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Hard thermal loop effective action of topologically
massive gluons in 3+ 1 dimensions
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An effective action for “soft” gluons has been constructed by integrating out hard thermal modes of
topologically massive vector bosons at one loop order. The gluons are equally massive in the non-Abelian
topologically massive model due to a quadratic coupling B A F where a 2-form field B is coupled
quadratically with the field strength F of the Yang-Mills (YM) field. This non-Abelian model provides the
same asymptotic freedom of strong coupling which is found in massless YM theory at zero temperature.
The presence of a gauge-invariant infrared cutoff plays the role of magnetic mass. Thus, in the model, it can
be used to get the transport coefficients in the perturbative regime.
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I. INTRODUCTION

Gauge theory plays a crucial role in the standard model of
particle physics for the description of fundamental inter-
actions in nature [1-3]. The standard model is the theory that
describes three fundamental interactions (i.e., electromag-
netic, weak, and strong) among all the known particles,
excluding gravitational interaction. In the electroweak sector,
global SU(2) x U(1) symmetry is spontaneously broken to
global U, (1) symmetry. This residual symmetry is respon-
sible for the electromagnetic interaction. The mediators of
the weak force, W+ and Z bosons, become massive via the
Higgs mechanism through the process of spontaneous
symmetry breaking. The Higgs particle has been discovered
in the Large Hadron Collider (LHC) [4,5] recently.

The strong sector in the standard model has a special
characteristic that makes it significantly different from the
electroweak sector. The elementary particles, quarks and
gluons, that interact strongly are not found free in any
experiment to date. The dynamics of quarks and gluons is
governed by quantum chromodynamics (QCD). The con-
finement of the quarks within the hadrons is yet to be
understood. Besides this, one of the other important features
of the strong interaction is the asymptotic freedom, which

*debphys.qft @gmail.com
Traviphynuc @gmail.com
i‘j ane@vecc.gov.in

sushantsk @vecc.gov.in

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010,/2020,/101(7)/074039(17)

074039-1

implies the validity of perturbative analysis of QCD inter-
action in the high energy limit' [6-14]. The asymptotic
freedom also helps us to realize a deconfined state of matter in
QCD known as quark-gluon plasma (QGP) at high density
and temperature [15].

QGP is a thermal system of deconfined quarks and gluons.
It can be created by colliding nuclei at ultrarelativistic
energies such as Relativistic Heavy Ion Collider (RHIC)
[16] and LHC [17] energies. In our present endeavor, we are
interested in the perturbative aspects of QGP where gluon
degrees of freedom dominate. Such a state can be created by
colliding nuclei at LHC and higher RHIC energies.

The QGP state also provides an opportunity to investigate
the nontrivial topological configurations of gauge fields.
The nontrivial topological configuration localized in (3 + 1)
dimensions of space-time is known to be instanton. This
configuration shows that the Yang-Mills (YM) theory has
infinite vacua. These vacua are designated by a parameter 6.
The instanton carries a great importance in producing the
chiral magnetic effect in QGP when massless quarks are
considered. This effect is a combination of electromagnetic
and chromomagnetic phenomena [18-21]. The chiral
imbalance can help us to investigate the violation of parity
P and CP symmetries in QCD? (strong CP problem).

QGP is considered often with massless gluons.’
However, gluons can acquire nonzero masses, i.e., electric
and magnetic masses, at finite temperature. The magnetic

'If the energy of the center of momentum frame of collision is
E, then here the high energy limit implies E > m for any mass m
present in the interaction.

Here C designates charge conjugation operation.

Here “massless gauge field” implies that the gauge field
having “bare mass” at zero temperature.
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mass is not gauge invariant without resummation [22,23],
which is a long-standing problem. The masses carry a great
importance in the analysis of QGP [24-26]. Electric mass
provides the Debye screening of the static electric field,
whereas the nonzero magnetic mass implies the validity of
the application of the perturbation technique in the analysis
of QGP. Debye mass also plays a pivotal role in the
suppression of the effect of large instanton in QGP. On the
other hand, it is shown that magnetic mass is absent in
massless non-Abelian gauge theory in every loop correc-
tion [26], and hence, it is treated in the nonperturbative
regime at the length scale ~1/(g*T), which is much below
the scale of the mean free path ~1/(g*T); here g(< 1) is the
QCD gauge coupling. It can be shown that the dynamical
screening can prevent the infrared singularities in QED
plasma, but this would not work for QCD plasma because
the massless gluon fields carry color charges.

In this paper, we will construct an effective Lagrangian
density by integrating out the hard modes of topologically
massive gluons (with momentum ~7'). This procedure has
been followed to obtain a general form of hard thermal loop
(HTL) effective action for massless gauge fields [27].
However, we consider an effective action for massive gauge
field. The effective action, obtained here for massive gauge
fields, will be useful for the computation of the color
conductivity and color diffusion constant [28-31] in the
perturbative regime. At 7 = 0, the massless non-Abelian
gauge field has a problem in the description of the local
interaction in quantum field theory (QFT) [32,33]. Since the
Fock space of the non-Abelian gauge field has a positive
indefinite metric, the interactions among the massless gluons
violate cluster decomposition principle [32,34,35], which is
not desirable in a Lorentz-invariant model. On the other hand,
the massive gluons can explain the color singlet asymptotic
states in physical Hilbert space in QCD [34,36] when color
symmetry is not broken spontaneously. However, the pres-
ence of mass in the pure non-Abelian gauge theory causes
many other problems. For instance, the gauge bosons acquire
longitudinal mode, which violates unitarity in the scattering
processes at high energy limit. This can be seen in any
massive non-Abelian gauge theory, for example, the electro-
weak sector [37-39]. However, in this sector, these are the
Higgs mediated processes, which recover the unitarity of the
scattering matrix. But, color symmetry is believed to be an
exact symmetry in the strong sector. Hence, the Higgs
mechanism and Proca theory cannot be taken into consid-
eration. We can also think of the non-Abelian Stiickelberg
model, but it was found to be nonrenormalizable [40-44].
The Curci-Ferrari model contains a Proca massive gauge
field and it was found to be nonunitary in spite of being
renormalizable [45,46]. There was also an attempt for the
dynamical mass generation of the YM field [47], but that
mass vanishes in the high energy limit [48].

The (3 + 1)-dimensional topologically massive model

(TMM) contains a topological term: mB A F :%e"””lF wB i

[49], where B is a 2-form field and F is the field strength of
the 1-form gauge field A. This is the topological field theory
of a Schwarz type [49,50]. This term is a key ingredient for
the field theories that are to be independent of metric. For
example, in the formulation of quantum gravity, this term is
used for the action [51]. In QFT, by considering the kinetic
terms of A and B fields, a model can be constructed where
observables are related to the local excitations and topologi-
cal invariants in TMM [50,52]. We observe that the coupling
constant m becomes the pole for the gauge field propagator
when the B field is integrated out. The spin representation of
the B field is different from the A field. Unlike the A field,
the massless B field has one degree of freedom, whereas the
massive B field behaves like a massive 1-form field in the
Lorentz representation [53]. Hence, by integrating out either
A or B inthe TMM, we obtain an effective field theory for the
massive vector bosons. We also see that the TMM is invariant
under the vector gauge symmetry of the B field beside the
vector gauge symmetry of the YM field. The presence of the
infrared cutoff in the non-Abelian generalization of the TMM
validates the perturbative analysis in the massive quantum
gauge theory. We have recently shown a significant charac-
teristic of the non-Abelian TMM. This is the same behavior
of strong coupling at high energy limit (i.e., asymptotic
freedom) as what is found in massless YM theory [54].
Hence, this model can be incorporated with the standard
model because it does not provide any new degrees of
freedom effectively.

The contents of our paper are organized as follows. In
Sec. II, we discuss the non-Abelian TMM very briefly.
Section III deals with the various vertex rules, propagators
of the gauge, and ghost fields present in the TMM. We also
show, in this section, how the coupling constant “m”
becomes the pole of the complete propagator of the YM
field. In the present calculations, the signature of the 4D
Minkowski metric 7, is chosen as diag(4,—,—,—) and
h = kg = 1, where 7 and kj are the Plank and Boltzmann
constants, respectively. In Sec. IV, we estimate the thermal
mass for the 1-form massive gauge field at one loop order.
In this section, the hard thermal modes of 1-form, 2-form,
and ghost fields are integrated out at one loop order and an
effective action for soft massive gluons is obtained. Finally,
Sec. V has been dedicated to discuss the implication of the
results obtained in this work.

II. 3+1)-DIMENSIONAL (4D) TOPOLOGICALLY
MASSIVE MODEL
The Lagrangian density of the model is given by [55-57]
L= 1 Fa Fau 1 He . fomi m HUpARa  Fra 1
__Z 2% +E A +Z€ wt pl ( )

where the field strengths corresponding the Yang-Mills
field A7 and the 2-form gauge field By, are, respectively,
given by
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Ff, = 0,A7 — 0,A} + gf " ALAS, (2)
and

H;,, = (DyBuy)* = of " F},C;

= 0y,Bg; + gf "°Ap By — 9f " F},Ch. (3)

where the fields Aj, Bj,, and Cj are in the adjoint
representation of the SU(N) gauge group. Unlike the
Abelian model (see Sec. III below), we have an extra
vector field Cy; in this model. It is an auxiliary field [58] that
assures the invariance of the Lagrangian density under the
following transformations:

Ay — Af

Bi, = By + (Dy0,)".  Ci— Ci+ 0,

4)

where 0 is a vector field in adjoint representation of
SU(N). With inclusion of the Faddeev-Popov ghost fields
and Nakanishi-Lautrup fields corresponding to the Ay and
By, fields, we get the full action that leads to [57]

S=S,+ / d*x [h“f“ +§h“h” — he(f" + O n®)

— B (D,D4p = D, (af o)) = Lhgher

+ 0,0%a" — a0, — {a‘a® + a?laﬂD”a)“

~ @0, (a7 BW o) + 0, (D))"

+ay<gfabCFbwec>}], (5)

where So(= [d*xL) is the action corresponding to the
Lagrangian density (1) and f* = (0*A,), [ = (0"B,,)".
The parameters &, 7, and { are the dimensionless gauge-
fixing parameters. The auxiliary fields h“ and hy play the
role of Nakanishi-Lautrup—type fields. Here @* and @“ are
the Faddeev-Popov (FP) ghost and antighost fields (with
ghost number +1 and —1, respectively) corresponding to
vector gauge field Ay. The Lorentz vector ghost fields
(@f)w; [with ghost number (—1) + 1) are the fermionic
(anti-)ghost fields corresponding to tensor field By,. The

bosonic scalar fields (4?)4 [with ghost number (=2) + 2)
are the (anti-)ghost fields for the fermionic vector (anti-)
ghost fields and n“ is a bosonic scalar ghost field (with
ghost number zero). The latter scalar ghost field is required
for the stage-one reducibility of the tensor field.
Furthermore, a* and a“ are the additional Grassmann
valued auxiliary fields (having ghost number +1 and
—1). This model contains a massive non-Abelian gauge
field and it was shown to be Becchi-Rouet-Stora-Tyutin
(BRST) invariant [59-61]. In [60,61], it is seen that the
model is also invariant under the anti-BRST symmetry

transformations. It is to be noted that the CP symmetry is
not violated in this model.

III. VERTEX RULES AND PROPAGATORS
OF FIELDS

The propagators for the A and B fields are found from the
Abelian B A F model. The Lagrangian density for the
Abelian model is

L= —%FWF”” + %HMH”” + B, F . (6)
where F,, =9d,A,—0,A, is the field strength of the
Abelian gauge field A,, H,, = 9,B,, + 0,B,, + 0,B,,
is the field strength for the tensor field B,,, and m is the
coupling constant of the topological term, which has
dimension of mass (in natural units 72 =c¢ =1). The
Lagrangian density is invariant under the following two
independent gauge transformations, namely:

A, = A, + O, B,, — By, (7)

A# - A”, B/W - Bﬂy + 8[#Ay], (8)
where A(x) and A, (x) are scalar and vector gauge trans-
formation parameters that vanish at infinity. The Euler-
Lagrange equations of motion derived corresponding to the
above Lagrangian are

m
Ot = — e H .

OuH" = +Z &M VE,,. 9)

It is interesting to note that one can decouple the above
equations for the gauge fields in the following way:

(O+m*)F,, =0, (O+m*)H,,; =0, (10)
which shows the well-known Klein-Gordon equations for
the massive fields A, and B, .

We will consider the loop calculation, which requires the
propagators of A, and B,, fields. To achieve this, we
introduce the gauge-fixing terms in the Lagrangian density
given in Eq. (6) as

1 1
ng - _2_5 (a”Aﬂ)z + Z (8}43/“’)2,

where & and 7 are the gauge-fixing parameters. The
topological term is also quadratic in nature, containing
both A, and B, fields. To calculate the propagator of the
fields, we should take all the quadratic terms in the

Lagrangian density, excluding the B A F term. The propa-
gators of A, and B, fields are given by

(11)
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FIG. 1. (a) BA vertex and (b) ABB vertex from B A F term.
. i kHkY
lA;w:_kz<’7W_(1_§) 2 >v (12)

. i k,k Mply — k,k My
lA/u/,pl = p <’7/4[p’7/1]y_(1 _77) u /]Vk2 v Mplu ) (13)
The vertex for the interaction term containing these fields is
given by

iVﬂIJ,l = —msm,/lpk”, (14)
which is shown in Fig. 1. The complete propagator for the
vector field A, can be obtained by taking an infinite number
of insertions of the BA vertex and the B propagator
[cf. Eq. (13)]. This process is shown in Fig. 2 and the
sum of diagrams can be written as the infinite sum, as
shown in Fig. 2. Thus, the complete propagator for massive
vector bosons is given by

. . N . 1. .
iD,, =iA,, +iA,, 3 zV"/””/zA,,/,’{,//,/ iV A, 4

2
k,k
. 77;41/_(1 _5) ’;{; B kﬂky
S N S I B R FOT
I L ez | )

where m, appearing as a pole of the propagators, clearly
represents the mass of vector gauge bosons. The factors of %
compensate for double counting due to the antisymmetri-
zation of the indices. Similarly, for the tensor field B, we
have the following propagator:

ki kit
MulpMalw + (1 - 77) %ﬂ‘”

_ 2 Kkt
uvp K2 — m?

k4(k2 _ m2) :
(16)

iD

The kinetic term of the YM field [cf. Eq. (5)] provides the
derivative trilinear and quartic couplings. The interaction
part of the kinetic term of YM field is

FIG. 3. (a) AAA trilinear vertex and (b) AAAA quartic vertex.
b
M ,
, B)\P Aa ,/ Bc’\P
F/)// ///
M // :
A TOO0000X,
\\ \\\
™ y o
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\ BC oT

(a) (b)
FIG. 4. (a) ABB and (b) AABB vertices.

1
Line = 7 9f P AP A (), A = 29f“OALAS). (1)

The vertex rules corresponding to these couplings are as
follows:

Vabe — —gf (g = 1)y + (r = P)isy
+ (P = @) 1) (18)

VZS;/? = _l'92 [fabedeel/]y[/lnp]v + facefbde’/lﬂ[vnp]ﬁ
+ fadefbceﬂu[vnxl]p]’ (19)

where f’s are the structure constants of the SU(N) group,
which are totally antisymmetric in their indices. The
momenta of the particles at the trilinear vertex is shown
in Fig. 3(a). The topological term also provides a trilinear
coupling ABB with vertex term

iV;‘ff,lp = —igmf*ie,,,. (20)

To proceed further, we require the propagators of vector
ghost fields @ and @*, the ghost fields of the vector ghost
fields 8 and f3, and the ghost fields @ and @ corresponding

T+ TOOO >+ T+ T+ - TOO >+ T +

FIG. 2. Massive A propagator by summing over B insertions.
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to the 1-form gauge field, which appeared in Eq. (5). The
vertices for trilinear and quartic couplings ABB and AABB,
shown in Fig. 4, are

IVZIZ) or gfabCKp - q)ﬂnﬂ[o’”‘r]/) + P72 p)u
- q[ﬁnp][ﬁnr]u] H (21)
i.gz [facefhde (’7;w77/1[a’11]p + MuloM7) [271/1]1/)

+ fadefbce (nyuni[anf]p + '7/4[}»’7[1][0’77]1/)}' (22)
|

abed
lV[l v.Ap,oT

TR AVAVAVAVAVAVAVAYS

AIAAAAANN b

Apart from the usual trilinear coupling among Faddeev-
Popov (FP) ghost and YM fields, we can also see the action
contains another trilinear coupling among vector ghosts
and YM fields, which is given by

vec—gh— A
L:mt

f“”‘a”a)”“A’b’l ] (24)
The vertex factor corresponding to this Lagrangian density

is given by

lvabc —

v _gfabc (Pu’?,u - pﬂr/lxﬂ)’ (25)

In the derivation of the above rules, all four momentums are
taken as incoming toward the vertex, as shown in Fig. 5(a).
There is also a trilinear coupling among the YM and ghost of
the vector ghost fields. The trilinear vertex is shown in Fig. 5(b).
The coupling is given by the following Lagrangian density:
ﬁA/}ﬂ — gfbcaAZayﬁaﬂc . (26)

nt
J

iDusab = == [ -
p

The propagator of the vector ghost field from the
Lagrangian density

L = =0, (Fw** = o) — = (0,0')(0,0"),  (23)

gt —

at the gauge & = 1 can be obtained by integrating out & and
a from the action in Eq. (5) as

iAE,B,ab = Eéab.

[

Since, the coupling in Eq. (26) also contains the derivative of
fields, the corresponding vertex will be momentum dependent.
This trilinear coupling is same as the trilinear coupling among
the YM field and its FP ghosts with the vertex term and it is
given by

iVhe = —9f abe PF (27)

IV. ONE LOOP CORRECTION

Using the vertices and the propagators derived above, we
calculate the one loop correction of the soft modes of
massive gluons with the scope of the Feynman—‘t Hooft
gauge: £ =7 =E =1 in 4D Euclidean space where we
replace the Minkowski metric #** by the Euclidean metric
0. The amplitude of the one loop diagram can be written
generically as

(28)

Iab — ¢*N¢ 5abi5ﬂu(a1p + ar)k* + aym?) + ask,k, + ay(p.k, + pok,) + aspﬂpl/
- (p* =m*){(k - p)* —m*}

p

where Yo =Yos=>, T[.[,= f ,,. We assume

that the external legs carry soft momenta ~gT. We take
the Matsubara sum over the temporal component p,,, of the
four momentum p,, and integrate over spatial component4

*We use here slightly unconventional notation, since p,and k,
designate the four momenta. P and K stand for the magnitude of
three momenta. The spatial components of momentum are
denoted as p;’s (or k;’s) (i =1, 2, 3).

p = {p;}. To carry out this, we approximate the energies
E| and E, of the external legs as follows:

E, =/p*>+m? ~P+§+ (29)

2

NP—K- Ve, (30)

Ey=\/(p—Kk)?+m?
2 <p )+m 2P’

where |p| = P and v; = Z.. Now we consider
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(a) (b)

FIG. 5. (a) Trilinear vertex among A, @,, and ,. (b) Trilinear
vertex among A, f3, and f. Wavy line designates the vector ghosts
in (a) and ghosts of the vector ghost fields are represented as a
double wavy line in (b).

G= TZ : . (31

Don pOn +E2 (k_p)(z)n _mZ}
which, summing over p,,, results in

G 1 1
"~ 4E\E, |ik,, — E, — E,

(=np(E) — ng(E;) — 1)

P ——— E)— E
+ ik + B, — (np(Ey) — np(E))
1
P ———— E,) — E
+ikon+El o (np(Ey) —np(Ey))

1

+m(1 + ng(Ey) +”B(E2))} (32)

The quadratic terms O(p?) are neglected from the numer-
ator because of the assumption p ~ gT(g < T). Using
Egs. (29) and (30), the above expression of G can be
approximated as

G |~ 5 {=20a(P)} + Z(0) + 55 (2na(P)]. (3)

where

I(p) = (m(”B(EI) -

+ lk(m+1El—Ez (np(E,) — nB(El))>' (34)

ng(E))

The denominator in Eq. (28) contains identical propa-
gators of bosons. Hence, the term (p,k, + p,k,) can be
simplified by renaming the variable p — k — p, and con-
sidering one half of this term as

1
puku+pu /4_)5

+ (k= p)k = Kk, (35)

{pﬂkv + puku + (k - p)ﬂku

After rearranging the terms in the numerator of the
integrand in Eq. (28) and neglecting the term ~O(K?),
the spatial part reads as

gzN 5ab
N?;’ = r(zj {5ij(a1p2 + aym?) + aipipj]
N 5ab
— gzic [51.].(511(172 — m2) + (llm2 + a3m2)
+ asp;pjl
B gzNC(Sab

[6;(ar(p* = m?) + (a; + a3)m?)

+asp;pj|. (36)

From the above expression, it is clear that the presence of
the term m?5;; will provide the magnetic mass of gluons. In
constructing an effective field theory, we neglect the
quadratic term of O(K?) from the above expression.
Substituting G in Eq. (33), the spatial part of the II,,,
which, after changing the variable v — —v, reads

H?]b gNC(sab/|: 1nB<P)5
p

s+ aspop) {0 + 2w . o)

where A=

_ 2
c(d) = Gawrary

directions of v; = ” ! and is normalized to unity as

(a; + a3), fp =c(d) [p*'dp, and
The angular integration goes over

/ aQ, = 1, (38)

and using the rotational invariance, we get

1
/dQv’Ui'Uj :Eél] (39)

Thus, we are going to construct the effective field theory in

the energy scale E =+/P>+ m?, where m < E <T.
Using Eq. (39) and the following identity for d = 3:

[ ey ==d=1) [ ms(e). @0)

Hﬁ,’j can be expressed as
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’N. ng(P) a (d-1)
qu: abg (5 / B 5 7 ..
7=y [p 2 A7 I Y A
(d—]) / vinkon
Q _ iiton
PRl Ao

+ Am?5;; / erZ(p)} (41)

The last term of the above integrand can be written as

m? / dQ,x(p) = m?I, (42)
where’
[ = 2f Z mK,(v/2smp)Re
x [e”ﬂ"‘)"El (sP{K + ikon}) = E1(sp{=K + iko,})].
(43)

With the help of Eq. (30), we can now reexpress
Eq. (41) as

bl g'Ne 3L +Am21 8ij
=T, 12

T2
O3 (PO (K) + PEML (1) |, a4

_as(d-1)

where in d spatial dimensions B=(a;+5-"5)

and C = —%a The factor appears from the inte-
gration fPPnB(P), where fP_ (d) [ p~'dp and
V(d) = . The gauge indices in the above calcula-

(4= )21“( )
tions have been suppressed and the coefficients of the
projection operators are found as

Pru(k) = 8,i6,;Pf; (k). (45)

l/j lj

_ kuk,
k2

Piv = 8 o (K). (46)

where PJ;(k) = &;;
[62]

— k;k;/K? and in the three dimensions

+

(ikon)® ko -
K? 2K

(ikon )? | ik, + K
K? iky, — K|’

(47)

(k) = 5|

. 2 . .
HE(K) _ |:1 _ (lkOn) :| |:1 _ lkOnl lkOn + K

.48
K 2K nikO,L—K] (48)

Now we can write the effective Lagrangian density as

1 . ~
Lo = _ZFZ Fa, +Am2(K)A/'(K)A”(—K)
+ m? / pre) LWF“ Ly (49)
E v V D V . D aﬂ ’
where  ? = 92,1:’” B +Am’l],  mi~@CRel,  and
V*=(1,v). We have obtained a generic form of the

Debye mass and observed how the bare mass of gluon
contributes in the construction of effective action.

Now we proceed to consider the relevant contributions to
the effective Lagrangian from various loop diagrams of the
topologically massive model. The generic form of the loop
integration is given as

(AS;;k> + Bk;k;)
I, — mzyjkz{( j , (50)
k

p—k?=m*}(k* —m?)’
which could be written as
I =m A (AS;;k* + Bk;k;)G(E,,Ey. E3, k),  (51)

and

1 1
E . E, E;. k) = E,. E,. k) — G(E,. E. k)], 52
BBl = ) B (= 08+ BN, T B) B O )~ B R ()
where
G(E| Ey. k) =T
b Z on+E2>{r0n+E}
1 L (Cnp(Ey) = np(Ey) = 1)+ ————— (ng(E)) — np(Ey))
= —n —-n - —(n —-n
AE|E, |iky, —E, — E, " 27! B\™2 ikgy + E, —E; » 2\71 B2
1 1
 (ng(E,) —ng(E E— E EN|. 53
+ik0n+E1—E2(nB( 2) — np( '))+ik0n+E2+E,( + ng(Ey) + np(E,)) (53)

>See the detail in Appendix A.
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Thus, from Egs. (52) and (53), we get

1 1 1
=— —ng(E|) —ng(Ey) —1
g "2 [4E1E2{ikon—El—E2( ng(Ey) —ng(Ey) — 1)

e (np(E)) = np(En)) 4
B N S
ikgy + E, —E; 27! B\™2 ik, + E, — E,

1
—(1 E E
t g 1 (B + ()}

1 1

_ ) (B

4E3E2{ik0n—E2—E3( ng(Ey) = np(Es —p) = 1)
N 1

ikoy + Ey — E
1

er(l +"B(E3)+HB(E2))H’ (54)

(ng(E;) — np(Ey))

(ng(E3) — ng(E; — p)) (ng(E;) — ng(Ey))

e
lkon + E3 — Ez

where - originates from E3 — E7 = kj, + m* — kg, = m*. Taking the HTL approximation, we can write the above

expression in the following form:

ng(E,) — ng(E3) 1 1
i~ - . 55
g 4K?*m? iPpon—P 'V iPon+P-V (55)

The task will become simple with the observation that the diagrams in Fig. 6 are to be neglected in HTL approximation. In this
approximation m < K, then ng(E;) ~ ng(Ej3) at leading order. Hence, the contribution to the quantum corrections from the
diagrams in Fig. 6(a) and 6(b) is given by H?f‘ﬁb ~ 0. A similar conclusion can be drawn for the contribution from Fig. 6(c),
which contains four propagators. Therefore, the H?jc have the Matsubara sum as

1
G(E|, Ey, E3, E4 k) = Z: (56)

= (ko + ED{(p = k)5, + Ex} (ks + ED{(p — K)o, + EG}

After some algebraic manipulation and HTL approximation, the above expression becomes

(np(Es) —ng(Ey)) 1 1 1 1
E 7E 1E 7E ’k ~ B . N - ) 57
G(E1, Ep, B3, By, k) 4K*m* ip,—p-v ip,+p-v + ip,+p-v ip,—p-Vv (57)

which shows that H‘?j" does not contribute too.

N

o D, D
i A
(b)

B, A

wa 000000, v
(c)

FIG. 6. Loop diagrams formed by (a) AAA and AAB, (b) ABB and AAB, (c) AAA and ABB couplings that do not contribute in the HTL
approximation.
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M,a v,b

(@)

u,a v,b

(d)

FIG. 7. Loop diagrams formed by (a) AAA, (b) AAAA, (c) ABB, and (d) AABB couplings.

Only relevant loop diagrams with nonzero contribution,
constructed from A and B fields, are shown in Fig. 7. The
rest of the diagrams are from the ghost sectors, where loops
are constructed by the FP ghost of the YM field w and &,
vector ghost @ and @*, and ghost of the vector ghost  and
S corresponding to tensor field B, .

We easily reach at the conclusion from Fig. 7(a) that the
term m?/K* in the propagator of the massive YM field is
irrelevant under the approximation considered here, i.e.,
when K is hard. Instead of the propagator behaving as
~1/k*, now we have to consider 1/(k*> —m?). On the
other hand, the vertex rule of trilinear coupling among the

|

massive gluon fields is same as that of the massless YM
field. This makes the calculation easier. We have also
noticed that the loop amplitude from Fig. 7(a) in the HTL
approximation at the leading order is same as that of the
massless YM case because of the structure of the
propagator of the massive YM field. On the other hand,
the trilinear vertex rule among the massive YM field and
its massless ghosts is same as that of the massless YM
theory. These similarities imply that the thermal loop
amplitude for Fig. 9(a) is the same as found in that of
massless YM theory. The contributions from Figs. 7(a)
and 7(b) are

H7a o gch _5;w[5p2 - 2p “k+ 2k2] + (d + 4)pﬂpb - (4d - 2)kﬂkl/
e - (K —m?)[(p — k)* = m?] ’
k
1 2d

k

Neglecting the terms ~O(p?) in the numerator of Eq. (58),
we get the spatial part as

e I Ne Z: il 2p k+2k2} (4d - 2)kik;
’ m)[(p = K> = 7]
ijl=p- k+k2} + (2d - 1)k;k;
=N I ! I (59
! ok

I

Comparing Eq. (59) with Eq. (44), we find that a; = —1,
a3 =0, as = =5, and n = 1 for d = 3. Next, we consider
the diagram in Fig. 7(b), which provides the spatial part of
the loop amplitude as

Z d
b 2
Hij = —g Nc6ij m

-

k

SNy [ (). (60
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The loop amplitude corresponding to the diagram shown in Fig. 7(c) is given by6

—p-k)d,, + (2d?

—3d+ 4)[2kykv - (pyky + kﬂpl/)]

e PN, -2(d—2)(K?
HW = >
P

which provides a; = 2(d —2), a3 =0, a5 =0, and n = 2.
The loop amplitude from the loop diagram, shown in
Fig. 7(d), is

1 1
79 = — ¢>N..6;;(d? — 3d 2I
ij zg c lj( + ) - (k2 _ mZ)

k

g (d* - 3ar+2)N5”/1

(L np(K)).  (62)

NI'—‘

Now, there is only one relevant loop diagram involving A
and B fields shown in Fig. 8. The amplitude corresponding
to this diagram is obtained by neglecting the term ~m?/k*
from the propagators of the field and is obtained as

B 5 2d 2)6,,
=gmN I —m?)[(p - k) m?]’ (03
ngj =2¢°m*N.(d - 1>I(k2 _ mz)[gjj_ K)? —m?] (64)

k

which gives a3 =2, a; =a5 =0, and n = 1. Next we
consider the ghost sector, which also contributes in the
construction of the HTL effective Lagrangian. The loop
diagrams corresponding to fields o, @, @*, @"*, and j3, p are
shown in Figs. 9(a)-9(c), respectively.

The loops are formed by the FP ghost of the YM field in
Fig. 9(a), vector ghost in Fig. 9(b), and ghost of the vector
ghost in Fig. 9(c). The loop amplitude from Fig. 9(a) is

found as
9a __ 2
% = ¢*N I 20 k
— PuPv

PN 2Kk, —
, 65
j‘-‘ K (p—k)* (65)

where we have used the trick [cf. Eq. (35)] in the last step
because the loop integration contains the product of two
identical propagators. Comparing with Eq. (44), we see that
a;=a3 =0, as =1, and n = 1. Loop amplitude from
Fig. 9(b) is

®See the calculation of the numerator of the integrand in the
Appendix B.

(k2 =m*){(p - k)?

— ) ; (61)

(d=2)puk, — k,k,(d = 1) + p,k
Hzf—fNI s k2 :

(p—k)?
QNI - )p,p, —2k,k,(d—1)
K (p —k)? ’
kik

k

In the last step of the above integration, we have again
used the same trick shown in Eq. (35). In comparison
with Eq. (44), we see that loop integration contributes to
the HTL effective Lagrangian with a; = a3 =0 and
as = (d — 1). The contribution from Fig. 9(a) is the same
as that of Fig. 9(c), because of the similarity in the vertices
of the trilinear couplings A@w and AfBpB. Hence, adding up
the contribution from the ghost sectors, we get

kik;
[0a+96+9% — 2 I‘ L2+ (d-1). (67
: PN Y, g A=) (6D

=1

B
ua Wv,b
A
FIG. 8. Loop diagram contains the AAB coupling.
wli
w
p,acEGCGGO ( ) CCGOGGGv,b p,aGGGGGOG% Zjbszzjaﬁv,b
(a) (b)

()

FIG. 9. Loops formed by (a) FP ghost of YM field, (b) vector
ghost, and (c) ghost of vector ghost.
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Comparing the generic expression in Eq. (44) with the
above equation, we get only as =4 when d =3 and
n = 1. Hence, we obtain the effective action from HTL
approximation for topologically massive bosons in d = 3
dimensions as

1
['eff = _ZFZDFZI/

+ m2I<A’1(k)Az(—k) - A<_ki)z<k ' A<k>)>

k

+ [ (KA, (k)

1 1
+ sz / dQL (V—D VaFgﬂ> (V—D VﬁFﬁﬁ> s (68)

where
2 2 TZ 2
T2

In the final form of the effective action in Eq. (68), we have
added the contribution obtained by integrating out the B
field from the quadratic part of TMM action for the
Lagrangian, given in Eq. (1) (see Appendix C). The
effective action in Eq. (68) also contains the contributions
from Figs. 7(b) and 7(d). These contributions are added to

the coefficient B in Eq. (44) to provide the coefﬁcient% of %
in Eq. (69).

V. DISCUSSION

We have constructed the HTL effective action for the
topologically massive gauge theory. In the final form, we
have clearly shown how the Debye mass is modified due to
the presence of the bare mass of massive gauge bosons. The
bare mass puts an infrared cutoff in QCD at finite temper-
ature. The infrared cutoff plays a crucial role in the
perturbative analysis of transport coefficients, which are
related to the response functions. These were believed to be
in the nonperturbation regime in QCD at finite temperature.
We have not considered any fermionic interaction with the
massive YM gauge bosons. The fermions will have the
same trilinear coupling with massive YM fields as they
have in massless YM theory. As a consequence, they
provide the same contribution in the HTL approximated
Lagrangian. There is no conserved local current con-
structed from a trilinear coupling among fermions and
B, field. We have not calculated the transport coefficients
from the HTL action for topologically massive gauge
bosons when they are coupled with fermions. It will be

very interesting to find the response functions from a matter
coupled TMM at finite temperature.

We also see the other prospects of the TMM at finite
temperature. In the massless YM theory at finite temperature,
the phase transition can be explained by associating with
spontaneously broken symmetry. Massless YM field theory
isinvariant underthe SU(N)/Z(N) group, where Z(N)) is the
center of the SU(N) group. This symmetry is believed to be
spontaneously broken at phase transition, which is described
by the vacuum expectation value of the Polyakov loop
L =L uP(expi ¢ Ag(X, 1)), where P represents path order-
ing of the exponent and trace is taken to make L invariant
under SU(N) symmetry. Taking the quarks to be static, it can
be shown that the implication of phase transition implies the
spontaneous breaking of SU(N) symmetry. However, in
TMM, there are massive gauge fields, which are in the adjoint
representation of the SU(N) group. As a consequence, in the
model, we have a more general Polyakov loop

[gen ~tr79(exp (i]{AO()_& 1)dx° y{ Bol'dxodxi>)» (71)
s

where the closed path C is the loop and surface S is taken in
space-time. The physical significance and the behavior of
L& near the critical temperature can be investigated thor-
oughly. It will be also interesting to consider thermal Bethe
Salpeter equations from TMM. This may give the dynamics
of the bound state massive gauge bosons at finite

temperature.
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APPENDIX A: FINITENESS OF
1 APPEARING IN Eq. (43)

An expression for / in HTL approximation has been
derived in the Appendix. We consider the second and third
terms appearing in Eq. (32) from which [/ originates.
Omitting some numerical factors, which hardly matter in
the computation, we consider the following integration of
the second term of Eq. (32) as:

B d’p 1 (ng(E\) — np(E,))
hi= / (27)* E,\E, : o

Al

Putting E, =+/p>*+m?, E, = \/(p — k)*> + m?, ng(E) =

>, =P, and considering the approximations, taken in
Egs. (29) and (30), we get
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s=1

22 (P + 5+ O (P =k v + 45+ O30 thon =K - V0

. / d3p ) ( —ps\/p>+m? _e—ﬂsy/(p—k)2 mz) 1
1 pu—
(

Neglecting K and m with respect to P, the integral 7 reduces (in D = 3) to the following form:

Q 1 >, o0 3
ne [ 2 [ [TV et ap 1 T )|

2m)? ikoy — k- v | Jo

where 7, (mz, K, s) represent the finite terms that depend on m?, K, and s. Using the result

o0 1//2
/ x~le™ T dx = 2(5) K,(2\/ay). [Rea > 0,Rey > 0],
0 14

7, can be approximated as

i U dQ mv2K,(vV2smp)

27)3  ikg,— kv (1=ePv) 4+ T, (mz,K,s)}

Similarly, from the third term of Eq. (32), the contribution becomes

Iﬁ—i [/(dﬁ mel(fsmﬂ)( —e‘Y/’k'V)+T2(m2,K,s)].

= 27[) lkOn + k- v

Hence, we have

1=y T 3 [ o Rk () 0) + T .5

(A2)

(A3)

(A4)

(AS)

(A6)

(A7)

It is clear that this is a convergent sum because of the behavior of K, (v/2spm) in the limit s — co and m # 0, s # 0. In
summary, our purpose was to see how the integration over p is convergent and this has been shown in a clear way here.

After the integration over a solid angle Q, we get

1 - .
I~ 2\/§W;mKl(\/ismﬁ)Re[e”ﬁkOMEl (sp{K + ikon}) — E\(sP{—K + iko,})],

where E|(x) is an incomplete Gamma function [63]. In reaching the above result, we have used [63]

xe* .
/x2 i —Re(e"E|(—x + ia) + const), [a > 0],

where E; (x) = [ < Ldt.

APPENDIX B: CALCULATION OF AMPLITUDE OF FIG. 7(c)

The amplitude of Fig. 10 is given by

16 R—m? kKR —m?
5 <;/]ﬂ[/7/;76/]” m_2]}[ﬂk[6’;7/1’]6]

B-m> kR -

1 ~ ;/Ia[a/n/}/]ﬂ m2 k[ak[ﬁ/na/]ﬂ]
M = [k = p)Mpatipe + Kiplolialpin = Kialpijplo)u] (

074039-12
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where k is given by
k=p—k.
Now we will use the following property in the amplitude:

va]’]a[yrlu]ﬂ = 2Aﬂy’7a[ﬂ’/]y]ﬂv (BQ’)

so that we get

M:

! _ e PP 2 fag P
E [2(2k - p)ﬂnpa']ﬂa + 2kv:’70]a’7ﬂ/4 - Zkar]ﬂ[pr]a]ﬂ] <k2 _ mz F k2 — m2

]7/)[/’[;7”[]” m2 ];[Pk[”/ﬂ/’/]”] -
X (m FW [2(2k - p)una’p’no’ﬁ’ + 2kp’rla’[a”7ﬂ’]u - 2k[a”7ﬁ’]p”76’u]

4 i Sy
- E [(Zk - p)yﬂpa”lﬁg + k[pna]ar]/iﬂ - kanﬁ[pna]ﬂ] (k2 —m? F K2 — m2

I,Ip[p”,lal]a m2 ]}[pk[a’rl/)’}a] 5
X (7(2 _ m2 ? 7(2 ) [(2k - p)yna’p’nv’ﬂ’ + kp’na’[a’nﬂ’]v - k[a’rlﬂ’]p’r]a’u]

4 - na[‘fn/j/]ﬁ m2 k[ak[ﬂ/na/]ﬂ]
]6 [(Zk P)ﬂﬂpaﬂ/}a + 2k/)’70'(177/};4 Zk(tﬂ/}pno'ﬂ] <k2 _ m2 + ? k2 _ m2
Wy ]
X <l~62 —m? ?f (2 - p)yﬂa’p’”a’ﬁ’ —+ 2kp”76’a”7/3’u - 2k0/7lﬂ’p”70’u}' (B3)

Now we ignore O(m?/k*) and O(m?/k%) terms to get

4
16(k* — m?) (k* — m?)
(77[) /]U) [(2k - p)yr]a’p’r]a’ﬂ/ + ka’nv’a’r]ﬁ’u - 27(0/’7#’/)’770/1/}

M= [(2k = P)paips + 2ktoatipn = 2kttt (1 1" V)

4 [ i @ op] Ay
= . 2k — & 4 2k,58 8 — 2kl 5
x [(2k — p)yé[f)éﬂ] + 2k 87y, — 2ka,5}§i 57). (B4)

Let us denote the first and second square brackets by I and II, respectively, i.e.,

= [(2k = p),65 &) + 2k, 85 8 = 2K 8" n,, ), (B5)
I = [(2k — p), 0085 + 2KV 80y, — 2k,15)67). (B6)

The first term in I and first term in II are antisymmetric with respect to «’ and ', so that we have

Ix U= [2(2k = p), 3568 + 2k,0 o)) = 2K 50, )[(2K — p), 665 + 26067y, — 2K 60501, (B7)

Again, the first term in first square bracket and first term in the second square bracket above are antisymmetric with respect
to p and o, so that we have

U I = [2(2k — p), 08 80 +2k,04 8 — 2K &) 'n,,,)[2(2k — p), 8,05, + 2k, — 2ky 0,57, (BS)
which implies
o o P - o >
U 1 = 4[(2k — p), 05 80 + k,86 81, — K )0, )[(2k = p), 8,85 + Krong, — kyopsl)]. (B9)
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Hence, the amplitude becomes

1

M= . [(2k = p), 858 + ko0 o — K}y, 112k = p), 085 + Krslng, — k887, (B10)

(€ =) (@ = )

Again, let

1= [(2k = p), 8750 + k,08 & — K<) ],

1l = [(2k — p), 8,85 + Kr&%iny, — ke6067).

s «vp

(B11)

(B12)

Also let I; denote the ith term in I, so that we have

1211+12—13,

=1, + 11, — I,
and

L < Ly = (2k — p), 0580 x (2k = p), 8,5,
= aa(zk - p)ﬂ(zk - p)u
~ J2[4kﬂk1/ - 2(k/lpl/ + kl/pﬂ)]’

— (2k—p), 33 x K&y,

= (2k = p), x K=&,
(2k = p), x (k87 — k6% )11,
(

(B13)

(B14)

(B15)

(B16)

(B17)

FIG. 10. Loop diagram contains the ABB coupling.

a /}’

L x I = k04 &) % (2k = p), 8,5,
= kg3 &) x (2k = p),
= ko (2k — p), (8550 — 5,6%)
= (1= d)k,(2k - p),
— (1 - d)2k,k, — k,p,), (B18)

L x T = k,62 &) x krsing,
= k(848 — 8067 ) (kS5 — k8., g,
= (891, — 1,07 ) (K285, — Kk )
= (d = 2)k*n,, + k,k,, (B19)

L x 1Ly = k65 8 x ky8)5)
= k k(52 — 8 67) (8,57 — 53)
= (kodl, — K8 ) (k07 — K, 55)
= (d = 2)k,k, + k,k,
=(d- 2)pﬂk,, + Pk, — (d- l)k,,k,,, (B20)

Iy x Iy = K98, x (2k - p), 8,8,
= (2k = p), k&) ny,

= (1 = d)k,(2k - p),
~ (1 —d)[2p,k, —2k,k, + k,p,],  (B21)

Ly x Il = K80 n,,, x K0 gy,
= (l;a,(s/; - I;ﬂrézj)(kpézf - kgéﬁ;/)n(wnﬁ’y

- ( a/’/]pv - 7‘1/52/)(1‘/)’10/;4 - k/t&/;’)
= k,k, + (d = 2)k,k,
= puk, + (d=2)p,k, + (1 = d)k,k,, (B22)

Iy x Iy = K98, x kyo6)
= (kg
= (28] = F'k,) &y — npudl)
= (d=2)%n,, + kK,
~(d=2)(k* =2p - k),
+ k,k, = (puk, + k,p,). (B23)

) — K'65)(8,,67 — 85,80 )nguk
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The amplitude is finally given by

M=1 xI, +1; x Il = I x II; + I, x II,
TLxIL -1 x I - I; x I,
L xIL + 1y x 0y
=2(d=2)(K* = p- k)
+ (2d® = 3d + 4)[2k,k,

- (pﬂkl/ + kﬂpll)] (B24)

APPENDIX C: “INTEGRATING OUT” B FIELD
AT QUADRATIC LEVEL

We have already integrated out the hard modes of the B
field from the non-Abelian TMM by considering the
trilinear and quartic interactions among B and A fields.
However, in the final form of the effective action in

|

Eq. (68), we have to add classical action, where the B
field is integrated out from its quadratic part. We consider
the quadratic part

1 1
L= _ZFWF + 12HMMHW/1 +%SWMFMVB/)/1’ (C1)

where we have suppressed the gauge group indices.
Introducing the gauge-fixing term

1
— uv\2
Lor = 5, (0,8" . ()

in the Lagrangian in Eq. (C1), where 7 is a gauge-fixing
parameter, we can find the two-point function of the B field.
Hence, we can write the action corresponding to the above
Lagrangian density in Eq. (C1) as

s= [ ax ( [ @0 - 095 = 1))

-3 [ B0y )+ [ a5 - Bu) )

(C3)

where A(x, y,n) is the inverse of the two-point function of B field at the tree level and it has mass dimension [A] = 6 due to

the inclusion of the Dirac delta function, where j% =

1
S = —/d4xZFﬂ F,, -

s"ﬂf”lF i~ We can reexpress the above expression as

1 m . _ .
1] [ es(Bato+ % [ dar@azt e ) st

m _ m? _ g
<(But)+5 [ @ealy e @)+ [ e 0ad, 00 © ()
The last term appears from the following steps:
2
e d*xd'y d*z d*Z jP(2) Ay, (2, x.) AP (x, y )AL L (2 yom) ] P ()
m? . o f
-3 / d'y d*z d*? j(2)8,656"(z = V)AL p (2 y.m)jP ()
m? 4 1h 1 ap ~1 I B
=7 d*zd*Z jP(2) AL yp (2.2 ) j*P (D)
m’ 41 saf o
= [ A (05 (1), (©3)
where we have used
1
3 / AUz} 5 (x, 2 ) AP (2, y, ) = 8,845 (x ), (C6)
in the second line of Eq. (C5). Using j% = 1e"*F , = 7' ,A,, we can reexpress the last term of Eq. (C3). Integrating

by parts, we obtain
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m2 . Al m2 ’ Ty
T/d“zd“z’]“ﬁ(z)A;[}‘a,ﬁ,(z,z’,n)f'ﬂ(z’) =T/d4zd“z’e/’ﬂ“ﬁAg(Z)G;GZ,A;[}W,(z,z’,n)e/’“ﬁAy(z’). (C7)

Then we can find

m?
1 sﬂﬂ“/’azaz AL aﬂ/(z, 7 n)e’top

2
_ M e 47 A—1
=7 &’ /d kA~ apaf

(k)k k ek (z— Z)gp’/l’o/ﬁ’

’ k
:mT'spw/ e (”“[a My — (1= 1) M)k k ek =) g ap

K?

2 1 H ! /al )/
=m78’”“” / Ak Nl gk e el 2P

_ /d4kk (k2 AN kﬂkﬂ’) ik-(z=2') (CS)

As a consequence, the “effective” action from the quadratic part at the tree level (where the degrees of freedom of B field is

integrated out) is given as follows:

1 ! ! : !
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