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Precision calculations of B — V form factors from soft-collinear
effective theory sum rules on the light-cone
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Applying the vacuum-to-B-meson correlation functions with an interpolating current for the light vector
meson we construct the light-cone sum rules (LCSR) for the “effective” form factors & (n - p), &, (n - p),
= (z,n-p) and E,(z,n - p), defined by the corresponding hadronic matrix elements in soft-collinear
effective theory (SCET), entering the leading-power factorization formulas for QCD form factors
responsible for B — V£, and B — V££ decays at large hadronic recoil at next-to-leading-order in
QCD. The evanescent-operator approach for the perturbative matching of the effective operators from
SCET; — HQET is employed in the determination of the hard-collinear functions entering the SCET
factorization formulas for the vacuum-to-B-meson correlation functions. The light-quark mass effect for the
local SCET form factors &(n - p) and & (n - p) is also computed from the LCSR method with the B-meson
light-cone distribution amplitude ¢} (w,u) at O(a;). Furthermore, the subleading power corrections to
B — V form factors from the higher-twist B-meson light-cone distribution amplitudes are also computed
with the same method at tree level up to the twist-six accuracy. Employing the two different models for the
B-meson light-cone distribution amplitudes consistent with QCD equations of motion, we observe that the
higher-twist corrections to B — V form factors are dominated by the two-particle twist-five distribution
amplitude g5 (w, i), in analogy to the previous observation for B — P form factors. Having at our disposal
the LCSR predictions for B — V form factors, we further perform new determinations of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix element |V ;| from the semileptonic B — p¢v, and B — wfi,
decays, and predict the normalized differential branching fractions and the g>-binned K* longitudinal
polarization fractions of the exclusive rare B - K*v,v, decays.

DOI: 10.1103/PhysRevD.101.074035

I. INTRODUCTION

Precision calculations of B — V form factors are indis-
pensable for the determinations of the CKM matrix
elements from the semileptonic B — V£, decays and
the radiative penguin B — Vy decays and for the theory
descriptions of the electroweak penguin B — V7 decays
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as well as the hadronic two-body B-meson decays in QCD.
In the low hadronic recoil region, the unquenched lattice
QCD calculations of B — K* form factors have been
performed [1,2] (see references therein for discussions
on the earlier calculations with the quenched approxima-
tion) by employing the MILC Collaboration gauge-field
ensembles with an improved staggered quark action [3]. In
the large hadronic recoil region, distinct analytical QCD
methods have been developed for the systematic calcula-
tions of the heavy-to-light B-meson decay form factors
with the aid of the heavy quark expansion.

QCD factorization formulas for heavy-to-light form
factors at large recoil were originally proposed in [4] at
leading power in A/m, where both the soft contribution
satisfying the large-recoil symmetry relations and the hard
spectator scattering effect violating the symmetry relations
were shown to appear simultaneously in contrast to the
hard-collinear factorization for the pion-photon form factor.
With the advent of soft-collinear effective theory (SCET)
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factorization properties of heavy-to-light form factors can
be addressed by integrating out the hard and hard-collinear
fluctuations of the QCD matrix elements one after the other.
Implementing the first-step matching procedure for the
QCD current wI';Q will give rise to the so-called AO-type
and Bl-type SCET; operators [5-7], both of which can
contribute to heavy-to-light form factors at leading power
in A/mg. Performing the perturbative matching of the
effective currents from SCET; — SCETj; indicates that the
soft-collinear factorization for the AO-type matrix elements
cannot be achieved, due to the emergence of endpoint
divergences appearing in the convolution integrals of the
hard-collinear functions and the light-cone distribution
amplitudes. By contrast, the nonlocal form factors defined
by the B1-type SCET] operators can be further expressed as
the convolution of the jet functions and the hadronic
distribution amplitudes [7]. It is then evident that the
theory predictions of heavy-to-light form factors from
the SCET factorization formulas cannot be made without
the knowledge of the standard light-cone distribution
amplitudes and the matrix elements of the AO-type
SCET; operators.

Applying the dispersion relations and perturbative QCD
factorization theorems for the vacuum-to-vector-meson
correlation functions, the QCD light-cone sum rules
(LCSR) for B — V form factors can be readily constructed
[8-11] with the parton-hadron duality ansatz and the
narrow-width approximation for the vector mesons (see
[12-14] for further discussions and [15] for the sum-rule
construction with the helicity form-factor scheme).
Alternatively, the QCD LCSR for heavy-to-light B-meson
decay form factors can be derived from the vacuum-to-
B-meson correlation functions, following the analogous
strategies, at leading order (LO) [16-21] and next-to-
leading order (NLO) [22-25] in the strong coupling aj,
where the factorization formulas for the correlation func-
tions under discussion were established with the diagram-
matic approach and the strategy of regions [26,27].
Constructing the LCSR for the SCET; matrix elements
entering the QCD factorization formulas of heavy-to-light
B-meson decay form factors has been achieved in [28,29]
employing the vacuum-to-B-meson correlation functions.
Compared to the QCD factorization approach, the LCSR
calculations of heavy-to-light B-meson form factors depend
on the duality assumption of either the light-meson channel
or the B-meson channel.

Yet another factorization approach to compute heavy-
to-light B-meson form factors at large recoil has been
developed to regularize the rapidity divergences of the
AO-type SCET matrix elements by the intrinsic transverse
momenta of the soft and collinear partons involved in
the hard scattering processes [30,31]. Perturbative QCD
corrections to the short-distance matching coefficient
functions entering the transverse-momentum-dependent
(TMD) factorization formulas of several hard exclusive

processes of phenomenological interest [32-34] have
been accomplished at leading-twist accuracy. The
Sudakov and threshold resummations of enhanced loga-
rithms entering the TMD wave functions have been
performed for the B-meson [35] and for the pion [36]
with the Collins-Soper-Sterman (CSS) formalism [37-
39]. In addition, constructing the factorization-compatible
definitions of the TMD wave functions free of the rapidity
pinch singularities has been discussed in [40,41], where
the nondipolar off-light-cone Wilson lines were intro-
duced in the unsubtracted TMD pion wave functions to
reduce the soft subtraction functions. However, a definite
power counting scheme for all the momentum modes
involved in the exclusive B-meson decays still needs to be
constructed for the TMD factorization approach to clarify
the conceptual differences between the perturbative QCD
(PQCD) framework [30,31] and the QCD factorization
approach [4,7] and to develop the TMD factorization for
hard exclusive processes into a systematic theoretical
framework.

Applying the SCET factorization for the QCD B — V
form factors at large recoil, we aim at computing the
hadronic matrix elements of both the AO-type and B1-type
SCET; operators by constructing the corresponding sum
rules from the vacuum-to-B-meson correlation functions, in
analogy to the prescriptions developed in [28,29]. The
major new improvements of the present paper can be
summarized as follows.

(i) We establish the factorization formulas of the
vacuum-to-B-meson correlation functions defined
with an interpolating current for the vector meson
and an effective weak current in SCET; at one loop
using the evanescent operator approach [42,43],
instead of substituting the light-cone projector
of the B-meson for evaluating the corresponding
SCET; diagrams prior to performing the loop-mo-
mentum integration. In addition, QCD resummation
of enhanced logarithms of m;,/A entering the AO-
type and B1-type hard matching coefficients for the
weak current wI;Q is accomplished at next-to-
leading-logarithmic (NLL) and leading-logarithmic
(LL) accuracy with the standard renormalization-
group (RG) formalism [44,45].

(i) Applying the SCET representations of the vacuum-
to-B-meson correlation functions in the presence of
the subleading-power Lagrangian Eélrz, we construct
the sum rules for the light-quark mass contributions
to the AO-type SCET form factors at tree level with
the power counting scheme m ~ A. We demonstrate
explicitly that the flavor SU(3)-symmetry breaking
effects for the longitudinal vector meson form
factors are not suppressed by powers of A/my,
and evidently preserve the large recoil symmetry
relations for the soft contributions to the semilep-
tonic B — V form factors.
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(iii) We compute the subleading power corrections to
B — V form factors from the higher-twist B-meson
light-cone distribution amplitudes (LCDA) with
the aid of the LCSR technique up to the twist-six
accuracy. In particular, we employ a complete
parametrization of the light-ray matrix element
<O|Qa(zl ﬁ)gs G;w (ZZﬁ)hvﬁ (0) |Bv> in heavy-quark
effective theory (HQET) defining eight independent
invariant functions presented in [46] instead of four
three-particle distribution amplitudes proposed in
[47] in the light-cone limit. In an attempt to under-
stand the systematic uncertainty of the LCSR pre-
dictions for B — V form factors, we apply two
distinct models for the two-particle and three-
particle B-meson LCDA, satisfying the classical
QCD equations of motion and the corresponding
asymptotic behaviors at small quark and gluon
momenta determined by the conformal spins of
the soft fields, as constructed in [24,46].

(iv) For the sake of understanding the long-standing dis-
crepancy of the form-factor ratio R = [(mp + my)/
mg|T(q*)/V(q*) predicted by the QCD sum rule
technique with the vector-meson LCDA [10] and
by the QCD factorization approach [4,45,48], we
carry out a detailed comparison of the various
terms contributing to the factorization formula of
the ratio R with their counterparts in the frame-
work of the LCSR with the B-meson distribu-
tion amplitudes and identify the dominant QCD
mechanisms responsible for the above-mentioned
discrepancy.

The outline of this paper is as follows. We will review the
SCET (hc, c, s) representations of B — V form factors at
large hadronic recoil from integrating out the hard-scale
fluctuations, which express the seven QCD form factors in
terms of the four SCET; matrix elements, £,(n - p) and
E,(z,n-p) (with a = ||, L), as well as the perturbatively
calculable short-distance coefficients at leading power in
A/my, in Sec. II. Constructing the SCET sum rules for these
“effective” form factors with the B-meson distribution
amplitudes at the leading twist accuracy will be presented
in Sec. III with a detailed demonstration of the factorization
formulas for the vacuum-to-B-meson correlation functions
at NLO in «,, where we pay particular attention to the
infrared subtractions for deriving the master formulas of
the hard-collinear matching functions in the presence of the
evanescent operators. We proceed to compute the sublead-
ing power corrections to B — V form factors from both the
two-particle and three-particle higher-twist B-meson LCDA
with the LCSR method at tree level up to the twist-six
accuracy in Sec. IV, where the operator identities between
the two-body and three-body light-ray HQET operators at
classical level are employed to reduce the resulting sum
rules. Phenomenological aspects of the newly derived LCSR
for B — V form factors will be explored in Sec. V, including

the numerical impacts of the subleading-power corrections in
the heavy quark expansion, an exploratory comparison of
our predictions of the form-factor ratios with the SCET
calculations, the extrapolations of our results toward large
momentum transfer with the z-series parametrization, the
exclusive determinations of the CKM matrix element |V, |
from the partial branching fractions of B — pf7, and
B — w1y, and the ¢>-binned distributions of the branching
fractions as well as the K* longitudinal polarized fractions
of the flavor-changing-neutral-current (FCNC) induced
B - K*v,v, decays. A summary of our main observations
and concluding remarks on the future development will be
displayed in Sec. VI. We further collect the explicit
expressions for the AO-type and Bl-type hard functions
from matching the QCD weak current wI';Q onto SCET;
at NLO and LO in a,, respectively, in Appendix A.
Two phenomenological models for the two-particle and
three-particle B-meson distribution amplitudes, up to the
twist-six accuracy, employed in the numerical computations
of the semileptonic B — V form factors are collected in
Appendix B.

II. QCD FACTORIZATION FOR
B — V FORM FACTORS

The purpose of this section is, following closely
[44,45,49], to summarize the soft-collinear factorization
formulas for B — V form factors at large hadronic recoil in
SCET] by integrating out the strong interaction dynamics at
the hard scale m,;, for the sake of establishing the
theoretical framework for computing the SCET matrix
elements from the LCSR method. The resulting SCET
(hc, c, s) representations for the QCD heavy-to-light form
factors are given by [5,7,50]

FEF=V(n- p) = "

*/“&%wmmeL
(a=1,L), (1)

where the seven B — V form factors are expressed in terms
of the four “effective” form factors in SCET; at leading
power in the heavy quark expansion. The hard matching
coefficients for both the AO-type and Bl-type SCET
currents have been computed at one-loop accuracy
[44,51,52]. As we aim at computing the semileptonic
B — V form factors with the aid of the factorization
formula (1) at O(a,), we will need the perturbative

matching functions C(AO)(n - p) at NLO in QCD and the

i

n-p)éa(n-p)

Bl-type hard functions CEBI)(T,n- p) at tree level as
displayed in Appendix A. The “effective” form factors
E,n-p) and E,(r,n- p) are defined by the hadronic
matrix elements of the corresponding SCET; operators [45]
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<V(pv €*>|(EWC)75hU|B1}> =-n: p(e* ’ U)éH (n : p)’
<V(p’ 6*)|(EWC)Y5nyh1/‘|BL'> =-—n- p(e;j —€"- Uﬁﬂ)gl(n : p)’

_ _ 1 .
(V(p. ) EWIrs Wi Wo) )l B) == pe v [ de e 772, - p)
V(p. e[ EW st (WED W) (), B

1 .
=-—n- Pmb(eﬁ —€ Uﬁﬂ) A dTe’T”'prEL(T’ n- p)7 (2)

where the light-cone Wilson line is introduced to restore the collinear gauge invariance [7,53]

[oe]

W.(x) =Pexp {igs /_0 dsn-A.(x+sn)|. (3)

The QCD matrix elements of the heavy-to-light currents I';Q are parametrized by the semileptonic B — V form factors
in the standard way [4]

2iV(q?)

cv(V(p.€")|qr,b|B(p + q)) = —m

o€ PG,
= - 2mye* - 5
cy(V(p.€")larursb|B(p + q)) = T%Ao(q )

-

€ -q my —my, »
-9 1@ BTV A
e+ =" g asle),
CV<V( )|ql uqyb|B( >> = 2lTl (qz)e;wpae*yppqn’

cv(V(p.€")|gio,,rsq"bIB(p + q)) = T2(q?)[(mf — my)e; — (€" - q)(2p + q), ]

2
. q
+T3(4%)(e" - q) [61,, -———(2p+ q),,] : 4)
mp — my
with the convention €3;,3 = —1. We have introduced the factor cy to account for the flavor structure of vector mesons with

cy = ++/2 for the P and @ (obviously, \/2 for b — u transition and —/2 for the b — d transition) and ¢y = 1 otherwise.
At maximal hadronic recoil g> = 0 there exist two relations for the above-mentioned B — V form factors in QCD

M8 T A (0) = TETIV AL (0) = 40(0). T4(0) = T(0). o

ZmV 2mV

which are free of both radiative and power corrections. Employing the SCET representation of the QCD heavy-to-light
current (see [45] for the explicit expressions of the AO-type and Bl-type SCET currents)

(WT:0)(0 / dsZC o) / dsZCW 0" (5,0)
+ [ as / 43,3 8 (5,,5,) 0P (s, 5230) + -+, (6)
J

and performing the § and §; integrations for the resulting SCET matrix elements
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. A 7(A0)  a\ (AO =
Vip.e)| [ 5205100 5508
n-p N -
= (%L ) V(N EW O 01,
v d8,d3,C5) (31, 5,) 0P (s, 5,;0)|B
< (p,(:') s1as; iju (SI’SZ) Jj (slvs2’ )| v>
DT n- dr .
_n- P/d ijﬂ)(ﬂ pr7n pT,”>/_r€_,m.pr
my my, my, 2n
(V(p,€)|(EW.)(0)(WEDL, W) (rn)T;h, (0)|B,), (7)
we can readily derive the SCETI factorization formulas for the QCD form factors at leading power in the heavy quark
expansion
m ofn-p 1 n-pt n-pt —
—Bv<n-p>—c<;‘>(—,u) ctnp)+ [ ascl )( , ,u) =, (5, ),
mp + nmy b 0 my  m
2my Aoy (n-p : B1)(N-pT n-pt -
ﬂAo(’? p) =Cy, o H &(n-p)+ ; dr Cy, et E)(r.n-p).
mg+m ofn-p 1 n-pt n-pt _
2 ) = () sl [ (MR ) 2 ),
n-p myp 0 myp mp
mpg +m mp—m ofn-p 1 Bl (NPT n-pt —
£V Ai(n-p)——L—LA(n P):C;v/i)<—,/4>§(n P)+/ dTC;;)( : ’ﬂ>d||(f7” ).
n-p mp mpy 0 mpy mpy
(A0) (11~ P ! @®1) (NPT n-prt
T :C —— : d C ) ) = ’ )
1(n-p) =Cy, (mb #)‘1(” p)+A = C, (mb . ﬂ) 1(z.n-p)
m n-p 1 n-pt n-prt —
20 1) = (UL et py+ [Par e (U2 )z ),
n-p mpy 0 mp my
mg A0y (- P ! ®1) (NPT n-pT
20 g p) =T ) = RO (M )y 4 [ as e (MRS g ). (9

The coefﬁcient functions c ff ) and Cfm)
% and C®

functions C iju

are obtained from the Fourier transformations of the position-space coefficient

[7]. It is evident that only five independent combinations of AO- and B1-type SCET operators

appear in the factorization formulas for the seven different B — V form factors, implying the two additional relations [4,54]

mp

mB+mV
mB—l—mV

V(n
n-p

-p) =

which are fulfilled to all orders in perturbative expansion at
leading power in A/m,,.

III. THE B-MESON LCSR FOR THE SCET
B — V FORM FACTORS

In this section we turn to construct the SCET sum rules for
the “effective” form factors &,(n - p) and E,(z,n - p) (with
a = ||, L) entering the factorization formulas (8) for the
QCD B — V form factors at the one-loop accuracy. To this
end, we will first demonstrate the soft-collinear factorization
theorems for the corresponding vacuum-to-B-meson corre-
lation functions with an interpolating current for the collinear
vector meson at leading power in the heavy-quark expan-
sion. We further place particular attention to the treatment of
evanescent operators in dimensional regularization for the

Ai(n- p),

T(n-p) )

m
_BTz(n . p>’
n-p

|
determination of the perturbative matching coefficients from
SCET; — HQET. The summation of parametrically large
logarithms In(m;/A) appearing in the hard functions in front
of both the AO- and B1-type SCET; operators is achieved at
NLL and LL accuracy, respectively, by employing the RG
formalism in momentum space.

A. The B-meson LCSR for & (n - p)

Following the standard strategy we start with the con-
struction of the vacuum-to-B-meson correlation function

I, (p.q) = /d4x P (0[T{j,(x). (EW,)(0)rsh,(0)}(B,),
(10)
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where the local QCD current j, interpolates the longi-
tudinal polarization state of the collinear vector meson

Ju(x) = 4" (x)r,q(x). (11)

The SCET representation of the QCD interpolating current
can be obtained following the prescriptions described in [6]

S0 ) ) 2)
Jv=Jeggw Teew Y e o T legew T (12)

where the explicit expressions of the effective currents are
given by

(0) _ _,,4

Jeew = E560,

Dz f/fé_. 2 "
ey = VL3 lchL &P D7y 5%

2 -t o B
Jffq)s-llv - (é:WCinqs + quSEWI§> 7y,

(2 z i _
Jéq):.Lu = éWc}/J_DYS('IS + qus}’J_sz?f- (13)

To maintain the collinear and soft gauge invariance both the
collinear Wilson line defined in (3) and the following
lightlike Wilson line

Y,(x) = P exp [igs /_(; dsﬁ-AS(x—l—sﬁ)}, (14)

will be introduced for the SCET currents in a general
gauge. It is then straightforward to identify the leading
power contribution to the correlation function (10)

,(p, q)
- / dhx e 0T | (x). (BW)(0)rsh,(0)}]B,)

+ / dx e / (0T, ()02 ().
(EWC) (O)}/Shv (O)} |B1f>

n / d*x elP / d*y / d*Z{O[T{je2, (x). iLl) (v).

L) (2). (EW.)(0)ysh, (0)}[B,)

=11 (p.q) + 11 (p.q) + 11 | (p. q). (15)
|

where the third term l'IyC|| takes into account the light-quark

mass effect. The multipole expanded SCET Lagrangian up
to the O(4?) accuracy [53] have been derived with the
position-space formalism [6]

s |
Léo) — 5(1}’1 D + lch in - DC ll)ic> gé:a
W _ elip, |
ﬁfm = m§|:lDJ_“ " Dc:| 557
1 4
5(2) — —m2 ZE,
&m " (gm D2 g
£l — g wiip, & - Eil)lcwcqw
£ =qwi <iﬁ D+ip,, - tDu) %
s in 2
- E% (lfl : 5 + iﬁLc—hiﬁLC> WCqS
2 in-D,

+ Z]sii.!;xlywziché: - EiplcwchuDl;QS' (16)

Our major objective is then to perform the perturbative
matching of the SCET; correlation functions HfJ | as

defined in (15) onto SCETy;

at one-loop accuracy, by integrating out the hard-collinear
fluctuations at the scale \/mA.

1. SCET factorization for l'IA|| r.9)

The hard-collinear functions Jlfl‘ entering the SCET
factorization formula (17) can be determined by investigat-
ing the partonic matrix element

it = [ atxer(ofr{a, v, 5wzt @0 Orsh(0) f a0, ). (18)
Evaluating the tree-level contribution to the SCET amplitude F? I leads to
Flio= =) s, = - s (0} (0.0 (19)
o = TR p—w+i0 T i-p—a +i0 =A% '
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where we have introduced the convention w = # - k and the asterisk indicates the convolution integration over the variable
@'. The light-cone matrix element (O _(w, ®')) is defined as

(0 _(@.0")) = (0[O0 (o), (), = 7, () Xy

D) 5]’11,5((1) - w/) + O(as)’ (20)

where the HQET operator O) _(®') in momentum space reads

1 o N
0-0f) =5 [ dre™ (@) )5 rs(¥1h,)0), e1)
The light-ray effective operator O ; (') can be defined in an analogous way

it

0 (@) = [ dre @y s (vin)(0) 22)

Implementing the perturbative matching relation for the matrix element F i

/

D () < O 23)

P

we can readily derive the tree-level short-distance functions

JA,(O) 1 A 0) _
b= " a-p-o +i0’ T+

=0. (24)
Employing the definition of the two-particle B-meson LCDA in coordinate space [4,55]

(0/(g,Y,)4(tR) (Yih,), (0)|B,) = _ifB(Z)mB {1 ;,5

255 () + (Ba(tp) - &;(r,mmys} P

the resulting SCET factorization formula for the correlation function Hf_” is

Felwmg [+ a0 K
1 () =25 [0} O (L g sin, + Ofa), (26)

|
We proceed to determine the NLO contribution to the jet ~ propagator displayed in the diagram (a) of Fig. 1 can be
function Jﬁ by expanding the matching relation (23) up to readily written as [57]
the O(ay) accuracy. To this end, we will need to evaluate

the one-loop SCET; diagrams presented in Fig. 1 with the  pA(a) _ _ a,Cr 1 +1n w +1|FA
subleading power SCET Feynman rules collected in [56]. ILNLO 4w |e n-plw—n-p) Lo
The self-energy correction to the hard-collinear quark (27)
A0 A0
he O b OV
(0) X
S ££ 1
Y 2 Y ©
£y L
7 £(2) T\A 7 (2) T\
s Ieqs v s Tegs v
(@) (b) (© (d)

FIG. 1. Dlagrammatlcal representation of the vacuum-to-B-meson correlation function 14 2l (p, q) defined with the AO-type SCET

operator Oﬁ = (EW,)ysh, and the power suppressed interpolating current Jf) |, at one loop.
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Obviously, the NLO correction from the hard-collinear Wilson lines presented in the diagram (c) of Fig. 1 yields vanishing
contribution due to n> = 0. One can further verify that the hard-collinear corrections displayed in the diagrams (b) and (d) of
Fig. 1 give rise to the identical results

202Cr _ dPl n-(p+1I)
A0 _pa __ 29CF h/ (28
[lLNLO = 7 {|.NLO ﬁ-p—w‘“( )275 ") @o)Pn-(p+Di-(p—k+1)+ 12 +i0][n- 1+ i0][l> + i0] (28)

which can be evaluated straightforwardly with dimensional regularization scheme

C 1 u? 1 U2 u? n?
G G bl Sln——E 1] 4o I - 4otm
[.NLO INLO = T €2 Pl plw—1-p) + 1+ > = +In + |.Lo*

n-plw—n-p) n-plo—n-p) 12
(29)

Adding up different pieces together and applying the matching condition (23) leads to the hard-collinear functions at the
one-loop accuracy

Crl[4 1 2
g = O B (a4 3) pom——
” || € € n-p n.p) -p .

4r (@0 — n-plw—n-p)
2 2
U b3
+3In -—+ 7} },
n-plw—n-p) 3
A1) _
7=, (30)

which are in precise agreement with the results presented in [29].

2. SCET factorization for TZ, (p.q)

Along the same vein, the jet function J2 , can be determined by performing the perturbative factorization for the partonic

I+
matrix element

rp = [ aer [ a(ofr{e0 ] e0.ic8)0). @05, bla,wn, ). 61)
taking advantage of the matching relation in analogy to (23)
a)/
FB = J — 0 ,@')). 32
H Z ||m<n a7 p>*< (@, @) (32)
Evaluating the diagram (a) in Fig. 2 with the SCET Feynman rules leads to
(
hv O(AO) hv £§0)
I $§ -
N o N
A R
) )
7l (2) 7l (2)
ds Le, qs Leq
(a) (b)

FIG. 2. Dlagrammatlcal representation of the vacuum-to-B-meson correlat10n function l'[BH (p, q) defined with the AO-type SCET

operator Oﬁ = (EW.)ysh,, the leading power interpolating current ] 55” and the subleading power SCET Lagrangian £< )
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dPl n-(p-1)
FO — apcea. )ty h/
1o = ~29:Crd( )2 2z)Pn-ln-(I+k)+13 +i0ln-(p—Di-(p—1-k)+ 2 +i0][? + i0]
a,Crin-p—w |1 u? l/n-p—w n-p—w
= |- +1 = In| —— |F}, . 33
2 a) [e+nn-p(a)—ﬁ-p)+2 ii-p 1 ii-p Il.Lo (33)
We can proceed to write down the SCET amplitude for the diagram (b) in Fig. 2
a'Dl d’L n-Ln-(p+L)n-(p+L+1)
|LO ngF D 2 . 2 . 2 B 2 N
2m)P ) (2z)P [L? +i0][(p + L)* +i0][(p + L + 1)*> + i0][I* + i0]
7 4gi h n® L? 14 & () st o_F1L
gs(k) 2r)*6*(I+ L+ k) |a —|—}/l —|—n L 2—|—kl/j ' [(2r) 6% (1 + L + k)] yL—ﬁn

" |:ﬁa Yar (B +11) Livel LI+ L. } ﬂyshw (34)

n-(p+L+1) n-(p+L) n-(p+L)n (p+L+l)

which can be further evaluated with two distinct approaches by identifying the transverse derivative (‘ﬁ acting on the Dirac
o-function as 0/0k 3 and 0/ JL | 4, respectively. We have verified explicitly that both the two calculational methods lead to
the identical results

2
FB0) _ a,Cr _E+l n H n 21n(1 +1) _3
[.LO 2 e

4r n-plo—n-p) n
2 2 In(1
—1n2(—” . >+ln< - >{2n( +'7)—3]
n-plw—i-p) n-plw—i-p) n
L, 4 n’ A
+Eln (1+n)+ ZJF] In(1 4 #) +— 7 =8¢ Fil Lo (35)
where we have defined 7 = —w/7i - p. Applying the matching condition for the matrix element FZ i presented in (32) we can

readily derive the hard-collinear functions JZ , at tree level

.+

aSC A,(0) 2 1 /42
B _ECFE A0 ) 2 L o\ o1 -3
=" 4z "{ €2+€{ n(ﬂ-p(w—ﬁ-p) a1 +7)
2 # s 2
2 +ln<—_) —21In(1 +7)=3]=1n2(1 + g
<n~p(w—n-p)> n-p(w—i-p) [=21n( )3 ( )

+ (%— 1) In(1+7n) +%2—8},
=0, (36)

B
T+

which are again in complete agreement with the previous calculations displayed in [29].

3. SCET factorization for HE | (p-q)

We are now in a position to compute the jet function J¢
SCET matrix element

i = [ e [y [ ee(ofr{enSew.icl o)L @), EWo 00 )

which can be further matched onto the light-ray HQET operators defining the B-meson LCDA

I+ entering the SCET factorization formula (17) by inspecting the

as<k>hv>, (37)
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02 m(

n-pw’i-p

C0/

) (O (. 0)). (38)

The LO amplitude of F¢ | can be obtained by computing the diagram in Fig. 3

_ B
SRR a0 E
n-pr‘z-p—a)q“( )2

m gch

FﬁLO = - }/Shﬂ

(D=2)(n-1)?

8 / dll
Q)P n-ln-(1+

k)+ 13 +i0l[n- (p— D)7

_ ma,Cp i ln(ﬁ-p—a)

®w 4r n-p—w+i0 n-p

where m indicates the mass of the collinear quark
produced from the weak decay of the heavy quark. It
is evident that the light-quark mass effect defined by F ﬁ
is not suppressed by any powers of A/m, in the heavy
quark expansion compared with the SCET matrix ele-

ments Fﬁ and F ﬁ The resulting jet functions J¢ |+ at tree
level are given by
oo m 1 aSCFln n-p—w
I+ wn-p—w+i0 4z i-p )’
Jﬁ_ =0, (40)

which are consistent with the results derived from
the diagrammatic factorization approach for the corre-
sponding vacuum-to-B-meson correlation function in
QCD [24].

Plugging the obtained jet functions (30), (36) and (40)
into the factorization formula (17) and employing the
decomposition of I1, | defined in (15) yields

OﬁAO) N
:y\/\,
< .(0)
oF Jeew
N (1)
s E&qs

FIG. 3. Diagrammatical representation of the vacuum-to-
B-meson correlation functlon ¢ I (p,q) defined with the

AO-type SCET operator 0H

interpolating current jé?b and the subleading power SCET

= (W,)ysh,, the leading power

Lagrangians £éll> and Egg

“(p—1—-k)+ 1 +i0][> + i0]

)0 575 (39)
[
_fB(ﬂ)mB +oo dw
M) =0

a,Cr u? 0]
XH 4n (I’A‘O)< pwﬁpﬂ%@ﬂ)

il

(41)

where the normalized one-loop jet functions J |(|/_% ) and J")

I+
read
2 2
.7<A0):1n2 ﬂ—_ —21In Iu—_
= =\ plw—n-p) neplo—i-p)
x In(1+7n) —1n?*(1 +7)
2 72
——11In(1 -1,
+<'1 )n( ) 6
A(m)__ﬂ ﬁ-p—a)
JH’JF— wln<7ﬁ'p ) (42)

To facilitate the construction of the SCET sum rules for the
effective form factor £(n- p), we need to work out the
dispersion representation of the factorization formula (41)
by computing the spectral functions of the various con-
volution integrations over the variable @

~ _ o
Hu,ll(P,q)—_]MA+ »

2 ' —n-p—i0
X @5 et (@' 1) + (@ )Ry, (43)

where the effective B-meson “distribution amplitudes” are
introduced to describe both the hard-collinear and soft
fluctuations [22,24]
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B B a,Cp o 2 u? o' —w
Ppee (@' 1) = (0, 1) t {A dw [a) — <lnn o 21n —~

0 2 2 o 2 dor=
‘/ dw{lnz : /—(2ln : ,+3>lnw ,w+21n3,+”__1] ¢B(w,u)},
o n-pw n-pw 0] w 6 dw

¢, 1)
(&)

v ., aCp o w—0o' d ¢g(o,u)
Gpp(@ ) = yp mL/ dwln T de W (44)
The plus function appearing in (44) is defined in the standard way [50]
| dolf.alog@) = [ do flo.o)lo(w) - g(a). (45)

Matching the spectral representation of the factorization formula (43) for the vacuum-to-B-meson correlation function
I, with the corresponding hadronic dispersion relation

Svymy n-p\? /+°° do/ B
M, (p.q) = |- ’ : — (. n-p)|@, 46
v (P q) [ e p =i p—i0 \2my &y(n-p)+ a)’—fl-p—iOpH(w n-p)\n (46)

we can readily derive the NLO sum rules for the SCET form factor & (n - p)

fa(p) mpmy  [o n-po' —my| +
Enro(n - p) = 27— [ do! exp | - ————L [ (' 1) + ¢ (0 o). 47
I NLO( ) fv,|| (n A p)2 0 n- pwy [ B, ff( ) B, ( )] ( )
The scale-independent longitudinal decay constant of the vector meson is defined as follows
(V(p.€)jul0) = —ifymyes(p). (48)

The HQET B-meson decay constant fp () will be expressed in terms of the QCD decay constant f at one loop [58]

Ay CF

falu) = {1 -

-1
Gmi+0]m=K%mwm. (49)
T my,
Taking the factorization scale u as a hard-collinear scale y,. ~ +/Am,, will introduce the enhanced logarithms of m,,/u in the
perturbative matching coefficient K (m,, 1), whose resummation at the NLL accuracy can be achieved with the standard RG
approach. Solving the two-loop RG evolution equation for the HQET decay constant f5(u) [59,60] leads to

Fa() = Us(ppa. 1) f (1), (50)

where the explicit expression of the evolution function U, (uy,, ) has been derived in [58,61]. Since the soft scale pu
entering the initial condition of the B-meson distribution amplitudes ¢ (@, uy) is numerically comparable to the hard-
collinear scale y;,. ~ 1.5 GeV, we will not perform the NLL resummation of the parametrically large logarithms of u/ug by
applying the Lange-Neubert evolution equation at two loops [62]. It is then straightforward to write down the resummation
improved SCET sum rules for &(n - p)

U ) f w, e —
EaiL(n-p) =2 2(pos 1) f 5 (ppn) mpmy A d exp {_u

2
14 - / * (@ )
Iy (n-p)? n- pay, ] (DB e (@' 1) + bp (@, )] (51)

B. The B-meson LCSR for E(z.n - p)

We aim at constructing the SCET sum rules for the Bl-type nonlocal form factor E(z,n - p) from the following
correlation function

My (paer) =52 [ atxers [ drerm O, (0. EWOrs(WHP WO O} B (52)
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the leading power contribution of which can be readily identified as

ﬁy,u(P,éL

0 =" 2 [ aers [y [ are @m0 0). GWO)rs (WP W) )b, (0)) By

(53)

The soft-collinear factorization formula for the vacuum-to-B-meson correlation function INL,H can be obtained by integrating

out the hard-collinear dynamics

,,(p.q.7

mBZ/+oodw

J( ), (54)

The short-distance matching coefficient functions J |,m can be determined by investigating the SCET matrix element

Fy(p.q.7)

:I’l p/d4xeip‘x/d4y/dre—in~p1r
2r

(0[]0 B eta). 020, 00, @O WD W )0 a0 ). (55)
Evaluating the tree-level diagram displayed in Fig. 4 with the SCET Feynman rules yields
dPl (D=2n-In-(p=0é(t—n-1/n-p) (56)

F||(P’61’T) = g%CFEIs(k)%

h,
2}’5 v

2n)P[n-1n- (I+ k) + 2 +i0][n

“(p=Dit-(p—1-k)+ B +i0][? +i0]’

which can be further computed with the contour integration method

aCpn-p

Fi(p.q.7) = (-i) o

Applying the matching relation for the SCET matrix element F(p.q,7)

Fi(p.q.7) =

ZNM(

we obtain the jet functions entering the factorization
formula (54) at tree level

iy =SS P14 g1 - oot~ o)

Jj_=o0. (59)

Matching the spectral representation of the SCET

factorization formula (54) for the correlation function ﬁb,”

By mal(1 = o201 = )]

/00 da/
X — =
o @ —n-p—i0

x [ [T a0 L g0 (60)

,,(p.q.7) =

" P in(1 4 )1~ 001 ~ )2, (8) hpsh. (57)
' ,
,.—,T> * (OH,m(a),a)», (58)
p
h
O‘(lBl
~ \ .
A
(0)
- Jsf v
s £e,)

FIG. 4. Diagrammatical representation of the vacuum-to-B-
meson correlation function fI,,.H (p, g, 7) defined with the B1-type
SCET operator 0‘(| = (EW)(0)ys(Wiip.  W.)(rn)h,(0), the

leading power interpolating current jé?u for the longitudinal
polarized vector meson and the subleading power SCET

Lagrangian Eé;) .
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with the corresponding hadronic representation

~ fv My
H s Y = |— : .
v (P q.7) [m%nm—ﬁj%ﬂo

n-p\* _
X <—> mh:H(T,n-p)

ZmV

+o0 do'’
~h( . -
—I—A‘ P — P 0P (0',n-p,7)| 0y,

(61)

and employing the parton-hadron duality approximation
with the aid of the Borel transformation, we can derive the
SCET sum rules for the nonlocal form factor Z(z,n - p)

a,Cr Us (o, ) f (pna) mpmy
n I n- pny,

x [(1=2)0(0)0(1 —7)] |
A e

XA/ ¢B(w )+O( 2), (62)

E”(r,n-p) = -

where the summation of the enhanced logarithms of m,, /u
entering the hard matching coefficient K=!(m;, i) has been
included at the LL accuracy.

It will be interesting to compare the obtained sum rules
for E(z,n- p) presented in (62) with the direct QCD
calculation in the SCET framework. Integrating out the
hard-collinear fluctuations, the B1-type SCET; form factor
E|(z,n - p) can be further factorized as the convolution of
the short-distance coefficient function and distribution
amplitudes of the B-meson and the vector meson in SCETy;

2mv mB

—[Us (o, ﬂ)fB ()1 fv. I

EﬁCET(T, n-p)=

n-pam,

< [T [ dvgiw e

J?,CHET(T, v, ), (63)

where the jet function J ?,CHET has been determined at NLO in

a, [45] by implementing the ultraviolet renormalization and
the infrared subtraction with the dimensional regularization
scheme and the evanescent operator approach. Substituting

the tree-level expression of J?,C”ET into the SCET factori-

zation formula (63) and employing the asymptotic form of
the vector-meson distribution amplitude ¢y (v, u) =

6v(1 — v) leads to

39%CF mpny

:ﬁi%T(T n-p)= N. (n-p)m, (U (w2 1) f 5 (12))]
X fvl(1 =7)0(2)0(1 —7)]
< [T g . (64)

Based upon the power counting scheme for the sum rule
parameters

g~y ~ O(N/my,), (65)

the resummation improved SCET sum rules (62) for
E|(z,n- p) can be further reduced to

E” (T, n- p)

__aCr Us (o, ) f 5 (pna) mpmy _ _
== o e [(1-17)0(2)0(1 - 7)]
o :

X A ;w(pg(w’”){a)M(l - e_wx/wM) exp [n n;‘(/UM} }’

(66)

which can be readily demonstrated to be identical to the
tree-level SCET factorization formula (64) by employing
the QCD sum rules for the vector-meson decay constant at
the leading-power approximation [63]

) N,

—w,/w m%/
VI = Tog —5S5n-poys (1 —e™ M)expn.pr

+ O(ay). (67)

However, we mention in passing that the advantage of the
SCET factorization over the LCSR approach presented here
lies in the fact that it is free of the systematic uncertainty
induced by the parton-hadron duality approximation of
the light-meson channel and the perturbative correction to
the hard-collinear function E(z,n - p) at O(af) can be
determined by computing the SCET; Feynman diagrams
at (£ —1) loops instead of evaluating the effective dia-
grams for the vacuum-to-B-meson correlation function

l:I,J!” (p,q,7) at £ loops.

C. The B-meson LCSR for &, (n-p)

We proceed to construct the SCET sum rules for the AO-
type form factor &, (n - p) by investigating the following
vacuum-to-B-meson correlation function

M, (p.q) = / d*x e (O[T{j,, (),
EW) 057 h(0)}[BL).  (68)

where the interpolating current for the transversely polar-
ized vector meson is given by
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jbp(x) = q/(x)yvpr_Q(x)‘ (69)

Matching the QCD interpolating current j,, onto SCET;
yields

(0) (1) )

jl/p(x) = j§§,1/p (x) + j§§,y/)(x) + ijy,y/)('x) + ) (70)

where the resulting effective currents of our interest can be
written as

o _ A
‘]éﬁ?l/p = 55?/)1.5”1/’
(2 2o I 7, 4 e
Jéq):w = é’WcEJ’pLYI% + QA'YSEYPJ_WCf) i, (71)

The SCET representation of the correlation function (68) at
leading power in the heavy quark expansion can be readily
derived as follows

M, (p.q) = / d*x e (0TS, (x). (EW,)(0)rs7,h,(0)}]B,)

4 / dix oirs / ALY, (0),i8) (), (BW.) (077, h(0)}B,)

+ / d*x eirx / dy / d*2(O[T{j S, (x).iLL) (v).iL5)(2). (EW)(0)7s7,.h,(0)}1B,)

=11, (p.q) + 115, (p.q) + 11, | (p.q). (72)

Integrating out the hard-collinear dynamics of the vacuum-to-B-meson correlation functions I1

rise to the SCET/HQET factorization formulas
Hl
m==

where the jet functions J/_,, will be determined at O(a
which anticommutes with all of the y-matrices.

1. SCET factorization for 1T
Following the strategy presented in Sec. Il A, the short-distance function J*| Tom

fB(H mg oo ; M
;u/pj_(p CI) Z deJ_,m m?l'l?

IL,,, | defined in (72) gives

2 @ ~ )
)asg(w’mg,mnw (i = A.B.C). (73)

) with the naive dimensional regularization (NDR) scheme for ys,

vp J_(p q)

can be obtained by implementing the

perturbative matching SCET; — HQET for the matrix element

ipx s ?{ = -
Flos ) = [ atxer(0/1da, 016000, @ Osryi 0 s 00m, ). (74)
It is straightforward to write down the LO contribution to this SCET matrix element
Fiio(p ) = = R b, =~ O (.0 (75)
up, L LO pP.4q) = fzp—a)+10qs y/)L}/ﬂL Vs, = flp—a)’+10 M)J_CUCO s
where the HQET matrix element <0/(4 p) | (w,@")) is defined in the standard way
_ _ #
(O (@) = (010} (@[, (k)h,) = 8 (K)1p17, 5 75,5 = ) + Olay), (76)
with the light-ray effective operator in momentum space
0 (0f) = o= [ dre™ @¥))y,.7,. 5 rs(Vin,)(0) (77)
up, L W)= o7z e qs L s)\IN)Yp1VulL 275 sty .

To facilitate the infrared subtraction for the renormalized matrix element FA

convenient to introduce the HQET operator basis

4.1 (P, q) beyond the tree level, it will be
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it (> = [ ﬂ
0 @) =5, [ dre @) (11) gy S| (41)O)
g P
0w =5 [ dre (@, v,) )iy 5| (Vi (0),
05w = 5 [ are (v [ (YTl e, )| im0 79
up. L @ 27[ el qsts)\tn _2 2 Vs — €1 sty s
where we have employed the following conventions for brevity
1 anp
€pul = Eeﬂ/mﬂn i’ (79)

It is apparent that the evanescent operator 0}(:;)1) (') vanishes in the four-dimensional space-time, however, it may generate
the nonvanishing contribution to the perturbative matching coefficient by mixing into the physical operator under the QCD

radiative correction. Expressing the HQET operator 0/(4")

o1 (@') in the given basis

n n3
Opy), (@) = 0 (@) + 02 (@) + 0} (@), (80)
and employing the matching relation for the SCET matrix element Flfjﬂ. 1
@' (m.k)
F, (pq) = () o ) (81)
et k;b‘mznn n-pa' i p ot
we can readily derive the tree-level jet functions
A10 A2.0 A3.00 1 A0 A2.00 A3.00
TR =T =T = e T =T =T =0 (82)

Taking advantage of the B-meson distribution amplitudes defined in (25), the factorization formula for the correlation

function IT), | (p,q) at LO in a, can be written as

H;Awp,i (p’ q) =

implying that the jet function J4 ,, in the SCET factoriza-
tion formula (73) can be constructed

JJ_— jJ_n ) jj_‘ = (84)

JJ_+

The NLO contribution to the SCET matrix element
F 1(p.q) can be deduced by evaluating the four
Feynman diagrams in analogy to those presented in Fig. 1
|

ip) 5@ 1) g7ty + Olat). (83)

with the proper replacement of the Dirac structures for the
effective weak current and the interpolating current of the
vector meson. It is evident from the Wilson-line Feynman
rules that the resulting amplitudes of the one-loop diagrams for
Fi, 1 (p.q) and Fﬂ‘ (p,q) are insensitive to the Dirac struc-

tures of the SCET operators defining these two correlation
functions. It is then straightforward to write down the SCET
amplitude of F ;‘p’ 1 (p, q) from (30) at the one-loop accuracy

a;Cr | 4 H H

F q) =—|5+- (41 3) +2m2—%
ﬂP,J_,NLO(p q) 4 |:€2+€ < nn,p(a)_n p)+ > + n np(a)—flp)

+3In # i (p.q)

n-plw-n-p) 3 wo-LLOWP 4

2 /
. k(1 H @ n.k
= (=) 30 P () s 0w (55)
k=1,2,3
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(M

The master formula for the one-loop jet function J /iil

Z Tin

2 CU/
(n,k) , B
(” po'’ ﬂ) * <0;4/1.L(w7(0)>(0) = Z [j

can be derived by expanding the matching relation (81) at O(«)

2 /
Ak, (1 H () n,k
( >( —) « (0 (0, )0

k=123 k=123 o \n-pa’i-p
LT Y o] s)
The ultraviolet renormalized one-loop matrix elements (0};11)@) @'))1) can be written as
(Ol @)® = IM" + 210, (. )0, (87)

J

where the superscript R indicates the infrared regularization
scheme implemented in the computation of the bare matrix

(1)

elements M, i Employing the dimensional regularization

scheme for both the ultraviolet and infrared divergences,
the bare matrix elements vanish due to the scaleless one-

loop HQET diagrams. The one-loop jet function jilr;(l)

can then be readily determined by comparing the coef-

ficient of <0(" B(a) ')

T =10 = 3" ZV R g0 (88

k=123

1.(0)

The infrared subtraction term Z(lll) * j’i”n' removes the

1.(1)

soft divergences of the one-loop amplitude Ti”n’ such that

the resulting short-distance function J 'rln'(l) is finite as it
must be. Implementing the ultraviolet renormalization for

the HQET operator o (@

, .
up, L bare ) ylelds

002 (@) = Zyp(@. @) * O L e(@). (89)

which indicates that the renormalization constants Zép

and Z%) vanish. The renormalization constants for the
evanescent operator will be determined by applying
the prescription that the infrared finite matrix element

hU hru

O(" :3)

up, L

(a) (b)

<05;’i)(a), w')) vanishes with the ultraviolet divergences
treated in dimensional regularization and with the infrared
singularities parameterized by the regulator other than the
dimensions of space-time [42,43]. Taking advantage of the
relation (87) and the preceding renormalization scheme for

the evanescent operator we obtain

off

zy = My (90)

Plugging (90) into (88) with the vanishing renormalization
constant zg? gives rise to

D _ AL _ Joff

AL (
jj_,n L.n ‘-7J_ n + M3l ‘-7J_ N

o1

We proceed to compute the one-loop HQET matrix

element of the evanescent operator 0;';1) (') for the

determination of the bare amplitude Mgll)‘)ff. It is evident

that only the diagram (a) in Fig. 5 can potentially generate
the renormalization mixing of the evanescent operator

O, L(a)’ ) into the physical operator O< D | (). The cor-

responding one-loop amplitude can be readlly derived with
the HQET Feynman rules

O(" 3)

pp, L

O(" 3)

wp, L

(©)

FIG.5. The one-loop HQET diagrams for the renormalization mixing of the evanescent operator 0( )(a)’ ) into the physical operator

(n,1
o) (a).
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dPl 1

(n.3) N\ (La) — ;.2 ! w—Ti-
(O, )1 = lgSCF/ P [+ 17+ 0]=v -1+ 0] 0] 2
xa A+ 0[5 (25 s ) ©2)

Performing the loop-momentum integration and employing the classical equation of motion for the light quark, we observe
that the soft gluon correction will not resolve the dynamical structure of the light-ray HQET operator 0/(;'3) (o).
Consequently, we obtain

MY =0, (93)
Substituting (93) into (91) yields the final result for the one-loop matching coefficient
U =T -2 L gL o

from which we can further write down its explicit expression

2 2 2
A(1) A.1,(1) a,Cr 2 H H 4 A,1,(0)
J = =—121 3In——r———s——+7 )
tm =T 4r 1 n'p(a)—ﬁ-p)—’— nn'p(a)—fl-p) 3 T L
Al AL(1
7 =gt =o. (95)
It needs to point out that the absence of the HQET operator mixing between 0;:;’2 (@') and OI(J;,’B (') under renormalization

arises from the heavy quark spin symmetry, in contrast to the counterpart collinear operator mixing pattern under the
radiative correction [64].

2. SCET factorization for 11, | (p.q)

For the sake of determining the jet functions ]’i , entering the SCET factorization formula (73), we consider the
following partonic matrix element

Py () = [ axer [ ats{o[r{ 657,600,650, @WO)r,1,(0)}

as<k>hv>. (9%)

Applying the SCET Feynman rules we can observe that the contribution from the diagram (a) displayed in Fig. 6 can be read
from the result of the corresponding matrix element (33) defined with the effective currents interpolating the longitudinally
polarized vector meson

a Crit-p—wll u? 1 /(i-p—w i-p—m
FB’() , ot S b b 1 - I|In|—— |F4 ,q). (97
up, L (p q) o @ €+ nn-p(w—fl-p)+2 =, + n —_p up,J_,LO(p Q) ( )

Evaluating the SCET; diagram (b) in Fig. 6 leads to

0
Ry o0 Dy é £y
~ Ly“ e ~
S . o(l’ ; N .
RaaY RAAY
7 (0 s (0
//} Jeewp /z/ Jeewp
s e s £
(a) (b)

FIG. 6. Diagrammatical representation of the vacuum-to-B-meson correlation function H/ljv/). 1 (p. q) defined with the AO-type SCET
(0)

operator OiAﬁ) = (EWC);@}/’, Lh,, the leading power interpolating current j..,, and the subleading power SCET Lagrangian Eg)
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dPl /dDL n-Ln-(p+Ln-(p+L+1)

B,(b) _
Pl = acy | @n0P | CaP I+ i0)[(p + L) + 0)[(p + L + 1) + ][ + 0]

g,(k) { (27)**(1+ L + k) {fz“ +7% nl—LL nnfll %} g + k@, [(2r)* (1 + L+ k)] [yj - nl—LLna} }
L Yar(BL ) Livar LI+ L) jt
y”L["“+n~<p+L+l)+n-(p+L) _n-(p+L)n~<p+L+l>"“] 27Tl %)

whose result cannot be extracted directly from the counterpart longitudinal matrix element displayed in (35). Implementing
the Dirac algebra reduction in the D-dimensional space-time and performing the loop-momentum integration, we obtain

C 2 1 u? In(1 +7n)
FB'(b> P, q :as F{——+—{—21n< — )“1‘2 —4
L (P-4) ’ n- pl P)

4z e € w—n- n
2 2 In(1
—1n2<—” . )-l—ln( - ){2“( +’7)—4}
n-pl@—i-p) n-pl@—n-p) n
1, 4 ’ "
+Eln (l +’7) +Zln(l +’7) +€_ 8 Fﬂ/),J_,LO(p’ Q> (99)

Adding up the contributions from these two diagrams and performing the infrared subtraction with the evanescent operator
approach, the jet functions Ji . can be determined as follows

A= [ () (o) 20+ -

2 2
—In*(1+7)+ (—— 2) In(1+7) +%_ 8] T
n .

JE =0, (100)

which are consistent with the previous results obtained in [29], employing the momentum-space projector for the B-meson
LCDA in the D dimensional space-time.

3. SCET factorization for 1L, , | (p.q)

We proceed to determine the light-quark-mass induced jet functions .Ii . appearing in the SCET factorization
formula (73) by investigating the partonic matrix element

Foputpa) = [ atxers [ty [ atz(0frda e 060000200, @WIO11m,(0)} . ).
(101)
Computing the tree-level contribution to F,‘fp. | with the SCET Feynman rules leads to
F;fp.i_(p’ q) = %r—l"gi)—cfa}EIs(k)pryMl g%hv
D _ N2
o ey e e eI R ey ey

which vanishes in the four-dimensional space-time in contrast to the result of the counterpart longitudinal matrix element as
displayed in (39). The corresponding jet functions Jf, , can therefore be determined as

I =J0_=0(a). (103)

An interesting consequence from such observation is that the light-quark-mass corrections to the radiative leptonic decay
amplitudes of B — yZv, and B; — y£¢ will not give rise to the leading power contribution in the heavy quark expansion, at
least, at O(ay).
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Substituting the derived jet functions (95), (100), and (103) into the SCET factorization formula (73), we can readily
write down

Fa(w)mpg /+°° dw a,Cr ~a0) [ 1 ® _ _
n ,q) = 1 J ,—— , ,+O(a?), 104
e, (P Q) > ) mpmern| T T e ) | 9B @ MG £ Ola), - (104)

where the renormalized one-loop jet function J (lAE) reads

2 2 2
J _—ln - - < —21n - _— < lnl—i—n —ln - —
- <n'p(w—n-p) n-plw=n-p) (d+7) n-plw—i-p)

”2

—1n%(1 +7n) + (%—2) ln(l—l—n)—g—l. (105)

The spectral representation of the factorization formula (104) can be further derived with the explicit expressions of the
various dispersion integrals displayed in [22]

ALY /+°° do
0

Hyvp,i (pv CI) = 2 0 &E,eff(a)/’ ”)gﬂpolu + O(ag)v (106)

o —n-p—i

where we have introduced the “effective” B-meson distribution amplitude g?ﬁg’eff for brevity

~ , L a,Cr o' 2 u? o —-—w 1 _
(o p) = , d 1 _21 - :
Ppes(@' p) = g0, 1) + in {A C‘)L) — o <nn 7 = 2 @4’3(@ 1)

-pa)
0o 2 2 2 PN 2 do= ,
—/ dw[lnz B T ,—<21n a ,+4)lnw ,“’+21n3/+”__1}M}.
o n-pw n-pw n-pw w o 6 dw

(107)

Matching the SCET factorization formula (106) with the hadronic dispersion relation for the vacuum-to-B-meson

correlation function I1,,,,, |

fv.i(n-p é(n~p)+/+°° do'

- — (e iy, 108
my/n-p—i-p—i0 2 o —n-p— 0" p)}gﬂﬂnv (108)

)1 (pq) = {

and implementing the NLL resummation for the enhanced logarithms of m, /i, we obtain the following SCET sum rules for
the form factor &, (n - p) at O(ay)

Uy (kpos 1) f5(Hp2) mp /‘” { ”'Pw/—m%/] S
da' exp | ————| Pg o (@, 1). 109
fvi() — p - pay B, ¢ ( ) (109)

Si(n-p)=

The renormalization-scale dependent transverse decay constant of the vector meson fy | is defined as follows

(V(p.€)jipl0) = —ify L (v)poe; (P (110)

where the corresponding RG evolution equation can be written as

d e a n+1
T a0 =), )= () an
with the first-two expansion coefficients [65]
257 52
rro = —2Cp, yra = Cr [19CF—7CA +5(”1+ ])TF:|- (112)
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It is evident from the definitions of the AO-type SCET form factors (2) that &, (n - p) is independent of the QCD
renormalization scale v of the transverse decay constant fy | (v). In order to demonstrate this argument from the obtained B-
meson LCSR displayed in (109), we need to distinguish the renormalization scale v for the tensor interpolating current of

the vector meson j,,, from the factorization scale y that is related to the RG evolution of the light-cone HQET operators. To

this end, we decompose the one-loop jet function J 1’*9 entering the factorization formula (104) into the following two

pieces

2 2 2
A ] Py B ] s | (113)
T \n-pw n-p T \n-pw n-p S\ pw n-p

where the QCD scale v dependence of the second term on the right-hand side is determined by the RG evolution equation
for the tensor current

d .m0 K ® ~0) [ ®
—J —\ V| = )0 ,——,U . 114
dinv " \n-pw Fz-py rr(a) L=\n-pw n-py (114)

Employing the consistency condition of the newly defined function for v = pu

2
5?1’*?)( K ,_&,u:ﬂ> —0, (115)
T \n-pw n-p

it is straightforward to write down the solution to (114)

2
5?:)( K ,_w ,1/) :aS(i':i)yTyoln(/%>+(’)((x§). (116)

n-po n-p

The resulting hard-collinear function jf@ is therefore given by

2 2 2
AR G ARy N P (R S— ) § Y (S — | P )
“\n-pw'i-p n-p(o—i-p) n-plw—i-p)

1/2 2

—1n<m) —In2(1+7) + (%—2) ln(l—l-r])—%—l. (117)

As a consequence, the “effective” distribution amplitude entering the SCET sum rules for &, (n - p) with the two scales u
and v distinct from each other is given by

- . ., a,Cr of 2 u? o —w 1 ~
s s = > — d 1 -21 —— ,
Frantarn) = it + S0 [ o 22 (n o an 2251 i)

-pa)
[ 2 2 2 P 2 dd~
_/ d‘”{h‘z £~ ,—<21n £ /+4>lnw /w+21n3,+”——1]—¢3(‘”’”)}.
(118)

D. The B-meson LCSR for E (z,n - p)

Now we turn to construct the sum rules for the B1-type SCET form factor E, (z, n - p) with the following vacuum-to-
B-meson correlation function

ﬁﬂl’/’~l(p’q’1) = %/ d4xeip~x/ dre_m.p”<0|T{jvp<x)’ (EWC)(0)757yl(WIll)cJ_Wc)(rn)ht(O)}‘Bv> (119)

Employing the SCET] representation (70) of the interpolating current for the transversely polarized vector meson, it is
straightforward to identify the leading power contribution of the correlation function (119)
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~ n- : ; . .
My (pog.6) =52 [ dxers [ty [ aremrmr O, (0.6 ),
(W) Oty (WEiD W) ) (0)}1B,). (120

Performing the perturbative matching of the SCET; matrix element onto HQET yields the soft-collinear factorization
formula

n-po i

~ Fe(w)mp too IS @ _
s (pr.0) =2 S [0 (2 ) g0, )91 (121)
m==++0 @ P
The short-distance functions J 1.m can be extracted from the hard-collinear contribution to the partonic matrix element

7 n-p ipx —in-ptr (0 ol
Fopi(p.q.7)= ?/ d*x e'? / d4y/ dre P (O|T{]é§?bp(x), lﬁéqi (y),
(EW)(0)7s7, L (WELPe L W) (rn)h, (0)}g,(K)h,).- (122)
Employing the SCET Feynman rules we can readily derive the tree-level amplitude

_ it _
Fupi(p.q.7) = GCra(k)[(D = 4)7,1 701 + 2741751 5 75h01,

2
dPl n-ln-(p=08(t—n-1/n-p)
N R C— L i e (123)
Qr)Pn-ln-(I1+k)+15+i0]n-(p=Dn-(p—1-k)+ 15 +i0][l* + i0]
which can be further computed as follows
= N %GCpn-p _ o
F/wp,J_(p’ q, T) = (_l) 771[1(1 + ”)[(1 - 7)9(T>9(1 - T)]Qs(k)yﬂJ_pr_EVShvnw (124)
Applying the perturbative matching relation for the SCET matrix element
2 /
= . A, H w (7.k) Y7
F,,1(p,g7)=(-i Al;( , = ,1)* 0, | (w,w))i,, 125
o (p20:5) = (=) 3 T 7 per) + O @) (125)
with the light-cone HQET operators in the momentum space defined by
O @) = o [ e (@,1,)(6m) |00 B | (10,1 0)
up, L W)= 2z e qsts)\IN) 1 Gpul 275 sty P
0 w) =~ [ aret (a,v,)(1m)iey. | (vin,) 0)
up. L W)= 27 e qsts n le/)lul ) sty s
00 w) = 5 [ are (v |[E (VeI i, )| vin) 0) (126)
up. L W)= ﬂ e qsts)\In 5 T)@ LLPR sty >

and implementing the infrared subtraction scheme with the evanescent operator approach described in the previous
subsections, the determined jet functions are given by

To= Tt =S Pt (1 - D0@o0 — ), T =T, =0 (127)

Taking advantage of the spectral representation of the factorization formula (121) for the vacuum-to-B-meson correlation
function ﬁ,w/,, n

074035-21



GAO, LU, SHEN, WANG, and WEI PHYS. REV. D 101, 074035 (2020)

. o C
H;wp,J_ (p7 q, T) -

— Fs()mp[(1=7)0()0(1 7))

x / v do / do™L ¢} (0. p) (128)
—_ w0 P , i,
o @ —ii-p—i0 w TB\OH Jup 11w
with the aid of the corresponding hadronic dispersion relation
~ fv()my, n-p\._
H s Y = |— - = N .
/wp,J_(p q T) |: m%,/n-p—ﬁ-p—iO D) J_(Tn P)
400 do' h B
A= e T 12

we obtain the desired sum rules for the nonlocal form factor £, (z,n - p) under the parton-hadron duality approximation

_a sCr Us (o, ﬂ)fB(ﬂhz) nmp [(1-7)0(7)0(1 —7)]

Ei(r.n-p)= 2 fri()

X / * do exp [—
0

Comparing the tree-level sum rules for the B1-type SCET
form factors & , (7, n - p) presented in (62) and (130) leads
to the following relation

[1]

L(@”‘P)_fv,L(’/)”‘P )
(z.n-p)  fvy va+0(a3)’

(131)

_m

which is in precise agreement with the SCET factorization
formulas obtained in [45]. It remains to be verified that
whether the LCSR calculations of = | (z,n - p) with the
B-meson distribution amplitudes can reproduce the already
accomplished SCET computations at O(a?).

|

dinyu
d

(B,
dlnﬂCi (l’l p,T,ﬂ)

n-pa — m%,] /oo qu&g(a),y) +O().
o ()

- pou) = {—Fcusp(%)ln(,f—p) t V(GS)]C

Tagla)in( 1)l

I
(n-p,z,u) +/ dr’ygBl)(T',T)C(
0

my

(130)

n-pwy

|
E. RG improvement of the hard matching coefficients

Plugging the obtained sum rules for the “effective”
form factors (51), (62), (109), and (130) into the SCET;
factorization formulas (8) gives rise to the explicit
expressions of the leading-power contributions to the seven
semileptonic B — V form factors in the heavy quark
expansion, which serve as one of the major technical
results of our paper. Taking the factorization scale u of

order \/m,,A, the hard matching functions C % and C
involve the parametrically enhanced loganthms

In"(m;/A), which need to be summed up to all orders
in perturbation theory at NLL and LL accuracy. To achieve
this goal, we will apply the RG evolution equations for
these short-distance functions in momentum space [44,45]

2 pp),

B peop),  (132)

where the anomalous dimension y(a;) does not depend on the Dirac structures of the AO-type SCET currents, however, the

nonlocal evolution kernels y<B1

1

these RG equations can be written as

- p.u) =

I
CEBI)(n -p,t, 1) = Exp[-S(n - p,ﬂh,,u)]A dT’UgBl)(T, r’,,uh,,u)CSBU(n P, T ),

Ul (I’l : p?”h’ﬂ)ct('AO)(n : p?luh)’

)(1’ ,7) depend on the spin structures of the B1-type SCET currents. The general solutions to

(133)

(134)
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where the NLL approximation of the evolution function U; and the LL expansion of the S function can be found in [58] and

[45], respectively. As the tree-level expressions of the Bl-type hard functions C

(B1)

(n-p,z,pu;) displayed in the

Appendix A are independent of the 7 variable, the solution to the corresponding RG equation can be further reduced as

B (n- p,e.u) = Expl=S(n- p, pp, 1)U} l)(Tvﬂhvﬂ)Ci,L8<n'pvﬂh)v

with the newly defined evolution function

Bl 1 Bl
Ul )(wth,/t):/o d?UP (2,7 g ).

(B1)

i

An approximate solution to U

Bl
dep})) (T’ Hh» :u) = (

(B1)

with the explicit expressions of y;~ ’(r) given by [45]

C
yB”u)z—cp+4(cp—4Q

2

47 1In
yf”&)z—cp[f T+1]+4<

T

The large logarithmic resummation improved SCET fac-
torization formulas can then be deduced by substituting the
solutions (133) and (135) into (8) with

(B1) ~(Bl) ~(BI)
for Cfo ’Cf+ ’Cfr ’

i=L1 forcy) PV

i =l

(139)

IV. THE HIGHER-TWIST CORRECTIONS
TO B — V FORM FACTORS

We are now in a position to compute the higher-twist
corrections to the semileptonic B — V form factors from
both the two-particle and three-particle B-meson distribu-
tion amplitudes at tree level by employing the LCSR
approach. To this end, we will need to establish the
QCD factorization formulas for the following vacuum-
to-B-meson correlation functions

1) (p.a) = [ dixer QT (). 30)T6(0))

X |B(p +q)).
0 (p.0) = [ @ (OIT{j}, (. 2001 b(0))
x |B(p +q)), (140)

where the interpolating QCD currents for the longitudinally
and transversely polarized vector mesons are given by

(B

(7, pp, p) (better than 1%) at the LL accuracy reads

(135)

(136)

a (1) )—yi“”(r)/@ﬁo) )
as(/’lh) ’

In7
T 9
cF—%> F“lnfﬂlf”]. (138)
T

7 7aa(v).
(141)

~
=<
—~
=
~—
\
Q\
—~
=
~—
|
<
—~~
=
~
~
I~
[
—
=
~—
I

and the Dirac structures of the heavy-to-light transition
currents under discussion are

' e {r,(1=ys).  iou(l+7s)g}. (142)

Employing the light-cone expansion of the quark propa-
gator in the background gluon filed up to the gluon field
strength terms without the covariant derivatives [66] (see
also [67] for an update for the massive quark case)

_ . o d*l
(0IT{g(x), ¢(0)}|0) > ig, AT

% /1 du|: UX,Yy _ (l"' m)a/w
0

12 _ m2 2(12 _ m2)2

(143)

—il-x

x G" (ux),

with G,, = G}, T* = [D,,A,], and applying the general
parametrization of the vacuum-to-B-meson matrix element
of the three-body light-ray HQET operator [46] (see [47]
for the original but incomplete parametrization in terms of
four independent distribution amplitudes)
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(01G4(217)95Gpu(2272) 1, (0| B,)) = ]#)mg [T+ P (vry = 1) [¥az1. 22.4) = Wy (21 20, 4)] = i0,, Wy (21 22, 1)
— (v, = 71,0,) XA (215 20, ) + Ay, — 7, [W(z15 225 1) + Y a(21, 22, )]
+ i€qpN "V ySXA(Zl’ZZ 1) = i€asiYPysY 4 (21, 20, 1)
= (v, = 1,0, )W (21, 22, 1) + (v, = By, )RZ(215 220 1) 375 ) o (144)

we can readily derive the three-particle higher twist corrections to the aforementioned correlation functions at LO in a

~ (V—4).3P 1
II ,q) = d d d
wl (p.4) 2n p / wl/ a)z/ " i p—w —uw, + i0]?
3P m V-A),3P
{ [P( I sz (u, 01, @7) + 0. p/’f, I NI)‘p (u, w1, (02)}
3P m —A).3P
+ n |:p( H L]I2 (M, 0)], CUZ) + npi"/“,N]{P (uv CU] ) CUZ):| }a
A (V=A4),3P 1
II ,q) = d d
op.L (P.4) 2n p / / a)z/ " [t p— o, — uw, + i0]?
—A).3P 3p
{[gau + le(s,u]ﬂ(l Lp) (u, wy, ;) +ﬂ [95,@ l€5,u]/)i Nﬁl (M,wl,wz)},
A(T+T).3P
11 ,q) = d d d
wl (p.q 4n p / wl/ a)z/ " [t p—w — uw, + i0]?

3P 3P
- a = ) [ ) 4 D . 0)]

~(T+T),3P mB _ 1
II .q) = d d d
ot (p.2) = 2” D / “i / 0)2/ ! [l p—w — uw, + i0]?

3P q 3P
{[gay¢+l€5y¢]ﬂ(ffp (u, wl»wz)+m[gaﬂ l€5u]ﬂf§if)> (“’0)1’0)2)} (145)

The explicit expressions of the invariant functions entering the tree-level factorization formulas (145) can be written as
follows

nHLP (2“_1)(XA_TA—2YA)+)~(A+‘PV—2)~/A,

-A -
pE'LHNE,P =2(Wa—Wy) +4(W+Ys+ Y, -22),

P =201 = u) (W, + Py,

n,||.LP

P (W, W) = (X + Ry —2Y, —27,),

P(L,EP)’ = Qu—=1)(Xg =Wy =2Y,) = Xy = Py +27,,

PV =~y By) Xy — Ky = 2(Ya - V),
ﬁTpr) P = Qu=1)(Xy + Py —2Y) + Xy =y — 27,

T+T),3P ~ ~
PN = (g = Wy) + X+ Xy +2(Y + T) + 4(W - 22),

PP = QU= 1)(Xy = Wy = 2Y,) = Kp =Wy + 27,

/’(LT,;QSP =—(Pa+¥y) +Xa—Xa—2(Ys - Yy). (146)
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Apparently, our results for the six invariant functions

appearing in the factorization formulas of ﬁ/&“ﬁ are identical

to the corresponding coefficient functions in the QCD
representations of the vacuum-to-B correlation functions
defined by the pseudoscalar-meson interpolating current
and the b — ¢ weak transition currents. In addition, two
interesting relations for the four invariant functions entering

(@)

the tree-level factorization formulas of fI(sﬂ i

can be established due to the equation of motion for the
effective heavy quark.

We proceed to compute the higher-twist two-particle
corrections to the correlation functions 11 f‘ and H((SM) I
from the nonvanishing partonic transverse momenta, to
fulfill the nontrivial constraints due to the classical QCD
equations of motion. Keeping the light-cone correction
to the HQET matrix element of the two-body light-ray
operator up to the O(x?) accuracy, it is straightforward to
generalize the previous definition (25) beyond the light-

AT = TP PG = IR (141 Cone sponovimaton
|
0@, )0 0B = = T80 [ e [0 ot 4 50,
- i) = 30 + Ri(o) = i) Jrs| (149
Applying the precise operator identities for the light-cone HQET operators [47]
A @Y)WPTO)0) = =i [ du(@, V) (@0, (VG V,) ) TV IR,)(0) (149)
vﬂ% (@,Y) ()L (Yih,)(0) = ill dudu (g,Y ) ()95 (Y3 Gy Y ) () 0T (Y5 1,) (0)
+ (0-9)(@,Y ) ()N (Yih,)(0), (150)

one can express g5 (o, 1) and gz(w, u) in terms of the higher-twist three-particle B-meson distribution amplitudes [24,46]

d2 3
2o =[5+ (-

dw,
—/ —‘P4 w, W, jt)
0 0)2

2 g - Bﬂw—mi}@(w,m—1¢;<w,u>+/

dw,
iy -~
0 wz

A)i}qsg(w,u)—lqsg(w,m I

/ —‘P460 Wy, Wy, ),

d
/ﬂqjsw Wy, W), ).

da)z d
sy
A w, do 4(0) wy, ,Ll)

da)2

(151)

°°da)2 d
—_lP ) )
o @, do s(@, ), pt)

(152)

The resulting factorization formulas for the two-particle higher twist contributions to H( ) and H( “) .1 at tree level can be

written as

A

—A)2
-4 PHT( .q) =

0

_ 2?3(#)'”3

ﬁ(V—A),ZPHT(p, )
n-p

o, L

fran o

V-A 2fB( Jmg _ o0
# P " U T

ﬁp_w)Q ”1

s+ ] / " 22
i€ —
GouL aull) J, (ﬁ P —w) Pri

dw (V—A),ZPHT( )

2PHT
(V=A), (

w1, @y, u,,u)}
9

(7 p = o) = uew,)?

V—-A),2PHT
(V-4) (0. )

).2PHT
(01, @y, u, )
(- p—w —uw,)?
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S

N Fe(w)mpg _ © dw 7).
(T+T)2PHT(p’q): B(') B[ Cqn, —n- qh,] e p(T+T)2PHT(w”u)

wl i-p—w)? [.1
(T+T)2PHT
p”z (601’602,’4’/4)
da)] da)z dl/l - 2 ’
(- p—w —uw,)
W (T4 T 2f 2fp(u)mg o dw T+T) 2PHT
[7-+7).2PHT q) = B\H / (T+7), )
Su,L (p.q) nep 4[95ﬂ¢ + leaﬂﬂ o (A-p- w)z Pl (@, p)

/ ) / ) / T+T 2PHT(w 0, 16, 1) .
@1 @2 (i-p—ow —uw)? |

The explicit expressions of the newly introduced invariant functions are given by

V—A),2PHT (V—A),2PHT (T+T),2PHT T+T),2PHT ~l
P\(\,l =Pl =P :P(L1 5@, p),
7 7 1
V—A),2PHT V—A),2PHT T+T),2PHT T+T)2PHT _ _
p‘("z ) :pﬁ_l ) :pl(l.;r ) :pﬂ_;» ) EuTS(wl’wz’”)’ (154)

with the “genuine” two-particle twist-five distribution amplitude

(o) = [ dollo - )50) = $3(0) - 2R - P)3(0)). (155)

Adding up the two-particle and three-particle higher twist corrections to the vacuum-to-B-meson correlation functions

fl’(laﬁ and ﬁ((sz) | yields

o (V—A) HT fa(u)mp /°° dw _ (V-4) e, / / /
f __ 4 d doy, | d
| (p.q) 2n-p o (i-p-w) 7, |1 ) )] u (- — o) — uwn)?
m
x { <p(v Cg(a)l,a)z,u M) R— pin” Sip(wl,wz,u ,u))
- m
+ (ﬂf,,vfﬁ(wl,wz, u,p) + P p/’WH gLP(wl’a)z, u, H))} }7
A (V—A)HT } ( ) « dw V—A)2PHT
wa,L) (p.q) = B {(95u¢+l€5,,¢)/ m[—@ii ) (60,/1)]

d d d
/ wl/ wz/ ! (A-p—w - “w2)2

V-A
{(95,@ + leaﬂL)P(L LP)(wl» s, U, M) + _p (gsﬂl l€5ﬂ¢)ﬂ(l,NL1)>(w1, w7, u,,u)] }

ﬁ(T+T),HT(p, q) = fB(ﬂ)mB In- af, — 7 qnﬂ] {AW (dia))z [_4P(T+T)’2PHT(aJ,,u)]

Al an-p Pa— 1

1
/ da)l/ da)z/ du(n Frp—— |:pLP (@1, W, u, y)+_p|(|TI\TLTP)(w1,w2,u M)]}

felpw)mp _ . e dw 2
Hfsit_T)HT(p’Q) :&nq (g(sﬂl—i_lC&ML) ; ﬁ[_“'pi;r ). PHT(O),//!)]

2n-p n-p—w
d d d
/ “’/ “’/ “Gp - —Mw2)2
« (gL + (T+T) — (T+7) 156
Isul leéyL)pJ_LP (w1, @3, u, ) 2p q(gﬁﬂl leﬁyL)pJ_,NLP(a)l’wZvu’/") ) (156)

074035-26



PRECISION CALCULATIONS OF B — V FORM ... PHYS. REV. D 101, 074035 (2020)

where we have introduced the following conventions

/’(VH le w5 - s, pivn e = 2@,

Puiin = 21— W)@y, AR

p(lVJ:ll’q) =5+ s, pﬂ_,NLl)J = W5+ ¥s,

p‘("T]}T) = 2= 1)y + ¥s = ¥s. p\(\,TI\;rLng =20 + ¥5 — P,

Plin) = W5+ s PN = W5+ ¥, (157)

Following the standard strategy, we need to write down the hadronic dispersion relations for the above-mentioned
correlation functions

~(V-A) 1 fvmy n-p\?2 mp 2my N mpg —+ my )
Il .q) == - A —A
2 (p-4) 2m%//n‘p—r‘z-p—i0<2mv) mB—n'pn" n-p ola) ) + n-p @)

e )], (2 ) (P ) )

mp n-p
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+ [ o el @) el ),

~ (V-A) 1 fya@)(n-p)? mp + nmy 2 : Mp 2
I1 .q) =—= A + %4
Sul (p,q) 2w jn-p—ii-p—1i0 9sul nop 1(q%) L€su1 mp + my (q°)

1 —A . V-A
+/ do' PR [QEMLQS_A, @.n-p)+ lea,ug(l,v (. n-p).

- (T4 T) 1 fvmy n-p\* mp N 2
I, (p"I)_zmzv/n-p—ﬁ-p—io 2y [n-qi, — 7 - qny —n-pTZ(q) T5(q%)
1 _ T+7
o[ o gl am = an e ),

o (T+7) 1 fyi(w)n-pmg mg ) ) )
fl q) =~ B p T
sul (P q) Swiin-p—ip—10 [\ p () ) + i€ Ti(4?)

1 T +T
+/ do' m[g(wmirz)(w n- P)+l€5,u9(lT (. n-p). (158)

Matching the dispersion representations of the tree-level factorization formulas (156) with the hadronic representations of
the vacuum-to-B-meson correlation functions (158) and applying the parton-hadron duality approximation leads to the
desired sum rules for the higher-twist contributions to the semileptonic B — V form factors

n-p\? my, 2my oy, oo Fa(w)mpg /wf _ d  (v—a)2pHT
- —Z ) Bxp|l-—YX—| |[=—*A =127 dw e=®/on | —4—p , ,
fvmv<2m ) xp[ n-pa)M] [n‘p 0 (4) 2n-p 0 ve do” 1 (@.4)
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/ dw, / @l K/’;(a,.ug(a’hwz’ s pr) + —/’51 ||,N£p(w1’w27 s )
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p—n-p m . (v-A
+ = </’;(1 I le(a)l,a)z,u 1)+ pp( I, Nﬁp(a’l’w%” /‘)ﬂ oy
u=(w;—w)/w,

day e'/ou V-A m  (y-a
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}, (159)
u=(0'~o,) /o,

—n-p( v-n m_(v-a)
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Several comments on the subleading power contribu-
tions from the higher-twist B-meson distribution ampli-
tudes are in order.

(1) The two-particle higher twist corrections preserve the
large recoil symmetry relations for the soft contribu-
tions to the semileptonic B — V form factors. In
addition, the twist-four B-meson distribution ampli-
tude g (w, u) will notappear in the tree-level sumrules

due to the fact that ﬁ/ﬁ“')l and IA]E;) . are defined with the

leading-power interpolating currents for the longitu-
dinally and transversely polarized vector mesons.

(i1) The three-particle higher-twist B-meson distribution
amplitudes can generate the large-recoil symmetry
breaking effects for the soft form factors already at
tree level. In particular, the two form-factor relations
presented in (9), which are valid up to all orders in
O(a,) at leading power in A/my,, will be violated by
the subleading power corrections due to the light-
quark mass contributions.

V. NUMERICAL ANALYSIS

The major objective of this section is the numerical
exploration of the resummation improved LCSR for the

semileptonic B — V form factors including the subleading
power corrections from the higher-twist B-meson distri-
bution amplitudes up to the twist-six accuracy. Applying
the z-series parametrization, we will further extrapolate
the obtained LCSR predictions for these QCD form
factors at large hadronic recoil to the whole kinematical
region. Phenomenological applications of our results to
the semileptonic B — (p, )¢, decays and the rare
exclusive B - K*v,v, decays will be also discussed with
an emphasis on the determination of the CKM matrix
element |V,;,|, the normalized differential branching
fractions, and the ¢2-binned K* longitudinal polarization
fractions.

A. Theory inputs

The fundamental ingredients entering the derived sum
rules for B — V form factors include the two-particle and
three-particle B-meson distribution amplitudes up to the
twist-six accuracy, the decay constants of the B-meson and
the light vector mesons as well as the intrinsic sum rule
parameters. We will employ two phenomenological models
for the involved B-meson distribution amplitudes consistent
with the classical QCD equations of motion as constructed in
[24,46], whose explicit expressions will be collected in
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Appendix B for completeness. Two independent HQET
parameters, Ag(u) and R(u) = A% (u)/ 2% (u), are introduced
to parametrize the shapes of these nonperturbative dis-
tribution amplitudes (see [68] for more discussions on
the alternative parametrizations of the twist-two LCDA).
Applying the Lange-Neubert evolution equation for
¢4 (o, u) [50], the RG evolution of the inverse moment
Ag(p) at the one-loop accuracy can be written as [58,69]

Ag (o) a,(uo)Cr { Koo }
— 1+ m2—2mt — 46
A (1) 4r Ho Ho 5 (o)
+ O(a?), (166)

(1)

with the inverse-logarithmic moment o’ given by

o dw

00 =4a) [ "% (4) g0, (169

[0

The NLO determination of o'y (1) = 1.4 0.4 from the
method of QCD sum rules [70] will be taken in the
subsequent numerical analysis. The one-loop evolution
equations for A%(u) and 12 (u) are defined by the matrix
elements of the dimension-five HQET operators [71,72]

d (WY  au) W\
i () 5 gy ) 0 099

where the anomalous dimension matrix ygy reads

4 3
3Cr =3 N,

(%CF+§NC
YEH =
8Cr+3N.

4 3
gCF_ENc

). (169)

Diagonalizing this renormalization mixing matrix, one can
readily obtain the solution to the RG equation (168) in the
LL approximation [71]

Co) =[G G

(170)
where V is the matrix that diagonalize ypy, so that
. s 0
VeV = [}’S )]diagﬂ (171)

with the eigenvalues of the one-loop anomalous dimension
matrix

8 1
,O (g Cp+ 2Nc> + \/64C3 — 144N C + 90N

1 1565
=— £\ —).
5(3047)

(172)

It is evident that the RG evolution of the ratio R(u) =
22.(u)/23(n) at LL accuracy can be readily deduced from
(170). We further employ the QCD sum rule estimate for
R(up) = 0.5 £0.1 at the reference scale uy = 1 GeV by
combining the results from [55] at the LO approximation and
from [72] including the higher-order perturbative and non-
perturbative corrections.

Following the standard strategy [58], the HQET B-meson
decay constant fp(u) will be expressed in terms of the
QCD decay constant fz by virtue of the matching rela-
tion (49). The lattice QCD determination fz = (192.0 +
4.3) MeV with Ny =2+ 1 from the Flavour Lattice
Averaging Group (FLAG) [73] will be adopted in the
following. The longitudinal decay constants of the light
vector mesons can be extracted from the leptonic decays
V0 = eTe™ and from the tau lepton decays 7+ — VTu,.
Including the flavor mixing of p° — @ — ¢ due to the QCD
and QED interactions gives rise to [11]

fo=(213£5)MeV, f, (1GeV)=(160+7)MeV,
foy=0197£8)MeV, f, (1GeV)=(148+13)MeV,
fr) = (04£7)MeV, fg(1GeV)=(159+6)MeV,
(173)

where the renormalization-scale dependent transverse decay
constants of the vector mesons at yy =1 GeV are also
displayed by making use of the ratios fy (2 GeV)/fy
computed from the lattice QCD simulation with 2 + 1
flavors of domain wall quarks and the Iwasaki gauge
action [74]. The RG evolution of fy (v) at the NLL
accuracy can be determined by solving the equation (111)
straightforwardly.

We proceed to discuss the determinations of the Borel
masses and the threshold parameters for the light vector-
meson channels entering both the leading-power and the
subleading-power LCSR of the semileptonic B — V form
factors. The interval of the Borel mass for the p-meson
channel M3 = (1.5+0.5) GeV? extracted from the two-
point QCD sum rules [75] will be employed in the numerical
calculations. Taking into account the SU(3) symmetry
breaking effects for the improved LCSR of B — V form
factors, we will employ the relations proposed in [75] for the
determinations of the Borel masses for the w and K*
channels

2 2 _ 2 2
Mg, —M; =mg, —m

2 My. — M5 = my. —m3.

(174)

The continuum threshold for the longitudinally polarized
p-meson channel sg. ,=(1.5£0.1) GeV? [17,75] is deter-
mined by the requirement that the QCD sum rule prediction
of the vector-meson decay constant f, at O(a,) can
reproduce the corresponding experimentally measured
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value. By contrast, a lower value of the threshold para-
meter for the transversely polarized p-meson channel
s, = (1.2£0.1) GeV* will be adopted to incorporate
the contaminating contributions of the b;(1235) channel
to the QCD sum rules for the transverse decay constant f, |
effectively (see [76] for more discussions). The con-
tinuum threshold parameters for the @ and K* channels
will be fixed by applying the approximate relations in
analogy to (174).

The bottom-quark mass in the MS scheme m,(m;,) =
4, 193f8:83252 GeV determined from nonrelativistic QCD sum
rules at next-to-next-to-next-to-leading order (NNNLO)
[77] (see also [78] for alternative determinations with
relativistic QCD sum rules and [79] for the NNNLO
determination from the bottomonium spectrum) will be
employed in the numerical analysis. We further employ the
intervals for the light quark masses in the MS scheme at a
renormalization scale of 2 GeV from [80]

m,(2 GeV) = (2.15 +0.15) MeV,
my(2 GeV) = (4.70 + 0.20) MeV,

my(2 GeV) = (93.8 £ 1.5+ 1.9) MeV. (175)

Following the discussions displayed in [24], the factori-
zation scale u entering the obtained LCSR for B — V form
factors will be varied in the interval 1 GeV <y <2 GeV
around the default value 4 = 1.5 GeV and the renormal-
ization scale for the QCD tensor current will be taken as
v = my,. In addition, the initial scales for the RG evolutions

of the hard matching coefficients C EAO) (n-p.u),C l(-B]) (n-p,

7,u) and the HQET decay constant f(u) will be chosen as
Unt = Mo € [my/2,2my) around my,.

B. Theory predictions for B — V form factors

We are now in a position to investigate the numerical
impacts of the perturbative QCD corrections and the higher
twist contributions to the semileptonic B — V form factors
applying the SCET based formulation of the LCSR
approach. To this end, we first need to determine the
inverse moment Ag(uy) of the leading-twist B-meson
distribution amplitude, which serves as the principle theory
input for the precision description for exclusive B-meson
decay amplitudes in QCD generally. The nonperturbative
calculations of Az () from the method of HQET sum rules
[70] and the complementary indirect extractions from
measuring the integrated branching fractions of the radi-
ative leptonic B-meson decays [58,61,68,81] provided us
meaningful but still loose constraints on this key quantity at
present. Due to the limited knowledge of Az(u), we prefer
to perform an independent determination by matching our
prediction for the vector form factor Vp_,(¢?) at the
maximal hadronic recoil with the corresponding result
from the improved NLO LCSR with the p-meson

distribution amplitudes [11]. Proceeding with this match-
ing procedure immediately gives rise to the following
constraints

343155 MeV, (Exponential Model)

176
370182 MeV, (Local Duality Model) (176)

Ap(po) = {

which can be further traded into the intervals of the HQET

parameter A

(Exponential Model)
(Local Duality Model)

_ { 51577% MeV,

= (177)
46386 MeV,

Here the yielding errors of Az(u) and A are obtained by
adding all the separate uncertainties of varying the theory
input parameters discussed in Sec. VA as well as the light-
meson LCSR prediction V_,,(0) = 0.327 4+ 0.031 [11] in
quadrature. Evidently the determined values of the inverse
moment Az(uy) depend on the specific models for the
HQET B-meson distribution amplitudes employed in
the LCSR calculations, because the sum rules for the
semileptonic B-meson decay form factors cannot be con-
trolled by a single shape parameter Az (uo) completely and
the precise shapes of the two-particle and three-particle
B-meson LCDA are in demand for the SCET LCSR analysis
(see [22,29] for further discussions). Consequently, it is
justified to implement the exponential model and the local
duality model for B-meson distribution amplitudes with the
different intervals of Az(yy) as displayed in (176) for
phenomenological applications of the B-meson LCSR
approach. For the practical purpose, it will be conservative
to take the interval Az(ug) € [264,439] MeV, covering the
two parameter spaces indicated in (176) (see also [68]), for
phenomenological studies of the B-meson decay matrix
elements dependent on the inverse moment Az (u) solely (for
instance, the leading-power contributions to the radiative
leptonic B — yZv decay form factors in the QCD factori-
zation approach). It is also interesting to notice that the
extracted values of Ag(yg) are in nice agreement with the
previous determination by matching the distinct LCSR for
the vector B — x form factor f}_ _(g*) with the analogous
prescription [22] and are also consistent with the implica-
tions of experimental data for the two-body charmless
hadronic B-meson decays from the QCD factorization
approach [82] (see also [83] for the discussion in the context
of B — f4(980)¢7,). In the following we will take the
exponential model of the B-meson distribution amplitudes as
our default choice to explore the phenomenological aspects
of the newly derived SCET sum rules, and the systematic
uncertainty due to the model dependence of the B-meson
LCDA will be taken into account in the final theory
predictions for the semileptonic B — V decay form factors.

To develop a transparent understanding of the higher-
order perturbative corrections and the higher-twist
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FIG. 7. Breakdown of the various terms contributing to the two
B — p form factors Vp_,,(¢*) and Agp_,(¢*) from the SCET
sum rules with the exponential model of the B-meson distribution
amplitudes at g> < 8 GeV?. The individual contributions corre-
spond to the two-particle leading-twist effects at LL (black
curves) and at NLL (blue curves), the two-particle higher-twist
corrections (green curves) and the three-particle higher-twist
effects (yellow curves).

contributions from the two-particle and three-particle
B-meson distribution amplitudes computed in this work,
we display in Fig. 7 the numerical effects of distinct pieces
contributing to the final sum rules for the two B — p form
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FIG. 8. The Borel mass dependence on the different terms

contributing to the vector B — p form factor at g> = 0 (top panel)
and at g> = 8 GeV? (bottom panel) predicted by the improved
LCSR obtained in this work. The individual contributions
correspond to the two-particle leading-twist effects at LL (black
curves) and at NLL (blue curves), the two-particle higher-twist
corrections (green curves) and the three-particle higher-twist
effects (yellow curves).

factors Vp_,,(¢*) and Ag 3_,,(¢*) at large hadronic recoil. It
is evident that the NLL QCD radiative corrections to the
leading-twist contributions can give rise to approximately
(25-30)% reduction of the corresponding resummation
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improved tree-level predictions. In particular, the two-
particle twist-five contributions to both the two B — p form
factors at LO in QCD generate sizeable corrections, numeri-
cally (20-30)%, to the leading-power predictions at NLL, in
analogy to the earlier observation for B — =z, K form factors
[24] (see also [84] for independent calculations of the higher-
twist effects). By contrast, the genuine three-particle higher-
twist corrections yield approximately O(10%) and O(2%)
enhancement of the leading-twist calculations for the trans-
verse and longitudinal B — p form factors, respectively. We
have verified that the preceding observed patterns for the
higher-order and higher-twist corrections are also satisfied
for the SCET sum rules predictions of the remaining B — V
(with V = p, w, K*) form factors. In addition, we have also
displayed the Borel mass dependence on the various terms
contributing to the vector B — p form factor at ¢g*> = 0 and
g* = 8 GeV? in Fig. 8, for the sake of demonstrating the
stability of the newly derived sum rules with B-meson
distribution amplitudes.

Now we proceed to investigate an interesting issue of
QCD computations for the heavy-to-light B-meson decay
form factors at large recoil from the SCET factorization
approach and from the LCSR method with the light-meson
distribution amplitudes. Generally theory predictions for the
form-factor ratios from these two different approaches are in
reasonable agreement with each other, however, the obtained
results for the following B — V form-factor ratios”

“The analogous form-factor ratios r, and ry,, have been also
proposed in [11] to demonstrate the crucial role of the equations
of motion, as previously discussed in [85], for reducing the theory
uncertainties of the light-meson LCSR calculations. It is straight-
forward to establish the following conversion relations

m, +m
rp = hm qu_lq
B
my, —m 2Em _ 2
For = 711 -2 (1 R;)}szo(—g :
B q B

where we have introduced an additional form-factor ratio R;
defined by [45,65]

(my/E)A,
(mp +my)/(2E)A; = (mg —my)/mgA,
=14+ O(ay;, A/mp),

R; =

and obviously R5 = 1 at g> = 0. It is evident that the deviations of
r; and ry,, from one characterize the large-recoil symmetry
breaking effects of the semileptonic B — V form factors and they
have been computed explicitly from the LCSR approach with the
vector-meson distribution amplitudes in QCD [11]. By contrast,
we evaluate the form-factor ratios R, in this work by taking
advantage of the SCET (hc, c, s) representations of the QCD heavy-
to-light weak transition currents and computing the effective form
factors &,(n - p) and E,(n- p) (a = ||, L) from the SCET sum
rules with the B-meson distribution amplitudes in HQET.

o _mstmyT,
1= My v’
mB/(zE)TZ —T;

Ry = (mp 4+ my)/(2E)A; — (mp — my)/mgA,’ (178)

differ in both the magnitude and sign of the large-recoil
symmetry breaking effects [4,45,65]. It is our purpose to
address whether such discrepancies are due to the yet
higher-order corrections in both a, and A/m,; or due to
the systematic uncertainties of the method of QCD sum
rules. To achieve this goal, we display our predictions
for the form-factor ratios from the improved SCET sum
rules with the B-meson distribution amplitudes in Fig. 9,
including the corresponding NLL results from the QCD
factorization approach for a comparison. It can be
observed that our predictions for all the B — p form-
factor ratios, particularly the sign of the symmetry
breaking, are in agreement with the SCET results
displayed in Fig. 6 of [45]. As speculated in [45],
the above-mentioned discrepancies between the two
different QCD calculations may potentially arise from
the systematic uncertainties of constructing the sum
rules for the heavy-to-light form factors with the
vector-meson distribution amplitudes, provided that
the missing higher-order corrections in the light-meson
LCSR method still cannot compensate such discrepan-
cies (see [4,45,65] and references therein for more
discussions). This can be also understood from the fact
that the traditional LCSR for the semileptonic B — V
form factors in the heavy-quark limit will introduce
new nonperturbative quantities, for instance ¢’ (1) and
<I>ﬂ(1) [8], which cannot be constructed from a finite

number of Gegenbauer moments of the corresponding
vector-meson distribution amplitudes and whose field-
theoretical definitions are absent in SCET [86]. On the
contrary, the new LCSR for the AO- and B1- type SCET
form factors with the B-meson distribution amplitudes
involve the two quantities ¢5(0,4) and A3z'(u), which
are identical in the Wandzura-Wilczek approximation
(namely, neglecting the effect of the three-particle B-
meson LCDA Y, -%y,) [87] and are well-defined
parameters in the SCET framework.

In addition, we notice that the magnitudes of the
large-recoil symmetry violations predicted from the
SCET sum rules with B-meson distribution amplitudes
are generally smaller than those predicted by the QCD
factorization approach (see also [45] for a similar
observation). To identify the underlying mechanism
responsible for such discrepancy, we write down explic-
itly the separate terms generating the symmetry correc-
tion to R,
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Riresg =1+

[(=0.179) — (—0.154)] x 0.560

0.285

[(~0.0922) — (—0.0922)]
0.285

where the expression of R gcpr is borrowed directly
from (124) of [45] by dropping out the NLO correction
to the hard-spectator scattering contribution. It is then
evident that the negligible symmetry breaking effect
from the B-meson LCSR calculation is due to the strong
cancellation between the AO- and B1-type SCET matrix
elements weighted by the corresponding hard matching
coefficients. By contrast, the symmetry violation pre-
dicted in QCD factorization is numerically dominated
by the hard-spectator scattering and will be further
enhanced by the higher-order perturbative correction
and the RG resummation effect as indicated in [45].
More specifically, the strong cancellation mechanism
from the B-meson LCSR computation can be attributed
to the following reasoning.

(i) The LCSR prediction of the nonlocal SCET form
factor B, (r,n - p) is approximately 40% smaller
than the QCD factorization result at tree level. This
observation implies that approximating the collinear
dynamics of the energetic vector meson by the
corresponding asymptotic behavior is numerically
insufficient for the theory description of the semi-
leptonic B — V form factors beyond the heavy
quark limit.

(i1) Atthe one-loop accuracy, the NLO corrections to the
hard functions of the AO-type SCET operators must
be multiplied with the LO sum rule result of the AO-
type form factor &, (n- p) instead of the physics
QCD form factor

& n-p) =t

= 180
mB—I—mV ( )

V(n-p),

which has to be taken as an hadronic input in QCD
factorization. The SCET sum rule prediction of
& (mp) with B-meson distribution amplitudes at
tree level is approximately twice the complete result
for &F(mp) including both the NLO QCD correc-
tion and the higher-twist correction. As a conse-
quence, our prediction for the symmetry correction

due to CE?\]OL)Lf | is enhanced by almost a factor of

two when compared with the corresponding QCD
factorization result.

. [(-0.03220) - (=0.03219)]

2PHT
= 1+ (=0.049)| 0 + (+0.054)| a1

RI,QCDF =1 + (_0'023)|C(»A0) + (+0086)[1 + O(as)HC(.Bl)’

N [(—1) +0.203] x (—0.0192)
A0 0.285

c®)

i

0.285
+ (=3.5 x 107°) l3ppr

3PHT

(179)

i

We now explore the SU(3) flavor symmetry breaking
effects between B — p and B — K* form factors from the
B-meson LCSR numerically. In our theoretical framework
they originate from the explicit corrections proportional to
the light-quark masses and the light vector meson masses,
the differences in the values of the threshold parameters and
Borel masses, and the discrepancies in the longitudinal and
transverse decay constants for p and K*. Additional sources
of the SU(3) flavor symmetry violations due to the
electromagnetic corrections and the process-dependent
systematic uncertainties (e.g., the parton-hadron duality
ansatz) are not taken into account. For the phenomeno-
logical convenience we introduce the following quantity to
character the SU(3) symmetry corrections

‘ Fi (g%
i 2\ __ ~ B-oK
Rsu(s)(q ) = Fi

B—>p(q2) ’ (181)

where F%_,, represent the seven QCD form-factor combi-
nations appearing in (8) generally. It is evident from Fig. 10
that the SU(3) flavor symmetry breaking effects for the
transverse and longitudinal B — V form factors are approx-
imately 25% and 40% in the large recoil region
0 GeV? < ¢* < 8 GeV?, respectively. This pattern can be
understood from the fact that the leading-power light-quark
mass effect does not contribute to the SCET form factor
&1 (n - p) at the one-loop approximation as demonstrated in
(103). Our predictions for the SU(3) flavor symmetry
corrections are in excellent agreement with the previous
computations based upon the LCSR method with the
vector-meson distribution amplitudes [10], but are signifi-
cantly larger than the updated results presented in [11],
which predicted remarkably small flavor symmetry viola-
tions (approximately 2% and 15% for the transverse and
longitudinal B — V form factors at the maximal hadronic
recoil). We further notice that the subleading power higher-
twist corrections are of minor numerical importance for
generating the SU(3) flavor symmetry breaking effects.
As already demonstrated in [22], the knowledge of the
complete functional forms of the B-meson distribution
amplitudes is in demand for the evaluation of the heavy-to-
light B-meson decay form factors. To reduce the model
dependence of our predictions, the inverse moment A (u)
for a given model of the B-meson LCDA has been
determined by reproducing the alternative LCSR prediction
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FIG. 9. Theory predictions for the B — V form-factor ratios from the improved SCET sum rules derived in this work and from the
QCD factorization approach with the so-called physical form factor scheme [4,45]. Black curves: the leading-power contributions at the
LL accuracy; blue curves: the leading-power contributions at the NLL accuracy; red curves: full results including both the leading-power
effects at NLL and the subleading-twist corrections at LO up to the twist-six accuracy. The yellow curves are obtained from the leading-
power computations with the QCD factorization approach at NLO.
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FIG. 10. The SU(3) symmetry breaking effects for the transverse form factor

mg
mp+my

V(q?*) and for the longitudinal form factor

"E%Ao(qz) at large hadronic recoil, computed from the SCET sum rules with B-meson distribution amplitudes.

for Vp_,(¢> =0) with the vector-meson LCDA as
described in the previous paragraphs. In other words,
we aim at predicting the momentum-transfer dependence
of the transverse B — p form factor Vp_,(¢?) merely.
However, both the normalizations at the maximal recoil
and the g>-shapes for all the remaining form factors
will be obtained from the derived SCET sum rules

1.0

subsequently. It can be observed from Fig. 11 that the
model dependence of our predictions for the precise
w-behaviors of the B-meson distribution amplitudes is
drastically reduced by implementing the above-mentioned
prescription, in analogy to the earlier observation for the
semileptonic B — =z, K form factors computed in the same
framework [22,24].
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Model dependence of the transverse and longitudinal B — p, K* form factors on the shapes of B-meson distribution

amplitudes at 0 < ¢g*> < 8 GeV?. The superscripts “Model-I"” and “Model-II” refer to the exponential model and the local duality model
of the two-particle and three-particle B-meson LCDA displayed in Appendix B.
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TABLE 1.

Theory summary of the resonance masses with different quantum numbers entering the z-series

expansions of the QCD B — V form factors (184). The calligraphic form factors represent the linear combinations
of the conventionally defined form factors, appearing in the SCETj factorization formulas (8) directly.

Fi?—»v(qz) Jr b — d (in GeV) b — s (in GeV)
V(g?), T:(q?) 1- 5.325 5415
Ao(q?) 0- 5.279 5.366
A(q?), Ain(@?), Ta(q*) Ta(q?) 1t 5.724 5.829

Evidently, the obtained LCSR for the SCET form factors
Ei(n-p) and E(z,n- p) (with i = ||, L) cannot be con-
structed without demonstrating the soft-collinear factori-
zation for the various vacuum-to-B-meson correlation
functions under discussion in the first place, which can
be validated with the light-cone operator product expansion
(OPE) technique only at large hadronic recoil. To extrapo-
late the SCET sum rule predictions for the B — V form
factors toward the high g? region, we will employ the
model-independent z-series parametrizations [88] moti-
vated by the analytical properties and the asymptotic
behaviors of the heavy-to-light form factors. The complex
cut g’-plane will then be mapped onto the unit disc
|z(¢%, ty)| < 1 under the conformal transformation

Vi —q* =\t =1
Vig = ¢ + /17 =1

where two parameters ¢, and 7, are given by [24] (see
also [89])

(g% 1) = (182)

ty = (mg + my)(\/mg + /my)*.
(183)

= (mg+my)?,

For the phenomenological applications we will adopt the
Bourrely-Caprini-Lellouch (BCL) version of the z-series
expansion [90] (see [91] for an alternative version and
[92] for more discussions in the context of the semileptonic
B — 7z form factors)

, Fi_,(0)
Fiy v(q?) =—25 75—
B=v 1 - qz/mtz,pole

N .
. {1 DGR m}-
(184)

The adopted values of the various resonance masses from
the Particle Data Group (PDG) [80] and from the heavy-
hadron chiral perturbation theory [93] are summarized in
Table I. For the practical purpose we will truncate the
z-series expansion (184) at N = 1 for the sake of fitting the
coefficients bi, keeping in mind that |z(¢?, #)|> < 0.04 in
the whole kinematic region (see [94] for further discussions

on the systematic uncertainties due to the truncation-
scheme dependence and [95] on the implementation of
the strong unitary constraints).

It is straightforward to implement the matching
procedure for the semileptonic B — V form factors by
employing the improved LCSR calculations at —6 GeV? <
g*> <8 GeV? and the z-series parametrizations (184). Our
predictions for the twenty-one form factors responsible for
the exclusive B — p,w, K* transitions in the entire kin-
ematic region are displayed in Figs. 12, 13, and 14, where
the theory uncertainties are obtained by adding all the
separate uncertainties in quadrature and the updated lattice
QCD results of B — K* form factors with physical-mass
bottom quarks and 2 + 1 flavors of sea quarks [2] are also
shown for a comparison. Generally these two different
QCD techniques lead to consistent form-factor predictions
at large hadronic recoil, with an exception of the longi-
tudinal form factor mg/(2Ex )T gk (%) — T3 i (q°).
Such discrepancy may be attributed to the fact that the form
factor T5(g?) cannot be isolated directly from the helicity
form factor T,3(q?) at large ¢*> in the lattice QCD
simulations [1], due to the phase-space suppression. We
further collect the fitted results for the shape parameters b,
and the normalization constants Fj_(0) entering the
z-expansion (184) with numerically important uncertainties
in Tables II-VII. Several remarks on the obtained numerical
results are in order.

(1) Itisevident that the dominant theory uncertainties of
the resulting predictions for F%_,,(0) and b} origi-
nate from the model dependence of the B-meson
distribution amplitudes at a reference scale (includ-
ing the logarithmic-inverse moments Az and o), and
the factorization scale p. Consequently, it is of
interest to perform the nonperturbative determina-
tion of the momentum-dependence of the leading-
twist B-meson LCDA with the lattice QCD tech-
nique and to compute the yet higher-order pertur-
bative QCD corrections to the AO- and Bl-type
SCET form factors with the method of sum rules.

(i1) Our theory predictions for the QCD B — p, K* form
factors in the whole kinematic region are in reason-
able agreement with the previous calculations ap-
plying the same framework [84]. However, the
leading-twist contributions to B — M form factors
were only computed at LO in the strong coupling
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FIG. 12. Theory predictions of the semileptonic B — p form factors obtained from the SCET sum rules with the B-meson distribution
amplitudes and with an extrapolation to the entire kinematical region by applying the z-series parametrizations (184).
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FIG. 13. Theory predictions of the semileptonic B — @ form factors obtained from the SCET sum rules with the B-meson distribution
amplitudes and with an extrapolation to the entire kinematical region by applying the z-series parametrizations (184).
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FIG. 14. Theory predictions of the electroweak penguin B — K* decay form factors obtained from the SCET sum rules with the
B-meson distribution amplitudes and with an extrapolation to the entire kinematical region by applying the z-series parametrizations
(184). We also display the lattice QCD predictions for these form factors with 2 + 1 flavors of sea quarks [1,2] as indicated by the blue
bands for a comparison.
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TABLE II. Theory summary of the fitted results for the shape parameters and normalizations of the (axial)-vector
B — p form factors with the numerically sizeable uncertainties by varying different input parameters.
Parameters Central value g o u M? S0 i (w)
+0.123 +0.016 +0.002 +0.001 +0.016 +0.127
Vi-,(0) 0.285 -0.073 -0.016 ~0.055 —0.000 —0.018 —0.071
pY -3.72 +0.55 +0.08 +0.45 +0.03 +0.08 +0.00
1p : -0.17 —0.06 -0.76 -0.07 -0.09 -131
+0.027 +0.004 +0.000 +0.000 +0.002 +0.026
Ao.5-(0) 0.093 -0.017 -0.004 -0.011 —0.000 —0.003 —0.021
b ~11.9 +0.6 +0.1 +0.2 +0.2 +0.1 +0.0
1p : -03 —0.1 -0.6 —0.4 —0.1 -1.0
+0.123 +0.016 +0.002 +0.001 +0.016 +0.127
A B=p (0) 0.285 -0.073 -0.016 -0.055 —0.001 -0.018 -0.071
p —4.63 +0.57 +0.08 +0.46 +0.03 +0.08 +0.00
1p : -0.17 -0.06 -0.78 -0.07 ~0.09 -135
+0.027 +0.004 +0.000 +0.000 +0.002 +0.026
A2,5-,(0) 0.093 -0.017 —0.004 ~0.011 ~0.000 ~0.003 ~0.021
pAn -10.8 +0.2 +0.0 +0.3 +0.1 +0.1 +0.0
1p : -0.0 -0.0 -0.5 -0.2 ~0.1 -13
TABLEIII. Theory summary of the fitted results for the shape parameters and normalizations of the tensor B — p
form factors with the numerically sizeable uncertainties by varying different input parameters.
Parameters Central value B o1 U M? 50 % (o)
+0.124 +0.016 +0.002 +0.001 +0.016 +0.128
71.5-(0) 0.287 -0.073 -0.016 ~0.055 ~0.000 -0.018 -0.071
pT —3.57 +0.58 +0.08 +0.44 +0.03 +0.08 +0.00
1p : —0.19 ~0.06 -0.73 —0.06 -0.08 -132
+0.124 +0.016 +0.002 +0.001 +0.016 +0.128
T2.5-(0) 0.287 -0.073 -0.016 ~0.055 ~0.000 -0.018 ~0.071
pT2 —4.48 +0.59 +0.08 +0.46 +0.03 +0.00 +0.00
1p : —0.19 -0.07 -0.75 ~0.06 ~1.36 -1.36
+0.025 +0.004 +0.000 +0.001 +0.002 +0.030
T23.8-,(0) 0.084 —0.018 ~0.004 -0.011 ~0.000 -0.003 -0.017
pT ~113 +0.3 +0.0 +0.4 +0.1 +0.1 +0.0
1p : —0.1 —0.0 -0.6 -0.2 —0.1 —1.4

TABLEIV. Theory summary of the fitted results for the shape parameters and normalizations of the (axial)-vector
B —  form factors with the numerically sizeable uncertainties by varying different input parameters.

Parameters Central value Ag o1 U M? S0 % (o)

+0.134 +0.017 40.002 +0.001 40.018 +0.138

V5-0(0) 0.311 —0.080 ~0.018 ~0.060 —0.000 ~0.019 ~0.078
pY —3.73 +0.56 +0.08 +0.45 +0.04 +0.08 +0.00
Lo : —0.17 ~0.06 -0.76 ~0.07 ~0.09 ~131
+0.030 +0.004 40.000 +0.001 40.003 +0.029

Aop-o (0) 0.102 -0.019 —0.004 -0.012 —0.000 -0.003 -0.022
b ~11.9 +0.6 +0.1 102 +0.2 +0.1 +0.0
Lo : -03 -0.1 -0.6 0.4 —0.1 -1.0
+0.135 +0.017 40.002 +0.001 +0.018 +0.139

At.5-0(0) 0.310 ~0.079 ~0.018 ~0.060 ~0.000 ~0.019 ~0.077
pA —4.64 +0.57 +0.08 +0.46 +0.04 +0.08 +0.00
1w : ~0.18 ~0.06 -0.78 —0.07 —0.09 ~1.36
+0.030 +0.004 +0.000 +0.001 +0.003 +0.029

A12.8-0(0) 0.102 ~0.019 ~0.004 ~0.012 ~0.000 ~0.003 —0.022
pAne ~10.9 +0.3 +0.0 +0.3 +0.1 +0.1 +0.0
Lo : -0.0 —0.0 -0.5 —02 —0.1 -13

o, [84] without implementing the summation of
enhanced logarithms of m,/A. In addition, the
higher-twist corrections from the three-particle B-
meson distribution amplitudes were also estimated at
the twist-four accuracy [84], implying the violation
of the QCD equation of motion (152) already at the
classical level. It needs further to be pointed out that
a comprehensive study of the higher-twist B-meson

(iii)
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LCDA up to the twist-six accuracy, including both
the off light-cone corrections and the four-body
light-ray HQET operator effects, still remains as
an interesting problem for the future improvement.
Applying the LCSR technique with the light-
meson distribution amplitudes, the semileptonic
B — p,w, K* decay form factors have been com-
puted at NLO in QCD for the two-particle twist-two
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TABLE V. Theory summary of the fitted results for the shape parameters and normalizations of the tensor B — @
form factors with the numerically sizeable uncertainties by varying different input parameters.

Parameters Central value Ap o} u M? So i (w)
+0.136 +0.018 +0.002 +0.001 +0.018 +0.140
715-0(0) 0.312 -0.079 -0.018 —0.061 —0.000 —0.020 —0.077
pT —3.58 +0.58 +0.08 +0.44 +0.03 +0.08 +0.00
Lo : ~0.19 ~0.06 -0.73 ~0.06 —0.08 ~-132
+0.136 +0.018 +0.002 +0.001 +0.018 +0.140
T5.5-0(0) 0.312 ~0.079 ~0.018 —0.061 —0.000 ~0.020 ~0.077
pT2 —4.49 +0.59 +0.08 +0.46 +0.03 +0.08 +0.00
lo : —0.19 —0.06 ~0.75 ~0.06 ~0.09 ~1.36
+0.031 +0.004 40.000 +0.000 +0.003 +0.033
7 23.-0(0) 0.092 ~0.019 ~0.004 ~0.012 ~0.000 ~0.003 ~0.019
pT ~113 +0.3 +0.0 +0.4 +0.1 +0.1 +0.0
.o : -0.0 —0.0 -0.7 02 —0.1 —-12

TABLE VI. Theory summary of the fitted results for the shape parameters and normalizations of the (axial)-vector
B — K* form factors with the numerically sizeable uncertainties by varying different input parameters.

Parameters Central value Ap oy U M? S0 HO)
) +0.141 +0.019 +0.001 +0.010 +0.016 +0.153
Vi (0) 0.359 —0.085 —0.019 -0.062 —0.004 -0.017 -0.079
pY —3.94 +0.42 +0.06 +0.42 +0.04 +0.08 +0.00
L.K* : ~0.05 —0.04 -0.73 ~0.07 ~0.08 —127
. +0.036 +0.005 40.001 +0.004 +0.003 +0.037
Ao.p-(0) 0.129 —-0.022 —0.005 -0.016 -0.002 —0.003 —0.025
b —124 +0.7 +0.1 +0.2 +0.2 +0.1 +0.0
LK* : -0.3 ~0.1 -0.6 -03 ~0.1 ~11
N +0.141 40.018 +0.001 +0.010 +0.016 +0.154
Arpok (0) 0.358 —0.086 -0.019 -0.062 —0.005 -0.017 ~0.079
p —4.81 +0.47 +0.06 +0.43 +0.04 +0.08 +0.00
1L.K* : -0.08 —0.05 -0.75 -0.07 —0.08 -133
. +0.036 +0.005 40.001 +0.004 +0.003 +0.037
A (0) 0.129 —0.022 ~0.005 ~0.016 —0.002 —0.003 —0.025
pAn -113 +0.2 +0.0 +03 +0.1 +0.1 +0.0
1.K* : -0.0 -0.0 -0 -02 —0.1 —1.4

TABLE VII. Theory summary of the fitted results for the shape parameters and normalizations of the tensor
B — K* form factors with the numerically sizeable uncertainties by varying different input parameters.

Parameters Central value Ap o) U M? 50 o3 ()
+0.142 +0.019 +0.001 +0.011 +0.016 +0.154

T p-x(0) 0.361 —0.086 ~0.019 —0.062 —0.004 —0.017 ~0.079
pT ~378 +0.45 +0.06 +0.41 +0.04 +0.07 +0.00
LK* : —0.08 —0.05 -0.71 -0.07 —0.08 -1.25

. +0.142 +0.019 +0.001 +0.011 +0.016 +0.154
Trp-k (0) 0.361 -0.086 -0.019 —-0.062 -0.004 —-0.017 —-0.079
pT2 —4.67 +0.48 +0.07 +0.42 +0.04 +0.08 +0.00
1.K* : -0.10 —0.05 -0.72 —0.07 —0.08 ~1.29

N +0.037 +0.005 +0.000 +0.003 +0.003 +0.042
T53.5-1(0) 0.117 -0.023 —0.005 -0.016 -0.001 —0.003 -0.021
pT2 —11.8 +0.3 +0.0 +0.4 +0.1 +0.1 +0.0
1.K* : -0.0 —0.0 -0.7 -0.2 —0.1 -15

and twist-three contributions and at tree level for the
twist-4 corrections [10], with the further improve-
ments [11] by updating hadronic input parameters
and by implementing the interesting constraints due
to Ward identities. Since the vector B — p form
factor at the maximal hadronic recoil Vj_,,(0) =
0.327 4+ 0.031 predicted in [11] has been taken as an
input for the sake of determining the shape param-
eter of the B-meson distribution amplitude ¢} (o, ),
the resulting theory uncertainties for B — V form
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factors obtained in our work are therefore higher
than that presented in [11]. However, the new
model-independent approach of extracting the
twist-two B-meson distribution amplitude developed
in [96], motivated by the combination of the large
momentum effective theory and the lattice QCD
simulation, will be eventually helpful for improving
the theory precision of heavy-to-light form factors
from the LCSR computations with the HQET
B-meson LCDA.
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C. Semileptonic B — (p,w)¢7, decays radiative and electroweak penguin B-meson decays, which
are crucial to the precision extraction of the CKM matrix

B — p, w form factors in QCD, we proceed to investigate elem-ent |V.4| [97] and to the intensive hunting of new
the phenomenological aspects of the semileptonic B — physics beyond the Standard Model (SM) [18’19’98.]’
(p. )¢, decays, which provide a complementary way for due to the appearance of the complex nonlocal hadronic
the exclusive determination of the CKM matrix element ~ Matrix elements even at leading power in the heavy quark
|V .»|. However, we will not explore the further applications ~ €Xpansion. The differential decay rate of B — V£, can be
of the calculated form factors to the more challenging  readily written as

|

Having at our disposal the theory predictions for all the

H 2\1|2
1H ()17 +(2q ) + (1 + cos 6)?

d’T'(B - V¢ Gi|lv
(B—= V)  GilVul* ¢ _/11/2(m3’m2 qz){sin29|Ho(q2)|2+(1—0059)2 )

dg’dcos§  256z°m3} ¢} v

LEGR)

(185)

where the three helicity amplitudes H;(q?) (i = 4,0) can be expressed in terms of the semileptonic B — V form factors

HA) = (mg ) |[40(2) 5 2802

mpg+m
Hy(¢?) =—2—= {

2mv\/7

with the momentum |py| of the light-vector meson in the B-meson rest frame given by

- 1
2% zz—ll/z(m%,m%,,qz), Ma,b,c) = a*+ b>+ ¢* — 2ab — 2ac — 2bc. (187)
mp

4m2 [-)’ 2
my — q*)A;(¢*) — ﬁf\z(qz)] , (186)

For the determination of the CKM matrix element |V,;,| we introduce the standard quantity

/ 42 T8 = VR (188)
a

Aly(qt. q3) =

1
| Vub |2 qu ’

which can be computed by performing the phase-space integration over the obtained hadronic B — V form factors. The
resulting predictions for Ay, with the theoretical uncertainties from varying the input parameters are given by

2\ +1303)  +149) 40001 £029)  +071) 41141 41632 -1
Aép(o’ 16 GeV?) = (14.35 ¢ |/1B 146150 =3.63 lu =1.02 |y —1.60 |ﬂh2 —1.24|s0 -5.00 |¢§) ps

_ +21.04 .—1
= 143575 5" ps™,
2\ +5.46]  +0.62 +0.00| +0.11 +0.28) 4048 +6.53
Aéjw(O, 12 GeV ) - (6-25 —2.53 |/1B —-0.61 gg> —1.59 lp —0.41 |ﬂhl —0.65 I —0.52 ‘So —2.24|¢§) ps

=6.25753) ps7!, (189)

-1

where the subdominant uncertainties from variations of the remaining parameters have been taken into account in the final
combined uncertainties. Employing the experimental measurements of the partial branching fractions for B — p£v,
[99,100] and B — w?¢p, [100,101] we can readily obtain the following intervals of |V |
x 1073, [from B — p£i,)

) x 1073, [from B — wfD,] (190)

Visl = (3055155 ln 2020

Vsl = (254178 2015

‘exp)
|exp .

Apparently, the extracted values of |V ;| from the semileptonic B — @w¢7, decay are significantly lower than that from the
exclusive channel B — p¢D, as already observed in [100]. Furthermore, the central values of both determinations of |V ;|
from B — VD, are somewhat smaller than the corresponding result derived from the “golden” channel B — z£v, [80]

[Viuslppg = (3.70 £ 0.12[y, £ 0.10],) x 1073, (191)

Exploring the underlying mechanisms responsible for such discrepancy from both the theoretical and experimental aspects
will be certainly in demand for resolving the |V ;| puzzle.
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FIG. 15. The normalized differential ¢ distributions of the

semileptonic B — V£v, (V = p, w) decays with the heavy-to-
light form factors computed in this work (red band). For a
comparison, we also display the experimental measurements for
the binned distributions from the BABAR [99,101] and Belle
[100] Collaborations.

We further display in Fig. 15 the normalized differential
¢* distribution of B — V£, in the entire kinematic region
by applying the computed form factors from the LCSR
technique with the aid of the z-series expansion. Due to the
strong cancellation of the theory uncertainties for the
normalized physical quantities, the resulting ¢> shapes of

|

(mp + mK*)Z(m%} - m%( - qz)Al(flz) - /1<sz’ m%( 612)142(42)

['(B— Vtr,) dq? '

(V=p.0)

N(B - Vty,) =

(192)

are more accurate than the predicted form factors shown
in Figs. 12, 13, and 14. Our predictions for N'(B — V£D,)
are also in nice agreement with the experimental mea-
surements from the BABAR [99,101] and Belle [100]
Collaborations.

D. Rare exclusive B — K*v, i/, decays

Thanks to the high-luminosity Belle II experiment, the
exclusive rare B — K*v,v, decays are expected to be
observed with 10 ab~! of data and the corresponding
branching fraction will be further determined at O(10%)
accuracy with 50 ab™! of data [102]. We are therefore well
motivated to explore the phenomenological aspects of B —
K*v,v, for understanding the strong interaction dynamics
of B — K* form factors and for searching the exotic
particle X in the dark matter context. It is straightforward
to derive the differential decay width formula for the
exclusive process B — K*v,v, [103]

dU(B — K'vebg) _ Grtgn X/ (my. my.. q°)
dq? 2567°  mysint Oy,

2 2 2
my my .
X Xt —2,—2,Slnew,ﬂ
my, my

x [Hy(q*) + Ha, (¢*) + HAlz(qz)} ,

(193)

|th V;Fs|2

where the three invariant functions H;(g?) can be further
expressed by the semileptonic B — K* form factors

AIZ(qz) =

16mpm%. (mg + my:)

o p—
Y (mg + mg-)? ’
2¢*(mp + my-)?
H. (q?) = A ()2,
AI(Q) l(m%’m%(*’qz) [ l(q )]
64m>.m>
Hy, () = 525 [An(g*) 194
A (q ) /I(m%, m%(*’ (]2) [ 12(q )] ( )
with the helicity form factor A;, introduced in [1]
(195)

The short-distance Wilson coefficient X, can be expanded perturbatively in terms of the SM coupling constants
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0.12

dBR (B - Ky v) / dq?

0.10 — (GeV)
BR(B-> K" )

0.08

0.06

0.04

0.02

0.00

0 5 10 15
q2 (GeV?)

FIG. 16. Theory predictions for the normalized differential ¢>
distribution of B - K*v,v, with the semileptonic B — K* form
factors computed from the improved LCSR approach (pink band)
and from the lattice QCD simulation [2] (blue band).

&XEU +aeimXFW(1> R

(0)
X, =X
! ot 4z 4

(196)
where the LO contribution Xﬁo) [104], the NLO QCD cor-
rection Xgl) [105-107] and the two-loop electroweak cor-

rection X?Wm [108] are already available analytically. We
display the theory prediction for the normalized differential
|

TABLE VIII. Theory predictions for the g>-binned observables
ABR and AF; of the electroweak penguin B — K*v,v, decays
with the heavy-to-light form factors computed from the B-meson
LCSR approach and the z-series expansion.

41, ¢3) (in GeV?) 10° x ABR(q3. ¢3) AF;(q}.43)

[0.0, 1.0] 0.417040 0.955001
(1.0, 2.5] 0.72+076 0.841093
[2.5, 4.0] 0.83109 0.747005
[4.0, 6.0] 1.253%,2% 0.65f§;§gs‘
(6.0, 8.0] 1.36fg;§% 0.56:3);(())2
[8.0, 12.0] 284114 0.462)06
[12.0, 16.0] 2.46+3% 0.3600
[16.0, (my — my-)?] 1015371 0.31500,
0. (mp = my-)?] 10.8814% 052155)

branching fraction of B — K*v,v, in Fig. 16, including
the results obtained from the lattice QCD calculations of
B — K* form factors [2] for a comparison. In general we
find a fair agreement of the two different calculations in the
physical ¢* range of B — K*v,i,, albeit with the weak
mismatch of the peak regions.

We can proceed to define the differential longitudinal
K* polarization fraction F; of the electroweak penguin
B - K*v,v, decays

HAlz(qz)
q*) + Hy (¢%) + Hy , (47)

FUG) = (197)

In addition, we define the following two ¢>-binned observ-
ables for the comparison with the future Belle II data

K*v,vy)

ABR(qt. 43) = 7, / i

9

% i dl'(B -

2 g2 i ) ()
1

’

AF(q7.q3) =
q

Our predictions for these two quantities with the choices of
the ¢>-intervals following [102] are presented in Table VIII.
Apparently, the theory uncertainties of the binned longi-
tudinal K* polarization fractions are much reduced com-
pared with the resulting predictions of ABR, due to the less
sensitivity of the form-factor ratios to the precise shapes of
the two-particle and three-particle B-meson distribution
amplitudes.

VI. CONCLUSION

In this paper we have presented the improved QCD
calculations of the twenty-one B — V (V = p, w, K*) form

: .
S dg? 2 (g mig . ) [Hy(¢°) + Hy (47) + Ha,, (7))

(198)

|

factors by first implementing the hard-collinear factoriza-
tion for the weak transition currents [44,45,49] and then
computing the resulting SCET; matrix elements from the
LCSR technique with the HQET B-meson distribution
amplitudes. The hard-collinear functions entering the
factorization formulas for the SCET; vacuum-to-B-meson
correlation functions under discussion were determined at
NLO in QCD for the leading-twist two-particle contribu-
tions, by employing the evanescent-operator approach with
the dimensional regularization scheme. In particular, we
demonstrated explicitly that the light-quark-mass terms
appearing in the sum rules for the AO-type SCET form
factors & | (n - p), with the generic power counting scheme
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m ~ A, are not suppressed by any powers of A/m, in the
heavy quark expansion as expected in [109]. We further
computed the higher-twist corrections to the semileptonic
B — V form factors from the two-particle and three-particle
B-meson distribution amplitudes, up to the twist-six accu-
racy, with the same LCSR method at tree level in QCD. It
turned out that the twist-five two-patrticle corrections to both
the longitudinal and transverse B — V form factors were
numerically dominant, in analogy to the previous observa-
tion for the semileptonic B — P form factors [24,84].
However, we also noticed that the genuine three-particle
higher-twist corrections were non-negligible for the trans-
verse B — V form factors, in contrast to the pattern appeared
in the longitudinal vector form factors. We proceeded to
investigate the long-standing puzzles of the large-recoil
symmetry breaking effects for the B — V form-factor ratios
predicted by the QCD factorization approach and by the sum
rule technique [4]. Following the standard strategy [22,92],
we extrapolated the LCSR calculations of the heavy-to-light
form factors, with the two distinct models for the B-meson
distribution amplitudes, toward the large g> region by virtue
of the well-motivated z-series expansion.

We explored the phenomenological applications of the
obtained predictions for B-meson decay form factors to the
semileptonic B — V£v, decays as well as the electroweak
penguin B — K*v,v, decays. The newly extracted interval
of the CKM matrix element [V, = (3.05 {351, £03¢ lexp) X
103 from the exclusive process B — p£i, is in agreement
with the previous determination from B — z£7, applying
the same computational framework, but the analogous
determination from B — w¢7D, yields somewhat smaller
values of |V, |, albeit with the sizeable theory uncertainties
mainly due to the limited knowledge of the small w-
behaviors of the two-particle B-meson distribution ampli-
tude ¢% (@, u). The two g>-binned observables ABR and
AF; for the exclusive rare B — K*v,v, decays were further
predicted for the sake of hunting for new physics beyond the
SM at the Belle II experiment [102].

Future developments of QCD calculations of B — V
form factors at large hadronic recoil can be pushed forward
both conceptually and technically. First, it will be of interest
to carry out the two-particle and three-particle higher-twist
contributions to the semileptonic B — V form factors, up to
the twist-six accuracy, at NLO in QCD in order to verify
explicitly that the higher-Fock state contributions of both
the B-meson and the energetic vector meson generate the
leading-power effects in the heavy quark expansion as
demonstrated in [7]. The computational challenges of
determining the hard-collinear functions entering the
SCET;] factorization formulas for the vacuum-to-B-meson
correlation functions originate from the nontrivial mixing
of the different light-ray HQET operators under renormal-
ization beyond the twist-four accuracy [46], making the
infrared subtraction of the perturbative matching pro-
cedure tedious in dimensional regularization. In addition,

constructing the meaningful constraints for the higher-twist
B-meson distribution amplitudes from the QCD equations
of motion beyond the LO in QCD is complicated by the
appearance of the light-cone divergences. Second, improv-
ing theory calculations for the higher-dimensional local
HQET matrix elements 12 (u) and A% () will be of value for
reducing the parametric uncertainties on the phenomeno-
logical aspect, in view of the significant discrepancies of
the two independent QCD sum rule calculations presented
in [55] and [72].5 However, evaluating the NLO QCD
correction to the leading-power contribution in the frame-
work of QCD sum rules will also necessitate challenging
computations of the two-point HQET diagrams at three
loops. Third, implementing a complete NLL QCD resum-
mation for the enhanced logarithms due to the RG
evolutions of both the short-distance Wilson coefficients
and the leading-twist B-meson distribution amplitude [62]
is essential to the precision calculations of the semileptonic
B — V form factors, but it is also a technically demanding
task to achieve this goal in a full analytical form. It will be
probably more promising to derive the NLL resummation
improved SCET factorization formula for the radiative
leptonic B-meson decays in this respect. To summarize, we
expect interesting extensions of our work for deepening our
understanding of the factorization and resummation proper-
ties of heavy-to-light B-meson decay form factors in QCD.
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APPENDIX A: HARD FUNCTIONS FOR THE
SCET CURRENTS AT O(a,)

Here we collect the hard matching coefficient functions
for the AO-type and Bl-type SCET] currents entering the
factorization formulas (8) for the semileptonic B — V form
factors.

5Herf:, the NLO QCD correction to the dimension-five quark-
gluon mixing condensate and the LO contribution to the
dimension-six four-quark condensate are included, in addition
to the perturbative and nonperturbative contributions already
estimated in [55].
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2
45 o (D) fsim(L) 2L 1) =3 mr—" — 6, Al
C}AO) |
+ 4z i i 12
(A0) a,Cp S r . 3—5r 7>
cl! —1+4ﬂ{—2ln <ﬂ>+51n<ﬁ>—2L12(1—r)— —nr—T—d40, (A2)
(A0) a,Cp R ,(r r . 3—r p
Cf =14+—=—"¢2Ind—-2In*(—-) +5In{ <) —2Lip(1 —r) — Inr———-67, (A3)
Jr 4z i il 1—r 12
A0 a,C r r . 3-2r 72
C&/ F =1 +4—;{—2ln2$> —|—51n</5) —2Lip(1—=r) - = lnr—ﬁ—6 , (A4)
C 2
PO =1+ B2 g -2 (L) +5m( L) —2Liy(1 - ) =3Inr—— -6\, (AS)
! 47 12 i 12
BI 1 BI 1
Pl = (—2 +;) +0(). V= <—;> +O(a). (A6)
1
Pl = <r> +0(a,), PV =0+0(,). PV =-1+0(,). (A7)
where we have introduced the variables
r:u, ﬁ:i, ,;:L. (A8)
mp, my, mp

APPENDIX B: B-MESON DISTRIBUTION AMPLITUDES

In this appendix we collect the explicit expressions for two different models of the two-particle and three-particle
B-meson distribution amplitudes employed in our numerical study of the obtained sum rules for B — V form factors.
(i) Exponential model:

w
;,exp(w,ﬂ) = Fe
0

e 1 Py 1 (@)?
b5 (. p) = — e~lo0 - “E_Z {1 - 2<3> +3 g) }e—“’/“’o,
0

—w/wo s

[ON) 9608 @
3 A2-A2 1) 1 /w)?
~A—,EXp — o E H 1_ hadl | = —w/wy
35" = o o - (2) 5 (2) e
2 =2
(Dgxp(wl’a)z’”) _ E6w5 Ha)lw%e—(w1+mz)/w0’
0
/12 _|_/12
(szp(wl,wz’ﬂ) _TE Ha)%e—({l}|+(1)2>/(l}()’
6w
12
VP (w1, 0y, ) = 7E4a’la)2€_(w'+w2)/w°,
3wy,
- y:
lPZXp(wl LWy p) = _H4wlwze—(w1+wz)/wo,
3wy
2+ 12
O (w1, 0. ) = E3—;3 B gy elontm)/o,
0
/1% —(01+w,)/w,
\PS (0)1,0)2,/4) :—3?(023 1)
0
Jsexp j’%] —(014w,) /o
lPS (601,602,[4) :—ﬁa)ze ! 2 0,
0
2 =2
(DEXP(wl, W, 1) = %e—((vﬁ‘wz)/wo. (B1)
g
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The classical QCD equations of motion further imply the following relations of the HQET parameters appearing in

this specifical model [46]

[SSAI\S)

COOZAB: /_\,

22 =22 + 22, (B2)

so that only two of the three nonperturbative parameters Az, 1%, and 12, are independent of each other at tree level.

(i1) Local-duality model:

5
;LD (o,p) = gw(Za}O - 0)’02w) — w),
0
_ 52wy — w)? 7(2% = 22)
b (0, 1) = Ta)g 62wy — w)* — % (150? = 200w, + 403) 1020, — ),
~— LD 0wy —w)® [ 35072 —2%) ® w\? 5 )
’ = - 4 —12( — 11— — 2wy — 02wy — w),
gB (w,ﬂ) 0)8 1536 w() + a)o + 256( COO CO) ( COO w)
105(A2 — 22 W + wy\2
PP (0, wy, p) = %wlw% (wo - 2) 02wy — w, — wy),
), 2
35(2% + A2 ) + @, 3
(DIID(a’hwz’ﬂ) :%‘U% (a’o— L 2) 02wy — 0y — w,),
o 2
3522 W, + w3
ko (1, @5, p) ﬁwlwz (0)0 - 3 2> 02wy — 0y — w,),
0
- 352 W, + w3
"P{iD(wl,wz,/t) 3 7HCU1602 @y — 1 3 2) 020y — o — @),
)
LD 35 ) 2 (1)1 4
O (wy, 0y, ) 61 (Az +4g) — Qo — 0 — @,)*0(20) — @ — o),
@
LD 35 2 () 4
Vs (@, 0y, 1) = _a/lE_7(2w0 —wy —@,)*02w) — @) — ),
@y
LD 35 2 W2 4
Y5 (a’lvwz’ﬂ) = —aﬂﬂ_ﬂ%ﬂo — Wy — wz) 02wy — wy — wz),
20
7 1
q)léD(a’h Wy, ) = 64 (/1% - /1%1) o (209 — @y — 0’2)59(20’0 - — ). (B3)
0

Analogously, the HQET parameters for the local-duality
equations of motion [46]

5 _
Wy = 5/13 ES 2A,

6A? = 7(212 + 1%).

model also satisfy nontrivial constraints due to QCD
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