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We study the bottom Λbð6146Þ0 baryon, newly discovered by the LHCb Collaboration. By adopting an
interpolating current of ðLρ; LλÞ ¼ ð0; 2Þ type and D-wave nature with spin-parity quantum numbers

JP ¼ 3
2
þ for this heavy bottom baryon, we calculate its mass and residue. Using these spectroscopic

parameters, we also investigate its dominant decaysΛbð6146Þ0 → Σbπ and Λbð6146Þ0 → Σ�
bπ and estimate

the width of Λbð6146Þ0 obtained via these channels. The obtained mass, mΛb
¼ ð6144� 68Þ MeV is in

accord nicely with the experimental data. The width obtained via the dominant channels is also consistent
with the experimental data of LHCb collaboration. We calculate the spectroscopic parameters and the same
decay channels for the c-partner of Λbð6146Þ0 state, namely Λcð2860Þþ, as well. We compare the obtained
results with the existing theoretical predictions as well as experimental data. The results indicate that the
state Λbð6146Þ0 and its charmed-partner Λcð2860Þþ can be considered as 1D-wave baryons with JP ¼ 3

2
þ.

DOI: 10.1103/PhysRevD.101.074026

I. INTRODUCTION

The heavy baryons containing a heavy quark play an
important role in our understanding of the strong inter-
action. Their quark content makes them more attractive in
point of studying the dynamics of light quarks when a
heavy one is present. The studies on the heavy baryons
with one heavy quark could improve our understanding
of the confinement mechanism and provide us with test of
the quark model and heavy quark symmetry. And also, the
investigations on their different properties could help us
test the predictions obtained by different theoretical
assumptions on their internal organizations. Therefore,
understanding the nature and properties of these baryons
and their quantum numbers by means of theoretical and
experimental studies are of great importance.
In the last decades, the advances in experimental

facilities and techniques led to the observations of many
new states. The new observations include the conventional
hadrons and the exotic states. Some of the baryons with

single heavy quark content are among these states. In
the Particle Data Group (PDG) listing [1] there exist
seven Λc states, which are Λþ

c , Λcð2595Þþ, Λcð2625Þþ,
Λcð2765Þþ (or Σcð2765Þ), Λcð2860Þþ, Λcð2880Þþ and
Λcð2940Þþ. On the other hand, there are a smaller
number of listed Λb states, which are Λ0

b, Λbð5912Þ0
and Λbð5920Þ0. Among these states, the Λcð2860Þþ was
discovered in 2017 by the LHCb Collaboration [2].
Besides the first observation of this resonance by means
of an amplitude analysis of Λb → D0pπ− decay, the
spin of Λcð2880Þþ, which was firstly reported by
the CLEO Collaboration [3], was also confirmed
in this work. The quantum numbers of the Λcð2860Þþ
state were reported as JP ¼ 3=2þ and its measured mass
and decay widths were presented as mΛcð2860Þþ ¼
2856.1þ2.0

−1.7 ðstatÞ � 0.5 ðsystÞþ1.1
−5.6 ðmodelÞ MeV and

ΓΛcð2860Þþ ¼ 67.6þ10.1
−8.1 ðstatÞ � 1.4 ðsystÞþ5.9

−20.0 ðmodelÞ MeV
[2], respectively. Recently, the LHCb collaboration
announced the observation of two bottom baryons with
very close masses, which were reported as mΛbð6146Þ0 ¼
6146.17 � 0.33 � 0.22 � 0.16 MeV and mΛbð6152Þ0 ¼
6152.51� 0.26� 0.22� 0.16 MeV. Their respective
widths are ΓΛbð6146Þ0 ¼2.9�1.3�0.3MeV and ΓΛbð6152Þ0 ¼
2.1�0.8�0.3MeV. According to their masses and widths,
they were interpreted as a Λbð1DÞ0 doublet [4].
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The properties of the heavy baryons with single heavy
quark were studied by different approaches in the literature.
Among some of these studies, including analyses on their
mass spectrum or decay mechanisms, are the various quark
models [5–32], relativistic flux tube model [33], heavy
hadron chiral perturbation theory [34–38], QCD sum rule
method [39–47], light cone QCD sum rules [48–56], 3P0

model [57–64], Bethe-Salpeter formalism [65], lattice
QCD [66–69] and the bound state picture [70], etc. One
may find more discussions about the related studies on the
singly heavy baryons in the Refs. [71–76] and the refer-
ences therein.
In this work, we direct our attention to 1D-wave charmed

and bottom baryons with spin-3
2
. Although our main focus

is the bottom baryon Λbð6146Þ0 that was recently observed
by the LHCb Collaboration [4], we also consider its
charmed counterpart, Λcð2860Þþ. We represent these
two states as ΛQ where Q is used to represent either b
or c quark. Considering the proper interpolating currents
for the considered states with quantum numbers
ðLρ; LλÞ ¼ ð0; 2Þ, we calculate the masses and the current
coupling constants for these states using QCD sum rule
approach [77–79]. The QCD sum rule method is a powerful
nonperturbative method, which has provided successful
predictions for spectroscopic and decay properties of the
hadrons, so far. The D-wave charmed baryons were
analyzed via the QCD sum rules in Refs. [42,44]. In
Ref. [42], both the charmed baryons and the bottom ones
were considered in the framework of heavy quark effective
theory. Reference [44] presented the mass results only for
the charmed ones obtained in full QCD. In our case, we
shall consider both the bottom and charmed baryons with
light u and d quark content in full QCD. In the calculations,
we adopt an interpolating current for the Λb state consid-
ering the suggestion of the LHCb Collaboration as its
possibly being one of 1D doublet of Λb states. This
suggestion was made considering the consistency of the
mass of the observed Λb states with the predictions
presented by the constituent quark model [7,33]. Such
spectroscopic analyses improve our understanding of the
nature and structure of this baryons and contribute to our
understanding of the nonperturbative natures of the strong
interaction. From the analyses, we may deduce information
about the quantum numbers of these states, as well. Beside
these, another issue in baryon physics is the so-called
missing resonances problem. According to the quark
model, three constituent quarks comprise the baryons
and, as a result, theoretically there should be more states
compared to experimentally observed ones. One suggestion
to solve this problem is considering a heavy quark-light
diquark picture, which reduces the number of excited states
as a result of the reduction of the number of degrees of
freedom. Considering this, we adopt an interpolating
current in our calculation in the form of a heavy quark-
light diquark with quantum numbers JP ¼ 3=2þ. In the

present study, to provide further support to the results that

we obtain, we also investigate the widths for ΛQ → Σð�Þ
Q π

decays of the states under consideration. In this part of the
calculations, the results obtained from the mass and residue
calculations are used as input parameters, and the consis-
tency of our findings with the experimental results are
checked.
This paper has the following organization. In Sec. II we

give the details of the QCD sum rules calculations for the
spectroscopic parameters of the considered states. In this
section we also present the numerical analyses and dis-
playing of the results for the mass sum rules. In Sec. III,
using the obtained results of the previous section, we
calculate the widths for Λb → Σð�Þ

b π and Λc → Σð�Þ
c π

channels and numerically analyze the obtained sum rules.
The last section contains a summary of the results and
conclusions.

II. SPECTROSCOPIC PARAMETERS
OF Λb AND Λc STATES

After choosing a proper interpolating current that carries
the same quantum numbers and same quark field operators
in accordance with valance quark content, the following
correlation function is chosen to calculate the spectroscopic
parameters of the states under consideration:

ΠμνðkÞ ¼ i
Z

d4xeik·xh0jT fJμðxÞJ̄νð0Þgj0i; ð1Þ

where T is time ordering operator and Jμ is the interpolat-
ing current with following explicit form [44]:

Jμ ¼ ϵabc½∂α∂βuTaCγ5db þ ∂αuTaCγ5∂βdb

þ ∂βuTaCγ5∂αdb þ uTaCγ5∂α∂βdb�

×

�
gαμgβδ þ gαδgβμ −

1

2
gαβgμδ

�
γδγ5Qc: ð2Þ

In the above interpolating current, the Q represents bðcÞ
quark field, C is charge conjugation operator and the
indices a, b and c display the colors.
One follows two paths to calculate the correlation

function. In the first one, it is computed in terms of
hadronic degrees of freedom. This is done by saturation
of the correlation function by a complete set of hadronic
states with the same quantum numbers of the interpolating
current. After that the results emerge in terms of hadronic
degrees of freedom such as the current coupling constant
and mass of the considered hadron. This procedure leads to

ΠHad
μν ðkÞ ¼ h0jJμjΛQðk; sÞihΛQðk; sÞjJ̄νj0i

m2
ΛQ

− k2
þ � � � : ð3Þ

The � � � represents the contributions of the higher states and
continuum. The matrix element h0jJμjΛQðk; sÞi in the last
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result is parameterized in terms of the current coupling
constant, λΛQ

, and spin vector in Rarit-Schwinger repre-
sentation, uμðk; sÞ, as

h0jJμjΛQðk; sÞi ¼ λΛQ
uμðk; sÞ: ð4Þ

When this matrix element is used in Eq. (3) we need to
perform the following summation over spin s:

X
s

uμðk; sÞūνðk; sÞ

¼ ð=kþmÞ
�
−gμν þ

γμγν
3

þ 2kμkν
3m2

ΛQ

−
kμγν − kνγμ

3mΛQ

�
; ð5Þ

which recasts the result into the form

ΠHad
μν ðkÞ ¼

λ2ΛQ
ð=kþmΛQ

Þ
m2

ΛQ
− k2

×

�
−gμν þ

γμγν
3

þ 2kμkν
3m2

ΛQ

−
kμγν − kνγμ

3mΛQ

�
þ � � � :

ð6Þ

The interpolating current used in the calculations couples
not only with spin-3

2
states but also spin-1

2
states. Therefore

to refrain from the contributions of spin-1
2
states and isolate

the terms related only to spin-3
2
states, we choose a proper

Lorentz structure free from spin-1
2
contribution. To this end,

we consider the following matrix element showing the
coupling of the chosen current to spin-1

2
states:

h0jJμj
1

2

þðkÞi ¼ C1
2
þ

�
γμ −

4kμ
m1

2
þ

�
uðk; sÞ: ð7Þ

This matrix element indicates that the terms containing γμ
and kμ in the Lorentz structures take also contributions from
spin-1

2
states due to the coupling of the current with them. To

isolate the spin-3
2
states we make our analyses with the

Lorentz structure =kgμν. Finally, the hadronic side results in

Π̃Had
μν ðkÞ ¼ λ2ΛQ

e−
m2
ΛQ
M2 =kgμν þ � � � ; ð8Þ

after the Borel transformation. Π̃Had
μν ðkÞ represents the Borel

transformed correlation function obtained for the hadronic
side, the � � � in the last result stands for both the contributions
coming from the other Lorentz structures and from higher
states and continuum.
The second step in the calculations is computation of the

correlation function in terms of QCD degrees of freedom
such as QCD condensates, quark masses and QCD cou-
pling. To accomplish this part of the calculations, the
interpolating current is used explicitly in the correlator and
possible contractions between the quark fields are carried
out using Wick’s theorem. This turns the result into a form
containing heavy and light quark propagators:

ΠQCD
μν ¼ −i

Z
d4xeikxϵabcϵa0b0c0fTr½½∂α

x∂β
x∂α0

y ∂β0
y Saa

0
u ðx − yÞ�γ5CST;bb

0
d ðx − yÞCγ5�

þ Tr½½∂α
x∂β

x∂α0
y Saa

0
u ðx − yÞ�γ5C½∂β0

y ST;bb
0

d ðx − yÞ�Cγ5� þ Tr½½∂α
x∂β

x∂β0
y Saa

0
u ðx − yÞ�γ5C½∂α0

y S
T;bb0
d ðx − yÞ�Cγ5�

þ Tr½½∂α
x∂β

xSaa
0

u ðx − yÞ�γ5C½∂α0
y ∂β0

y ST;bb
0

d ðx − yÞ�Cγ5� þ Tr½½∂α
x∂α0

y ∂β0
y Saa

0
u ðx − yÞ�γ5C½∂β

xST;bb
0

d ðx − yÞ�Cγ5�
þ Tr½½∂α

x∂α0
y Saa

0
u ðx − yÞ�γ5C½∂β

x∂β0
y ST;bb

0
d ðx − yÞ�Cγ5� þ Tr½½∂α

x∂β0
y Saa

0
u ðx − yÞ�γ5C½∂β

x∂α0
y S

T;bb0
d ðx − yÞ�Cγ5�

þ Tr½½∂α
xSaa

0
u ðx − yÞ�γ5C½∂β

x∂α0
y ∂β0

y ST;bb
0

d ðx − yÞ�Cγ5� þ Tr½½∂β
x∂α0

y ∂β0
y Saa

0
u ðx − yÞ�γ5C½∂α

xS
T;bb0
d ðx − yÞ�Cγ5�

þ Tr½½∂β
x∂α0

y Saa
0

u ðx − yÞ�γ5C½∂α
x∂β0

y ST;bb
0

d ðx − yÞ�Cγ5� þ Tr½½∂β
x∂β0

y Saa
0

u ðx − yÞ�γ5C½∂α
x∂α0

y S
T;bb0
d ðx − yÞ�Cγ5�

þ Tr½½∂β
xSaa

0
u ðx − yÞ�γ5C½∂α

x∂α0
y ∂β0

y ST;bb
0

d ðx − yÞ�Cγ5� þ Tr½½∂α0
y ∂β0

y Saa
0

u ðx − yÞ�γ5C½∂α
x∂β

xST;bb
0

d ðx − yÞ�Cγ5�
þ Tr½½∂α0

y Saa
0

u ðx − yÞ�γ5C½∂α
x∂β

x∂β0
y ST;bb

0
d ðx − yÞ�Cγ5� þ Tr½½∂β0

y Saa
0

u ðx − yÞ�γ5C½∂α
x∂β

x∂α0
y S

T;bb0
d ðx − yÞ�Cγ5�

þ Tr½Saa0u ðx − yÞγ5C½∂α
x∂β

x∂α0
y ∂β0

y ST;bb
0

d ðx − yÞ�Cγ5�gTαβμScc
0

Q ðx − yÞTα0β0ν; ð9Þ

where ∂α
x ¼ ∂

∂xα, ∂α0
y ¼ ∂

∂yα0 ; and Sqðx − yÞ and SQðx − yÞ are the light and heavy quark propagators, respectively. We have

also used the short-hand notation,

Tαβμ ¼
�
gαμgβδ þ gαδgβμ −

1

2
gαβgμδ

�
γδγ5: ð10Þ

In the last equation, after taking the derivatives we set y to zero. The propagators in Eq. (9) are used explicitly in the
calculations to obtain the QCD side of the sum rules. Their explicit forms are
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Sq;abðxÞ ¼ iδab
=x

2π2x4
− δab

mq

4π2x2
− δab

hq̄qi
12

þ iδab
=xmqhq̄qi

48
− δab

x2

192
hq̄gsσGqi þ iδab

x2=xmq

1152
hq̄gsσGqi

− i
gsG

αβ
ab

32π2x2
½=xσαβ þ σαβ=x� − iδab

x2=xg2s hq̄qi2
7776

; ð11Þ

and

SQ;abðxÞ ¼ i
Z

d4t
ð2πÞ4 e

−itx
�
δabð=tþmQÞ
t2 −m2

Q
−
gsG

αβ
ab

4

σαβð=tþmQÞ þ ð=tþmQÞσαβ
ðt2 −m2

QÞ2
þ g2sG2

12
δabmQ

t2 þmQ=t

ðt2 −m2
QÞ4

þ g3sG3

48
δab

ð=tþmQÞ
ðt2 −m2

QÞ6
½=tðt2 − 3m2

QÞ þ 2mQð2t2 −m2
QÞ�ð=tþmQÞ þ…

�
; ð12Þ

for the light and the heavy quark propagators in the
coordinate space, respectively. The following notations
are also used in Eqs. (11) and (12):

Gαβ
ab ¼ Gαβ

A tAab; G2 ¼ GA
αβG

A
αβ; G3 ¼ fABCGA

μνGB
νδG

C
δμ;

ð13Þ

with A;B; C ¼ 1; 2…8 and tA ¼ λA=2. λA are the Gell-
Mann matrices, and the GA

αβ represent the gluon field
strength tensors. Insertion of the propagators into the
correlation function is followed by Fourier and Borel
transformations. Finally, continuum subtraction is applied
and the following result is achieved:

Π̃QCD ¼
Z

s0

ðmQþmuþmdÞ2
dse−

s
M2ρðsÞ þ Γ: ð14Þ

where s0 is the continuum threshold and ρðsÞ is the spectral
density obtained from the imaginary part of the of corre-
lation function, viz 1

π Im½ΠQCD�. In the analyses, as it was
stated, to isolate the contribution coming only from the
spin-3

2
states the Lorentz structure is chosen as =kgμν. The

standard calculations lead to the following results for ρðsÞ
and Γ corresponding to this Lorentz structure:

ρðsÞ ¼ ρPertðsÞ þ ρDim3ðsÞ þ ρDim4ðsÞ þ ρDim6ðsÞ; ð15Þ
where

ρPertðsÞ ¼ −
Z

1

0

dx
1

256π4ðx − 1Þ2 ðm
2
Q þ sðx − 1ÞÞ3x4½m2

Qð8x − 3Þ þ sð3 − 19xþ 16x2Þ�θ½Lðs; xÞ�;

ρDim3ðsÞ ¼ −
Z

1

0

dx
1

16π2
½muðhūui − 2hd̄diÞ þmdðhd̄di − 2hūuiÞ�x2½m4

Qð8x − 1Þ þ s2ðx − 1Þ2ð12x − 1Þ

þ 2m2
Qsð1 − 11xþ 10x2Þ�θ½Lðs; xÞ�;

ρDim4ðsÞ ¼ −
Z

1

0

dx
1

384π2ðx − 1Þ2
�
αs
π
G2

�
x2½3s2ðx − 1Þ4ð12x − 1Þ þm4

Qð−3þ 30x − 57x2 þ 40x3Þ

þ 2m2
Qsð3 − 39xþ 102x2 − 106x3 þ 40x4Þ�θ½Lðs; xÞ�;

ρDim5ðsÞ ¼ 0;

ρDim6ðsÞ ¼
Z

1

0

dx
1

12288π4ðx − 1Þ2 hg
3
sG3ix5½7sð1 − 10xþ 21x2 − 12x3Þ − 4m2

Qð−6þ 5xþ 12x2Þ�θ½Lðs; xÞ�; ð16Þ

and

Γ ¼
Z

1

0

dxe
−

m2
Q

M2ð1−xÞ
1

20480π4ðx − 1Þ4 hg
3
sG3im4

Qðx − 8Þx5: ð17Þ

Here θ½…� is the usual unit-step function and

Lðs; xÞ ¼ sxð1 − xÞ −m2
Qx: ð18Þ
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After completing the calculations for both the hadronic
and QCD sides, the next stage is equating the coefficient of
the same Lorentz structure obtained from each side, that is
=kgμν, as a result we get

λ2ΛQ
e−

m2
ΛQ
M2 ¼ Π̃QCD: ð19Þ

Using this relation we obtain the masses of the considered
hadrons and their current coupling constants. Thus, for the
mass we obtain

m2
ΛQ

¼
d

dð− 1

M2Þ
½R s0

ðmQþmuþmdÞ2 dse
− s
M2ρðsÞ þ Γ�

½R s0
ðmQþmuþmdÞ2 dse

− s
M2ρðsÞ þ Γ� ; ð20Þ

and the current coupling constant is obtained as

λ2ΛQ
¼ e

m2
ΛQ
M2

�Z
s0

ðmQþmuþmdÞ2
dse−

s
M2ρðsÞ þ Γ

	
: ð21Þ

Now, we numerically analyze the sum rules obtained
using the input parameters given in Table I and the working
windows of auxiliary parameters such as threshold param-
eter s0 and Borel parameterM2. Although our main focus in
the present work is the mass and current coupling constant
of Λbð6146Þ0 state, for completeness we also calculate the
mass and current coupling constant for Λcð2860Þþ state.
To determine the working intervals for the auxiliary

parameters we consider the criteria of the QCD sum rule
method such as the convergence of OPE and dominance
of the pole contribution. Besides these requirements, the
dependencies of the results on these parameters are
demanded to be relatively weak. As an asymptotic expan-
sion, the dominant contribution to the OPE side should
come from perturbative contribution and the terms with
higher dimensions contribute less and less. To fix the lover
limit of the Borel parameter we consider the convergence
ratio, CRðM2Þ, that is the ratio of the contribution of the
highest dimensional term in the OPE side to the total one
and it is given as

CRðM2Þ ¼ ΠDim6ðM2; s0Þ
ΠðM2; s0Þ

: ð22Þ

To determine the lover limit of Borel parameter we con-
sider this ratio to be less than 5% for ΛQ state. The pole
contribution, PCðM2Þ is considered to be larger or at least
equal to the 10% for the D-wave state,

PCðM2Þ ¼ ΠðM2; s0Þ
ΠðM2;∞Þ ≥ 0.10: ð23Þ

Our analyses result in the following intervals of the Borel
parameters:

5.2 GeV2 ≤ M2 ≤ 6.2 GeV2; ð24Þ

for Λb state and

2.8 GeV2 ≤ M2 ≤ 3.2 GeV2; ð25Þ

for Λc state. In the analyses, the working windows of the
threshold parameters, s0 are decided as

41.5 GeV2 ≤ s0 ≤ 43.3 GeV2; ð26Þ

for Λb state and

10.8 GeV2 ≤ s0 ≤ 11.6 GeV2; ð27Þ

for Λc state. In these intervals the variations of the physical
quantities with respect to the changes of s0 are weak. The
weak dependencies of the results on the auxiliary param-
eters form the main parts of the errors present in predictions
of the QCD sum rules method. With these errors and the
errors coming from the other input parameters used in the
analyses our results are presented in Table II. Note that, as
the interpolating currents for the D-wave baryons contain
second order derivatives their residues or current coupling
constants are obtained in GeV5 against the usual S-wave
and P-wave baryonic states that these quantities are
in GeV3.

III. THE STRONG DECAYS ΛQ → Σð�Þ
Q π

The dominant decays of Λbð6146Þ0 is considered to be
Λbð6146Þ0 → Σbπ and Λbð6146Þ0 → Σ�

bπ [84]. Hence, we

TABLE II. The results of the masses and current coupling
constants obtained for 1D wave Λb and Λc states with JP ¼ 3

2
þ.

The state Mass (MeV) Current coupling constant λðGeV5Þ
Λb 6144� 68 0.264� 0.039
Λc 2855� 66 0.080� 0.012

TABLE I. Some input parameters used in the calculations of the
masses and current coupling constants.

Parameters Values

mc 1.27� 0.02 GeV [80]
mb 4.18þ0.03

−0.02 GeV [80]
mu 2.16þ0.49

−0.26 MeV [80]
md 4.67þ0.48

−0.17 MeV [80]
hq̄qið1 GeVÞ ð−0.24� 0.01Þ3 GeV3 [81]
m2

0
(0.8� 0.1) GeV2 [81]

hαsπ G2i (0.012� 0.004) GeV4 [82]
hg3sG3i (0.57� 0.29) GeV6 [83]
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consider these strong decays in this section. However, the
width in Σbπ is expected to be roughly four times greater
than that of the Σ�

bπ channel. Therefore between these
two channels the dominant one is Σbπ. In this accor-
dance, we calculate the widths of the strong decays of the
1D-wave ΛQ states to ΣQπ by calculating the relevant
coupling constants, gΛQΣQπ , in the framework of QCD
sum rules. The calculations of the strong coupling
constants are done through the following three-point
correlation function:

Πμðp; p0Þ ¼ i2
Z

d4xe−ip·x

×
Z

d4yeip
0·yh0jT fJΣQ

ðyÞJπð0ÞJ̄μðxÞgj0i;

ð28Þ

where JμðxÞ is the interpolating current given in Eq. (2)
for the ΛQ state under consideration. The interpolating
currents for the spin-1

2
ΣQ and pion states are as follows:

JΣQ
¼ ϵijkðuiTCγαujÞγ5γαQk;

Jπ ¼ iūlγ5dl; ð29Þ

where i, j, k and l are the color indices, T represents
transpose.
As in the mass calculation, for the strong coupling con-

stant calculation, we follow a similar procedure and compute
the correlator in terms of QCD degrees of freedom on one
side and hadronic degrees of freedom on the other side.
We insert complete sets of hadronic states into the

correlator to deduce the result in terms of hadronic degrees
of freedom. This part results in

ΠHad
μ ðp; p0Þ ¼ h0jJΣQ

jΣQðp0; s0Þih0jJπjπðqÞihπðqÞΣðp0; s0ÞjΛQðp; sÞihΛQðp; sÞjJμj0i
ðm2

ΛQ
− p2Þðm2

ΣQ
− p02Þðm2

π − q2Þ þ � � � : ð30Þ

The � � � in Eq. (30) is used to represent the contribution of the higher states and continuum. The matrix elements present in
this result are parametrized in terms of physical parameters as follows:

h0jJΣQ
jΣQðp0; s0Þi ¼ λΣQ

uðp0; s0Þ;

h0jJπjπðqÞi ¼ i
fπm2

π

ðmu þmdÞ
;

h0jJμjΛQðp; sÞi ¼ λΛQ
uμðp; sÞ; ð31Þ

and the following matrix element is defined in terms of the considered strong coupling constant gΛQΣQπ as

hπðqÞΣQðp0; s0ÞjΛQðp; sÞi ¼ gΛQΣQπūðp0; s0Þuνðp; sÞqν: ð32Þ

When we use these relations in Eq. (30) the final form of the correlator in the physical side becomes

ΠHad
μ ðp; p0Þ ¼ −i

fπm2
π

ðmu þmdÞ
λΣQ

λ�ΛQ
gΛQΣQπ

ðm2
ΛQ

− p2Þðm2
ΣQ

− p02Þðm2
π − q2Þ ð=p

0 þmΣQ
Þ

× ð=pþmΛQ
Þ
�
−gνμ þ

γνγμ
3

þ 2pνpμ

3m2
ΛQ

−
pνγμ − pμγν

3mΛQ

�
qν: ð33Þ

To obtain the last result we use the Eq. (5) together with the following summation over spins of Dirac spinors:

X
s0
uðp0; s0Þūðs0; p0Þ ¼ ð=p0 þmΣQ

Þ: ð34Þ

To suppress the contribution of the higher states and continuum we apply double Borel transformation and obtain the final
form of the result for this side as

BΠHad
μ ðp; p0Þ ¼ −i

fπm2
πλΣQ

λ�ΛQ
gΛQΣQπe

−
m2
ΛQ
M2 e−

m2
ΣQ
M02

ðmu þmdÞðm2
π − q2Þ

�ðm2
ΛQ

−mΛQ
mΣQ

þm2
ΣQ

− q2Þ
3m2

ΛQ

=q=p0qμ þ � � �
�
: ð35Þ
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In the last result, we only give the term that we use in the
analyses and there are also other Lorentz structures giving
contributions. As we mentioned already, the interpolating
current of spin-3

2
states also couples to the spin-1

2
states. In

this part, in order to focus the contribution of only the spin-3
2

states, we make a special ordering in the Dirac matrices.
Considering the matrix element given in Eq. (7) it can be
seen that, the terms taking the contribution from spin-1

2

states are related to the Lorentz structures containing γμ or
ðp0 þ qÞμ at the far right end. Therefore the Dirac matrices
are ordered in the form q p0γμ first and then the structure,
q p0qμ, ruling out the spin-1

2
contributions, is chosen. The

contributions of other structures and the contributions
coming from higher states are represented by � � �. M2

and M02 in Eq. (35) are the Borel parameters.
The other side of the calculation requires to use inter-

polating currents given in Eqs. (2) and (29) explicitly inside
the correlator. Possible contractions between the quark
fields performed via Wick’s theorem render the result into
the form containing heavy and light quark propagators.
Their explicit expressions, Eqs. (11) and (12), are used and
correlation function ΠQCD

μ ðp; p0Þ is obtained with different
Dirac structures as in the hadronic side. The results are
lengthy and to refrain overwhelming long expressions we
shortly represent the result here as

ΠQCD
μ ðp; p0Þ ¼ ΠQCD

1 ðq2Þq p0qμ þ other structures; ð36Þ
and not give their explicit form. The invariant function
ΠQCD

1 ðq2Þ here is the coefficient of the q p0qμ structure that
we use in the analyses. The imaginary parts of the obtained
results are used as spectral densities in the following
dispersion integral leading us to the final form of the
QCD side

ΠQCD
i ðq2Þ ¼

Z
ds

Z
ds0

ρperti ðs; s0; q2Þ þ ρnon-perti ðs; s0; q2Þ
ðs−p2Þðs0 −p02Þ ;

ð37Þ
where i represents different Lorentz structures present
in the calculation and the spectral densities are represented
by their perturbative and nonperturbative parts as
ρperti ðs; s0; q2Þ and ρnon-perti ðs; s0; q2Þ, respectively.
The results obtained from the hadronic and the QCD

sides are matched, considering the same Lorentz structure,
giving us the QCD sum rules for the strong coupling
constants under question as follows:

gΛQΣQπðQ2Þ

¼ −i
3m2

ΛQ
ðm2

π þQ2Þe
m2
ΛQ
M2 e

m2
ΣQ
M02

fπλ�ΛQ
λΣQ

μπðm2
ΛQ

−mΛQ
mΣQ

þm2
ΣQ

þQ2Þ
× BΠQCD

1 ðs; s0; Q2Þ; ð38Þ

where BΠQCD
1 ðs; s0; Q2Þ is the result of QCD side after

Borel transformation, Q2 ¼ −q2 and μπ ¼ m2
π

ðmuþmdÞ.
Now, we present the numerical computations of the

coupling constants gΛQΣQπ obtained for the decays

ΛQ → Σð�Þ
Q π. To this end, we use the results that we

obtained from the mass analyses of ΛQ states as inputs.
Besides, we also need the values of some other para-
meters which are λΣb

¼ 0.062� 0.018 GeV3 [85], mΣb
¼

5810.56� 0.25 MeV [80], λΣc
¼ 0.045� 0.015 GeV3

[85], mΣc
¼ 2453.97� 0.14 MeV [80], fπ ¼ 131.5 MeV

and μπ ¼ − 2hq̄qi
f2π

.

As for the four additional auxiliary parameters, the Borel
parameterM2 and the threshold parameter s0 are used as in
the mass sum rule calculations, Eqs. (24), (25), (26) and
(27). The second Borel parameter M02 and the second
threshold parameter s00 are determined, considering the
standard criteria of the QCD sum rule that we explained in
mass sum rule calculations, as

5.0 GeV2 ≤ M02 ≤ 6.0 GeV2; ð39Þ

39.0 GeV2 ≤ s00 ≤ 41.0 GeV2; ð40Þ

for the bottom baryon case and

2.7 GeV2 ≤ M02 ≤ 3.1 GeV2; ð41Þ

10.6 GeV2 ≤ s00 ≤ 11.4 GeV2; ð42Þ

for the charmed baryon case.
Using the related input parameters and working intervals

of the auxiliary parameters, we attain the results of the
coupling constants as a function of Q2 which is well
represented by the following fit function

gfitðQ2Þ ¼ c1e
−Q2

c2 þ c3: ð43Þ

The parameters of the fit function, c1, c2, and c3 are
determined from our analyses and presented in Table III.
Using the fit functions of related decays, we obtain the
considered coupling constants at Q2 ¼ −m2

π for both decay
channels. The results of these coupling constants are
presented in Table IV. This table also shows the results
obtained for the partial widths of considered decays of the
ΛQ states which are calculated by applying the following
equation:

TABLE III. The parameters of the fit function.

The decay mode c1ðGeV−1Þ c2 ðGeV2Þ c3ðGeV−1Þ
Λb → Σbπ −6734.9 7.9 6804.3
Λc → Σcπ −2087.9 4.4 2156.9
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ΓðΛQ → ΣQπÞ ¼
g2ΛQΣQπ

24πm2
ΛQ

½ðmΛQ
−mΣQ

Þ2 −m2
π�

× f3ðmΛQ
; mΣQ

;mπÞ; ð44Þ

where fðmΛQ
; mΣQ

; mπÞ is defined through the following
expression

fðx; y; zÞ ¼ 1

2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 þ y4 þ z4 − 2x2y2 − 2x2z2 − 2y2z2

q
:

ð45Þ

The errors in these results arise from the uncertainties of the
input and auxiliary parameters. In Ref. [84], the following
relation between the partial widths of the Λbð6146Þ0 →
Σ�
bπ and Λbð6146Þ0 → Σbπ strong decays in p- and f-wave

decays is obtained:

Γ½Λbð6146Þ0 → Σ�
bπ�

Γ½Λbð6146Þ0 → Σbπ�
¼ 0.65p þ 0.28f

3.25
¼ 0.286: ð46Þ

We assume that this is roughly holds in c channel, as well.
Using this relation, we estimate the widths in Σ�

Qπ channels
and also the total widths of the states under study: all of
these widths are presented in Table V.

IV. DISCUSSION AND CONCLUSION

We calculated the mass and the current coupling constant
of the recently observed Λbð6146Þ0 state assigning its
quantum numbers as JP ¼ 3

2
þ. This state together with the

Λbð6152Þ0 (probably a 1D-wave state with JP ¼ 5
2
þ) form

a Λbð1DÞ0 doublet [4,7,33]. Based on the provided
information by recent experimental results, we chose a
D-wave type interpolating current for Λbð6146Þ0 state.

For completeness, we also calculated the spectroscopic
parameters of its charmed partner Λc state with the same
quantum numbers. The result for the mass of the Λb state
was obtained to be mΛb

¼ ð6144� 68Þ MeV, which is in a
good consistency with other theoretical predictions: mΛb

¼
6147 MeV [33],mΛb

¼ 6190 MeV [18],mΛb
¼ 6181 MeV

[17], mΛb
¼ 6145 MeV [7], mΛb

¼ 6149 MeV [84], and
6.01þ0.20

−0.12 GeV [42]. Our result on the mass of the Λb is
in accord with the experimental data of the LHCb
Collaboration, as well. This leads us to consider the
Λbð6146Þ0 state as a 1D-wave resonance with quantum
numbers JP ¼ 3

2
þ.

The mass result obtained for 1D wave Λc state with
JP ¼ 3

2
þ is mΛc

¼ ð2855� 66Þ MeV, which is also
consistent, within the errors, with the predictions of
Refs. [7,17,18,25,33,42,44] given as mΛc

¼ 2857 MeV,
mΛc

¼ 2874 MeV, mΛc
¼ 2887 MeV, mΛc

¼ 2910 MeV,
mΛc

¼ 2843 MeV, mΛc
¼ 2.81þ0.33

−0.18 GeV, and mΛc
¼

2.83þ0.15
−0.24 GeV, respectively. Our result is also in agreement

with experimentally observed mass value for Λcð2860Þþ
state which is mΛcð2860Þþ ¼ 2856.1þ3.6

−7.8 MeV [2]. This can
be considered as another support to assign these states as
resonances in b and c 1D-wave channels with spin-parity
JP ¼ 3

2
þ.

To make a final decision on the structure and quan-
tum numbers of these states especially the lesser-known
Λbð6146Þ0 resonance, we need to support these assign-
ments by the width calculations, which require the calcu-
lations of the partial widths of the dominant decays of this
state. The Λbð6146Þ0 state was seen in Λ0

bπ
þπ− channel by

LHCb collaboration [4] and very recently confirmed by the
CMS collaboration in the same channel [86]. The dominant
decays of this state is considered to be Λbð6146Þ0 → Σbπ
and Λbð6146Þ0 → Σ�

bπ [84]. Although, by considering the
Λbð6146Þ0 sate as a 1D-wave resonances with quantum
numbers JP ¼ 3

2
þ and its decays to Σbπ and Σ�

bπ final states,
the obtained total width via the quark potential model in
this study is comparable with the experimental data within
the presented errors, the LHCb collaboration could not find
significant signals in these channels [4].
We considered the Λbð6146Þ0 → Σbπ and Λbð6146Þ0 →

Σ�
bπ decay modes. The partial width of the decay in Σbπ

channel is considered to be roughly four times greater than
that of the Σ�

bπ channel [84]. Hence, by calculation of the
related strong coupling constant, gΛbΣbπ via the three-point
QCD sum rule approach in details, we obtained the
partial width of this decay as Γ½Λbð6146Þ0 → Σbπ� ¼
2.3� 0.4 MeV. The partial width for this mode is obtained
as Γ½Λbð6146Þ0 → Σbπ� ¼ 3.25 MeV in Ref. [84]. In
literature, there are other works on the strong decays of
1D-wave ΛQ states [31,64], as well. In these works the
results ΓðΛb → ΣbπÞ ¼ 4.57þ1.09

−1.20 MeV [31] and ΓðΛb →
ΣbπÞ ¼ 1.79 MeV [64] are obtained. As is seen, the results

TABLE IV. The coupling constants and the calculated partial
widths for considered decays.

The decay mode gΛQΣQπðGeV−1Þ Γ (MeV)

Λb → Σbπ 52.8� 4.7 2.3� 0.4
Λc → Σcπ 59.6� 5.4 34.9� 6.5

TABLE V. Partial and total widths for the decays under study.

The decay mode Γ (MeV)

Λb → Σbπ 2.3� 0.4
Λb → Σ�

bπ 0.7� 0.1
Total 3.0� 0.4
Λc → Σcπ 34.9� 6.5
Λc → Σ�

cπ 10.0� 1.9
Total 44.9� 6.8
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of Refs. [31,84] are considerably larger and that of the [64]
is considerably smaller than our prediction. We considered

the ratio
Γ½Λbð6146Þ0→Σ�

bπ�
Γ½Λbð6146Þ0→Σbπ� obtained in Ref. [84], to estimate

the partial width of Λbð6146Þ0 → Σ�
bπ as Γ½Λbð6146Þ0 →

Σbπ� ¼ 0.7� 0.1 MeV, as well. We also obtained the total
width of Λbð6146Þ0 state as ΓΛbð6146Þ0 ¼ 3.0� 0.4 MeV,
which is in a nice consistency with the experimental data of
LHCb collaboration: ΓΛbð6146Þ0 ¼ 2.9� 1.3� 0.3 MeV.
For the c-partner, we obtained Γ½Λc → Σcπ� ¼ 34.9�

6.5 and Γ½Λc → Σ�
cπ� ¼ 10.0� 1.9, which leads to

ΓΛcð2860Þþ ¼ 44.9� 6.8 MeV for the total width of

Λcð2860Þþ state. This result, within the errors, is consistent
with the experimental data, ΓΛcð2860Þþ ¼ 67.6þ17.4

−29.5 MeV
[2], as well.
Considering the mass and the obtained width from its

dominant decays, the newly observed Λbð6146Þ0 state was
assigned as a 1D-wave excited state in usual three-quarkΛb

channel with spin-parity JP ¼ 3
2
þ. We also assigned the

same quantum numbers for its c-partner. More experimen-
tal and theoretical effort are needed to clarify the decay
modes of Λbð6146Þ0 and Λcð2860Þþ sates in order to more
clarify their nature.
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