

�
aþþ−4bþþ

M2
π

F2
π

�
�bþþ

2

�
Aþþ−

Bþþ
3

M2
Kþ3M2

π

F2
π

�
;

w̃ð2Þ
�;þ− ¼

1

2

�
Bxbx−Bþþbþ− −

1

3
Bþþcþ−�Bþþbþþ

�
: ðD4Þ

Next, for the decay of a charged kaon into one charged and two neutral pions, we obtain

WPπ
x ðsÞ ¼ φx

0ðsÞ
�ð16πÞ2

4
½2φ̃þ−

0 ðsÞφþ−
0 ðsÞ þ φ̃x

0ðsÞφx
0ðsÞ�J̄2ðsÞ þ

�
1

4
ðCþþ þ 5DþþÞ

ðs − s0Þ2
F4
π

þ 1

3
ðCþþ þDþþÞ

K2ðsÞ
F4
π

�
J̄ðsÞ

�
þ ½φx

0 ⊙ ξ̃þ−
0 �ðsÞ

þ φ00
0 ðsÞ
2

�ð16πÞ2
4

½2φ̃þ−
0 ðsÞφx

0ðsÞ þ φ̃x
0ðsÞφ00

0 ðsÞ�J̄2ðsÞ þ
��

Cx þ
Dx

2

� ðs − s0Þ2
F4
π

þ 2

3
Dx

K2
xðsÞ
F4
π

�
J̄ðsÞ

�

þ 1

2
½φ00

0 ⊙ ξ̃x0�ðsÞ;

Wð0ÞPπ
0þ ðsÞ ¼ φþ0

0 ðsÞ
�ð16πÞ2

2
φþ0
0 ðsÞφ̃0þ

0 ðsÞJ̄2ðsÞ

−
�
1

4
ðCx þ 5DxÞ

ðs − s0Þ2
F4
π

þ 1

3
ðCx þDxÞ

K2ðsÞ
F4
π

�
J̄ðsÞ

�
þ ½φþ0

0 ⊙ ξ̃0þ0 �ðsÞ;

Wð1ÞPπ
0þ ðsÞ ¼ cþ0

3F2
π

�
Bxcþ0

18

16π

2

ðs − 4M2
πÞ2

F4
π

J̄2ðsÞ − Cx −Dx

6

ðs − 4M2
πÞðs − s0Þ
F4
π

J̄ðsÞ þ ξ̃0þ1 ðsÞ
�
; ðD5Þ

with

Bþ;x

2
¼ Bþ;0þ ¼ Bxcþ0; B−;x ¼ B−;0þ ¼ 0; ðD6Þ

and

w̃ð0Þ
x ¼ 2

�
Ax þ

Bx

6

M2
K þ 3M2

π

F2
π

��
aþ0 − bþ0

4M2
π

F2
π

�
þ 4

3
Bxcþ0

M2
πðM2

K þ 3M2
πÞ

F4
π

;

w̃ð1Þ
x ¼ 2bþ0

�
Ax þ

Bx

6

M2
K þ 3M2

π

F2
π

�
− Bx

�
aþ0 − bþ0

4M2
π

F2
π

�
−
1

3
Bxcþ0

M2
K þ 7M2

π

F2
π

;

w̃ð2Þ
x ¼ Bx

�
−bþ0 þ

1

3
cþ0

�
; ðD7Þ
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w̃ð0Þ
�;0þ ¼−

�
Axþ

Bx

6

M2
Kþ3M2

π

F2
π

��
aþ0−bþ0

4M2
π

F2
π

�
þ2

3
Bxcþ0

M2
πðM2

Kþ3M2
πÞ

F4
π

∓
�
AþþþBþþ

6

M2
Kþ3M2

π

F2
π

��
ax−bx

4M2
π

F2
π

�

∓
�
Ax−

Bx

3

M2
Kþ3M2

π

F2
π

�
a00
2
;

w̃ð1Þ
�;0þ ¼−bþ0

�
Axþ

Bx

6

M2
Kþ3M2

π

F2
π

�
þBx

2

�
aþ0−bþ0

4M2
π

F2
π

�
−
1

6
Bxcþ0

M2
Kþ7M2

π

F2
π

∓ bx

�
AþþþBþþ

6

M2
Kþ3M2

π

F2
π

�

�Bþþ
2

�
ax−bx

4M2
π

F2
π

�
∓Bxa00

2
;

w̃ð2Þ
�;0þ ¼ 1

2

�
Bx

�
bþ0þ

cþ0

3

�
�Bþþbx

�
: ðD8Þ

For the amplitude of KL decaying into one charged and two neutral pions, we have

WPπ
L;xðsÞ¼φþ−

0 ðsÞ
�ð16πÞ2

4
½2φ̃L;x

0 ðsÞφþ−
0 ðsÞþ φ̃L;00

0 ðsÞφx
0ðsÞ�J̄2ðsÞþ

��
CL
x þ

DL
x

2

�ðs− s0Þ2
F4
π

þ2

3
DL

x
K2ðsÞ
F4
π

�
J̄ðsÞ

�

þ½φþ−
0 ⊙ ξ̃L;x0 �ðsÞþφx

0ðsÞ
2

�
CL
00

�
3

2

ðs−s0Þ2
F4
π

þ2

3

K2
xðsÞ
F4
π

�
J̄ðsÞþð16πÞ2

4
½2φ̃L;x

0 ðsÞφx
0ðsÞþ φ̃L;00

0 ðsÞφ00
0 ðsÞ�J̄2ðsÞ

�

þ1

2
½φx

0⊙ ξ̃L;000 �ðsÞ;

Wð0ÞPπ
L;þ0 ¼φþ0

0 ðsÞ
�ð16πÞ2

2
φþ0
0 ðsÞφ̃L;þ0

0 ðsÞJ̄2ðsÞ−
�
1

4
ðCL

x þ5DL
x Þ
ðs− s0Þ2

F4
π

þ1

3
ðCL

x þDL
x Þ
K2ðsÞ
F4
π

�
J̄ðsÞ

�
þ½φþ0

0 ⊙ ξ̃L;0þ0 �ðsÞ;

Wð1ÞPπ
L;þ0 ¼ cþ0

3F2
π

�
BL
x cþ0

18

16π

2

ðs−4M2
πÞ2

F4
π

J̄2ðsÞ−CL
x −DL

x

6

ðs−4M2
πÞðs− s0Þ
F4
π

J̄ðsÞþ ξ̃L;þ0
1 ðsÞ

�
ðD9Þ

with

Bþ;L;x

2
¼ B�;L;þ0 ¼ BL

x cþ0; B−;L;x ¼ 0; ðD10Þ

and

w̃ð0Þ
L;x ¼ 2

�
AL
x þ BL

x

6

M2
KL

þ 3M2
π

F2
π

��
aþ0 − bþ0

4M2
π

F2
π

�
þ 4

3
BL
x cþ0

M2
πðM2

KL
þ 3M2

πÞ
F4
π

;

w̃ð1Þ
L;x ¼ 2bþ0

�
AL
x þ BL

x

6

M2
KL

þ 3M2
π

F2
π

�
− BL

x

�
aþ0 − bþ0

4M2
π

F2
π

�
−
1

3
BL
x cþ0

M2
KL

þ 7M2
π

F2
π

;

w̃ð2Þ
L;x ¼ BL

x

�
−bþ0 þ

1

3
cþ0

�
; ðD11Þ

w̃ð0Þ
�;L;þ0 ¼ −

�
AL
x þ BL

x

6

M2
KL

þ 3M2
π

F2
π

��
aþ0 − bþ0

4M2
π

F2
π

�
þ 2

3
BL
x cþ0

M2
πðM2

KL
þ 3M2

πÞ
F4
π

∓ AL
00

2

�
ax − bx

4M2
π

F2
π

�

∓
�
AL
x −

BL
x

3

M2
KL

þ 3M2
π

F2
π

��
aþ− − bþ−

4M2
π

F2
π

�
;

w̃ð1Þ
�;L;þ0 ¼ −bþ0

�
AL
x þ BL

x

6

M2
KL

þ 3M2
π

F2
π

�
þ BL

x

2

�
aþ0 − bþ0

4M2
π

F2
π

�
−
1

6
BL
x cþ0

M2
KL

þ 7M2
π

F2
π

∓ bþ−

�
AL
x −

BL
x

3

M2
KL

þ 3M2
π

F2
π

�

∓ BL
x

�
aþ− − bþ−

4M2
π

F2
π

�
∓ AL

00bx
2

;

w̃ð2Þ
�;L;þ0 ¼

1

6
BL
x ð3bþ0 þ cþ0 ∓ 6bþ−Þ: ðD12Þ
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For the decay of KL into three neutral pions, we obtain

WPπ
L;00ðsÞ ¼ φx

0ðsÞ
�ð16πÞ2

4
½2φ̃L;x

0 ðsÞφþ−
0 ðsÞ þ φ̃L;00

0 ðsÞφx
0ðsÞ�J̄2ðsÞ þ

��
CL
x þDL

x

2

� ðs − s0Þ2
F4
π

þ 2

3
DL

x
K2ðsÞ
F4
π

�
J̄ðsÞ

�

þ ½φx
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Finally, for the three-pion decay of KS, we find
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