
 

Quantum computing for neutrino-nucleus scattering

Alessandro Roggero,1,* Andy C. Y. Li ,2,† Joseph Carlson,3,‡ Rajan Gupta ,3,§ and Gabriel N. Perdue 2,∥
1Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195, USA

2Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
3Los Alamos National Laboratory, Theoretical Division T-2, Los Alamos, New Mexico 87545, USA

(Received 16 January 2020; accepted 9 April 2020; published 27 April 2020)

Neutrino-nucleus cross section uncertainties are expected to be a dominant systematic in future
accelerator neutrino experiments. The cross sections are determined by the linear response of the nucleus to
the weak interactions of the neutrino, and are dominated by energy and distance scales of the order of the
separation between nucleons in the nucleus. These response functions are potentially an important early
physics application of quantum computers. Here we present an analysis of the resources required and their
expected scaling for scattering cross section calculations. The current estimates of Trotter steps needed to
achieve an energy resolution of 10 MeV and the number of CNOT gates for analyzing 40Ar highlights the
need for significant improvements in algorithms. We also examine simple small-scale neutrino-nucleus
models on modern quantum hardware. In this paper, we use variational methods to obtain the ground state
of a three nucleon system (the triton) and then implement the relevant time evolution. To tame the errors in
present-day NISQ devices, we explore the use of different error-mitigation techniques to increase the
fidelity of the calculations.
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I. INTRODUCTION

Establishing the existence of “CP violation” in the
lepton sector through neutrino oscillation experiments
and testing the three-flavor neutrino framework at a long
baseline experiment such as DUNE [1] are challenging
tasks. Successful execution of these goals requires very fine
controls on systematic uncertainties. Interaction model
uncertainties will likely be the dominant systematic uncer-
tainties in mature experiments, and further theory work is
required to bring them under control [2,3].
Experiments use event generators, such as GENIE [4],

NEUT [5], NuWro [6–8], and GiBUU [9], to connect
final states observed in the detectors to the detailed
underlying kinematics. There are two defining features
for neutrino-nucleus interaction signals. First, the kinematic
details of beam neutrinos are unknown on an event-by-
event basis, and even the overall flux may be poorly
constrained. Second, neutrino experiments favor heavy
nuclear target materials to drive up event rates at the
price of introducing very complex nuclear physics in the
event reactions.
Because they are tools for understanding detector effi-

ciency and backgrounds, event generators must simulate all

types of constituents possible in the final state of an
interaction and their momenta on an event-by-event basis.
An ideal theory input would provide fully differential
neutrino-nucleus cross sections with respect to the kin-
ematics of every final-state particle, for all combinations of
neutrino flavor and helicity, and for every nucleus in the
target. Unfortunately, even the most sophisticated modern
theory typically provides only the kinematics for the final-
state lepton, and generally covers only a subset of the
experimentally accessible phase space [10].
On classical computers, inclusive scattering in ab initio

calculations are obtained via imaginary-time (Euclidean)
correlation functions [11,12] or in factorization schemes
[13]. These are typically relevant to inclusive scattering
only, though some progress has been made toward exclu-
sive processes [14]. Exact treatments, even for the ground
state, scale exponentially in the nucleon number due to the
Fermion sign problem. Constrained path algorithms are
useful for low-lying states, but scattering has proven to be
intractable on classical computers.
Since its first conceptualization [15], quantum comput-

ing has been seen to offer a potentially powerful tool for
computing ab initio the time evolution of strongly corre-
lated quantum systems, such as the ground state of nuclei,
with controllable errors [16]. This is mostly due to the ease
of incorporating fundamentally quantum effects such as
entanglement and interference within its language, some-
thing that in general requires an exponential overhead on
classical digital computers.
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In an earlier publication [17], some of us proposed a
quantum algorithm for digital quantum computers to
efficiently estimate properties of (nuclear) final states in
scattering events such as neutrino-nucleus reactions using a
variant of quantum algorithms developed for quantum
chemistry applications [18,19].
In this work, we start by carefully assessing in Sec. II the

quantum resources needed for a minimally realistic descrip-
tion of a scattering process off a nucleus in the linear
response regime. In particular, we first provide detailed
implementations of quantum circuits simulating the time
evolution needed for the algorithm presented in [17] in
Sec. II A and also explore the use of an alternative approach
in Sec. II B. While current quantum computing hardware is
insufficient to do these calculations in full for relevant
nuclei, especially without active error correction, our goal
in Sec. III is to demonstrate proof of principle calculations
that will motivate further research and development in
this area.

II. LATTICE NUCLEAR MODEL

In this paper, we study systems using pionless effective
field theory [20,21] on a lattice to explore quantum
computing of nuclei and their response. We have chosen
pionless effective field theory as it is the simplest possible
model of nuclei and their interactions that exhibits some
very basic properties of atomic nuclei. It consists of
nonrelativistic nucleons interacting with a contact inter-
action that reproduces large scattering lengths at low
energies.
At leading order it has nucleon-nucleon contact inter-

actions describing the low-energy s-wave interactions in
spin zero isospin one (S ¼ 0, T ¼ 1) and spin one isospin
zero (S ¼ 1, T ¼ 0) nucleon pairs. The measured scattering
length in S ¼ 0, T ¼ 1 (e.g., nn scattering) is approx-
imately −18 fm, almost a bound state; while in the S ¼ 1,
T ¼ 0 channel there is a weakly bound state, the deuteron,
with a binding energy of 2.225 MeV. For initial studies,
these simple pionless interactions are preferable since they
can be efficiently implemented in a lattice basis; indeed,
they have many similarities to a three-dimensional (3D)
Hubbard model with attractive interactions, but with four
species of fermions (neutrons and protons with spins up
and down).
In addition to the two-nucleon interactions, a three-

nucleon interaction is required to avoid collapse into deeply
bound states [22,23]. Pionless effective field theory has
been shown to approximately reproduce the binding of
three and four nucleon systems, and to nearly produce
weakly bound nuclei (with respect to break up into four-
particle clusters) for A ¼ 8 and A ¼ 16 [24,25], as seen in
nature. More complex interactions including virtual pions
might be necessary for more accurate studies of lepton-
nucleon interactions, as these provide fits to NN scattering

data up to momenta of several inverse Fermi (see, e.g.,
[26–28]).
The resulting lattice Hamiltonian for the pionless

theory is

H ¼ 2DtA − t
XNf

f¼1

XM
hi;ji

½c†i;fcj;f þ c†i;fcj;f�

þ 1

2
C0

XNf

f≠f0

XM
i¼1

ni;fni;f0

þD0

6

XNf

f≠f0≠f00

XM
i¼1

ni;fni;f0ni;f00 ; ð1Þ

where A is the number of nucleons, D the space dimen-
sion, Nf the number of fermionic species, and M the
number of lattice sites. C0 andD0 describe the strengths of
the attractive and repulsive two- and three-nucleon inter-
actions, respectively. Here we assume the S ¼ 0, T ¼ 1
and S ¼ 1, T ¼ 0 scattering lengths are the same. If the
box size is L andM ¼ ND

L , the kinetic energy parameter is
t ¼ ℏ2=2ma2 with the lattice spacing a ¼ L=NL. For the
calculations presented in this section we use the numerical
values reported in Table I (obtained from [29]) and
corresponding to a lattice spacing of a ¼ 1.4 fm.
We can encode the Fock space with Ω ¼ Nf ×M

fermionic modes into Ω qubits using the Jordan-Wigner
[30] transformation to obtain the mapping

nq ≡ c†qcq ¼
1 − Zq

2
ð2Þ

and

c†qcp þ c†pcq ¼ −
1

2
XqZqþ1 � � �Zp−1Xp

−
1

2
YqZqþ1 � � �Zp−1Yp: ð3Þ

In Eq. (3), we use Xq, Yq, and Zq to denote the corre-
sponding Pauli matrix acting on qubit q, and the dots
indicate Pauli Z matrices on the qubits along the chosen
normal ordered path connecting the qubit for orbital q with
the qubit for orbital p (for more details see, e.g., [18]). In
this work we order the qubit placing next to each other the
Nf qubits representing the same lattice site and different
spin-isospin quantum numbers. This choice (equivalent to

TABLE I. Hamiltonian parameters, corresponding to a lattice
spacing a ¼ 1.4 fm, taken from [29].

t [MeV] C0 [MeV] D0 [MeV]

10.5794 −98.2265511 127.839693
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the mapping used in early works on quantum chemistry
such as [31]) is particularly convenient in our case due to
the presence of the three-body interaction which requires
one to couple triplets of fermions at the same lattice point.
This is a different situation from the one encountered in
quantum chemistry where a different mapping focusing on
the kinetic energy is usually chosen (see, e.g., [32]).
The nuclear Hamiltonian can now be written entirely in

terms of Pauli operators. Starting from the kinetic energy
component

K ¼ −t
XNf

f¼0

XM
hi;ji

½c†i;fcj;f þ c†i;fcj;f�

¼ −t
XNf

f¼0

XM−1

i¼0

X
j∈NNðiÞ

½c†i;fcj;f þ c†i;fcj;f� ð4Þ

we find explicitly

K ¼ t
2

XNf−1

f¼0

XM−1

i¼0

X
j∈NNðiÞ

ðXNfiþfZNfiþfþ1 � � �ZNfjþf−1XNfjþf

þ YNfiþfZNfiþfþ1 � � �ZNfjþf−1YNfjþfÞ; ð5Þ

where in the expressions above NNðiÞ are the indices of the
nearest neighbors of lattice site i. In turn, the potential can
be written as the following diagonal operator:

V ¼ M
4

�
NfðNf − 1Þ

2

��
C0 þ

Nf − 2

3
D0

�

−
Nf − 1

4

�
C0 þ

Nf − 2

2
D0

�XM−1

i¼0

XNf−1

f¼0

Z4iþf

þ C0 þ ðNf − 2ÞD0

4

XM−1

i¼0

XNf−1

f¼0

X
f0>f

Z4iþfZ4iþf0

−
D0

4

XM−1

i¼0

XNf−1

f¼0

X
f00>f0>f

Z4iþfZ4iþf0Z4iþf00 ; ð6Þ

which, for the common case with Nf ¼ 4, simplifies to

V ¼ M

�
3

2
C0 þD0

�
−
3

4
ðC0 þD0Þ

XM−1

i¼0

X3
f¼0

Z4iþf

þ C0 þ 2D0

4

XM−1

i¼0

X3
f¼0

X
f0>f

Z4iþfZ4iþf0

−
D0

4

XM−1

i¼0

X3
f¼0

X
f00>f0>f

Z4iþfZ4iþf0Z4iþf00 : ð7Þ

Note that this operator is composed of a sum of

NV ¼ MNf

�
1þ Nf − 1

2

�
1þ Nf − 2

3

��
ð8Þ

mutually commuting operators while the kinetic energy
term is composed of a possibly much larger number of
mutually noncommuting operators. In this work we will
consider two different breakups of the Hamiltonian: one
where we separate all the NK ¼ 4DMNf terms in the
expansion of the kinetic energy from a single potential
energy term and one where we simply separate the kinetic
and potential energy terms and treat each one exactly
(cf. split-operator step in [33]). In the following we will
refer to these splitting as α and β.
As we have anticipated in the Introduction, the main

observables we are seeking are semiexclusive cross sec-
tions for a neutrino to scatter off a nucleus. A related but
easier to compute quantity of interest is the response
function

SðωÞ ¼
X
f

δðω − ðEf − E0ÞÞh0jO†jΨfihΨfjOj0i; ð9Þ

which directly measures the inclusive cross section. The
operator O in the above expression represents the electro-
weak excitation operator of the incoming neutrino, while
fjΨfig and fEfg are the eigenstates and eigenvalues of a
nuclear Hamiltonian like (1). In [17] we show how, by a
slight modification of quantum algorithms developed for
the estimation of SðωÞ [18,19], one can set up a quantum
computation to sample efficiently the most important final
states of a neutrino-nucleus collision. The dominant cost in
computing the cross section comes from the need to
perform time evolution, and we dedicate the next sub-
section to characterize, for a realistic setup, how large this
cost actually is. We finish this section by exploring an
alternative approach based on the technique of qubitization
[34], which provides an optimal asymptotic cost.

A. Time evolution

The cost of our original scheme [17] is dominated by the
implementation of the time evolution unitary operator gen-
erated by this Hamiltonian controlled with an ancilla qubit. In
the following we will estimate the computational cost of the
algorithm by looking at the number of expensive operations
(CNOTs and single qubit rotations1) needed to achieve some
target accuracy in the inclusive response. Wewill account for
the ancilla control of the time-evolution unitary by consid-
ering every rotation to be a controlled one which we imple-
ment in a standard way [see Eq. (A4) in Appendix A]. Note
that we can easily extend parallelization even when rotations
are controlled by ancillas as explained in [35].
In this section we will mostly consider product formulas:

in particular, we will study in detail both linear and

1For definitions of quantum gates see eg. [62].
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quadratic Trotter-Suzuki breakups and comment on the
possible beneficial use of qubitization at the end of the
section. We remind the reader that other techniques have
been developed beside these, an important one being, for
instance, the Linear Combination of Unitaries (LCU)
method and its variants [36,37]. Since the implementation
of the LCU method comes with a possibly much larger
overhead in qubit count (see, e.g., [38] for a detailed study
of a single Hamiltonian), we will not explore its use further
in this first work.

1. Product formulas: Number of steps

Product formulas obtained from the Trotter-Suzuki
decomposition [39,40] are essentially small-time approx-
imations of the time-evolution unitary operator UðtÞ ¼
expð−itHÞ with additive error δTSðtÞ ¼ OðtγÞ for some
γ > 1 (e.g., γ ¼ 2 for the linear breakup). This implies that
in order to perform a simulation lasting a total time τ with
bounded error we will need to divide the total time interval
½0; τ� into r segments and use in each one the approximate
evolution operator to obtain

δτ ¼ ke−iτH − Ũðτ=rÞrk
≤ rke−iðτ=rÞH − Ũðτ=rÞk ¼ Oðr1−γÞ; ð10Þ

with ŨðtÞ the approximate propagator. In general the norm
appearing in Eq. (10) is the standard operator (or spectral)
norm. For our application we are interested in systems with
a fixed number of nucleons and both the Hamiltonian and
every single term in either the α and β splitting commutes
with the baryon number operator. We will consider then a
physical norm defined as

kOkphys ¼ sup fkOjψik2∶jψiA-baryon stateg: ð11Þ

In other words, physical norms only take into account
quantum states which respect the symmetry of the
Hamiltonian and the initial conditions. Note that more
generally we could restrict the class of physical states using
additional symmetries (i.e., isospin) resulting in an even
tighter norm since kOkphys ≤ kOk. This definition is very
convenient in our case since it allows us to define a rea-
sonable lower bound for the base time τ ¼ 2π=ΔH that we
need in the Quantum Phase Estimation (QPE) part of the
algorithm. In fact it is sufficient to provide a physical upper
bound on the maximum spread in energy attainable in an A
body system as

ΔH ¼ Emax − Emin

¼ kKkphys þ kV2kphys þ kV3kphys þ Abmax; ð12Þ

where bmax is the nuclear binding energy at saturation
density and we have used the estimate jEminj ≤ Abmax for
the lowest energy value. An even better bound can be

obtained by considering kVkphys ¼ kV2 þ V3kphys which is
smaller due to the opposite signs in the interaction terms
[see Eq. (B9) in Appendix B].
As a simple starting point we now consider the linear

order Trotter-Suzuki product formulas of the form

Uα
LðτÞ ¼

YNK

k

e−iτKke−iτV; ð13Þ

for the α splitting, where we used the expansion K ¼PNK
k Kk for the kinetic energy operator, and

Uβ
LðτÞ ¼ e−iτKe−iτV; ð14Þ

for the β splitting. Higher order expressions with better
error bounds can also be obtained [see Eq. (B20) and
discussion in Appendix B]. Here we recall only the second
order expansions that are mostly employed in this work: for
the α splitting these are

SαðτÞ ¼ e−i
τ
2
V
YNK

k¼1

e−i
τ
2
Kk

Y1
k¼NK

e−i
τ
2
Kke−i

τ
2
V; ð15Þ

while for the β splitting we consider the two options

SKþV
β ðτÞ ¼ e−i

τ
2
Ke−iτVe−i

τ
2
K ð16Þ

and

SVþK
β ðτÞ ¼ e−i

τ
2
Ve−iτKe−i

τ
2
V; ð17Þ

whose implementation requires almost the same number of
quantum gates whenever the number of intervals is large
(cf. discussion in [33]).
In general the error on these types of product formulas

depends on the commutator between the different terms in
the sum defining the Hamiltonian [39]. One can, however,
obtain a rigorous (but not very tight) upper bound on the
total error in Eq. (10) using only the norms of those
operators (see, e.g., [38,41]).
Using the analytical bounds given in Eqs. (B19) and

(B22) for the linear and symmetric higher order formulas
we have estimated the number of segments (Trotter steps)
needed to achieve an energy error ϵτ ¼ δτ=τ equal to half
the frequency resolution Δω for two different values of the
total time interval τ: the base time τbase ¼ 2π=ΔH (black
and green lines) and the whole sequence of W evolutions
for a total time of τtot ¼ ð2W − 1Þ � τbase (red and blue
lines) where the number of ancilla qubitsW is obtained for
a fixed resolution Δω as

W ¼
�
ΔH
Δω

�
: ð18Þ

We present in Fig. 1 the results obtained for both splitting
methods at the target accuracy Δω ¼ 10 MeV (for lower
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accuracy the difference between second and fourth order
formulas is much reduced).
We see that the fourth order formulas (represented as

dotted lines in Fig. 1) provide an advantage only for big
enough problems: for the better performing β splitting, for
instance, the fourth order formula becomes advantageous
after A ¼ 24, whereas for lower target accuracy δω ¼
100 MeV (not shown) the breakeven point is shifted
to A ¼ 234.
Apart from their dependence on the norms of the

Hamiltonian terms instead of their commutators, an impor-
tant deficiency of the bounds used above is also their
inability to differentiate between different ordering of
operators in higher order formulas. We provide a more
detailed discussion on the derivation of commutator bounds
in Appendix B. Here, in Fig. 2, we show only the effect on
the more efficient second product formulas Eqs. (15), (16),
and (17). For all curves the target accuracy was fixed to
Δω ¼ 100 MeV for the two splitting methods.
We turn now into a more detailed discussion on the

computational cost for a single time step needed to imple-
ment the time propagator using different implementation
strategies. For both splitting methods we will need to
design three different unitary operators (more details in
Appendix B 3)

U1ðτÞ ¼ e−iτV; U2ðτÞ ¼ e−iτK; U3ðτÞ ¼
YNK

k¼1

e−iτKk:

In our derivation we will consider the connectivity of qubits
to follow a 2D square lattice topology and, even under this
constraint, the implementation of the diagonal unitaryU1 is
relatively simple (see Appendix B 3 a).

Because of its (mild) nonlocality, the most expensive
term to implement is the hopping term. Depending on the
splitting scheme, we will adopt (similar to the approach
described in [33]) the fast fermionic Fourier transform
(FFFT) algorithm [42] (or its variants [19,43]) for the
implementation of splitting β. For the splitting α, we will
employ a fermionic-SWAP network [43] to implement the
product of the unitaries needed.
Results of the cost estimates for a realistic system with

M ¼ 103 and Nf ¼ 4 are presented in Fig. 3. Note that
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FIG. 1. Estimated number of Trotter steps for both splittings of
the Hamiltonian and target resolutions δω ¼ 10 MeV for Trotter-
Suzuki formulas of different orders. The left panel shows the
linear formulas Eqs. (13) and (14), and the right panel shows
results for both a second order formula (solid lines) and a fourth
order one (dotted lines).
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using the lattice spacing a ¼ 1.4 fm (see Table I) this
corresponds to a box with physical dimension L ¼ 14 fm,
more than enough to contain both a medium-mass target
bound state and possible reaction final states. In this setup,
performing the calculation for 40Ar would require 4012
qubits (�4 depending on target resolution and the particular
implementation) and ∼1010 CNOT and ∼109 rotation for
the higher resolution Δω ¼ 10 MeV and ∼5 × 108 CNOT
and ∼108 rotations at lower resolution Δω ¼ 100 MeV.
These estimates put a full computation of neutrino scatter-
ing off Ar at the same complexity level as factorizing a
1024-bit integer (cf. [38,44]) and possibly out of reach of
near term NISQ devices. In the next section we explore
possible improvements to this estimate using qubitization.

B. Different scheme using qubitization

At a modest (logarithmic) cost in the number of addi-
tional ancilla qubits, one can more efficiently calculate the
eigenvalues and hence responses relevant to neutrino-
nucleus scattering using a quantum algorithm generically
termed qubitization [34]. Unlike the approach we proposed
in [17] and described in the previous section, this algorithm
avoids the implementation of the time evolution operator
and any associated errors associated with the time step.
Instead it employs a quantum walk operator known as a
qubiterate [34].
One possible definition of this unitary, acting on both

the system register and an additional register of ancilla
qubits, is

Q ¼ ei arcsin ðH=λÞRY ; ð19Þ

where λ ≥ kHk1 is a scaling factor needed to ensure the
argument of the arcsin has norm bounded by one and, for
every eigenvector of H, the operation RY acts nontrivially
only on a two-dimensional subspace of the ancilla register’s
Hilbert space (see Appendix C for a more detailed
exposition). This unitary operator can be implemented
exactly using qubitization (see [34] and the discussion in
Appendix C), which exploits the following decomposition
(apart from a global phase) in terms of two basic unitaries
VP and VS and a reflection

Q ¼ V†
PΠ0VPVS; ð20Þ

where Π0 ¼ ðj0ih0j − 1Þ is a reflection around j0i, the
operation VP is called the prepare and VS the select unitary
[see Eqs. (C3) and (C4) in Appendix C].
Schemes for time evolution based on this idea provide

optimal scaling for the computational complexity [45], here
instead we follow a different procedure. Since the spectra of
UðtÞ and the qubiterate of Eq. (19) are similar, the idea
(originally proposed in [46,47]) is now to use the exact
qubiterate for doing phase estimation instead of the
(approximate) time evolution operator. The first main

difference is that, due to the rescaling, the number of
ancilla qubits used for phase estimation (or equivalently the
number of applications of the qubiterate) will need to
increase accordingly. In particular, we have, for target
precision Δω, the result

Wq ¼
�
log2

�
λ

Δω

��
∼ log2

�
λ

ΔH

�
W; ð21Þ

where W was the previous result for the qubit count using
time evolution. The second main difference is that in order
to obtain the final state of the scattering process we need to
perform a rotation from the eigenvectors of the qubiterate to
those of H, and one way to do this is to use the strategy
proposed in [46].
In Fig. 4 we show the expected increase as a function of

the number of nucleons for two different target accuracies:
Δω ¼ 10 MeV in the left panel and Δω ¼ 100 MeV for
the right one. In the inset we show the ratio between the
number of applications of the qubiterate vs the number of
applications of the base time evolution UðτÞ for time
τ ¼ 2π=ΔH; it represents the needed speedup in gate count
of the qubiterate with respect to UðτÞ for the qubitization
strategy to be worth it. As expected the difference between
the α-split method and qubitization does not depend on the
particle number, and the ratio is stable at 8 [meaning the
implementation of Eq. (19) can require up to 8 times more
gates than time evolution as shown by the black line in the
inset]. For the β-split scheme, this ratio is 128 in the 40Ar
region.
To employ the qubiterate Q for the QPE part of

the algorithm we need to implement the operation cQ
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controlled on an ancilla. Using the decomposition pre-
sented above in Eq. (20), we can write

cQ ¼ cV
†
PcΠ0cVPcVS ¼ V†

PcΠ0VPcVS; ð22Þ

where, in the second equality, we removed the controls on
the prepare (this simplification was proposed before; see,
for instance, Ref. [38]). One can simplify this further and
drop the control on the select unitary if we choose to define
VSj0i ¼ j0i when acting on the j0i state of the ancilla
register and perform an initial controlled-prepare when
initializing the ancilla system.
Using the implementation proposed in [38] (and pre-

sented in more detail in Appendix C 1 for completeness) we
found the resource estimates reported in Fig. 5. In these
results we considered only the cost for implementing the
prepare unitary VP together with the control circuit of
the select unitary VS and are therefore lower bounds on the
resource cost. We find that, even though this methodology
has optimal asymptotic scaling [34], the inherent costs
of implementing qubitization is already expensive
enough to lose the competition with the parallel circuits
devised above.
A possible way to reduce the gate count needed to

successfully calculate the response of 40Ar would be to
exploit stochastic algorithms such as the recently proposed
qDRIFT [48]. We plan to explore this possibility in
future work.

III. TRITON TOY MODEL

For a simplified problem on present-day computers, we
consider a system of 3 nucleons on a 2 × 2 lattice with
periodic boundary conditions. One of the nucleons is
chosen to be static (infinite mass) on a specific lattice site.
This can be thought of as a triton (a nucleus with one proton
and two neutrons), or the static nucleon can be thought of as
providing a static field in which the interacting pair
propagates.

Calculations of the realistic response demonstrate that
two-nucleon physics incorporates much of the information
about nuclear response [14], making even such a simple
problem important. The fixed particle is ultimately a source
of additional final-state scattering which in traditional
event generators is included as a semiclassical evolution.
Quantum computers will eventually be able to treat the full
problem for A nucleons quantum mechanically. In the near
term, these kinds of models allow for tests of the generator
paradigm, where at the vertex a struck nucleon or nucleon
pair is treated quantum mechanically and then propagates
through the rest of the nucleus in a semiclassical manner.
The Hamiltonian we use is

H ¼ −t
XNf

f¼1

X
hi;ji

c†i;fcj;f þ 2dtA

þ U
X
i¼1

XNf

f<f0
ni;fni;f0 þ V

XNf

f<f0<f00

X
i¼1

ni;fni;f0ni;f00

þ U
XNf

f¼1

n1;f þ V
XNf

f<f0
n1;fn1;f0 ; ð23Þ

where the static nucleon is placed on lattice site 1.
For this example we use only two dynamical particles,

and we set Nf ¼ 2. On a 2 × 2 lattice with Nf ¼ 2 modes
we find that the Hamiltonian in second quantization with
the simple Jordan-Wigner mapping described above (one
qubit for each single-particle orbital) will require a total of
eight qubits to encode the problem. We are, however,
interested in the sector containing A ¼ 2 dynamical par-
ticles whose dimension is only 16 and should require just
four qubits. In the following we will use a first-quantized
mapping that accomplishes this minimal encoding. We note
in passing that, even though this simple problem could be
solved with ease using modest classical computational
resources, attempting to solve it on current quantum
devices is still of fundamental importance in order to
assess the capabilities of today’s quantum computers and
at the same time devise solutions for possible issues we
will face.
We can use two qubits per particle to store its lattice

location in the following way (see also Fig. 6):

j1i≡ j↓↓i j2i≡ j↓↑i j3i≡ j↑↓i j4i≡ j↑↑i: ð24Þ

The hopping term in the kinetic energy is very simple
and takes the form

Hhop ¼ HA
hop ⊗ 1B þ 1A ⊗ HB

hop; ð25Þ

where
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HA
hop ¼ −2t

0
BBB@

0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

1
CCCA≡ −2tðX1 ⊗ 12 þ 11 ⊗ X2Þ;

ð26Þ

where Xk is the Pauli-X operator applied to qubit k and the
additional factor of 2 comes from the periodic boundary
conditions. The total hopping term reads then

Hhop ¼ −2tðX1 þ X2 þ X3 þ X4Þ; ð27Þ

where we dropped the identity operators for simplicity.
For the diagonal part, we can extract an overall piece

proportional to the identity on all qubits with coefficient
8tþ U; to change the diagonal element corresponding to
the state j11i we add 2U þ V; and when both particles are
on different lattice sites and neither of which is 1 by
adding −U.
The procedure to do this in terms of Pauli operators is

very simple as shown by a couple of examples. Consider
the two sets of operators

Mk ¼
1k − Zk

2
; Πk ¼

1k þ Zk

2
: ð28Þ

In terms of these operators we have

ð2U þ VÞj11ih11j ¼ ð2U þ VÞj↓↓↓↓ih↓↓↓↓j
¼ ð2U þ VÞ½Π1 ⊗ Π2 ⊗ Π3 ⊗ Π4�

ð29Þ

and

−Uj23ih23j ¼ −Uj↓↑↑↓ih↓↑↑↓j
¼ −U½Π1 ⊗ M2 ⊗ M3 ⊗ Π4� ð30Þ

and so on for the other terms.
The limiting case, V ¼ −4U, results in the following

simplified Hamiltonian:

H ¼ 8tþ U
2
− 2t

X4
k¼1

Xk

−
U
4
ðZ1Z4 þ Z2Z3Þ −

U
4

X
i<j<k

ZiZjZk: ð31Þ

This choice of parameters is motivated by the requirement
that the three-body repulsive term be larger than the three
pair interaction energy in order to prevent the collapse
of the bound state. In the following we will consider
the following numerical values: t ¼ 1.0, U ¼ −7.0,
and V ¼ 28.

A. State preparation

In this work we use the Variational Quantum Eigensolver
(VQE) algorithm [49] to prepare an approximate ground
state using a minimal number of quantum operation. We
will define a parametrized trial state jΨðα⃗Þi, with real
parameters α⃗ by applying a parametrized unitary Uðα⃗Þ to
the reference state j0i. The optimal value of these param-
eters is obtained by solving the variational problem

min
α⃗
EðαÞ with EðαÞ ¼ hΨðα⃗ÞjHjðα⃗Þi; ð32Þ

which is guaranteed to provide an upper bound Eðα⃗optÞ to
the true ground state energy E0.
A simple trial state that is also economic to optimize can

be obtained by considering the following circuit:

ð33Þ

parametrized by two angles ðθ;ϕÞ and requires only linear
connectivity to be implemented.
The entanglement structure is inspired by the Unitary

Coupled Cluster wave function that we would construct in
the absence of the three-body terms in the Hamiltonian of
Eq. (31) and by the fact that the Hamiltonian is real in the
computational basis.
As can be seen from Table II, despite its simplicity this

trial state has only about 10% error in the energy and sum

FIG. 6. Qubit mapping for a single fermion.
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rules are comparable with the exact ground state. In the
results presented in this work, the optimization of the two
parameters of our trial state is performed off-line using a
simulator locally. After extensive experimentation we, in
fact, determined that this was the most efficient and
accurate strategy: this is possibly a consequence of the
simplicity of the problem. In the third and fourth rows of
Table II, we present the results obtained by estimating the
properties of the state generated on a real quantum
processor. In particular, we mapped our four computational
qubits into qubit 5, 0, 1, and 6, respectively, on the IBMQ
20 qubit machine Poughkeepsie [50]. In the first line
denoted “QPU bare,” we report the bare result obtained
from a statistical analysis of 324 runs (each run is a full
experimental execution of the quantum algorithm on the
device), each comprising 8192 repetitions (shots), but
without performing any form of error mitigation. The next

line shows the much better result obtained by mitigating
both readout noise and the decoherence effect coming from
the CNOT gates (see Sec. III C for more details).
In the last line of Table II we report instead the (error

mitigated) results obtained from 108 runs using a more
symmetric version of the above trial state shown below

ð34Þ

The added symmetry seems to bring some advantage in
the (1, 1) sum rule but the added noise caused by additional
noisy rotations seems to be detrimental for the energy.

B. Real time dynamics

In the general case (V ≠ 0 and V ≠ −4U) one can use the
result from [32] which implies that we would need 14
CNOT and 15 single qubit rotations for the diagonal part of
the propagator plus 4 more X rotations for the hopping term
resulting in 14 CNOT and 19 rotations. [With more
constraints such as having a circle topology this can
increase to 16 CNOT. See also Eq. (B47).] For the special
case V ¼ −4U a simpler expression can be found

ð35Þ

with θ1 ¼ 4tτ and θ2 ¼ τU=2. This implementation requires 10 rotations and 10 CNOT. The problem with this expression
is that it requires entangling gates on all but one pair of qubits (i.e., in the expression above there is no connection q0 ↔ q1
but all others).
With the additional connectivity constraints of the IBM QPU “Poughkeepsie” we found the following circuit

ð36Þ

where in the box denoted with the dashed line we perform a swap of both q1 ↔ q2 and q0 ↔ q3. Of the latter two of the
three CNOT involved in the operation cancel with neighboring gates.

TABLE II. Results for the ground state energy and the static
structure factor. Errors in the experimental result account for
statistical fluctuations only. Here QPU stands for Quantum
Processing Unit.

Energy S(0,1) S(1,0) S(1,1)

Exact g.s. −4.843 2.038 2.038 2.054
Trial state −4.415 2.024 2.024 2.366
QPU bare −2.645ð15Þ 2.0290(23) 2.0242(24) 2.1572(25)
QPU corr −4.4187ð98Þ 1.9993(35) 1.9926(36) 2.2789(51)
QPU sym −4.322ð33Þ 2.0105(69) 2.0030(45) 2.3341(95)
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We can now show results for some dynamical property.
In Fig. 7 we plot the three-body contact density

C3ðtÞ ¼ hΨðtÞjΠ0000jΨðtÞi≡ jh0000jΨðtÞij2 ð37Þ

as a function of time starting at time t ¼ 0 with the trial
state of the previous section. The expression above mea-
sures the probability of the three nucleons to be on the same
site (the state j0000i in our basis). The time evolution is
obtained by means of the linear Trotter decomposition
described above and therefore starts to deviate considerably
from the exact time evolution at around t ∼ 0.04.
In the left panel we show, together with the exact result

with the solid blue line, the bare results obtained by running
the algorithm either on the actual quantum device (black
circles) or on a local virtual machine (VM) employing a
noise model designed to mimic the behavior of the real
device (red squares) [51]. The hardware results were
obtained using the Poughkeepsie QPU (backend version
1.2.0) over a three weeks period starting on August 23,
2019 and adopting the mapping ðq0; q1; q2; q3Þ →
ðq5; q0; q1; q6Þ from the four logical qubits to the hardware
ones. The corresponding results on the Virtual Machine
used the noise model configured with the calibration data
on September 11, 2019.
In both cases, we see that the results tend to relax toward

the classical completely depolarized value of 1=16 (dashed
brown line) but that we can still detect a reasonable signal.
The observed large bias at small times might be attributable
to control errors in the device and unfortunately does not
allow this particular set of qubits to be used to perform
multiple Trotter steps as the error in the useful region is too
large. Different choices for the logical to physical qubit
mapping can improve the fidelity in the small-time region.
We now turn our attention to the right plot in Fig. 7. As

explained in more detail in the next subsection, we have

attempted to mitigate the systematic errors caused by
hardware noise by performing three independent noise
extrapolations and comparing them to assess both the
stability of our extrapolations and the stability of the
machine during a particular run. Whenever the different
schemes do not agree, we increase an error counter and
filter the final results using the total error count as a metric
for the run quality. In the right panel of Fig. 7 we present the
result after this mitigation procedure for different values of
the error count starting from 0 (filter A0 in the figure) up to
2 errors (filter A2). In addition to the results obtained on
hardware with this approach, we also plot the results at the
2 error level of accuracy for both the synthetic data
produced by the VM (the red squares on the left panel)
and the results obtained by relaxing the consistency checks
at the 2σ level of precision. We see that the simpler noise
model implemented in the VM can be completely mitigated
using this strategy while for the real hardware case there
seems to be a problem in the time region t ∈ ½0.3–0.4�
where no results with good enough quality can be obtained.
We will provide a possible explanation for this phenome-
non after discussing in more details the mitigation pro-
cedure adopted in our work.

C. Error mitigation

In our final results such as those shown in Fig. 7 we
perform two types of error mitigation: a readout correction
on the measured distributions and a noise extrapolation
assuming that the dominant noise channel is the one
associated with the execution of a CNOT gate (cf. [52–
54]). In the future we would also like to investigate the use
of twirling (see, e.g., [55]) to contrast the control errors
affecting the small-time results shown above.
The correction for measurement errors is obtained by

first attempting a simple procedure where we assume errors
are qubit-independent and described by a distortion of the
two measurement operators

j0̃ih0̃j ¼ ð1 − p0Þj0ih0j þ p1j1ih1j;
j1̃ih1̃j ¼ p0j0ih0j þ ð1 − p1Þj1ih1j; ð38Þ

and use the results of two calibration measures where we
prepare both basis states and perform a Z measurement to
obtain the empirical error matrix

Nk ¼
�
1 − p0 p1

p0 1 − p1

�
: ð39Þ

Here, the subscript k identifies a particular qubit on the
hardware. Noise-free results are then obtained by applying
the inverse of this matrix to the measured distribution while
the errors are propagated correctly in the process (see also
[56] for more details on the procedure).

0 0.2 0.4 0.6
time t

0

0.1

0.2

0.3

0.4

0.5

3-
bo

dy
 c

on
ta

ct
 C

3(t
)

bare results from QPU
bare results from VM
ideal result

0 0.2 0.4 0.6 0.8
time t

0

0.1

0.2

0.3

0.4

0.5

filter A2 - 2s
filter A2
filter A1
filter A0
filter A2 - VM

FIG. 7. Probability of finding the three nucleons on the same
site as a function of time using both a real QPU (black circles) and
a simulated VM (red squares). See text for a description of the
left panel.
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If this simple scheme produces an unphysical distribu-
tion (with, for example, negative entries), the central value
of the corrected distribution is obtained using a least
squares inversion and a generalized procedure where the
calibration is obtained from a set of 2n state preparation as
implemented in qiskit Ignis [51], while the error is
estimated from the simpler procedure used before. In our
experience, violations of the independent qubit error model
are rather rare. To track the quality of an experimental run
we will add one error if the simple procedure fails (now the
threshold is set to 2σ for the check).
To obtain an estimate of the noise-free result, we use the

idea of noise amplification and extrapolation used success-
fully in the past [53,54,57]. The idea is simple: imagine a
model for the parametric dependence of an observableM to
the noise strength ϵ (for instance, a low order polynomial
for small ϵ), we can control the noise strength accurately
enough to produce estimatesMðk × ϵÞ at a larger error rate
(i.e., k > 1), and then we could extrapolate the result to the
zero error limit.
In this work we employ three different strategies together:
(i) Richardson: in the regime where the circuit depth is

very small and only a small number of errors are
contaminating the results, it makes sense to look for
a Richardson type extrapolation obtained by com-
puting the exact polynomial interpolant of the noisy
points we have (cf. [58]). At order 3, as in our case,
we will obtain a cubic. The lowest order compatible
with the higher ones (at the 1σ level) is considered
the preferential one. If a result satisfying this
compatibility is found, we increase the error count
by one, drop the highest order point, and try again. If
still no valid point is found, the Richardson extrapo-
lation is deemed failed.

(ii) Polynomial: in the same small error regime if the
rate is small enough, we should be able to fit
multiple points with the same low order polynomial
(cf. [53]). Here we attempt to perform polynomial
fits up to third order of all the points (four in our
case) available. As for the previous method we look
for the lowest order fit with χ2 ≤ 1 and compatible
with the higher order fits. Similarly, failure over the
four points increases the error count, and we try
without the highest order point. If the procedure fails
the second time, the polynomial fit is deemed failed.

(iii) Exponential: when the error rate is sufficiently large
(or the gate count is), one could expect the results to
decay exponentially towards the fully depolarized
state (cf. discussion in [54,59]). We attempt a two
point exponential fit to the results and, as for the
methods above, look for compatibility at higher
orders and raise the error count when this cannot
be found.

A run is considered to have been executed successfully
when at least one technique produces a good result. When

comparing different successful extrapolations, priority is
given to a good global linear fit. If none are available, we
pick the set with the lowest error count and take an average
of both mean and error.
Figure 8 shows the interplay between different extrapo-

lation procedures. The main plot shows the error-mitigated
probability of finding three nucleons on the same site with
colors indicating the mitigation strategy employed. The
central panel shows the ratios of runs mitigated with a
particular strategy as a function of time. The legend of the
main plot also applies here with the addition of the shaded
area indicating failed runs where no stable extrapolation
was possible. The bottom panel shows an estimate of the
fraction of runs that have decohered (see details at the end
of this section). Finally the right column shows the results
for a set of nine static observables evaluated on the trial
state showing the effect of reducing the circuit depth: for
small circuits where the number of errors is not large, the
small error expansion that motivates both the Richardson
and polynomial extrapolations should hold in practice.
Indeed, the results for static observables show that the
exponential fit is preferred on less than about 40% of the
calculations. When computing dynamical properties
instead, the much longer circuit depth starts to favor the
exponential extrapolation strategy apart from the results at
late times where the magnitude of the observable is so close
to the fully depolarized result that a global linear fit
usually works.
In addition to the three-body contact, Eq. (37), obtained as

the expectation value of the projector P3B ¼ j0000ih0000j
shown in Fig. 8, we have also computed the various two-
body contacts. In particular, we use the projector

P2B-dyn ¼ j0101ih0101j þ j1010ih1010j
þ j1111ih1111j ð40Þ
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to estimate the probability CD
2 ðtÞ that the two dynamical

particles can be found in the same lattice site apart from the
special one, and the projector

P2B-sA ¼ j0001ih0001j þ j0010ih0010j
þ j0011ih0011j ð41Þ

to compute theprobabilityCA
2 ðtÞ that the first particle (tagged

A here) is on the special lattice site while the other one is not
(note that due to symmetrywewill have the same result if we
choose to tag particle B).
In addition to these three extrapolations, we also check

for possible complete decoherence by first checking that
the distribution obtained with the smallest number of
CNOT has an overlap with the fully depolarized state of
less than 0.9. We raise an error count if in the higher order
results we find two distributions with overlap > 0.9. In this
work we used the trace distance as an estimator of overlap

ovd ¼ 1 −
1

2

X
i¼1;16

���� 116 − pðiÞ
����; ð42Þ

where pðiÞ are the empirical (and readout error mitigated)
probabilities. In general, it might be better to include the
error information in the estimator, and we plan to explore
different approaches in future work. For the set of runs
using the mapping ½5; 0; 1; 6� we found that results were
possibly decohered for time in the interval t ∈ ½0.25; 0.5�,
and this is the reason we were not able to determine robust
estimators for C3ðtÞ in that interval. This problem is not
directly apparent while looking at the two-body contact
densities since the error-free result is itself close to the
decohered result and therefore the test above does not
trigger within the chosen bounds. We can, however, clearly
see that the extrapolated results obtained in the problematic
region are indeed compatible with the dashed brown line
corresponding to the value 1=16 as expected.
To understand the systematic deviations of the exper-

imental results from those expected in theory, we will now
try to quantity the amount of entanglement generated in the
time evolution. We will use different entanglement mea-
sures to study the correlations present in the four-qubit
state. The first one is the entanglement entropy, which for a
bipartite system described by the density matrix ρAB is
defined as

SA ¼ −Tr½ρB lnðρBÞ� ¼ −Tr½ρA lnðρAÞ� ¼ SB; ð43Þ
where ρAB ¼ TrBA½ρ� are reduced density matrices. The
entropy will be zero when the state is separable along
the partition ðA; BÞ. In the top panel of Fig. 11 we show the
entanglement entropy for the local one-qubit density (Sk
with k ¼ f0; 1; 2; 3g) as a dashed black line and the two-
qubit entropies S01 (red line) and S03 (blue line). Note that
S02 ¼ S01 due to the symmetry of trial ansatz and the
Hamiltonian. We can deduce that the system starts as a

product state ρin ¼ ρ03 ⊗ ρ12 since S03 ¼ 0 at the start
(indeed, we also find that both density matrices have
rank ¼ 1 as expected). Additionally, we see that the initial
state is not extremely entangled since S01 ≈ 1=2 while for a
maximally entangled state it would have been 2. The time
evolution initially builds up correlations between the pair of
qubits (0,3) and the pair (1,2) as can be seen by the growing
entropies along all inequivalent bipartitions and eventually
leads again to a product state similar to the initial one but
with much larger entanglement. Indeed, around time
t ∼ 0.45, both the single qubit entropies and the entropy
S01 are close to their maximum value. To understand better
these correlations we also compute the concurrence [60] for
the three partitions in pairs C01, C02, C03 (as before, the first
two are the same by symmetry). This measure of entangle-
ment is defined for a 2 qubit density matrix ρ as

CðρÞ ¼ max f0; λ0 − λ1 − λ2 − λ3g; ð44Þ

where λi are the square roots of the eigenvalues, in
decreasing order, of the non-Hermitian matrix

M ¼ ρðY ⊗ YÞρ�ðY ⊗ YÞ ð45Þ

and the star indicates complex conjugation. The usefulness
of this measure is its relation with the entanglement of
formation [60,61], which is the minimum number of
maximally entangled pairs needed to represent ρ with
an ensemble of pure states [61]. In particular, the two
quantities are related through the following result from
Wootters [60]:

EFðρÞ ¼ h

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − CðρÞ2

p
2

�
; ð46Þ

where

hðxÞ ¼ −x log2ðxÞ − ð1 − xÞ log2ð1 − xÞ ð47Þ

and we see that EF is monotonically increasing with the
concurrence 0 ≤ C ≤ 1.
Interestingly, we find C01 ¼ C02 ¼ 0 indicating that

these two qubit mixed states (indeed, S01 is never zero
here) do not require any entanglement to be produced (i.e.,
the entanglement of formation is zero). The concurrence
of the state ρ03 is instead relatively large and reaches close
to the value for maximally entangled states at the same
position where the entropies have the maximum.
The bottom panel shows the ratio of runs that looked

decohered, and we can see that there is a correlation
between a large decoherence rate and a large entanglement.
A more detailed understanding of the relation between
entanglement of formation and the fidelity of state prepa-
ration on non-error-corrected quantum architecture will be
the subject of future work.
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IV. CONCLUSIONS AND OUTLOOK

In this paper we have attempted a first qualitative
estimate of the quantum computing resources required
for a minimally realistic study of neutrino-nucleus inter-
actions. The number of qubits required and gate counts are
presented as a function of the number of nucleons and the
target energy resolution in the hadronic final state. These
estimates neglect completely the overhead caused by active
error correction, and therefore should be considered as
lower bounds on the physical resources needed for a
successful execution with controllable error.
Because of the presence of substantial noise sources,

full-scale studies using realistic models of nuclei and their
interactions are not yet feasible with today’s hardware, but
showcase an important potential application of quantum
computers.
We also present results for a simple problem using

present-day quantum hardware, implementing both varia-
tional algorithms for the preparation of the nuclear
ground state and product formulas for the time evolution
operator also required for calculating the response. Error
mitigation strategies are presented and their beneficial
impact on computation of current day machines assessed.
As can be seen clearly from the results presented in
Figs. 8, 9, and 10, unitary errors can be particularly large
and a more efficient strategy than what was presented
here is needed to alleviate them (e.g., using Pauli twirling
[55]). Another interesting outcome of our analysis of the
hardware results is strong correlation between the entan-
glement of formation of the state being prepared and the
amount of depolarizing noise that this is subject to (see
Fig. 11 and the discussion on it). This behavior is not
necessarily expected for computations not using active
error correction, and we plan to further explore this issue
in the future.

Nevertheless, even these simple models, with simplified
interactions and a small number of nucleons, allow one to
begin to understand important issues such as the impor-
tance of quantum interference in the cross sections and the
expected quantum to classical transition in the examination
of explicit final states, currently handled by quasiclassical
generators.
Further studies of the linear response and the final

states are required to understand the impact of quantum
computers on accelerator neutrino and related experi-
ments. We can foresee that quantum computers will play
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FIG. 9. Extrapolation procedures used to mitigate errors in the
results for the two-body contact Pdyn defined in Eq. (40) of the
main text. The rightmost vertical panel and the bottom horizontal
panel are the same as in Fig. 8 and reported here for reference.
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results for the two-body contact Pdyn defined in Eq. (41) of the
main text. The rightmost vertical panel and the bottom horizontal
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a significant role as their capabilities in the number of
qubits and error reduction advance. We expect the quantum
linear response to be an early application of quantum
computers, and neutrino scattering off nuclei to be a
particularly important one.
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APPENDIX A: SIMPLE CIRCUIT PRIMITIVES

We provide, for completeness, a few circuit representa-
tions of unitary operators we use throughout our work. The
first three are exponentials of Pauli operators for which
three basic gates are needed:

(i) one-body contributions

ðA1Þ

(ii) two-body contributions

ðA2Þ

(iii) three-body contributions

ðA3Þ

Another primitive we use is the rotation around the Z
axis controlled by an ancilla (see, e.g., [62])

ðA4Þ

This implementation requires 2 CNOT and 2 rotations for
every controlled rotation.

APPENDIX B: DETAILS ON TROTTERIZATION

In this appendix, we provide the detailed derivation of
the Trotterization discussed in Sec. II A. We estimate the
numbers of Trotter steps and the gate costs required for
different Hamiltonian splittings and orders of the Trotter-
Suzuki expansion.
To facilitate further discussion, we will consider two

easy to compute upper bounds for operator norms kOk of
some Hermitian operator O ¼ P

j βjPj written as an
expansion over (tensor products of) Pauli matrices Pj:

(i) absolute value norm

kOkabs ¼
����
X
j

βjPj

����abs ¼
X
j

kβjPjk ¼
X
j

jβjj

ðB1Þ

(ii) physical norm

kOkphys ¼ sup fkOjψik∶jψi physical stateg; ðB2Þ

where for vectors we use the 2-norm. In this context
an example of a physical vector is an eigenstate of
the total number operator with eigenvalue A.

For instance, if we consider the potential energy oper-
ator, we see that the absolute norm scales linearly with the
lattice dimension

kVkabs ¼ Mð6jC0j þ 8jD0jÞ: ðB3Þ

On the other hand, because of the fact that our interactions
are contact terms, particles can interact with each other only
when they are at the same lattice point and the absolute
norm above will greatly overestimate the potential con-
tribution for a physical state with A fermions distributed
among the Nf ¼ 4 types. For a physical state the maximum
value of the three-body potential is reached when we
occupy a lattice site with four particles, which means

kV3kphys ≤ 4jD0j
	
A
4



≤ AjD0j; ðB4Þ

where bxc is the floor function. For the two-body inter-
action we can have either two, three, or four particles per
site resulting in

kV2kphys ≤ jC0jmax

�	
A
2



; 3

	
A
3



; 6

	
A
4


�
: ðB5Þ
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In the physically relevant case M ≫ A, the physical norm
will be much smaller than the absolute one. For the kinetic
energy we have instead

kKkabs ¼ NK

���� t2
���� ¼ 2DMNfjtj; ðB6Þ

while for physical states we find instead

kKkphys ≤ AD
ℏ2

2m
k2max ¼ ADtπ2; ðB7Þ

where kmax ¼ π=a is the largest momentum in the box.
Finally, as we did in Eq. (12), we can use these results to
place a physical upper bound on the maximum spread in
energy attainable in an A-body system as

ΔH ¼ Emax − Emin

¼ kKkphys þ kV2kphys þ kV3kphys þ Abmax; ðB8Þ

where bmax is the nuclear binding energy at saturation and
we have used the estimate jEminj ≤ Abmax for the lowest
energy value. A much better bound on the potential can be
obtained by realizing that the two potential terms have
opposite signs and their contributions will partially cancel;
this implies that we can use

kVkphys ¼ max fn2; n3; n4g < kV2kphys þ kV3kphys; ðB9Þ

where we have defined
(i) n2 ¼ jC0jbA2c
(ii) n3 ¼ jD0 þ 3C0jbA3c
(iii) n4 ¼ j4D0 þ 6C0jbA4c

As motivated in the main text, we will use physical norms
k · kphys whenever possible to bound, and in the following
we will remove the subscript when this causes no
confusion.

1. Product formulas: Analytical bounds

We can now start the discussion about product formulas
derived from the Trotter-Suzuki expansion for the time
evolution operator. At first order, we find the simple
decompositions (13) and (14) presented in the main text

Uα
LðτÞ ¼

YNK

k

e−iτKke−iτV ðB10Þ

for the α splitting and

Uβ
LðτÞ ¼ e−iτKe−iτV ðB11Þ

for the β splitting. Following the same derivation presented
in [38] (see also Sec. VB of [56] for more details), we find

ke−iτH − Uα=β
L ðτÞk ≤ ðτΛα=βÞ2 exp ðτΛα=βÞ; ðB12Þ

where Λα=β is an upper bound for the sum of norms of the
individual terms in the Hamiltonian expansions. In par-
ticular, we have

Λα ¼
X
k

kKkk þ kVk ¼ jtjNK þ kVk; ðB13Þ

Λβ ¼ kKk þ kVk: ðB14Þ

At this point, we first note that we can interpret the
evolution under the approximate propagator ULðτÞ as an
exact time evolution under the effective Hamiltonian
(cf. [63]) given by

Hα=β
eff ðLÞ ¼

ln ðUα=β
L ðτÞÞ
−iτ

; ðB15Þ

and for small values of τ, we estimate the error in the energy
eigenvalues using (see also [33] for a tighter bound)

kH −Hα=β
eff ðLÞk ¼ 1

τ
ke−iτH − Uα=β

L ðτÞk: ðB16Þ

To control the approximation error introduced by using the
approximate evolution operator UL, we can split the time
interval τ required by our algorithm into r steps and
consider instead

ke−iτH −Uα=β
L ðτ=rÞrk ¼ δτ; ðB17Þ

leading to an energy error ϵτ bounded by

δτ
τ
≤
τ

r
Λ2
α=β exp

�
τΛα=β

r

�
: ðB18Þ

Following the same analysis presented in [38], we obtain
the following analytical bound for the number of Trotter
steps needed for time τ:

r1;A ¼
�
max

�
τΛα=β;

eτΛ2
α=β

ϵτ

��
: ðB19Þ

In Fig. 12 we present the expected number of steps needed
to perform time evolution for both the base time τbase ¼
2π=ΔH (black and green lines) and the whole sequence of
W evolutions for a total time of τtot ¼ ð2W − 1Þ � τbase (red
and blue lines) where the number of ancilla qubits W is
obtained for a fixed resolution Δω [cf. Eq. (18) in the main
text]. Results are presented for the hardest interaction
(a ¼ 1.4 fm) and for two different target resolutions: δω ¼
100 MeV (solid lines) and Δω ¼ 10 MeV (dashed lines).
In both cases, we fix the energy error ϵτ to be half the
resolution.
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Higher order decompositions allow for a reduction of the
scaling of the approximation error with the evolution time
and can therefore provide an important efficiency gain.
Here we will consider the even order Trotter-Suzuki
formulas [40] defined by the recursion

S2kðτÞ ¼ ½S2k−2ðτkÞ�2S2k−2ðτ − 4τkÞ½S2k−2ðτkÞ�2 ðB20Þ

with

S2ðτÞ ¼
YNK

k¼1

e−i
τ
2
Kke−i

τ
2
Ve−i

τ
2
V
Y1
k¼NK

e−i
τ
2
Kk ðB21Þ

and τk ¼ τ=ð4 − 41=ð2k−1ÞÞ for k > 1. Using these approx-
imations (cf. [38,56]) to the evolution operator the number
of steps needed for a given accuracy becomes bounded by

r2k;A ¼
�
ρ2k max

�
1;

�
2eΛ5k−1

3ϵτ

� 1
2k
��

ðB22Þ

with ρ2k ¼ 2τ5k−1Λ.
As reported in the main text, the explicit expressions for

the second order formulas with both kinds of breakup are

SαðτÞ ¼ e−i
τ
2
V
YNK

k¼1

e−i
τ
2
Kk

Y1
k¼NK

e−i
τ
2
Kke−i

τ
2
V ðB23Þ

for the α splitting, while for the β splitting we consider the
two options

SKþV
β ðτÞ ¼ e−i

τ
2
Ke−iτVe−i

τ
2
K ðB24Þ

and

SVþK
β ðτÞ ¼ e−i

τ
2
Ve−iτKe−i

τ
2
V: ðB25Þ

These formulas are used to produce the results reported
next.
In Fig. 13, we show results for r1;A, r2;A, and r4;A for the

base time interval needed for β splitting with τ ¼ 2π=ΔH
using the hardest interaction with a ¼ 1.4 fm (softer
interactions require a smaller number of steps due to the
smaller norm of the Hamiltonian). The second order
formulas (red lines) show a clear advantage over the linear
decompositions (black lines). On the other hand, the fourth
order formulas (blue lines) become favorable only when
tackling big enough problems. Specifically, the breakeven
point is A ¼ 24 (A ¼ 234) for higher target accuracy δω ¼
10 MeV (lower target accuracy δω ¼ 100 MeV).
During the phase estimation stage of our algorithm, we

need to perform (controlled) time evolution for a set of
Ntot ¼ 2W−1 ¼ ΔH=ϵτ (note the factor of 2 coming from
ϵτ ¼ Δω=2) time intervals given by Tk ¼ 2kτ for
k ∈ ½0;W − 1�. One way to achieve this is to decompose
optimally the unitary operator ULðτÞ using the bounds
presented above and simply repeat this basic one as needed.
The resulting total number of steps required by this
algorithm is denoted as “same r” in Fig. 14. An alternative
approach is to adaptively decompose each of the Ntot
evolution unitary operators individually and then sum the
number of steps together. This method produces the results
denoted as “adaptive r” in Fig. 14 and, as expected, is
usually more efficient than the simpler standard one. This is
the strategy used throughout the main text.

2. Product formulas: Commutator bounds

As mentioned in Sec. II A, the errors in product formulas
should depend on the commutators of the terms in the
Hamiltonian and not directly on their norms; this is one of
the deficiencies of the bounds considered above and
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prevents them from being tight. For the linear Trotter
decomposition, we can consider the commutator bound
similar to the one from [38]

ke−iτH −Uα=β
L ðτÞk ≤

Cα=β

2
τ2 þ ðτΛα=βÞ3

3
exp ðτΛα=βÞ;

ðB26Þ

where

Cα ¼ k
X
j>k

½Hk;Hj�k ¼ k
XNK

k

½Kk; V� þ
X
j>k

½Kk; Kj�k

≤ 2NKjtjkVkphys þ NKðNK − 1Þt2 ≤ Λ2
α ðB27Þ

for the α splitting, and for the β splitting

Cβ ¼ k½K;V�k ≤ 2kKkphyskVkphys ≤ Λ2
β: ðB28Þ

We can now estimate the number of intervals r by defining

r1;C ¼ min fr ∈ N∶Γ1
α=βðrÞ ≤ ϵτg; ðB29Þ

where Γ1
α=β is the error estimator obtained from the upper

bound Eq. (B26) above,

Γ1
α=βðrÞ ¼

Cα=β

2

τ

r
þ
�
τ

r

�
2 ðΛα=βÞ3

3
exp

�
τ

r
Λα=β

�
; ðB30Þ

and for Cα=β we use their upper bounds derived above.
The importance of including information about the

commutators is apparent from the results in Fig. 15 where
we show the improved bounds r1;C (dashed lines) together
with the analytical results r1;A (solid lines) for the two

target precisions separately (the left panel corresponds to
Δω ¼ 10 MeV while the right panel corresponds to
Δω ¼ 100 MeV). The adoption of the commutator bounds
provides an improvement of the same order of magnitude
as going to a second order expansion (cf. Fig. 1 in the
main text).
For the second order expansion instead we use the result

of [33] to construct the estimators

r2;C ¼ min fr ∈ N∶Γ2
α=βðrÞ ≤ ϵτg; ðB31Þ

where the error estimators are given by

Γ2
α=βðrÞ ¼

1

12

�
τ

r

�
2

Tα=β; ðB32Þ

with

Tα ¼
XNK

j;k

k½½V;Kj�; Kk�k þ
XNK

j

k½½V;Kj�; V�k

þ
XNK

i

X
j>i

X
k>i

k½½Ki; Kj�; Kk�k

þ
XNK

i

XNK

j>i

k½½Ki; Kj�; Ki�k

≤ 4N2
Kt

2kVkphys þ 4NKjtjkVk2phys þ 2NKðNK − 1Þjtj3

þ 2

3
NKð2N2

K − 3NK þ 1Þjtj3 ðB33Þ

and two different expressions for splitting β depend on the
ordering of the operators
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TKþV
β ¼ k½½K;V�; V�k þ 1

2
k½½K;V�; K�k

≤ 2kKkphyskVkphysð2kVkphys þ kKkphysÞ ðB34Þ

and

TVþK
β ¼ k½½V;K�; K�k þ 1

2
k½½V;K�; V�k

≤ 2kKkphyskVkphysð2kKkphys þ kVkphysÞ: ðB35Þ

We show the resulting estimates for r2;C at a fixed target
accuracy Δω ¼ 100 MeV for the two splitting methods in
Fig. 2 on the main text.

3. Product formulas: Gate cost per step

To implement the time-evolution unitary operators
described in the preceding section, we need to implement
three independent unitary operators

U1ðτÞ ¼ e−iτV; ðB36Þ

U2ðτÞ ¼ e−iτK; ðB37Þ

U3ðτÞ ¼
YNK

k¼1

e−iτKk; ðB38Þ

U4ðτÞ ¼
Y1
k¼NK

e−iτKk ¼ U†
3ð−τÞ; ðB39Þ

from which we construct

Uα
LðτÞ ¼ U3ðτÞU1ðτÞ; ðB40Þ

Uβ
LðτÞ ¼ U2ðτÞU1ðτÞ; ðB41Þ

SαðτÞ ¼ U1

�
τ

2

�
U3

�
τ

2

�
U4

�
τ

2

�
U1

�
τ

2

�
; ðB42Þ

SKþV
β ðτÞ ¼ U2

�
τ

2

�
U1ðτÞU2

�
τ

2

�
; ðB43Þ

SVþK
β ðτÞ ¼ U1

�
τ

2

�
U2ðτÞU1

�
τ

2

�
: ðB44Þ

a. Evolution operator for the interaction term

Since the interactions in our model have zero range, all
theM distinct potential energy operators acting on different
sites will commute,

U1ðτÞ ¼ e−iτV ¼
YM
i¼1

e−iτVi ðB45Þ

with Vi acting nontrivially on onlyNf qubits at a time. This
implies that we need to worry about the implementation of
only a single diagonal Hamiltonian term of the following
form:

Vi ¼ αþ β
X3
f¼0

Zf þ γ
X3
f>f0

ZfZf0 þ η
X3

f>f0>f00
ZfZf0Zf00 ;

ðB46Þ
where the coefficient can be read directly from the general
expression in Eq. (7). Using well-known general decom-
positions for exponentials of Pauli matrices discussed in
Appendix A, we can express the evolution operator
UiðδÞ ¼ exp ð−iδViÞ in terms of single qubit Z rotations
and CNOT gates. Assuming all-to-all connectivity within
the 4 qubit cell (and with the possible controlling ancilla), a
straightforward implementation using the above-mentioned
gadgets will require 14 rotations and 28 CNOT for the
uncontrolled version and 28 rotations and 56 CNOT for
the controlled unitary evolution. We know, however, that
the optimal circuit to implement an arbitrary diagonal
unitary on n qubits requires at most 2nþ1 − 3 one and
two qubit gates (see [32,64]). Given the lack of a four-body
contact interaction, and assuming all-to-all connectivity, for
our model this expansion produces the following circuit
with depth 28 (14 rotations þ 14 CNOT):
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where the one qubit gates are appropriate Z rotations [cf. Eq. (B46)]. Under the more stringent constraint of 2D planar
connectivity one can optimize the construction for parallel efficiency, and the result of this exercise (first reported in [65]) is
the following circuit:

ðB47Þ

which has serial (parallel) depth of 30 (15) with a 2D
nearest neighbor connectivity (7 rotationsþ 8 CNOT in
parallel). The gate cost of implementing the potential
energy propagator is summarized in Table III.

b. Evolution operator for the hopping term

Wewill, for now, only assume linear connectivity for our
implementation of the last three evolution operators. The
exact propagator for hopping term U2ðτÞ can be obtained
using either the FFFT whenever 4M is power of 2 or else
the Givens rotations described in [33,43]. In the latter case,
due to our choice of ordering where single particle states on
the same lattice point and different spin-isospin are next to
each other (this is for ease of implementation of the
potential energy part, especially the triples), we consider
the system as 4M spinless fermions and use all the
2Mð4M − 1Þ Givens rotations each requiring two rotations
(which can be performed in parallel) and 5 CNOT for a total

of 4Mð4M − 1Þ arbitrary Z rotations and 10Mð4M − 1Þ
CNOTwith parallel depth 8M − 3 (using results from [43]).
This circuit must be executed twice and a final set of 4M
rotations in depth 1 must be performed in between. Luckily,
only these need to be controlled when performing the
controlled time evolution. The gate cost of implementing
the propagator U2 is summarized in Table IV.
We turn now to the implementation of U3, a naive

implementation of all the NK terms separately would
require two rotations (by the same angle), 8 Hadamard
and 4 S gates and 4ðpk − qkÞ CNOT for each term

e−iτKk ¼ e−i
τ
2
ðXpk

Xqk
þYpk

Yqk
ÞZpkþ1���Zqk−1 ðB48Þ

in the expansion of U3ðτÞ, where the string of Pauli Z
comes from the Jordan-Wigner mapping. This estimate
comes from the following explicit construction (cf. [63]):

ðB49Þ

where the first is the qubit corresponding to single orbital p
and the last one is q. This can be further reduced if arbitrary
connectivity is allowed (see, e.g., [35]). In total, one finds at
most 24M rotations and less than 48M2 nearest neighbor

CNOT gates. The same estimates also hold for U4. Using
the fermionic-swap network algorithm instead, we can
implement U3 and U4 by performing 2Mð4M − 1Þ two-
qubit fermionic simulation gates with parallel depth 4M,

TABLE III. Gate cost for the potential energy propagator.

# c-Rz # CNOT

Serial Parallel Serial Parallel

Naive 14M 14 28M 28
Serial optimized 14M 14 14M 14
Parallel optimized 14M 7 16M 8

TABLE IV. Gate cost for the U2 propagator.

# Rz # c-Rz # CNOT

Serial Parallel Serial Parallel Serial Parallel

U2 32M2 16M-4 0 0 20M(4M-1) 80M-28
c-U2 8M(4M-1) 16M-6 4M 1 4M(20M-3) 80M-30
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each one requiring at most 5 rotations and 3 CNOT (since
we are not implementing evolution under the on site
interaction at the same time, this reduces to just 2 arbitrary
rotations [66]). Most of these are simple fermionic swap
gates

fSWAP ¼

0
BBB@

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 −1

1
CCCA; ðB50Þ

requiring 3 CNOT and additional Clifford gates. The
number of (controlled) arbitrary rotations is therefore at
most equal to the serial count for the naive implementation
or 8M in the parallel case. The gate cost of implementing
the propagators U3 and U4 is summarized in Table V.
In Fig. 16 we present the empirical gate counts for the

evolution operator U3=U4 using both the naive implemen-
tation, the fermionic swap network and the exact imple-
mentation using Givens rotations (for the latter one we
count half the cost of noncontrolled rotations). We see that
the latter two approaches provide a considerable reduction
in CNOT counts but at the price of raising the parallel depth
for the rotation gates, this might have an impact on the
fault-tolerant implementation of the algorithm.

APPENDIX C: DETAILS ON QUBITIZATION

The basic idea behind qubitization [34] is to represent the
system Hamiltonian in the following way:

H ¼ λðhGj ⊗ 1ÞselectðHÞð1 ⊗ jGiÞ; ðC1Þ
where the first register holds an ancilla space of dimension
> Γ where

H ¼
XΓ−1
j¼0

λjHj; ðC2Þ

the coefficients λj > 0 and Hj are Clifford operations.
For ease of derivation, we will assume that H0 ≡ 1 and if
the original Hamiltonian was traceless, we add it while
increasing Γ accordingly. The two main subroutines we
need to perform qubitization are the select unitary VS
and the prepare unitary VP which can be respectively
defined as

VS ¼
XΓ−1
j¼0

jjihjj ⊗ Hj ðC3Þ

and

VPj0ijGi ¼
1ffiffiffi
λ

p
XΓ−1
j¼0

ffiffiffiffi
λj

q
jji λ ¼

XΓ−1
j¼0

λj: ðC4Þ

As mentioned in the main text, the central object of this
scheme is the qubiterate unitary defined in Eq. (19) of the
main text and which can be implemented using the two
basic unitaries defined above as

Q ¼ −iðð2jGihGj − 1Þ ⊗ 1ÞVS; ðC5Þ

whose eigenvalues are

η� ¼∓ e�i arcsinðηÞ; ðC6Þ

where H=λ ¼ P
η ηjηihηj is the spectral decomposition of

the (scaled) Hamiltonian. The eigenvectors of the qubi-
terate are

jη�i ¼
1ffiffiffi
2

p ðjGηi � ijG⊥
η iÞ; ðC7Þ

which are connected with the energy eigenstate by

jGηi ¼ jGi ⊗ jηi ðC8Þ

and

jG⊥
η i ¼

ηjGηi − selectðHÞjGηiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p : ðC9Þ
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FIG. 16. Empirical gate counts from a simulation of the naive
implementation of U3=U4 for system sizes M ∈ ð8; 3375Þ. Also
shown are the gate cost estimates for the fSWAP algorithm and
the implementation of U2 using Givens rotations (cf. Table V).

TABLE V. Gate cost for theU3=U4 propagator. See also Fig. 16
for tighter estimates of the naive cost.

# c-Rz # CNOT

Serial Parallel Serial Parallel

Naive <24M <24M <48M2 <48M2

Fermionic swap <24M 8M 6M(4M-1) 12M
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1. Gate cost of the qubiterate

We now proceed to estimate the qubiterate gate cost.
Following the discussion in the main text in order to
implement the sequence of controlled qubiterates, we need
to implement an initial controlled prepare (whose small cost
we neglect in the estimates that follow), and then for every
qubiterate we need one select and two prepare without
controls and one controlled reflection. Since we are trying to
provide a lower bound on the gate count and techniques that
only need one copy of prepare per step are known [47], we
will only count the cost of one prepare per step.
For our model with Nf ¼ 4 fermionic species, the

kinetic energy requires ΓK ¼ 24M and the potential energy
part needs ΓV ¼ 14M for a total Γ ¼ 38M. The size of the
ancilla register required to encode the flag state jGi is thus
NA ¼ dlog2ðΓÞe. The easiest unitary to implement is the
prepare operation VP defined by

VPðj0iÞ ¼ jGi ¼ 1ffiffiffi
λ

p
XΓ−1
j¼0

ffiffiffiffi
λj

q
jji: ðC10Þ

Without assuming any structure in the coefficients fλjg, we
can always prepare the flag state jGi on the ancilla register
with NA qubits using at most (see, e.g., [67])

(i) 2NA − 2NA − 2 CNOT
(ii) 2NA − NA − 2 one qubit gates,

and to be conservative, we will count 3 z rotations per one-
qubit unitary. The second unitary we need is the controlled
reflection cΠ0 acting on theNA ancillas plus the control that
we implement as in [38] using a multiply controlled Z gate
with NA controls implemented using the ancilla-based
scheme described in [68], which needs

(i) dNA−2
2

e ancillas in j0i
(ii) 8NA − 9 T gates

(iii) 6NA − 6 CNOT gates
(iv) 4NA − 6 Hadamard gates
Finally we can implement the control circuit for the

select operation VS using the optimized scheme from [38]
which needs NB ¼ NA − 1 additional ancilla qubits pre-
pared and returned in j0i and

(i) 2 NOT gates
(ii) 2NAþ1 þ 2NA − 8 Hadamard gates
(iii) 2NA−1 − NA Phase gates
(iv) 152NA−1 þ 6NA − 28 T=T† gates
(v) 152NA−1 þ 6NA − 26 CNOT gates

Note, however, that this control circuit will cycle over all
the possible 2NA possible states of the control register and
we can terminate this only after the needed Γ are obtained.
To estimate this uncertainty of the analytical gate count, we
will make use of the relation 2NA ≥ Γ > 2NA−1 to bound the
gates cost.
On top of this, we need to implement all the Γ controlled

unitaries that are, however, all Clifford operations. Here,
we neglect them to estimate a lower bound of the gate
cost, which is sufficient for the comparison between
qubitization and Trotter decompositions. Counting only
two-qubit Clifford gates and rotations or T gates, and
reusing ancillas for both select and the reflection, we find
the following cost estimate for a single application of the
controlled qubiterate:

(i) 2NA − 1 ancilla qubits
(ii) 172NA−1 þ 10NA − 34 CNOT gates
(iii) 2NA − NA − 2 Uð2Þ gates
(iv) 152NA−1 þ 14NA − 37 T=T† gates

The gate cost of qubitization is compared with that of
Trotter decompositions in Fig. 3 in the main text. Note that
T gates can be implemented using arbitrary Z rotations, and
hence we count T gates as RZ gates for the estimates there.
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