PHYSICAL REVIEW D 101, 074023 (2020)
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We use the linear sigma model with quarks to locate the critical end point in the effective QCD phase
diagram accounting for fluctuations in the temperature and quark chemical potential. For this purpose, we
use the nonequilibrium formalism provided by the superstatistics framework. We compute the effective
potential in the high- and low-temperature approximations up to sixth order and include the contribution of
ring diagrams to account for plasma screening effects. We fix the model parameters from relations between
the thermal sigma and pion masses imposing a first-order phase transition at zero temperature and a finite
critical value for the baryon chemical potential that we take of the order of the nucleon mass. We find that
the critical end point displacement due to fluctuations in the temperature and/or quark chemical potential is

almost negligible.
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I. INTRODUCTION

The study of the transition describing the phase change
from nuclear to quark-gluon matter with an increasing
temperature (7)) and baryon chemical potential (1) con-
stitutes one of the most active fields of research of modern
high-energy nuclear physics. The description of this tran-
sition is encoded in the so-called QCD phase diagram [1]
represented by a temperature vs baryon chemical potential
plane, where the different phases of strongly interacting
matter can be identified. From the theoretical side, efforts to
describe this diagram have been carried out employing a
wide range of tools such as finite energy sum rules, Dyson-
Schwinger equations, functional renormalization, hologra-
phy, and effective models [2-24]. Lattice QCD (LQCD)
calculations are also a useful technique [25-40], although
these cannot be used to access large values of yp, given the
severe sign problem [41].
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On the other hand, relativistic heavy-ion collisions
provide an experimental tool to access the properties of
the QCD phase diagram. In recent years, the STAR BES-I
program has analyzed data from nuclear collisions in the
energy range 200 GeV > /syy > 7.7 GeV [42], to
explore deeper into the QCD phase diagram reaching
nuclear matter at higher densities. Also, new experiments
will soon enter into operation, providing data at lower
collision energies with higher luminosity to better study the
properties of baryon-rich matter [43].

It is well known that fluctuations play a relevant role for
the analysis and interpretation of heavy-ion data [44—-60].
In particular, when T and/or up are not uniform over the
entire reaction volume, fluctuations from the average values
can be accounted for using the so-called superstatistics
scenario [61] where a nonextensive behavior naturally
emerges due to these fluctuations. Indeed, at the onset,
the reaction starts off from regions the size of overlapping
nucleon pairs. If overall thermalization is to be achieved, it
seems natural to assume that these regions form subsystems
from where thermalization spreads later over the entire
reaction volume. In this scenario, the temperature and
chemical potential between subsystems may not be the
same. Thus, a superposition of two statistics needs to be
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considered: one in the usual Gibbs-Boltzmann sense for
particles in each subsystem and another one for the
probability to find particular values for 7 and up for
different subsystems.

In this work, we study the QCD phase diagram imple-
menting superstatistics with fluctuations in both 7" and .
We concentrate on the location of the critical end point
(CEP) using the linear sigma model with quarks (LSMq) as
an effective model to find the boundaries on the phase
diagram from the chiral symmetry restoration or breaking
point of view. We show that, when conditions for a first-
order phase transition are enforced to happen for a critical
value of up = ug at T = 0, the position of the CEP varies
little as compared to an analysis where one only follows the
evolution of the crossover transition from high 7" without
requiring a first-order phase transition at ug.

The work is organized as follows. In Sec. II, we review
the superstatistics ideas when the temperature and chemi-
cal potential fluctuate between different subsystems. We
expand the generalized Boltzmann factor to first order in
1/N, where N is the number of subsystems that make up
the whole system. In Sec. III, we discuss the calculation of
the effective potential in the LSMgq, including screening
effects together with the effective couplings computed at
finite 7 and pp. In order to explore a wide region in the
phase diagram, the effective potential is computed ana-
lytically in two regimes; first at a low temperature and
high chemical potential and then at a high temperature and
low chemical potential. In Sec. IV, we spell out the
conditions that give rise to the equations to find the
values of the model coupling constants. In Sec. V, we use
these couplings to compute the critical 7 and up that
define the transition curves and locate the CEP, for the
cases of superstatistics with a varying number of initial
subsystems and comparing to the result in the thermody-
namic limit. Finally, we summarize and conclude in
Sec. VI. We reserve for the Appendixes the explicit
computation of the vacuum stability conditions and the
temperature and baryon chemical potential dependence of
the effective coupling constants.

II. SUPERSTATISTICS

To include the superstatistics effects, we closely
follow Ref. [62], accounting also as an extra ingredient
fluctuations in the ratio pug/T. Recall that for a thermo-
dynamic system which contains an space-fluctuating
intensive variable f, such as the inverse temperature or
the product of the chemical potential and the inverse
temperature, one may consider the full system as made up
of subsystems where £ is constant with a local Boltzmann

factor e=#H# , with A being the Hamiltonian. A generalized
Boltzmann factor B(H) can be defined as the normal
Boltzmann factor e weighted by a distribution func-

tion f(f):

B(H) = A ® f(B)ePdp. (1)

Let us consider the two fluctuating intensive variables
p=1/T and n=pu/T. The local Boltzmann factor is

e P ‘”Q), where Q is the number operator and we have
assumed that each subsystem is part of a grand canonical
ensemble. The generalized Boltzmann factor may be
defined in a similar fashion as in Eq. (1) with probability
distribution F that depends on both variables, namely,
F(B,n). Assuming that the two variables are statistically
independent, then F(f3,7) = f(f)g(n) and the generalized
Boltzmann factor becomes

B(H.0) = / ” / " FB)gn)e V1D dpdy.  (2)

To carry out the calculations, we consider that f(f) and
g(n) correspond to a y? distribution function F given by

1 [N\,
- (= /21 ,—Nx/2x,
PO =) (z) e )

where I" is the gamma function, N represents the number of
subsystems in the full system, and x corresponds to either T’
or . The average of the random variable x is given by

= A Kf(r)dx = (x). ()

The »? describes the distribution of the sum of N random
variables X, each of which are, in turn, distributed obeying
a Gaussian distribution. Therefore, the y* distribution is
well suited to describe random variables with positive
definite values.

To evaluate Eq. (2) with the distribution functions given
by Eq. (3), we can use that

/°° da (N N/za(N/Z)—l o~Na/2aq ,—ah
0 F(N/Z) 2(10

2 O\ —N/2
= <1 +Na0A> . (5)

where A is any operator. The Taylor series expansion of
Eq. (5) is

L 2ad ) n e Lagaz g ] x e (6)
N R~ YA e~ %4,

Therefore, using that O commutes with A, Eq. (2) can be
written as
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A A | BN ;
B(H,Q) = {1+Nﬁ3H2+--} x e~PoHl

1 .. .
X [1 + Nﬂ%Qz + - ] x Q. (7)

Expanding Eq. (7), up to first order in 1/N, we get the
generalized Boltzmann factor

PN 1 ~ 1 o N R
B(H.Q) (1 +AH + Nné@) e~ PoH=0Q)

By ON* 5 0N\ _piioni
120 = 100 = (BoH ’70Q>_
( - N \9p, * N \ng ¢

(8)

Recall that the partition function is Z = Tr[B(H, Q)];
therefore, we explicitly get

(L POV m (D
2= (i m) V) e o

with
Zy = e—ﬁogve“(/fo»’?o)’ (10)

where Q and V®(f,n,) represent the volume and the
effective potential, respectively.

Changing the variable f to Ty, the partition function is
explicitly obtained in terms of 7y and #,:

2 2 92
7 = |:1+L<2T3i_’_]“‘016_> +@8_:|ZO

NT3\ 00T, oT%) N o}
2Ty (0Zy T,0°Z 2 0z
= Zy[1+ 0 (S20 200 20) L T T 20l gy
NZO 8T0 2 8T0 NZO 81’]0

To obtain the effective potential with superstatistics
corrections, recall that

7 = e—(Q/TO)VS};%(TO.m,)' (12)
Thus,
T,
Vel (To.) = —21n(Z]. (13

The logarithm of the partition function in Eq. (11) is
given by

2T0 820 TOaZZO 77(2) 8220
In|Z|=In|Z In{l+——{—
n[Z]=In[Zo]+ “[ Nz, <8T0 2912 ) "NZy o
(14)

Substituting Eq. (14) into Eq. (13), we obtain the effective
potential with corrections due to fluctuations in £ and #:

T
Ve (To.no) = — EOIH[ZO]

Ty 2T, (0Zy T,0°Z,
——hn|l+— 7 +—=
Q NZy \9T, 2 0T}
a4
&_20 _ (15)
NZy ong

Finally, using Eq. (10) into Eq. (15), we obtain the
expression for the effective potential in terms of T and #,:

Vglflfp(TO’ ’/[0) = Veff(TO’ ’/IO)

Touly 4 2o (%, TP
Q NZo\0T, 2 oT2
P
ﬂa_zzo . (16)
NZ() 87’]0

We now proceed to compute the effective potential Veif
using the LSMq.

III. EFFECTIVE POTENTIAL

In order to explore the effective QCD phase diagram
from the chiral symmetry prospective, we work with an
effective model that takes into account spontaneous sym-
metry breaking or restoration at a finite temperature and
density, the LSMq. The dynamical degrees of freedom
consist of the lightest quarks together with the pions and the
sigma. The Lagrangian is given by

= toor+ o+ L+ ) -t 4Ry
2K 2 H 2 4

+ WOy — g (o + iyst - By, (17)

where y is an SU(2) isospin doublet of u and d quarks,
7 = (my,my, m3) is an isospin triplet of pions, and ¢ is an
isospin singlet. A is the boson’s self-coupling, g is the
fermion-boson coupling, and a®> > 0 is the mass parameter.
To allow for a spontaneous breaking of symmetry, we let
the o field develop a vacuum expectation value v:

c— o+, (18)

which can later be taken as the order parameter of the
theory. After the spontaneous symmetry breaking, the
Lagrangian for the LSMq is given by
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1 - 1 | .
S r - 0,00 - L0,
1
— (e + o7*) — 11(64 +20%7* + 1)
2
a ot
to vt =gt (19)

The shift in the ¢ field produces that the quarks, the sigma
boson, and the three pions acquire dynamical masses
given by

M, = gv,
M(Z, = 30% = &2,
M2 = 2 — a2, (20)

respectively. The tree-level potential is given by

2
:—a—vz-ﬁ—iv‘l, (21)

Vtree ( ’U) > 1

whose minimum is given by

a?

Vg = 2 . (22)
Since vy # 0, we notice that the symmetry is spontaneously
broken.

The coupling constants A and g, as well as the mass
parameter a, are to be determined from physical conditions
valid at the phase transition. The minimum of the effective
potential v represents the order parameter that evolves
when the system approaches chiral symmetry restoration at
finite 7 and/or up and vanishes in the symmetric phase. In
order to determine the transition conditions as a function of
the temperature and quark chemical potential, we study the
behavior of the effective potential.

The effective potential is computed beyond the mean
field approximation. This means that we include, in
addition to the tree-level contribution and the one-loop
correction, for both bosons and fermions, also the ring
diagram contribution and the effective coupling constants.
This correction accounts for the plasma screening effects
[63]. Also, in order to consider a nonvanishing pion mass,
we add to the Lagrangian an explicit symmetry-breaking
term and, thus,

2
ﬁ—)ﬁ’zﬁ—i—%v(a—i—v) (23)

and take the vacuum pion mass as m, ~ 139 MeV and the
vacuum sigma mass m, = 500 MeV. As a consequence of
the explicit symmetry breaking, the effective potential at
tree level has a minimum at a value of » given by

a* +mz
VA

Vo = (24)

The one-loop contribution contains vacuum as well as
matter terms. The vacuum piece can potentially distort the
tree-level potential, shifting the position of the minimum
and distorting its curvature. Since the properties of the
vacuum should be independent of the perturbative order of
its description, we introduce vacuum stability counterterms
da’* and 64 so that the tree-level potential is now written as

2 2 4+ 6a® A+ 02
Vm:e:—(a +m2,,+ a)vz-f—(t‘_ )v4, (25)

da® and 5] are computed from requiring that the minimum
and the curvature at the minimum of the sum of the vacuum
piece coming from the one-loop effective potential and the
tree-level potential in Eq. (25) do not change with respect to
the values they had without loop corrections. The explicit
calculations of the counterterms are given in Appendix A.
These conditions yield

2
c

4ru
sa® = T {scﬂg‘* —2rpa®? + a*2*1n <%>
4

—+ az/’{2 In <W> —+ 8g4m,2, — 4/12m,2,] R

3 Ay

6 =——|-8¢*In| ——5—
o | ()
Ay’

3 In(———5 8yrg*

" “(3<a2 m2) - ) e
4 2 Y 4mpe

—8¢g" —4ypA”+44" + A 1n 5 . (26)

In order to find the ring diagram correction to the
effective potential, one needs to compute the meson self-
energies, which serve as the temperature and density
infrared regulators. Furthermore, an improved description
of the properties of the phase diagram can be achieved
when including temperature and density corrections to the
couplings, which we carry up to one-loop order.

The effective potential up to the ring diagram contribu-
tion, the boson and fermion self-energies, and the effective
couplings, can be analytically computed in the low- and
high-temperature expansions. In the former, one considers
that the largest energy scale is provided by u,, such that
M/uy, T/u, < 1, where M is any of the particle masses. In
the latter, it is necessary to consider only that M/T < 1,
regardless of the relation between T and yu,. The explicit
expression for the effective potential in the low-7 (LT)
expansion is given by
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a® + m2 + 5a* A+ 64 (M2 +TIET)? Amp? 5
Vi) = - > e T [1 <M2 n ﬁﬁ;T) a7 VE]
/2
T\/M; + 11" b AT T (M7 +10;7)? drp? 5
. _ ”+ (o2 c
SR D ) YT 647> {m (M?, - H',;T> 2” 74
T\/Mg—i_HII;T v e LT M4 471'#2 5
+T 2— Lis/z(e_ M”+Hf; /T) +NCNf 16(12 ln < ) —J/E—i-z
i " (kg + 1 1G = M7)
2 _ a2
_Hq\JHg = My (042 — 5M2) Ty, Py T2, (203 —3M2)  3latu, MAT® o)
2477 1 76 360 (w2 — M2)¥? 0 1008(u2 — M2)72 ([

where, for the matter contribution to the one-loop effective potential, we have included terms up to O(T)°. We use the
expansion technique described in Ref. [64] for the fermion case. Also, we have adopted the MS regularization scheme using
u.e'/? as the renormalization scale, with .. the critical quark chemical potential at 7 = 0 in the QCD phase diagram. We
have made tests scaling the renormalization scale y.e'/> — 3u.e'/? and found that the results vary only slightly.

In the high-T (HT) expansion, the effective potential is given by

2 2 2 4 2 274
+ my + da A+ 64 M u 5 T
Vel () = _ & r 2 4 _3) Y= |y c - -
i (v) 2 U U T e M) T2 T
Mz | T(Mz+TGTY2 ((3)M; M AW
- + a2 (T \ra2 | 2| to e
24 127 967 T 647 4xT 2
T T°M%2  T(MZ +T1IHT)3/2 3)M8) N.N; 2 5
+I_ LI ) C()“ Fo S (e ) 12—y,
90 24 127 967" T 167 4nT 2
1 ip 1 ip . .
O Z 4 L) O [ Z - L) | —8M2T2[Liy (—eta/T) + Liy (—e /T
00 (54 5] =0 (3t )| - METLis (e 4 Lo
M¢ 3 iu 3 ip
32T*[Liy(—eta/T) + Liy(—e Ha/T 4y 2 T4 @4 28
+ [Lig(—e/") + Liy(—e )]+6T2 VISt YO\ T (28)
I
where for the matter contribution we have included terms The temperature and density corrections to the cou-
up to O(M)°®, using the expansion technique described in  plings, accounting for the modification of the intensity of
Ref. [63]. the interaction around the phase transition region, are

The expressions for the boson self-energies, I, in the  explicitly computed in Appendixes B and C and given by
low- and high-temperature approximations are given by

. i =1 -2 s [y
T 4 4z [2(T1
ML = NN, (24 4= (29) 7 12(1L,7)
2 6 1 (HET)1/2 1
g son(Car) +arel| e
an
) Py 4) 3\ 12 Li ( (HIET)I/z)
AT g T T 13/2 e T
HT __ _ eff _ = -
T == = NN =212 () P
x [Lip(—e#o/T) + Liy(—e7#/T)],  (30) o mme
_L11/2(€ r ):| (32)
respectively. 2T(H%T) /4
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2 _ 02 2 .2
g1 pag |V 1 [y Ra

871'2/1,] 812 ms

2_ 2

2(ITET)? Hq ) Hg—my
167 (m7 —11;T)? mg

2\ 1/2 2 _ 2 72
()]
My I1; 48

5 (—Zm? + m;ﬂ (/,t%] + ZHII;T) —Mém%HII;T — Zy‘;HIgT)

gy g —mp(m} =TLT)?

(33)

and

gt = g[l —4g

T2 H(HET) 1/2
47 TIT { T

e o]

where for the fermion mass m, in the low-temperature

approximation of ¢f'f we have used the fermion self-energy

given by
2 2
fo_of# T
HLT = g2 <2”2 + 7) . (35)

These effective couplings enter the effective potential
through the boson and fermion masses which are now
written as

Mq — geffv’
M2 — 3/1eff1)2 _ a2
M2 = 2?2 — g2, (36)

as well as through the counterterms da’> and 4.

Before proceeding to explore the properties of the phase
transition including the superstatistics effects, we first need
to determine the free parameters of the LSMq which are
appropriate to the conditions of a finite temperature and
density around the transition lines.

IV. DETERMINATION OF THE FREE
PARAMETERS

The effective potential contains three free parameters
that need to be fixed, namely, the couplings 4 and ¢ and the
mass parameter a. These parameters are to be determined

using physical input valid at the phase transition. For this
purpose, we enforce that at 7 = 0 and for a critical value of
the quark chemical potential y, = uZ/3 [65], with u? the
critical baryon chemical potential, the effective potential
describes a first-order phase transition. In analogy with
Hagedorn’s limiting temperature concept [66] extended to
finite up, we take pp~mp, where mp~1 GeV is the
typical value of the baryon mass. Recall that, for a first-
order phase transition, the effective potential develops two
degenerate minima. The value of v = v* # 0 at the mini-
mum becomes a new quantity that needs to be also
determined. However, as we proceed to show, the con-
ditions to describe a first-order phase transition provide
only three equations to determine the four unknowns. Our
strategy to find the solutions consists of finding the model
parameters when varying one of them and choosing 4 as the
parameter to vary. First, in order to determine a, we use the
relation between the ¢ and z dynamical masses at 7 = 0
and p, = p.. This involves Egs. (20), including the matter
corrections coming from the self-energies, Eq. (29). Thus,
we have

M2 —3M2 = 211ET | o, \ 172
a:< . b |T°’”‘f”“> . (37)

The remaining two equations for the two unknowns, v* and
g, are given by

GVICE(T = O,ﬂq = /,tc> _0
v v=0" 7
Vif{"(T = O’Mq = /"c‘)‘v:() = Vif’f“(T = O,Mq = //lc)|'v:v*'

(38)

Equations (38) describe the conditions for the effective
potential to show degenerate minima at T = 0 for y, = p,
one of them at » = 0 and the second one at v = »*. The
appropriate expression to be used for the self-energy
corresponds to the case of the low-temperature regime.

Although the above described procedure fixes the model
parameters for conditions valid at the putative first-order
phase transition, we also require consistency of the
description with the crossover transition at pz = 0 and
finite 7. From LQCD [67] calculations, it is well known
that this transition happens at 7§ ~ 155 MeV for 2 41
light flavors and at 7 ~ 170 MeV for two light flavors. In
order to get solutions of Eqgs. (37) and (38) satisfying the
conditions at both ends of the transition curve with
T.(u=0) <200 MeV, we find that 4 is required to lie
between the very restricted range 1.4 < 4 < 1.5. The low-
est limit for these A values corresponds to a choice for
1. =300 MeV, whereas the upper limit corresponds to
vu,. = 290 MeV.

074023-6



FLUCTUATING TEMPERATURE AND BARYON CHEMICAL ...

PHYS. REV. D 101, 074023 (2020)

V. QCD PHASE DIAGRAM

We now proceed to use the effective potential we have
determined into the superstatistics formalism. Following
the procedure developed in Sec. II, we substitute either
Eq. (27) or Eq. (28) into Eq. (10) for the low- and high-
temperature descriptions, respectively. In this manner, we
can obtain the partition function using Eq. (11), and, from
its logarithm, we write the effective potential, including the
superstatistics corrections, as

1

Vel = —Q—ﬁln[Z]. (39)
To explore the QCD phase diagram, we identify the
transition lines where chiral symmetry is restored. The
procedure consists of finding the transition temperatures
and chemical potentials using first the high-temperature
approximation for the effective potential. We start from
#g =0 and stop when the ratio of the critical chemical
potential and temperature is ~0.8 from where we start using
the low-temperature approximation for the effective poten-
tial to continue finding the critical curve.

From this procedure, we find either second- or first-order
transitions. For the former, the vacuum expectation value
continuously moves from a finite value to zero, and the
phase transition occurs when this vanishes. For the latter,
the phase transition is identified when the two developed
minima become degenerate.

Figure 1 shows the effective QCD phase diagram using
A=15 and pu,=300MeV with a =102 MeV and
g = 1.77. In the region where the HT approximation is
valid, we find only second-order phase transitions (our
proxy for the crossover phase transition), and these are
shown as the curve with 0 <, < 150 MeV. In contrast,
both second- and first-order phase transitions are found deep
in the phase diagram where the LT approximation is valid.

200 u T T T - .
——  N=o00 - N =100 ST
----- N =100 STf----- N =300 ST
150+ e N =300 STp N=100Sn |
----- N =300 Sn
3
2100}
=
s
i 40
50 ©
392990.9 290.95 * 291. * 291.05
o HqlMeV]
0 50 100 150 200 250 300
Hg[MeV]
FIG. 1. QCD phase diagram obtained from the low- and high-

temperature approximations with g, =300 MeV and 4 = 1.5
and the corresponding g = 1.77 and a = 102 MeV. The CEP is
located within the full circles on each curve obtained using the
low-temperature expansion.

200 - . . . . .
—— N=00 - N =100 ST
----- N =100 STn ----- N=300 ST
150+ e N =300STn N=100Sn ]
----- N =300 Sn
=~
2 100 514
5
3
= 51
501 -
50. A >-
2713 2714 2715 2716
o HglMeV]
0 50 100 150 200 250 300

LalMeV]

FIG. 2. QCD phase diagram obtained from the low- and high-
temperature approximations with g, =290 MeV and 1 = 1.6
and the corresponding g = 1.85 and @ = 93.4 MeV. The CEP is
located within the full circles on each curve obtained using the
low-temperature expansion.

This happens for 260 MeV < u < u,.. The CEP location,
where the phase transition changes order, is indicated with a
full circle at p, ~ 291 MeV and T ~ 40 MeV. Figure 1 also
shows the variation on the transition line and the CEP due to
the superstatistics effects in the temperature (S7), in u,/T
(S,), and in both parameters at the same time (Sz,), with
N = 100 and N = 300 for all combinations. We notice that,
as N increases, the corresponding CEP moves toward the
corresponding CEP in the thermodynamic limit, labeled as
N = oo. The changes due to any of the superstatistics effects
are quite small, and for all practical purposes they are
negligible. Figure 2 shows the effective QCD phase diagram
using the other set of allowed parameters, A = 1.6 and y, =
290 MeV with a =93.4 MeV and g = 1.85; the general
features of the phase diagram in this case do not change with
respect to the previous case. However, it is relevant to
mention that the CEP is now located at y, ~ 271 MeV and
T ~ 51 MeV. Nevertheless, the superstatistics effects are
also negligible. Finally, we notice that the systematics of the
CEP displacement for the two explored sets of parameters is
the same.

VI. SUMMARY AND CONCLUSIONS

In this work, we have used the LSMq to locate the CEP
in the effective QCD phase diagram taking into account
fluctuations in the temperature and the quark chemical
potential. For this purpose, we have implemented the
superstatistics scenario assuming that both fluctuations in
the temperature and quark chemical potential are described
according to a y? distribution. We computed the super-
statistics effective potential up to the order of 1/N. To
numerically find the effects, N has been taken as about half
the number of nucleons in the collision of heavy ions.

In order to locate the CEP, we have used the LSMq,
computing the effective potential in the high- and
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low- temperature approximations up to sixth order, includ-
ing the ring diagram contribution which accounts for the
plasma screening effects. We fix the model parameters,
namely, the coupling constants and the mass parameter,
imposing a first-order phase transition at zero temperature
and a finite critical quark chemical potential, using the
Hagedorn limit temperature concept applied to finite
baryon density. We fix this critical baryonic chemical
potential ug ~1 GeV.

We find that the CEP displacement due to fluctuations in
the temperature and chemical potential are of the order of
~0.1 MeV and are much smaller compared with the case
when only fluctuations in the temperature are considered,
and the model parameters are fixed in the high-temperature
effective potential [62]. As noted also in Ref. [62], N can be
associated with the number of participants in the heavy-ion
collision, the specific heat, and the smallest of the mass
numbers of the colliding nuclei. Thus, in order to give a
more accurate estimation of how much the CEP is
displaced under appropriate experimental conditions, these
need to be included for the estimation of the parameter N.
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APPENDIX A: VACUUM STABILITY
CONDITIONS

The vacuum stability conditions are introduced to ensure
that v, and the sigma-mass maintain their tree-level values,
even after including the vacuum pieces stemming from the
one-loop corrections. These conditions are

RON
@

éé

AX
AX
X > <

FIG. 3.

1 dvve
_ — 0’
2v dv |,
dZVvac
W = 2a2 + 2m,2,, (Al)
V=g

where V¥* is the one-loop vacuum piece of the effective
potential. The solution for the counterterms a® and 84 is
given by

3
52: 824_
“ 167:2/1{619

4 2
2y a2 + a2 In <%>

/4

4
+ Clzﬂ.z In (W) + 894m,2, - 4/12m,2,}
(A2)
and
SA = i 8¢* In Lﬁﬂ%
“len2 | 7 (a® +m2)
Az
32| ——s 8yrg”
i n(3<a2 +m2) - az) e
4 2 2, 92 4mp?
—8g" —4ypA~ +44°+ A7 In 5 . (A3)
m?[

APPENDIX B: EFFECTIVE COUPLING
CONSTANTS (1)

We now compute the one-loop correction to the coupling
A, including thermal effects in the high-temperature and
low-temperature regimes. Figure 3 shows the Feynman
diagrams that contribute to this correction. Columns (a),
(b), (c), (d), (e), and (f) contribute to the correction to the
o*, (29, (x1)2(n7)?, o*ata, ()27t n, and 6% (7°)?
terms of the interaction Lagrangian in Eq. (17), respec-
tively. Since each of these corrections leads to the same

A XX
>® >@
> oL

®)

One-loop Feynman diagrams that contribute to the thermal correction of the coupling 1. The dashed line denotes the charged

pion, the continuous line is the sigma, and the double line represents the neutral pion. Columns (a), (b), and (c) correspond to the
diagrams representing the sigma, the neutral pion and the charged pion self-couplings, respectively. Columns (d), (e), and (f) represent
the sigma-charged pion, the neutral pion-charged pion and the sigma-neutral pion couplings, respectively.
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FIG. 4. Effective boson self-coupling A.g, in the high-temper-
ature approximation, as a function of 7.

result, we concentrate on the diagrams in column (a). Each
of the three diagrams involves two propagators of the same
boson. For the first two diagrams, the intermediate bosons
are neutral, and, for the third one, the intermediate bosons
are charged. Therefore, the expression for the diagrams can
be obtained from

Wpind) = 7Y [ £55DP=KIDE). (1)

where P; = (w, p) is the total incoming four-momentum,
K = (w,,k), w, =2nxT is the bosonic Matsubara fre-
quency, and D is the boson propagators defined as

i

DIK) = g

(B2)

Considering the permutation factors and the contribution
from the s, ¢, and u channels, the correction to the self-
coupling A to one-loop order is given by

242
j‘eff :ﬂ|:1 +TX 14I(Pl,m2)}, (B3)
and we have to compute Eq. (B1) explicitly:
&k 1
I(P;;m?) = -T
(Pizm’) /(2ﬂ)3;[a)ﬁ+k2+m2]
1
(B4)

X .
(@, = )* + (k = p)* + m?]
The sum in Eq. (B4) is calculated using Ref. [68]. We

obtain

Pk
I(Pi;mz):—/w 1
51,52

« (1+ f(s1Er) + f(s5:E))
lw— lel - S2E2

. (B3)

1.4010

'— p=300 MeV
— u=290 MeV
— p=280 MeV
1.4005 1
52 1.4000
1.3995
1.3990 : y v
0 10 20 30 40
T [MeV]
FIG. 5. Effective boson self-coupling A, in the low-

temperature approximation, as a function of 7.

where

E1: /k2_p2+m2’
E2: V k2+m2,
1

f(x):ex/T

- (B6)

Calculating in the infrared limit (E; = E, = E), we get

&Pk 1
1(0;m?) = —/

W@(l +4f(E))

o /oo dick?
- 1671'2 0 (k2+m2)3/2

4
x (1 +7>. B7
< eV R+m*/T _ ( )

First, we study the HT case. We focus on the matter term
of Eq. (B7):

Hoim?) — -] /oo ki 1
sm - - )
4% 0 (k2 + m2)3/2 eV K4m?/T _ 1
1 0 o0 dkk? 1
10;m%) g = — ;
O =325 |, &+ m) et

(B8)

notice that in the second of Eqgs. (B8) we retain only the
dominant term. We define y =m/T and x = k/T and get

1 0 [o dxx? 1
1(0;m?) gy = / . B9
(0:m*)yr 2220y% Jo (x2+y2)1/23 /34y _q (BY)

The integrals over x can be expressed in terms of the well-
known functions [69]
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() 1 o dxx"! 1
n\Y) =
F(n) 0 +/x2 +y2 e\/x2+y2 -1
1 o dxx"! 1
Ju(y , B10
) — > GO
which satisfy the differential equations
ahn-‘rl _ _hn—l
oy 2’
afn+1 fn—l
=- . B11
ay? 2n (BL1)
Therefore,
) 1
1(0;m*)yp = —4—2h1(Y>- (B12)
¥4
Using the high-temperature expansions for A (y)
and f1(y) [69],
z 1 y 1
hl(y)*z_y'i_i (E>+§7E+ ;
A0) =—im(2) =Lyt (B13)
= ——In| — —_——
1y ) o 2}’5 )
and keeping the leading terms, we get
1 [=zT 1 m 1
10;m*)yp = —— |=— +=In B14
O Jur = =372 [2m+2 <4 T>+zyE] (B14)
Using Eq. (B14) into Eq. (B3), we finally obtain
- 241 14 xT
eff __ ="
e =4 {1 4 4n? {2(H§T)1/2
1 (HHT)I/Z 1
“In{—2——) +-7g||. B15
+2n( 4t ) T2lE (B15)

‘We now calculate the LT case. We focus on the matter term
of Eq. (B7):

1(0; m?) 1 /m e :
imT) = ——— ’
4n* Jo (K +m?)3? e _
1 0 [«  dkk? 1
1(0; m> == /
( )Lt 222 0m? Jo (K2 +m2)'2 e _ 4

(B16)

Note that, in the second equality of Eq. (B16), there is a
term that is zero when T — 0; if we make the change of

variable w = Vk% + m?, then dk = \/%
get

Therefore, we

—w/T

1(0;m?) ¢ d -
(0; m*) 28/WW ml_

-w/T *

(B17)

As T — 0, then ¢™/T < 1, and we can use the geo-
metric series in the form

—w/T
(B18)

Z e—nw/T

Thus, using Eq. (B18) into Eq. (B17), we obtain

—W/T

1(0;m?); r = 28m22/ dwy/ w2 — m2em/T
(B19)
Notice that the integral of Eq. (B19) gives
© T
/ dwv/w? — m2emiT =" g (@)
0 n T
T3mn' 1/2
~ ( P ) e=m/T  (B20)

where in the last equality we have expanded in a Taylor
series for 7 < 1. Therefore, we get

1 0 & /T’mr\/2
10; =—— —mn/T
O = 22 5 Z( e) e
1 ) 1/2 o) —mn/T
“sral5) Lo
1 0 (T’mz\!/?
_26—< ) Liyp(e™/T),  (B21)
and, thus,
1 (T3x\'2[ 1 N
I(O;mz)u:ﬁ<7> L 777 Lz (e /)

1
-m/T
T ST 5 Liija(e )} (B22)
Finally, using Eq. (B22) into Eq. (B3), we get
24/1 1/2 [Lia o (e~ @0Y?/T
Aif”f“ =Al+—-14 3/2( LT\3/4 )
4 87r 4(TIET)3/
Li1/2(€_<HI§T)I/2/T) (B23)
2T (ITLT)1/4

Figures 4 and 5 show the behavior of the effective coupling
¢ in the HT and LT approximations, respectively. Notice
that in both cases the effective coupling is a decreasing
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function of 7, although the change is rather small over a
wide temperature range.

APPENDIX C: EFFECTIVE COUPLING
CONSTANTS (g)

We now turn to the calculation for the one-loop correc-
tion of the coupling ¢. Figure 6 shows the Feynman
diagrams that contribute to this correction. Columns (a),
(b), and (c) contribute to the correction to the quark-o,
quark-z°, and quark-z* terms of the interaction Lagrangian
of Eq. (17), respectively. Since each of these corrections
leads to the same result, we concentrate on the first
diagrams in column (a). Figure 7 shows the kinematics
for the diagram, which is written as

5 d*k .
GPn?) = [ &55a(Ps) (=ig)issrs)S(Py = K)
(27)
x (=ig)S(Py — K)(=ig)(itsys) D(K)u(Py),
(C1)

where D(K) is given by Eq. (B2) and S(K) is the fermion
propagator

S(k
(k) = kz—mf

(C2)

therefore, considering all diagrams, the correction of the
self-coupling g to one-loop order is given by

(@) (b) (©

FIG. 6. One-loop Feynman diagrams that contribute to the
thermal correction of the coupling g. The dashed line denotes the
charged pion, the continuous line is the sigma, the double line
represents the neutral pion, and the continuous line with arrows
represents the quarks. Columns (a), (b), and (c) represent the
interaction between quarks and the sigma, the neutral pion and
the charged pion, respectively.

G(P; mz)] .

- (©3)

geff:g|:1+4

In order to proceed, we have to compute G(P;; m?). Using
trace algebra and applying the Dirac equation in Eq. (C1),
we get

4
G(P,.m?) = (~ig)(~ig®) / %
1
) {KPI—K) 2 [P, =K —m?]
m?
TP =K P—m][(P,—K) —nl] K2 —ned]|

(C4)

In order to apply the imaginary-time formalism of finite-
temperature field theory, we make the substitutions p, —
i@,, + p for the fermion part, kK, — iw,, for the boson part,
where w,, = 2nxT, and

d4k &k
[ o= g
therefore, we obtain
G(P;.m*)=(—ig)( TZ /
x [ 1
(@1 —iu+w,)* +E|[(@2—ip+0,)* + E3]
m2
- ([(5)1—1'/14-0)") H( 2—1/14—0),,) +E%]
1
——57 | |» Co6
i) o
where
FIG. 7. Feynman diagram defining the momentum correspond-

ing to each line for a generic diagram in Fig. 6.
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FIG. 8. Effective fermion-boson coupling g.s, in the high-

temperature approximation, as a function of 7.

E = (py —k)* +m7,
E; = (p2 —k)* +mj3,

E? =K*+m2. (C7)

Both sums in Eq. (C6) are calculated using Ref. [68]. We
obtain

1
Z [(67)1 - iﬂ+wn)2 +Eﬂ [(&)2 - i/'t +a)n)2 +E%]

:Z 5180 (=14 f(s2Ey+u)+ f(s1E —p)) (C8)
SHAEE, i(@) —@,) =5 E, = $,E, '

=y
- (@ - ip+ ,)* + B3

n

mz

X
(@7 — iu + w,)* + E3|w} + E?]

o Z —S85851852 1
B £~ BEE\E, [i(@) — @) + $:E, — 5, E|]

« [1 + f(sE) = f(s1E1 — p)
i&)l —'M—SE—SIE]

_1+f(SE)—]~C(52E2—H)
i&)z—ﬂ—SE—SzEz )

(€9)

To study the HT and LT regimes, we analyze Eqgs. (C8)
and (C9) in each regime. First, we compute the high-
temperature regime. For the case of I, the dominant terms
behave as ~T?. This behavior is obtained for the case when
s1 = —s, in Eq. (C8). Considering only the matter piece,
we get

1.526 T
— u=300 MeV
— u=290 MeV
1.525¢ — =280 MeV -
1.524 +
=
[T
()
1.523
1.5622
1.521 . . : y y
0 5 10 15 20 25 30

T [MeV]

FIG. 9. Effective fermion-boson coupling g.s, in the low-
temperature approximation, as a function of 7.

1 1— f(E,—p) + f(E, — )

Tyr = —
o 4E\E, | (@) —@,) - E +E,
f(E 1-f(E
et .2~+/¢)~+ F(Ei +4) ’ (C10)
(@) — @) + E) — E,
where we have wused 1+ f(—E)=—f(E) and

f(=E; —p) =1—=f(E, + p). Taking E, = E,, we obtain

1
I =
4R Eyi(@) — @)

[1-1]=0. (Cl1)

Therefore, Iy does not contribute to terms of the order of
T?. Now we compute IIr. Once again, terms that behave
like ~T? are obtained when s = —s; = —s, in Eq. (C9).
Therefore, we get

-1 1
e = S5k E, (icbl —@y) + E, — E,
« |:f(E)+]~C(E1 +ﬂ)_f(E)+f(E2 ‘H‘)]
p?—E—FEl pg—E+E2
1
i(@) —@,) —E| + Ey
« {f(E)‘f'}(El —ﬂ)_f(E)‘f’J?(Ez—M)])
P +E-E, pS+E-E, ’

+

(C12)

where we have used 1+ f(—E)=—f(E) and f(—E,—pu)=
1-f(E,+p), p)=iw,—pu and pY = i@, —pu. Taking
E, = E,, we obtain

1 ( f(E)+ J(E\ +n)

8EET \(P) —E+E))(p) - E+E))
f(E) + f(E| — ) >

(P)+E-E\)(pS+E —E))

IIHT —

(C13)
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Taking p) =0 and p9 = 0, we get
K (2f(E) + J(E+u) + F(Er = p)
yr = SEE? ( v . (C14)
Therefore, using Egs. (C14) and (C11) in Eq. (C6), we obtain
Bk =k (2f(E) + f(Ei + 1) + F(E\ — p)
G O, 2 _(_; ) / 1 1
O = (i) [ s ( ~
4 ©  dkk*
~(=ig) () 73— (2r(/i2+m ) + P+ ) + Flk = p)
162°m2 Jo /K% + m2k? m2k>
(=ig)(g*) { o dkk
= 2 K> + m?2) + Flk+p)+ flk—p C15
4n*m?2 NG —|—m ) /72 Tm ( )| (C15)
The first integral in Eq. (C15) is computed using Eqs. (B10) ~ .
and (B11), and we get Jlrtu) = /T 4 -0,
~ 1
Fo—p) =~ = Ou—x).  (C20)
© (x=p)/T
G(0.m?)yr = %{—mnnu/ dk el
dr=m 0
2 Using Eq. (C20) into Eq. (C8), we obtain
X s () + k= )|
k + mz I B 1 |: @(/l - El)
(Cl16) YT 4EE, |i(@, - @) - E, - E;
n -1 n O(u - Ey)
In the high-temperature case, we can approximate i(—@y)—E, —E, (@ —an)—E +E,
\/k* + m% ~ k in the denominator of the previous integral. _@( u-E) 1
Then, we have an analytical integral of the kind + i@y —n)—F, + B, i(@y—dn) + E + B
O —E,)
© K - r - 2 } . C21
A e(kiﬂ)/T +1 =-T LlZ(_e:Fﬂ/ ) (C17) l(&)l - (7)2) + E1 + E2 ( )
Hence, we obtain Setting £, = Ex, we get
_ L[ eku-E)-1 1-0(u-E)
—7 LT — 7 |5/~ ~ — ~ ~ .
G(O, mz)HT —_ ( 192)(%2) T[—mﬂﬂ _ T(Liz(_e—(—ll/T)) 4E% l(a)l - 0)2) - 2E1 l(a)l - 0)2) + 2E1
4 m (C22)
— Liy(—e™/T))]. (C18)
Taking the limit @; = @, = 0, we obtain
Finally, using Eq. (C18) into Eq. (C3), we get .
Lir= 3 [1 - 6(/4 - El)] (C23)
72 [2(I1T)1/2 4E4
gilﬁT—g[l_4924 [T [ bT
T Now, we analyze II. For this case, we have to consider that,
+ Liy(—e™/T) 4 Liy(—ete/ T)H (C19) for T — 0, the Bose-Einstein distribution behaves as
2 (— q H(—ef .

Now we proceed to compute the low-temperature
regime. When 7 — 0, the Fermi-Dirac distribution
behaves as

(C24)
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Therefore, using Eqs. (C20) and (C24) and proceeding in ~ We have two integrals to calculate:
the same manner as in the previous calculations, i.e., setting
E; = E, and pY = p9 = @, = @, = 0, we obtain Fr 1
Gi= | ~—5—50u—E C27
= [ Gapaeu-E) ()

2E, +E (BEIE-E*)f(E — p)

C25
4E3E(E| + E)? 4EJE(E? — E?)? (C25)

Hpr =

Hence, considering only the matter part of Eqs. (C23) and  and
(C25) in Eq. (C6), we get

e = (—ig)(@) | -L* Lo - _ [ &k BEE-E)J(E ~p)
60w = (=ia)(#) [ s [0 — 1) o= [ Sk CEEZENE 0 ()

(BEE - E)J(E, — M)]
AEJE(E} - E2? |

(C26)

The integral Gj is straightforward:
|

/‘fk@W—En

Gr=- T

(27) Ey
1 [wReu-E)
8722 ) (kz+m]2c)3/2 '

1 /\/;ﬂ—mi KO(u—E;)
=—— ——E Cldk
8 0

(K + m3)3/>
1 M+\/ﬂ2—m]2r \/Mz—rnif
=—- |log - . (C29)
8ﬂ' mf M

For Gy, we use Eq. (10) and obtain

m_]zr/\/llz—mzf IR 2k% + 3m§ - Wl,zr
27% Jo 4(k* + mj%)yz(mj% —m2)?

m2 u—+ ,/pt2 —mj%
r =2umzIn | —————— | +24/p> = mi(u* —m; +mz)|. (C30)

- 167°u(m7 — m3)? my

G =

Therefore, using Egs. (C29) and (C30) into Eq. (C26), we get

2 2 2 2
. VR | /"—’_\/” My m2
G0.m*,T = 0) 1 = (—ig)(¢) |5 —<= |]

87°u ga2 | % my B 167[2;4(111} —m2)?

pA o JH = mF
X | =2pumzIn | —————— | +24/p? —mi(* —m; +mz)| | =Golu). (C31)

mpg

Notice that Eq. (C31) is an approximation valid for T ~ 0. To find the next-order terms in 7', we use a series around 7" ~ 0 [64]:

m*T? 9?Gy(pu + xT)
6 O(xT)?

G(0,m?) .+ = Go(u) +

SR (C32)
T=0
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Hence, we obtain

yE-m

2 — (7 2

X [—2,um,2, In
my

T2 (=2m$ + mi(u* + 2mz) — w>mim; — 2p*mz)

In

gt uP = m3

2 2
pot K m2
2)2

my B 167°u(m7 — m;

+24/p* — mJ%(,u2 - mzf +m2)

— (C33)
48 w12 = mi(mf = mz)?
Finally, using Eq. (C33) into Eq. (C3), we get
R P A N LR it A |, [Het
= ——In n
gr =9 7 87%u, 872 my 167° (m3 —1I;T)? my
m2\ 1/2 2 _ 2 T2 (—2m® + m* (42 + 201LT 2, 2TILT 2 ATILT
—<1——2f> (1+%> +E( f 7y ) = a1l Hally") (C34)
Hq b Hn uE — m%(m% —I1LT)?

Figures 8 and 9 show the behavior of the effective coupling ¢

eff »

in the HT and LT approximations, respectively. Notice that

in both cases the effective coupling is a decreasing function of 7, although the change is rather small over a wide

temperature range.
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