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2Institut de Física d’Altes Energies (IFAE),
The Barcelona Institute of Science and Technology (BIST),

Campus UAB, E-08193 Bellaterra (Barcelona), Spain

(Received 24 January 2020; accepted 31 March 2020; published 16 April 2020)

In this work we study the axial contributions to the hadronic light-by-light piece of the muon anomalous
magnetic moment. We point out some theoretical ambiguities in previous estimates, and opt to perform a
new evaluation using resonace chiral theory, that is free of them. As a result, we obtain aHLbL;Aμ ¼
ð0.8þ3.5

−0.8 Þ × 10−11, that might suggest a smaller value than most recent calculations, underlining the
relevance of the off-shell prescription and the need for future work along this direction. Further, we find that
our results depend critically on the asymptotic behavior of the form factors, and as such, emphasizes the
relevance of future experiments at large photon virtualities. In addition, we present general results regarding
the involved axial form factors description, comprehensively examining (and relating) the current
approaches, that shall be of general interest.
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I. INTRODUCTION

A. Overview of the muon g-2:
the importance of

hadronic contributions

The anomalous magnetic moment of a charged lepton l,
al ¼ ðgl − 2Þ=2 is nonvanishing because of quantum
radiative corrections, and has played a key role since its
first measurement showing its nonvanishing value [1,2]
for l ¼ e, confirmed immediately after with the famous
Schwinger computation of al ¼ α=ð2πÞ þOðα2Þ [3]. Over
the years, it has been (and it still is) one of the most
stringent tests of the whole Standard Model, thanks to
the increasing accuracy of its determination over time
(l ¼ e, μ) and the improved theoretical computations with
reduced uncertainties that became available. This makes it
an extremely sensitive probe of new physics that, if heavy,
would naively shift al with the scaling m2

l=M
2 (M being

the heavy new physics mass). This explains why, despite ae
is measured 2400 times more precisely than aμ, the latter
is still more sensitive to heavy new particles than ae by

a factor ∼18.1 The latest measurements of aμ [11–13]
yield [14]

aexpμ ¼ ð116592091� 63Þ × 10−11; ð1Þ

while the weighted average of the most recent evaluations
[15–17] of the SM contributions reads2

aSMμ ¼ ð116591807� 38Þ × 10−11; ð2Þ

showing a tantalizing 3.9σ discrepancy with respect to the
measurement (1). This has motivated two further experi-
ments: one at FNAL, aiming to achieve an error around
16 × 10−11 [18], and a second one at J-PARC, aiming for an
error around 50 × 10−11 [19].
The amazing precision of the theoretical determina-

tion in Eq. (2) is possible thanks to the complete Oðα5Þ
computation of the QED contributions [7,20,21] and of the
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1There are exceptions to this counting, see Ref. [4]. Also, there
are proposals to measure ae to a precision high enough as to
compete with the future aμ experiments [5]. It is nevertheless
extremely interesting that, while the measurement of ae [6] agrees
with the former prediction in [7] (that uses as an input the
previous values for α from Refs. [8,9]), it is in tension, at the 2.5σ
level, when employing the most recent and precise determination
of α [10]. Note at this respect that, as opposed to aμ, the ae
uncertainty is dominated by that of α [7].

2This arises from aSMμ ¼ 1.16591783ð35Þ [15], aSMμ ¼
1.16591820.4ð35.6Þ [16], aSMμ ¼ 1.16591830ð48Þ [15].
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electroweak contributions to two loops (including the
leading logarithms from an additional loop) [22–25],
which warrant an associated uncertainty at the level of
≲1 × 10−11. Still, the error of Eq. (1) is a factor ∼40 larger,
because of the uncertainties associated to the hadronic
contributions [26–28], as we will discuss next.
There are two main types of hadronic contributions to aμ:

the so-called hadronic vacuum polarization (HVP) and the
hadronic light-by-light (HLbL) scattering, which areOðα2Þ
and Oðα3Þ, respectively. The 38 × 10−11 uncertainty in the
SM prediction of aμ above comes from their leading order
components (at the next-to-leading order they are known
[29,30] precisely enough). Despite their dominantly non-
perturbative nature, it has long been known [31,32] how to
obtain a data-driven extraction of the LO HVP contribution
via dispersion relations, that provide an immediate con-
nection to the eþe− → hadrons cross section. Although
the resulting error used to dominate the total uncertainty
in Eq. (2), relegating the HLbL to a second place, the
successive improvements on the HVP side (with current
errors around 35 × 10−11 [15–17]) demanded a dedicated
theory effort for the HLbL piece (with former errors around
30 × 10−11 [26,33]). More important, to fully benefit from
the future measurements of aμ at FNAL and J-PARC, a
reduction of errors at around 10−10 is required.
For a long time, the leading order HLbL could not be

computed in a data-driven way and it was difficult to
evaluate the model-dependence associated to it [34–51].
Recently, there has been a tremendous effort in this
direction [52–56] yielding precise numerical results for
the two-pion [55,56], one-pion [57–59], and η; η0 [57]
contributions—that are the most relevant ones.3 As a result
of this activity, the error on the π0-, η-, and η0-exchange
contributions is ≲4 × 10−11 and ≲2 × 10−11 for two-pion
contributions. The next ones in size, but with similar errors,
are the axial-vector contributions, whose study and evalu-
ation is the aim of this paper.

B. Axial-vector contributions to the muon
anomalous magnetic moment

Although the Landau-Yang theorem [64,65] forbids the
annihilation of a spin-one particle into a pair of real pho-
tons, axial-vector exchange contributions to the HLbL
piece of aμ are still possible, since at least one photon is
off-shell in both axial-γ� − γ� vertices in such a contribu-
tion. Still, the Landau-Yang theorem imposes nontrivial
requirements on the symmetry structure of the involved
form factors, as we will see.
Early estimates of the corresponding contributions were

carried out both in the extended Nambu-Jona-Lasino model

by Bijnens, Pallante and Prades [35–37] and by
Hayakawa, Kinoshita and Sanda using hidden local sym-
metry Lagrangians [38,39]. The first group obtained
aHLbL;Aμ ¼ ð2.5� 1.0Þ × 10−11, which includes the ballpark
value 1.7 × 10−11, given by the second group.
Later on, Melnikov and Vainshtein [45] derived operator

product expansion (OPE) constraints on the hadronic light-
by-light (HLbL) tensor and built a model where these
were saturated by dropping the momentum dependence of
the singly-virtual transition form factors, which increases
the axial contributions to aμ. As a result, their evaluation,
aHLbL;Aμ ¼ ð22� 5Þ × 10−11, is an order of magnitude
larger than the previous estimates.
Recently, there have been a couple of new estimates

for aHLbL;Aμ : that by Pauk and Vanderhaeghen [66], that
accounted for the f1ð1285Þ and f1ð1420Þ contributions,
obtaining aHLbL;Aμ ¼ ð6.4� 2.0Þ × 10−11, and that by
Jegerlehner [15], where also the a1ð1260Þ was included
as an intermediate state, obtaining aHLbL;Aμ ¼ ð7.6� 2.7Þ×
10−11. With the a1 contribution of the order of 1.9 × 10−11

[15], their agreement is remarkable considering the marked
differences among both approaches. The large discrepancy
with respect to the result in Ref. [45] was ascribed both to
the constant form factor used in [45] at the external vertex,
and to an apparent violation of the Landau-Yang theorem
(Bose symmetry), that they claimed required the form
factor employed in Ref. [45] to be anstisymmetric in
order to have vanishing amplitude for real photons. Such
a claim is however false as we demonstrate in the fol-
lowing section.4

On the experimental side, very little information is
available (which again is partly due to the Landau-Yang
theorem). Noticeably, the L3 Collaboration at LEP mea-
sured the diphoton coupling to the f1ð1285Þ and f1ð1420Þ
states using their decays to πþπ−η [68] and KSK�π∓ [69]
products. In this case, one could study the energy depend-
ence of a linear combination of form factors relevant for
aHLbL;Aμ . We will take this information into account in
our work.
Noteworthy, according to the most recent evaluations of

aHLbL;Aμ in Refs. [15,66] the axial-vector contributions have
a very similar uncertainty (∼3 × 10−11) as the sum of the
tensor and higher-scalar meson contributions [66,70,71].
One main motivation of our work is to confirm or disfavor
this observation, especially due to the model-dependency
of the estimations and some overlooked ambiguities related
to the off-shellness, which could make further refined
studies of aHLbL;Aμ needed. An additional relevant outcome
of this study is to show the sensitivity of aHLbL;Aμ to the
asymptotic behavior of the form factors. This will be useful

3Remarkable progress in the evaluation of the HLbL part of aμ
on the lattice has been achieved recently [60–62], as well (see
Ref. [63] for a review on this topic).

4We are aware that M. Hoferichter and collaborators have
reached a similar conclusion [67]: that Ref. [45] does not violate
Landau-Yang theorem.
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toward achieving a reliable model-dependent error estima-
tion of this contribution.
The outline of this paper is as follows: in Sec. II we

define our notation and conventions together with the
central results, pointing to the origin of the mentioned
ambiguities, and commenting on the controversy about the
Landau-Yang theorem raised in Refs. [15,66]. Then, we
compute the axial-vector exchange contribution to aHLbLμ in
Sec. III, with details relegated to Appendix E. After that,
we evaluate numerically aHLbL;Aμ for the lowest-lying axial
multiplet in Sec. IV, assessing as well the impact of higher
order effects in resonance chiral theory (RχT). Finally, we
outline our conclusions in Sec. V. Several appendices com-
plete our discussion: Appendix A collects several useful
relations derived from Schouten identity; Appendix B
includes four other basis (and their relation with ours)
for the axial transition form factors, briefly commenting
about short-distance constraints; Appendix D summarizes
the treatment of Uð3Þ flavor breaking corrections in RχT
and discusses the determination of the model parameters
using short-distance QCD constraints and phenomenologi-
cal information from LEP; Appendix C shows in detail the
estimate of higher orders in RχT; finally, Appendix F
summarizes the implications of the OPE for the axial
transition form factors.

II. THE AXIAL TRANSITION FORM FACTORS

A. Definitions and main results

Based on parity, charge conjugation, and hermiticity, the
axial transition matrix element with the electromagnetic
currents jμ ≡P

i Qiq̄iγμqi with Qi the ith quark charge,
defined as

i
Z

d4xeiq1·xh0jTfjμðxÞjνð0Þgjaτi≡MμντεAτ; ð3Þ

where hγ�ðq1Þγ�ðq2ÞjAðpAÞi≡ð2πÞ4δð4Þðq1þq2−pAÞie2×
MμντεAτε

�
1με

�
2ν, can be generally written as5

Mμντ ¼ iϵμνταðqα1A − qα2ĀÞ þ iϵq1q2ατ½gμαðqν1B1 þ qν2B2Þ
− gναðqμ1B̄2 þ qμ2B̄1Þ� þ iϵμνq1q2ðqτ1Cþ qτ2C̄Þ; ð4Þ

with ϵ0123 ¼ þ1 and where, given a form factor F≡
Fðq21; q22Þ, we define F̄≡ Fðq22; q21Þ. Note in addition that
ðq1 þ q2Þ · εA ¼ 0 implies that only the antisymmetric part
in C survives on-shell—yet we still keep it for later
convenience. Defined in this way, only the tensor structure
associated to C ensures gauge invariance by itself. For the
remaining set, gauge invariance implies6

Aþ ðq1 · q2ÞB1 þ q22B2 ¼ Āþ ðq1 · q2ÞB̄1 þ q21B̄2 ¼ 0:

ð5Þ

However, these transition form factors (TFFs) are not
independent of C—they are related via Schouten identitites
(see Appendix A). This implies that we can dismiss either
A;B1;2 and remove it from the equations above; in the
following, we relegate B1 and obtain A ¼ −q22B2.

7 Intro-
ducing q12 ¼ q1 þ q2, q̄12 ¼ q1 − q2, and CAðSÞ ¼ ðC ∓
C̄Þ=2 (B2A;2S can be defined analogously), our expression
for the TFFs parametrization can be expressed as

Mμντ ¼ iϵματq1ðq2αqν2 − gναq22ÞB2 þ iϵνατq2ðq1αqμ1 − gμαq21ÞB̄2

þ iϵμνq1q2ðq̄τ12CA þ qτ12CSÞ: ð6Þ

This definition is that appearing (up to overall factors and
the spurious addition of CS) in Ref. [72–74] and roughly in
[75], where C → 0 is taken. The relation to alternative
existing bases is given in Appendix B. However, a relevant
comment is in order here: since the connection among
bases involves CS ≠ 0 terms, different bases will behave
differently when reconstructing the axial-vector contribu-
tion to the HLbL Green’s function, unless qτ12-terms vanish
in such procedure. More important, such procedure is
not unique and only the residue at the axial pole is well
defined. As an example, that different propagators ðgμν −
qμ12q

ν
12=XÞðq2 −m2

AÞ−1 with either X ¼ q212 or X ¼ m2
A

have been used in Refs. [45,76] and [66], respectively.
The potential effect of such ambiguities and the off-shell
prescription might be large, as we find. To circumvent this
issue, one needs a well-defined off-shell prescription. In our
case, we opt to use RχT that, despite some caveats [77–80],
has proven to successfully describe QCD at low energies at
the precision that this work requires and allows, at the same
time, to work directly at the level of Green’s functions, that
is the required input in computing aHLbLμ .
An additional comment concerns Landau-Yang theorem

that, contrary to the claims in [66,76] was not violated in
Ref. [45]. To see this, note that Eq. (6) can be reexpressed in
the language of Ref. [45] as

Mμντε�1με
�
2νεAτ ¼ i½fq2F2F̃1εAgB2 þ fq1F1F̃2εAgB̄2

− fF2F̃1gðq̄12 · εAÞCA�; ð7Þ

where Fμν
i ¼ qμi ε

ν
i − qνi ε

μ
i and F̃μν

i ¼ ϵμνρσFρσ=2. In this
form, it is straightforward to show that the results in
Ref. [45] are equivalent to use only nonvanishing B2S

(symmetric) form factors when computing aHLbL;Aμ .
5Mμντ has GeV dimensions; Bi and C, GeV−2; A is dimen-

sionless. We use the notation ϵμνρσp
ρ
i ≡ ϵμνpiσ .6Lacking massless particles, all the form factors should be

regular at q21;2 ¼ 0, implying that 2Aðq21; 0Þ þ ðq212 − q21Þ×
B1ðq21; 0Þ ¼ 0, while B2 is not constrained for vanishing q2i .

7In order to connect to alternative descriptions, where B1 is not
relegated, our choice is equivalent to shift ΔC ¼ B1, ΔA ¼
ðq1 · q2ÞB̄1 þ q22B1, ΔB2 ¼ −B̄1 and analogously for the barred
form factors.
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As such, the form factor employed in [45] cannot be
antisymmetric, as it was argued in [66,76]. Further, as we
detail below, the corresponding helicity amplitudes vanish
for real photons, fulfilling Landau-Yang theorem. Actually,
it is worth emphasizing that the OPE constraints derived in
[45] apply to the B2S form factor alone (see Appendix F),
and as such they cannot be used to set constraints to the CA
form factor, as it was done in [15,76].

B. Helicity amplitudes and cross section

In the following, it will be useful to quote the non-
vanishing on-shell helicity amplitudes in order to make
contact with experimental results8

M��0 ¼∓ ϵ0123
�
q22

m2
A þ q21 − q22

2mA
B2

− q21
m2

A þ q22 − q21
2mA

B̄2 þ 2q2mACA

�
; ð8Þ

M�0� ¼ �ϵ0123
�
q21q

2
2ffiffiffiffiffi

q22
p B̄2 −

q1 · q2ffiffiffiffiffi
q22

p q22B2

�
;

M0∓� ¼ �ϵ0123
�
q21q

2
2ffiffiffiffiffi

q21
p B2 −

q1 · q2ffiffiffiffiffi
q21

p q21B̄2

�
; ð9Þ

where q¼ λ1=2ðm2
A;q

2
1;q

2
2Þð2mAÞ−1¼½ðq1 ·q2Þ−q21q

2
2�1=2×

m−1
A refers to the photon momentum in the axial-vector

meson rest frame—find similar results in Ref. [74]. Note
that the amplitudes vanish for q21 ¼ q22 ¼ 0, in accordance
to Landau-Yang theorem. A particularly interesting result
is the cross section for γ�γ� → A that is relevant for
eþe− → eþe−A production. Following the definitions in
[74,82,84,85], we find that

σTT ¼ 1

4mAq
πδðs −m2

AÞjM��0j2;

σTL ¼ 1

2mAq
πδðs −m2

AÞjM��0j2; ð10Þ

that, in the q21 → 0 limit, produces a cross section σγγ ≃
σLT þ σTT (find details in [84,85])

σγγ ¼ δðs −m2
AÞ16π2

3Γ̃γγ

mA
xð1þ xÞ

�
jB̃2j2x

�
1þ x

2

�

þ 1

2
jC̃Aj2ð1þ xÞ2 − xð1þ xÞReB̃2C̃

�
A

�
; ð11Þ

where x ¼ Q2
2=m

2
A, B̃2ðC̃AÞ ¼ B2ðCAÞ=B2ð0; 0Þ, and

where

Γ̃γγ ¼ lim
Q2

1;2→0

1

2

m2
A

Q2
2

�
ΓTL ¼ 1

3

1

2mA

Z
dΠγγ

X
T¼�

je2MT0T j2
�

¼ πα2

12
m5

AjB2ð0; 0Þj2: ð12Þ

Note that in the narrow-width approximation πδðs−
m2

AÞ ↔ maΓA½ðs −mAÞ2 þm2
AΓ2

A�−1, that allows compari-
son to Ref. [68], (see Eqs. (1–3) therein). The bracketed
expression in Eq. (11) compares to that for the simplified
model (i.e., with CA ¼ 0, see also Appendix B 2) in
Ref. [68], namely xð1 þ x=2ÞjFðQ2Þj2. For a dipole form
factor FðQ2Þ, Ref. [68] finds a reasonable fit to data,
suggesting that singly virtual form factors should not
grow faster than Q−4, that has relevant implications as we
shall see.

C. Form factors in RχT

Resonance chiral theory [86,87] was developed with the
purpose of—on the one hand—enlarging the domain of
applicability of Chiral Perturbation Theory (χPT) [88–90]
to higher energies and—on the other—to explain the values
of the subleading low-energy χPT constants in terms of the
lightest meson masses and couplings; based only upon the
approximate unitary flavor symmetry for the resonances,
and recovering χPT at low enough energies. It has also been
systematically applied to long-distance dominated kaon
decays (see [91] for a review), hadronic tau meson decays
(remarkably, the Monte Carlo based on RχT results [92–94]
provides the best performance in describing three-prong
pion τ decays in RD� analyses [95,96]), and to the study
of Green functions which are order parameters of chiral
symmetry breaking (see, for instance, [46,97]). Unitarized
RχT has also been applied successfully in the timelike
region to understand meson-meson scattering (see, e.g.,
Refs. [98,99]). In the spacelike region, it has been
employed satisfactorily to explain the π0 [46], η and η0
transition form factors [50] and their corresponding con-
tributions to aHLbL;Pμ . Variants and corrections to this
approach have been considered in Refs. [100,101].
Figures 4 and 5 in the latter reference show a good fit
to data on the π0, η and η0 transition form factors with
aHLbL;Pμ in the ballpark of the results in the literature. As
such, we expect that a similar performance is obtained for
the axial case.
Using the RχT Lagrangian [86,87] that saturates the

Oðp6Þ LECs in the odd-intrinsic parity sector [46], the
leading contribution can be conveniently expressed as

8We employ q1ð2Þ ¼ ðE1ð2Þ; 0; 0;�qÞ, with 2mAE1ð2Þ ¼ m2
A �

ðq21 − q22Þ, ε�A ¼ ε�1 ¼ ε∓2 ¼ ∓ð0; 1;�i; 0Þ= ffiffiffi
2

p
, ε0

1ð2Þ ¼ ð�q; 0;

0; E1ð2ÞÞ=
ffiffiffiffiffiffiffiffiffi
q2
1ð2Þ

q
, and ε0A ¼ ð0; 0; 0; 1Þ as in Refs. [81–83].
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MμντεAτ ¼
X
V

cAV
ðq21 − q22Þh0jAρλjAi
ðq21 −M2

VÞðq22 −M2
VÞ

ð½ϵμνρq2qλ1 þ ϵμνρq1qλ2� − ½ϵνρq1q2gμλ þ ϵμρq1q2gνλ�Þ

≡Mμν;ρλ
A h0jAρλjAi; ½cAV ¼ −2

ffiffiffi
2

p
κAV5 FV trðfV; AgQÞtrðVQÞ�: ð13Þ

The equation above will be the central quantity in determining the axial-vector contribution to the HLbL Green’s function
(and thereby aHLbL;Aμ ) in the following section. In order to make contact with the axial TFFs, one substitutes the h0jAρλjAi
matrix element in the equation above, obtaining the following amplitude for the A → γ�γ� transition assuming ideal mixing
and the isospin limit (Mρ ¼ Mω Fρ ¼ Fω):

Mμντ ¼ 2e2cAM−1
A ðq21 − q22Þ

ðq21 −M2
VÞðq22 −M2

VÞ
ðiϵματq1 ½qν2q2α − gναq22� − iϵνατq2 ½qμ1q1α − gμαq21� þ iϵμνq1q2 q̄τ12Þ; ð14Þ

where V → ρω for a1 and f1 cases, while V → ϕ for f01. Finally, the form factors read

CA ¼ B2 ¼ −B̄2 ¼
2cA
MA

q21 − q22
ðq21 −M2

VÞðq22 −M2
VÞ

; cða1;f1;f01Þ ¼ −
�
1;
5

3
;

ffiffiffi
2

p

3

�
4FVκ

VA
5

3
: ð15Þ

Note the absence of symmetric form factors, that are
chirally suppressed and appear at higher orders (see Sec. IV
and Appendix C). Although both, Fρω and Fϕ depart from
FV by Oðm2

π;KÞ corrections [101], when the appropriate
short-distance constraints are required, one recovers Fρω ¼
Fϕ ¼ FV [101]. We note that the ideal mixing for the spin-
one nonets that we have used (that is predicted with
NC → ∞) is supported by the fact that BRðf1 → ϕγÞ ¼
ð7.4� 2.6Þ× 10−4 ≪ BRðf1 → ργÞ ¼ ð5.3� 1.2Þ× 10−2.
For the numerical inputs, we refer to Appendix D.

D. Additional vector multiplets in RχT

As a result of their antisymmetric nature, the singly-
virtual form factors in Eq. (15) will behave as a constant
for large spacelike virtualities, while the results from L3
Collaboration suggest a Q−4 behavior (see Sec. II A). Such
behavior requires the inclusion of additional resonances.
With an additional multiplet satisfying the condition
FV 0κV

0A
5 ¼ −FVκ

VA
5 ðM2

V 0=M2
VÞ, the asymptotic behavior is

improved but it is not yet satisfactory. However, with a third
multiplet fulfilling

FVκ
VA
5 þ FV 0κV

0A
5 þ FV 00κV

00A
5 ¼ 0;

FV 0κV
0A

5 ¼ FVκ
VA
5 ðM2

V −M2
V 00 ÞM2

V 0

ðM2
V 00 −M2

V 0 ÞM2
V

; ð16Þ

the asymptotic behavior can be considered realistic.9 The
previous equation10 fixes the relevant combinations FV 0κV

0A
5

and FV 00κV
00A

5 in terms of FVκ
VA
5 and the masses of the vector

multiplets, which are known phenomenologically, as it is
discussed in Appendix D. We note that we have to ensure
the normalization of these form factors (with one, two,
or three vector resonance multiplets) at zero photon
virtualities be the same. This is achieved if the form factor
with two vector nonets is multiplied by the factor
M2

V 0=M2
V=ð−1þM2

V 0=M2
VÞ and the one with three vector

multiplets by M2
V 0M2

V 00=ðM2
V 0 −M2

VÞ=ðM2
V 00 −M2

VÞ.

III. AXIAL CONTRIBUTION TO aHLbL
μ IN RχT

The HLbL contribution to aμ in the vanishing external
momentum limit can be obtained using the projection
techniques outlined in Refs. [42,71].11 Particularly, one
finds [42,71]

aμ ¼
1

48mμ
trð=pþmμÞ½γρ; γσ�ð=pþmμÞΓρσðp; pÞ; ð17Þ

with

Γρσðp; pÞ ¼ −ie6
Z

d4q1
ð2πÞ4

d4q2
ð2πÞ4

×
γμð=pþ =q1 þmμÞγνð=p − =q2 þmÞγλ

q21q
2
2q

2
12½ðpþ q1Þ2 −m2

μ�½ðp − q2Þ2 −m2
μ�

× ∂Πμνλσρ
HLbLðq1; q2Þ: ð18Þ

In the previous equation we have introduced ∂Πμνλσρ
HLbLðq1;

q2Þ≡ limk→0ð∂=∂kρÞΠμνλσ
HLbLð−q1; q12 þ k;−q2;−kÞ, where

Πμνλσ
HLbL stands for the HLbL tensor. In the case of axial-

mesons (see Fig. 1), and after dropping irrelevant k terms,
this reads

9This observation is suggested by the two data points measured
in the regionQ2 ∈ ½0.6; 4� GeV2 by the L3 Collaboration [68] It is
hard to draw any conclusion on this issue from Ref. [69], as both
ηð1475Þ and f1ð1420Þ states are required to describe the data.

10We note that these relations will change beyond tree-level,
when renormalized couplings are considered. This issue has been
studied, e.g., in Ref. [102] for the pion vector form factor.

11We note that here we already perform the change of variables
q1 → −q1, q2 → q12 þ k at the matrix element level as compared
to Refs. [42,71], where this is performed in a second stage.
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Πμνλσ
HLbL;Að−q1; q12;−q2;−kÞ ¼ iMμν;αβ

A ð−q1; q12ÞiΔR
Fðq2Þαβ;ᾱ β̄iMλσ;ᾱ β̄

A ð−q2;−kÞ
þ iMλν;αβ

A ð−q2; q12ÞiΔR
Fðq1Þαβ;ᾱ β̄iMμσ;ᾱ β̄

A ð−q1;−kÞ
þ iMμλ;αβ

A ð−q1;−q2ÞiΔR
Fðq12Þαβ;ᾱ β̄iMνσ;ᾱ β̄

A ðq12;−kÞ; ð19Þ

with Mμν;ρσ
A defined in Eq. (13) and ΔR

FðqÞαβ;ᾱ β̄ standing for the resonance propagator,12

ΔR
FðqÞμν;ρσ ¼ −

½gμρqνqσ − gμσqνqρ þ gμρgνσðM2
R − q2Þ� − ðμ ↔ νÞ

ðq2 −M2
RÞM2

R
; ð20Þ

leading to

∂Πμνλσρ
HLbL;A ¼ iΔR

Fðq2Þαβ;ᾱ β̄FAðq21; q212ÞFAðq22; 0Þ½ðϵλσᾱρqβ̄2 þ ϵλσᾱq2gρβ̄Þ þ ðϵσᾱρq2gλβ̄ þ ϵλᾱρq2gσβ̄Þ�
× ½ðϵμναq12qβ1 þ ϵμναq1qβ12Þ − ðϵναq1q2gμβ þ ϵμαq1q2gνβÞ� þ ðμ↔λ

q1↔q2Þ
þ iΔR

Fðq12Þαβ;ᾱ β̄FAðq21; q22ÞFAðq212; 0Þ½ðϵνσᾱρqβ̄12 þ ϵνσᾱq12gρβ̄Þ þ ðϵσᾱρq12gνβ̄ þ ϵνᾱρq12gσβ̄Þ�
× ½ðϵμλαq2qβ1 þ ϵμλαq1qβ2Þ − ðϵλαq1q2gμβ þ ϵμαq1q2gλβÞ�; ð21Þ

where FAðq21; q22Þ ¼ cAðq21 − q22Þðq21 −M2
VÞ−1ðq22 −M2

VÞ−1, see Eq. (15). Following the method of Gegenbauer poly-
nomials in Ref. [27] to evaluate the integral, one can show that

aμ ¼
�
α

π

�
3 2π

3

Z
dtdQ1dQ2

� ffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2

p Q3
1Q

3
2

Q2
12m

2
μ

X2
i¼1

KiðQ2
1; Q

2
2; tÞ;≡

X2
i¼1

wi

�
ð22Þ

where the expressions for KiðQ2
1; Q

2
2; tÞ are given in

Appendix E.

IV. NUMERICAL EVALUATION OF aHLbL;A
μ

We evaluate aHLbL;Aμ including the contribution of the
lightest axial-vector multiplet with up to three vector

multiplets for the reasons discussed below. The results
are obtained upon numerical integration of the formulas
derived in Sec. III. One very important thing to note is that
the first contribution, given by the integration of Eq. (22), is
not convergent for only one vector multiplet (find com-
ments on this aspect in Appendix E). Because of this, we
will only quote our results for either two (2V s) or three
(3V s) vector multiplets. We do not consider excited axial-
vector multiplets as there is only one unambiguous nonet in
the PDG [14].13 Although we consider the latter our
preferred result, as its asymptotic behavior seems to agree
with the trend shown by L3 data (see Sec. II A), it is

FIG. 1. The s-, t-, and u-channel resonance exchange (depicted with a double line) contribution to the HLbL. The momentum flows
out from the blobs except for the external incoming momentum k.

12As we advanced, one advantage of the Lagrangian formalism
is that there is no ambiguity when computing Green’s functions.
In our case, we choose to represent the spin-one resonances by
antisymmetric tensor fields, so the corresponding propagators can
be read from Eq. (20). While physical observables are indepen-
dent of our choice for representing the (axial)-vector meson
fields, this does not need to be the case for individual contribu-
tions to them if asymptotic constraints are not properly taken into
account, and deserves further study in the context of aμ (see, e.g.,
Refs. [87,103]).

13One could, in principle, explore the impact of the infinite
tower of states predicted in the large-NC limit by means of Regge
models, see, e.g., Ref. [104].
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nevertheless informative to compare both values and to
verify that a more realistic (stronger) asymptotic damping
of the relevant form factors yields smaller contributions
with three vector multiplets than with only two. Moreover,
as we discuss in the following, we will use the resulting
difference as an error estimate. In our evaluation, we are
using the restrictions in Eq. (16) (and their analogous for
only two vector multiplets) that link the couplings and
masses of the different multiplets. As a result of this, to
obtain the errors we will float FVκ

VA
5 , MV and MA inde-

pendently, but assume MV 0 and MV 00 to be fully correlated
withMV . The final error is the combination in quadrature of
them. Our results are summarized in Table I, where the
different axial-vector meson contributions, in units of
10−11, are given. Adding up the individual contributions,
we obtain

a
a1þf1þf0

1
;2Vs

μ ¼ ð4.34þ0.62
−0.65Þ × 10−11;

a
a1þf1þf0

1
;3Vs

μ ¼ ð0.81� 0.12Þ × 10−11: ð23Þ

We observe that, while our result with two vector multiplets
lies in between the early [35–37,39,40] and most recent
[15,66] evaluations, it reveals a much smaller value than all
preceding analysis (yet in line with early studies) when
three vector multiplets are included. We emphasize that
such choice has been adopted in order to satisfy the leading
power of the asymptotic behavior suggested by the last two
L3 data points [68], and as such represents our preferred
value. Still, this points out the need for additional data at
high energies and a more refined analysis regarding the
form factor description there.
Finally, one might wonder about the effect of higher

order corrections in RχT. Especially regarding the appear-
ance of a symmetric form factor, that was conjectured to
play the main role earlier [66], and whether the differences
we found could be ascribed to it. To that object, we estimate
such contribution in Appendix C, finding that, despite our
result is analogous to that in Ref. [66] when on-shell, it
turns out to be much smaller than [66], of the order of
Eq. (23) and with opposite sign (such hierarchy was
expected due to the chiral suppression). This illustrates
again the problems that may arise when naively recon-
structing Green’s functions using naive propagators
together with on-shell form factors. Incorporating these
corrections as an additional uncertainty, we obtain

a
a1þf1þf0

1
μ ¼ ð0.8þ3.5

−0.8Þ × 10−11; ð24Þ

that is also in line with a recent result in Ref. [105]. As a
final comment, new publications have found far larger
results for axial contributions [106,107]. We emphasize that
this is related to the way certain short-distance constraints
[45] for the longitudinal contribution are fulfilled, that
is still work in progress and is missing insofar in our
approach, see Appendices B 4 and C. If confirmed by
future (dispersive, lattice, etc.) studies, our finding would
imply that axial contributions turn out to be similar in size
to the sum of tensor and higher-scalar contributions, with
an error that is negligible at the current level of requested
accuracy, that underlines the need for further studies
regarding the axial contributions to aHLbLμ .

V. CONCLUSIONS

In this article, we have studied the axial-vector contri-
butions to the hadronic light-by-light piece of the muon
anomalous magnetic moment, aHLbL;Aμ . This is a timely
enterprise, as we are eagerly awaiting the first publication
from the Muon g-2 FNAL Collaboration, which would give
aμ with a comparable uncertainty to the LBNL measure-
ment. In the years to come, FNAL will reach a fourfold
improved uncertainty which will challenge our under-
standing of the Standard Model and its possible extensions
provided a similar reduction can be achieved on the theory
prediction, that is dominated by hadronic uncertainties. In
fact, the spectacular improvement on the accuracy of the
HVP evaluations demands a deeper understanding of the
hadronic light-by-light piece, wherein the lightest pole
cuts are already known with enough precision. Therefore,
subleading contributions which are—however—subject to
comparatively large uncertainties, become relevant for this
endeavor, and the large relative error of these (otherwise
small) contributions coming from heavier intermediate
states in the HLbL diagrams needs to be reduced. In this
context, we have studied the axial-vector contributions to
aHLbL;Aμ within RχT. Our most important results are dis-
cussed in the following.
We have motivated our conventions for the relevant

matrix element and related ours with others employed
before in the literature, clarifying existing controversies,
identifying previous theoretical ambiguities, and providing
a dictionary to translate from one basis to another. As there
are not many studies of this particular topic and a unified
treatment has not been adopted yet, we believe our paper
can constitute a reference in this respect. Further, this is, to
our best knowledge, the first derivation for aHLbL;Aμ within
RχT, and might be an useful reference for future studies.
As opposed to previous approaches, we have employed a

Lagrangian formalism, that allows to work directly at the
level of Green’s functions, that is the required ingredient in
evaluating aHLbL;Aμ . At this respect, the first important

TABLE I. Different axial-vector meson contributions to aHLbLμ

in units of 10−11. The labels for the second and third row stand
for the number of vector multiplets entering the form factor
description.

Vector multiplets a1 f1 f01
Two 1.13þ0.21

−0.22 3.14þ0.58
−0.61 0.07� 0.04

Three 0.21� 0.04 0.58� 0.11 0.015� 0.008
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finding is the large model dependency that naively recon-
structed Green’s functions employed in previous studies
might have, since only their residue at the axial pole is
model-independent. This has been neatly illustrated in the
context of RχT. The second important finding is the impact
of the asymptotic behavior demanded to the relevant form
factors. In particular, the comparison of our two evaluations
in Eq. (23) shows neatly that the main systematic uncer-
tainty comes from the lack of data probing the asymptotic
region of the axial transition form factors. Therefore, it
would be crucial that a number of data points at large Q2

were measured for the eþe− → eþe−A cross section. An
interesting and complementary study would be to address
the eþe− → f1 production, that has been recently measured
by SND Collaboration [108]. Finally, it might also be
interesting to study the sum rules as discussed in [67].
In addition to this, dispersive and lattice evaluations of

aHLbL;Aμ would contribute to the understanding of these
contributions and to reduce the corresponding uncertainty
in the SM prediction of aμ.
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APPENDIX A: SCHOUTEN IDENTITIES

It will be useful to employ the Schouten identity

ϵμνρσgλδ ¼ ϵδνρσgλμ þ ϵμδρσgλν þ ϵμνδσgλρ þ ϵμνρδgλσ ðA1Þ
in the following; particularly, the latter implies in our case
that

ϵμνq1q2qτ1 ¼ ϵτνq1q2qμ1 þ ϵμτq1q2qν1 þ ϵμντq2q21

þ ϵμνq1τðq1 · q2Þ; ðA2Þ

and analogously for the μ ↔ ν, 1 ↔ 2 expression. The
former can be conveniently rewritten in terms of gauge
invariant terms for later convenience (meaning they are
orthogonal to qμ1 and qν2) in different ways:

ϵμνq1q2qτ1 ¼ ϵνατq2ðqα1qμ1 − gμαq21Þ þ
q1 · q2
q22

ϵματq1ðqα2qν2 − gναq22Þ þ
ϵμq2τq1

q22
½qν1q22 − qν2ðq1 · q2Þ�; ðA3Þ

ϵμνq1q2qτ1 ¼ ϵνατq2ðqα1qμ1 − gμαq21Þ þ ϵματq1 ½qν1qα2 − gναðq1 · q2Þ�; ðA4Þ

ϵμνq1q2qτ1 ¼ ϵνατq2ðqα1qμ1 − gμαq21Þ − ϵματq1ðqν2qα2 − gναq22Þ þ ϵματq1 ½qα2qν12 − gναðq2 · q12Þ�; ðA5Þ

and, again, the corresponding μ ↔ ν, 1 ↔ 2 expressions. All of them allow to relate the different possible parametrizations
of the axial TFFs. An additional interesting result, that has been used in [46], is the following

ϵμναβgρσhfVμν; Aαρgfβσþ i ¼ ϵμναβgρσhffαρþ ; VβσgAμνi: ðA6Þ

Note this implies that, exchanging V ↔ fþ leads to the same term up to a sign. Further, for V ∝ fþ, it vanishes, having no
contribution to external vector currents nor the presence of a two-resonance term.

APPENDIX B: OTHER BASES FOR THE AXIAL TRANSITION FORM FACTOR

1. Helicity basis I

A popular choice adopted in Refs. [109–111],14 and used in Ref. [76] to compute ðg − 2ÞHLbL;Aμ , is

Mμντ ¼ iϵνq1τq2 ½qμ2q21 − qμ1ðq1 · q2Þ�F0
A þ iϵμq2τq1 ½qν1q22 − qν2ðq1 · q2Þ�F00

A þ iϵμνq1q2ðq1 − q2Þτ
1

2
FA: ðB1Þ

14Such a choice is equivalent to use the Schouten identities to get rid of A; then, the Ward identities imply
ðq1 · q2ÞB1 þ q22B2 ¼ 0 → fB1 ¼ −q22B;B2 ¼ ðq1 · q2ÞBg, that carries the q2i suppression we find in Eq. (B2). In order not to have
it, one would require B1 ¼ −q22ðq1 · q2Þ−1B2. Note that such additional suppression artificially implies that only the antisymmetric FA

term contributes to aHLbL;Aμ [15]. This is clearly artificial and shows that such basis is not an optimal choice, for it introduces artificial
kinematical zeroes. Further, the form factor in [15] is neither analytic nor antisymmetric at q21 ¼ q22 ¼ 0.
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From the Schouten identities one can show the relations

C ¼ FA

2
þ q22F

00
A; C̄ ¼ −

FA

2
þ q21F

0
A; B2 ¼ −½q21F0

A þ ðq1 · q2ÞF00
A�; B̄2 ¼ −½q22F00

A þ ðq1 · q2ÞF0
A�: ðB2Þ

2. Quark-model inspired

Another common choice is to take a single form factor [68,69,75,85,112]:

Mμντ ¼ iϵμνταðq21q2α − q22q1αÞAðq21; q22Þ ¼ i½ϵνατq2gμαð−q21Þ þ ϵματq1gναð−q22Þ�Aðq21; q22Þ: ðB3Þ

Note however that the formula above is not gauge invariant. The latter can be achieved via15

Mμντ ¼ iϵματq1ðq2αqν2 − gναq22ÞAðq21; q22Þ þ iϵνατq2ðq1αqμ1 − gμαq21ÞAðq21; q22Þ; ðB4Þ

allowing to identify B2 ¼ B̄2 ¼ Aðq21; q22Þ. Particularly, it is the last one that was used in Ref. [66] to compute the
contribution to (g − 2).

3. Helicity basis II

Finally, we find a different choice in Ref. [81,85] based on helicities. Defining X ¼ ðq1 · q2Þ2 − q21q
2
2 and Rμν ¼

−gμν þ 1
X ½ðq1 · q2Þðqμ1qν2 þ qμ2q

ν
1Þ − q21q

μ
2q

ν
2 − q22q

μ
1q

ν
1�, the form factor is defined as

Mμντ ¼ iϵ τ
ρσα

�
RμρRνσðq1 − q2Þα

q1 · q2
m2

A
Fð0Þ
A ðq21; q22Þ þ Rνρ

�
qμ1 −

q21
q1 · q2

qμ2

�
qσ1q

α
2

1

m2
A
Fð1Þ
A ðq21; q22Þ

þ Rμρ

�
qν2 −

q22
q1 · q2

qν1

�
qσ2q

α
1

1

m2
A
Fð1Þ
A ðq22; q21Þ

�
: ðB5Þ

The outcome can be conveniently recast via the Schouten identities as

Mμντ ¼ iϵνq1τq2
�
qμ1 − qμ2

q21
q1 · q2

�
1

m2
A
Fð1Þ
A þ iϵμq2τq1

�
qν2 − qν1

q22
q1 · q2

�
1

m2
A
F̄ð1Þ
A iϵμνq1q2

q1 · q2
2m2

AX
½q̄τ12ðq21 − q22Þ − qτ12q̄

2
12�Fð0Þ

A :

ðB6Þ

The last piece, containing qτ12, vanishes on-shell and the analogy to Eq. (B1) is clear.
16 For Fð1Þ

A , the result is analogous to F0
A

up to the ðq1 · q2Þ overall term, that avoids kinematical zeroes. Finally, Fð0Þ
A is, up to the additional ad-hoc q21;2-dependency

induced, analogous to FA in Eq. (B1). Using Eq. (B2) we obtain

C ¼ 1

m2
A

�ðq1 · q2Þ2 − q22ðq1 · q2Þ
X

Fð0Þ
A −

q22
q1 · q2

F̄ð1Þ
A

�
; B2 ¼

1

m2
A

�
F̄ð1Þ
A þ q21

q1 · q2
Fð1Þ
A

�
; ðB7Þ

C̄ ¼ 1

m2
A

�ðq1 · q2Þ2 − q21ðq1 · q2Þ
X

Fð0Þ
A −

q21
q1 · q2

Fð1Þ
A

�
; B̄2 ¼

1

m2
A

�
Fð1Þ
A þ q22

q1 · q2
F̄ð1Þ
A

�
: ðB8Þ

Note however that such form factors have not been used so far to compute the contribution to (g − 2); instead, the ones in the
previous subsection were employed [66].

4. hVVAi basis
It can be shown that, up to overall factors, the axial meson contributions to the hVVAi Green’s function corres-

ponds to that of the axial meson transition form factors times an additional ð1=iÞ ffiffiffi
2

p
FAMAðq212 −M2

AÞ−1dabc=2 factor,

15While added terms are irrelevant when connecting to on-shell currents, such as in eþe− production, this is not the case in (g − 2)
where, in a general Rξ gauge, the photon propagator demands to keep those terms in order to obtain a ξ-independent result.

16Note however that off-shell effects will be relevant for (g − 2) unless a transverse propagator is taken.
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that makes interesting to study the connection to the standard tensor basis for hVVAi that is employed
in Refs. [33,113,114]17

hVμðq1ÞVνðq2ÞAτi ¼
ϵ0123

8π2
f−wLϵμνq1q2q12τ þ wðþÞ

T tðþÞ
μντ þ wð−Þ

T tð−Þμντ þ w̃ð−Þ
T t̃ð−Þμντg; ðB9Þ

tðþÞ
μντ ¼ ϵq1q2μτq1ν − ϵq1q2ντq2μ − ðq1 · q2Þϵμντq̄12 − 2

ðq1 · q2Þ
q212

ϵμνq1q2q12τ; ðB10Þ

tð−Þμντ ¼ ϵμνq1q2

�
q̄12τ −

q12 · q̄12
q212

q12τ

�
; ðB11Þ

t̃ð−Þμντ ¼ ϵq1q2μτq1ν þ ϵq1q2ντq2μ − ðq1 · q2Þ½ϵμντq1 þ ϵμντq2 �: ðB12Þ

Comparing to Eq. (4), one can identify the form factors and recast them via the Schouten identities in terms of those in
Eq. (6), showing that

CA ¼ wð−Þ
T þ w̃ð−Þ

T B2A ¼ w̃ð−Þ
T B2S ¼ −wðþÞ

T CS ¼ −wL þ q21 þ q22
q212

wðþÞ
T −

q12 · q̄12
q212

wð−Þ
T

wð−Þ
T ¼ CA − B2A w̃ð−Þ

T ¼ B2A wðþÞ
T ¼ −B2S wL ¼ −

�
CS þ

q21 þ q22
q212

B2S þ
q12 · q̄12
q212

ðCA − B2AÞ
�
: ðB13Þ

Indeed, the structure of the antisymmetric tensor formalism
will guarantee a vanishing contribution of axial resonances
to longitudinal degrees of freedom, this is, to wL above.
This was ensured in our results since CA ¼ B2A, and will
persist in higher orders—see for instance the section below.
Actually, this is crucial within the antisymmetric formalism
since otherwise, in the chiral limit, it would spoil the
anomaly that is fulfilled via different operators lacking
intermediate axial mesons [115]. It is interesting to wonder
how such an analogous result will appear in the HLbL in
the OPE limit defined in [45], that connects the HLbL with
the hVVAi correlator and fixes the longitudinal part. This is
currently under investigation, but it is clear that, in the
chiral limit, this cannot be attributed to heavy pseudoscalars
[116] as it has been recently noted in Ref. [107].

APPENDIX C: HIGHER ORDERS RχT
ESTIMATION

As we showed, at LO in RχT, there is a single—and
antisymmetric—form factor, B2A ¼ CA. In turn, the sym-
metric one(s), B2S (and CS), despite their central role in
γγ� → A transitions at low-energies, are relegated to higher
orders in the chiral counting. In this section, we illustrate
this assertion and the impact of the off-shell prescription.

Since a basis for the odd-parity sector in RχT within the
antisymmetric tensor formalism contributing to the chiral
LECs at Oðp8) has not been completed yet, we select
particular operators that should, in essence, capture the
general features of higher order corrections contributing
to B2S:

κVVX ϵμνρσhVμν∂αVαρ∂βAβσi; −
κγγX
4
ϵμνρσhfμνþ ∂αf

αρ
þ ∂βAβσi;

ðC1Þ
where, since we are interested in diagonal isospin elements,
all (anti)commutators become trivial and thereby ignored.
The analogous of Eq. (13) becomes

Mμν;ρλ ¼ cAq
ρ
12½ϵμαλq1ðqα2qν2 − q22g

ναÞ
þ ϵναλq2ðqα1qμ1 − q21g

μαÞ�FAγ�γ� ðq21; q22Þ; ðC2Þ

where cA ¼ κγγðVVÞX 2hAQ2i ¼ κγγðVVÞX f
ffiffi
2

p
3
; 5

ffiffi
2

p
9

; 2
9
g for

fa1; f1; f01g, is an isospin factor. Operators like the
first one, will generate a q21;2-dependent form factor. In
particular

Ffa1;f1gγ�γ� ¼
ð ffiffiffi

2
p

FρωÞ2
ðq21 −M2

ρωÞðq22 −M2
ρωÞ

;

Ff0
1
γ�γ� ¼

ð ffiffiffi
2

p
FϕÞ2

ðq21 −M2
ϕÞðq22 −M2

ϕÞ
; ðC3Þ

while the second operator would produce a constant form
factor. In general, there will be many more operators

17Reference [33] uses ϵ0123 ¼ −1 instead, that we adapt.
Further, we omitted i overall terms as they cancel in the transition
from the axial form factors to the hVVAi function, and the overall
ð8π2Þ−1 in Eq. (B9).
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contributing, and several vector multiplets can be consid-
ered. Thereby, for simplicity, we will employ the result in
Eq. (C2) and append some generic form factor that we will
fix from phenomenology. For that purpose, we compute the
axial transition form factors by contracting Mμν;ρλ in
Eq. (C2) with h0jAρλjAi [see comments below Eq. (13)].
We obtain (F̃Aγ�γ� ð0; 0Þ ¼ 1)

B2S ¼
cA
mA

q212F̃Aγ�γ�ðq21; q22Þ; CS ¼ −
q21 þ q22
q212

B2S:

ðC4Þ

Note that the relevant feature is the chiral q212 ≠ m2
A

suppression together with the nonvanishing value for CS
that is key to avoid contributions to the longitudinal degrees
of freedom, as anticipated. All these features already
announce a chiral suppression if compared to the standard
ones. In order to compute the cA coefficient above, we use
the relation in Eq. (12), implying that

cA ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12Γ̃Aγγ

πα2m7
A

s
→ c̃A ≡m3

AcA ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12Γ̃γγ

πα2mA

s
: ðC5Þ

So far, we only have results for the f1 and f01 resonances.
Particularly, L3 Collaboration has found Γ̃f1γγ ¼
3.5ð6Þð5Þ keV [68] and Γ̃f0

1
γγ ¼ 3.2ð6Þð7Þ keV [69], res-

pectively. These imply that jc̃f1 j ¼ 0.44ð5Þ and jc̃f0
1
j ¼

0.40ð6Þ; finally, we make a generous estimate Γ̃a1γγ ∈
ð1; 3Þ keV (see also [106]), so that c̃a1γγ ∈ ð0.2; 0.4Þ. More-
over, the experimental results also extract dipole masses
Λf1 ¼ 1.04ð6Þð5Þ GeV and Λf0

1
¼ 0.926ð72Þð32Þ GeV,

respectively (we will assume Λa1 ¼ 1.0ð1Þ GeV). We will
use thereby

Mμν;ρλ ¼ qρ12½ϵμαλq1ðqα2qν2 − q22g
ναÞ þ ϵναλq2ðqα1qμ1 − q21g

μαÞ�

×
c̃A
m3

A

Λ8
A

ðq21 − Λ2
AÞ2ðq22 − Λ2

AÞ2
ðC6Þ

as the input for the respective contributions to aHLbLμ .
Computing only this contribution to aHLbLμ we find,

in units of 10−11, Δaa1μ ¼ −0.2ð1Þ, Δaf1μ ¼ −0.42 and

Δaf
0
1

μ ¼ −0.06. Adding this contribution to that in
Eq. (13) produces interference terms as well. Depending
on the relative sign we find Δaa1μ ¼ ∓0.03ð1Þ, Δaf1μ ¼
∓0.07 and Δaf

0
1

μ ¼ ∓0.007. These corrections are similar
in size to those discussed in Sec. III—that is to be expected
since, effectively, they are of the same order. Still, these are
much smaller than what estimated in Ref. [66], despite on-
shell our results are equivalent. Once more, this shows the
potential systematic uncertainties of existing approaches
even if experimental input is used.

APPENDIX D: PHENOMENOLOGICAL
INFORMATION ON THE RELEVANT

PARAMETERS OF THE RχT LAGRANGIAN

For the spin-one meson nonets, in application of the
large-NC limit [117], we have considered ideal mixing
between the isoscalar component of the octet and the
additional isosinglet state completing the nonet. This
way, we will have the following diagonal elements of
the nonets in flavor space:

ðV11; V22; V33Þμν ¼
�
ρ0 þ ωffiffiffi

2
p ;

−ρ0 þ ωffiffiffi
2

p ;ϕ
�

μν

;

ðA11; A22; A33Þμν ¼
�
a01 þ f1ffiffiffi

2
p ;

−a01 þ f1ffiffiffi
2

p ; f01

�
μν

; ðD1Þ

where f1 ∼ f1ð1285Þ and f01 ∼ f1ð1420Þ. The leading
breaking of the Uð3Þ symmetry splits the heaviest compo-
nents of each nonet (ϕ and f01) from its partners. In the
large-NC and isospin symmetry limits, the Lagrangian
bilinear in the spin-one fields of the same type (either
VV or AA) in the even-intrinsic parity sector [97] produces
the mass splittings [118,119] (MV andMA are the large-NC
masses of the whole nonet before the symmetry breaking,
which is induced by nonvanishing eVm)

M2
ρ ¼M2

V − 4eVmm2
π ¼M2

ω; M2
ϕ ¼M2

V − 4eVmð2m2
K −m2

πÞ;
M2

a1 ¼M2
A − 4eAmm2

π ¼M2
f1
; M2

f0
1
¼M2

A − 4eAmð2m2
K −m2

πÞ:
ðD2Þ

From the best fit in Ref. [101] one has MV ¼ ð791�
6Þ MeV and eVm ¼ −0.36� 0.10, which deviates clearly
from the fit to mass spectrum that is obtained if one
identifies the states in the large-NC limit with the physical
states, yieldingMV ∼ 764.3 MeV and eVm ∼ −0.28 [119]. It
is well understood, however, that such departures occur
[79]. In absence of data on the axial-vector transition form
factors that could help us to verify in which wayMA and eAm
differ from the naive values that are obtained fitting the
axial-vector meson nonet with the above formulas, and as
M2

V and M2
A are connected by short-distance constraints

[120], we will assume that the shift induced is analogous
to the one for the vector mesons. In this way, we obtain
MA ¼ ð1310� 44Þ MeV and eAm ¼ −0.35� 0.13, where
the conservative error is estimated so as to include the naive
values of MA and eAm at one standard deviation. According
to the preceding discussion, we will use in the following

MV ¼ ð791� 6Þ MeV; eVm ¼ −0.36� 0.10;

MA ¼ ð1310� 44Þ MeV; eAm ¼ −0.35� 0.13; ðD3Þ

so that, in this limit, the common mass for the isotriplet and
isoscalar states of the spin-one octets is
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Mρω ¼ ð808� 8Þ MeV; Ma1f1 ¼ ð1320� 44Þ MeV;

ðD4Þ

and the common mass for the extra isoscalar state is

Mϕ ¼ ð1144� 80Þ MeV; Mf0
1
¼ ð1543� 96Þ MeV:

ðD5Þ
We observe thatMρω is ∼4% larger than its experimental

(isospin-averaged) value, while Mϕ is ∼12% larger than its
measurement. We will assume a similar deviation for the
corresponding states in excited multiplets.
The considered flavor-symmetry breaking also affects

the coupling of the vector meson resonances to the photon
(encoded in the FV couplings). However, as shown in
Ref. [101], the corresponding leading shifts are given in
terms of a single coupling (λV6 in Ref. [97]), that vanishes
according to short-distance QCD constraints [101]. Thus,
Fρ ∼ Fω ∼ Fϕ ∼ FV , within our setting (and similarly for
the excited vector resonances). Since Fa1 ≠ Ff1 ≠ Ff0

1
is

induced in complete analogy, we will take the coupling of
the axial-vector resonances to the axial current (FA) in the
Uð3Þ symmetry limit, as their breaking given by λA6
vanishes by asymptotic conditions [101].
As noted before, the axial-vector contribution to the

hadronic light-by-light piece of the muon anomalous mag-
netic moment, within RχT, only depends on the product of
couplings FVi

κViA
5 for the different i ¼ 1; 2; 3… vector

multiplets and on the (axial-)vector-resonance masses.
Moreover, the high-energy behavior of our form factor
links additional FVi

κViA
5 factors to FV1

κV1A
5 , while the

masses of the corresponding multiplets are needed inputs
in this case, see Eq. (16). In order to determine FV1

κV1A
5 , we

follow Refs. [114,115], where the OPE condition for the
VVA Green’s function up to Oð1=p4Þ demands—when
matching the RχT result to it—that

κVA5 ¼ κVV3
FV

FA
¼ −

NCM2
V

64π2FVFA
→ FVκ

VA
5 ¼ −

NCM2
V

64π2FA
;

ðD6Þ
where the second equality follows from the constraint
for κVV3 in Ref. [121] and FA ∈ ½130; 150� MeV [92,94].
We note that, with only one vector and one axial-vector
multiplet, the first Weinberg rule is F2

V − F2
A ¼ F2 that,

using FV ¼ ffiffiffi
3

p
F ∼ 160 MeV [121] (which is quite

well satisfied phenomenologically [92–94]), yields FA ¼ffiffiffi
2

p
F ∼ 130 MeV. Employing the previous values in

Eq. (D6), one finds FVκ
VA
5 ∼ ð−21.3� 1.5Þ MeV, with

reasonably little uncertainty and that we shall employ in our
calculations.
Instead, one could use A → Vγ decays, whose amplitude

reads

ΓðA → VγÞ ¼ 2

3
αjκVA5 j2mA

�
1 −

m2
V

m2
A

�
3
�
1þ m2

A

m2
V

�
× ½trðfV; AgQÞ�2: ðD7Þ

Employing the f1ð1285Þ → ργ branching fraction [14] we
find jκVA5 j ¼ 0.45� 0.06. However, a recent measurement
by CLAS Collaboration [122] implies a much smaller
width, that would imply jκVA5 j ¼ 0.27� 0.06, much closer
to the value κVA5 ¼ −0.12� 0.02 obtained using short-
distance constraints [86,92,94,121] or phenomenological
determinations of FV and FA in Eq. (D6). Further, given the
ρ-meson width, additional operators involving pion fields
might be relevant as well. For these reasons, we advocate to
adopt the value implied by the short-distance constraints
and emphasize the need for future measurements.
The last input to be fixed are the masses of the vector

meson excitations. This will be done using the correspond-
ing generalization of Appendix D and assuming that Mρ0ω0

and Mϕ0 exceed their (isospin-averaged) PDG values by
∼4% and ∼12%, respectively (as it happens with the
lightest vector multiplet), and analogously with Mρ00ω00

and Mϕ00 . In this way, we estimate

Mρ0ω0 ¼ ð1.51� 0.03Þ GeV; Mϕ0 ¼ ð1.88� 0.03Þ GeV;
Mρ00ω00 ¼ ð1.78� 0.03Þ GeV; Mϕ00 ¼ ð2.45� 0.03Þ GeV:

ðD8Þ

APPENDIX E: FUNCTIONS INVOLVED IN THE
HLBL COMPUTATION

The axial-meson contribution to the HLbL tensor can
be succinctly expressed—in an obvious gauge invariant
way—as follows:

ΠHLbL;A
μνρσ εμ1ε

ν
2ε

ρ
3ε

σ
4 ¼ −4iFAðq21; q22ÞFAðq23; q24Þ

× ΔR
Fðq12Þαβ;ᾱ β̄ðF̃2F1ÞαβðF̃4F3Þᾱ β̄

þ ð2 ↔ 3Þ þ ð2 ↔ 4Þ; ðE1Þ

The functions KiðQ2
1; Q

2
2; tÞ introduced in Eq. (22), arising

in the aHLbL;Aμ evaluation, are given by
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K1ðQ2
1; Q

2
2; tÞ ¼

8FAðQ2
1; Q

2
3ÞFAðQ2

2; 0Þ
ðQ2

2 þm2
AÞ

�
2m2

μ

Q2
1

�
Q1ðt2 − 1Þð2Q1 þQ2tÞ

m2
A

−
2Q2

1 þ 3Q1Q2tþQ2
2

Q2
2

�

þ ð1 − Rm1
Þ
�
2Q2

1ðt2 − 1Þ þQ1Q2tðt2 − 5Þ þ 2Q2
2ðt2 − 3Þ

m2
A

−
2Q2

1 þ 7Q1Q2tþ 6Q2
2

Q2
2

�

−
ð1 − Rm2

Þ
m2

AQ
2
1

ðm2
Að6Q2

1 þ 8Q1Q2tþQ2
2Þ þ 4Q1Q2

2ðQ1 þQ2tÞÞ

þ 4X

�
−
Q2

2ð2Q2
3 þQ2

2ð1 − t2ÞÞ
m2

A
− 3Q2

3 þm2
μ

�
2Q2t
Q1

þ 4Q1t
Q2

þ 4t2 þ 2

���
; ðE2Þ

K2ðQ2
1; Q

2
2; tÞ ¼

4FAðQ2
1; Q

2
2ÞFAðQ2

3; 0Þ
ðQ2

3 þm2
AÞ

�
4ðQ2

1 −Q2
2ÞXðQ1Q2Q2

3 þ 2m2
Am

2
μtÞ

m2
AQ1Q2

þ ð1 − Rm1
Þðm2

AQ1ðQ2t −Q1Þ þQ2ð2Q3
1tþQ2

1Q2ð3t2 − 1Þ þQ1Q2
2tðt2 − 3Þ − 2Q3

2ÞÞ
m2

AQ
2
2

−
ð1 − Rm2

Þðm2
AQ2ðQ1t −Q2Þ þQ1ð−2Q3

1 þQ2
1Q2tðt2 − 3Þ þQ1Q2

2ð3t2 − 1Þ þ 2Q3
2tÞÞ

m2
AQ

2
1

−
2m2

μðQ2
1 −Q2

2Þðm2
A þQ1Q2tðt2 − 1ÞÞ

m2
AQ

2
1Q

2
2

�
: ðE3Þ

where the following functions, together with Q2
3 ¼ Q2

1 þQ2
2 þ 2Q1Q2t, have been employed

Rmi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

Q2
i

s
; z ¼ Q1Q2

4m2
μ
ð1 − Rm1

Þð1 − Rm2
Þ; X ¼ ð1 − t2Þ−1=2

Q1Q2

arctan

�
z

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2

p

1 − zt

�
: ðE4Þ

It is also interesting to discuss the asymptotic behavior of the integrands. From the definition in Eq. (22), and for constant
FAðQ2

1; Q
2
2Þ → 1 form factors we obtain for w1

lim
Q→∞

Z
1

−1
dt w1ðQ;Q; tÞ ¼ 70π2m2

μ

3m2
A

; ðE5Þ

lim
Q1→∞

Z
1

−1
dt w1ðQ1; Q2; tÞ ¼

8π2Q3
2

3m2
AQ1ðm2

A þQ2
2Þ
�
3ðQ2

2 −m2
μÞ þ Rm2

ð6m2
A þ 4Q2

2Þ þ
Q2

2

2m2
ð6m2

A þ 7Q2
2Þð1 − Rm2

Þ
�
; ðE6Þ

lim
Q2→∞

Z
1

−1
dt w1ðQ1; Q2; tÞ ¼

2π2Q3
1

9m2
AQ2

�
68Rm1

− 42þ 13Q2
1

m2
ð1 − Rm1

Þ
�
; ðE7Þ

while for the second case, w2, we find

lim
Q→∞

Z
1

−1
dt w2ðQ;Q; tÞ ¼ 0; ðE8Þ

lim
Q1ð2Þ→∞

Z
1

−1
dt w2ðQ1; Q2; tÞ ¼ �

π2Q3
2ð1Þ

3m2
AQ1ð2Þ

�
14 − 8Rm2ð1Þ þ

3Q2
2ð1Þ

m2
μ

ð1 − Rm2ð1Þ Þ
�
; ðE9Þ

the first result and the relations among the large-Q1;2 limits due to the antisymmetric properties of the integrand. Clearly, the
asymptotic results set constraints on the form factor asymptotic behavior. In particular, we find that the large Q1ð2Þ limits
require the form factors to fall, at least, as Q−1

1ð2Þ that, due to the antisymmetric nature of the form factor, demands at least a

dipole form.
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APPENDIX F: OPERATOR PRODUCT
EXPANSION

For two highly virtual photons, q1;2 ≃�λq, with λ → ∞,
so that q1 þ q2 ¼ Oð1Þ, while q1 − q2 ¼ OðλÞ, one can
use the operator product expansion, which is valid for large
spacelike momenta. As a result, one finds [45]

ð2πÞ4δð4Þðq1 þ q2 − qAÞMμντεAτ

¼ i
Z

d4xd4yeiq1·xeiq2·yh0jTfjμðxÞjνðyÞgjAi ðF1Þ

¼ −2i
q̂2

ϵμνρq̂
Z

d4z eiðq1þq2Þ·zh0jj5ρðzÞjAi; ðF2Þ

where q̂ ¼ ðq1 − q2Þ=2 and j5ρ ¼ q̄γργ5Q̂
2q, with Q̂ the

charge operator. This implies, adopting h0jj5ρjAi≡ffiffiffi
2

p
FAmAϵAρtrðQ̂2AÞ, that

MμντϵAτ → −
4i

ðq1 − q2Þ2
ffiffiffi
2

p
FAmAtrðQ̂2AÞϵμνεAq̄12

¼ −
i
q̂2

ffiffiffi
2

p
FAmAtrðQ̂2AÞϵμνεAq̄12 : ðF3Þ

Comparing to Eq. (6), the former puts the following
constraint

lim
Q2→∞

¼ B2Sð−Q2;−Q2Þ ¼
ffiffiffi
2

p
FAmA

Q4
þOðQ−6Þ: ðF4Þ

while no restrictions arise for B2A; CA;S form factors.
Further, the OPE cannot be used to set constraints on
the singly-virtual TFFs. However, at this respect, exper-
imental data seems to favor, for all single-virtual form
factors, a Q−4 high-energy scaling as well.
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