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Baryon quadrupole moment in the 1/N, expansion of QCD
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The quadrupole moments of ground state baryons are discussed inn the framework of the 1/N,
expansion of QCD, where N, is the number of color charges. Theoretical expressions are first provided
assuming an exact SU(3) flavor symmetry, and then the effects of symmetry breaking are accounted for to
linear order. The rather scarce experimental information available does not allow a detailed comparison
between theory and experiment, so the free parameters in the approach are not determined. Instead, some
useful new relations among quadrupole moments, valid even in the presence of first-order symmetry
breaking, are provided. The overall predictions of the 1/N,. expansion are quite enlightening.
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I. INTRODUCTION

Understanding the structure of baryons is still a daunt-
ing task in quantum chromodynamics (QCD). The most
interesting static properties of baryons, e.g., masses,
magnetic moments, matter and charge radii, etc., fall in
the nonperturbative regime of QCD so analytic calculations
of these properties are not possible because the theory is
strongly coupled at low energies, with no small expansion
parameter.

The study of the electromagnetic properties of baryons is
an active research area of both the theoretical and exper-
imental bent. On the one hand, the analysis of the magnetic
moments of baryons presents an opportunity to shed light
on an accurate test of QCD, and there are an important
number of works on the subject; the approaches include,
among others, the quark model (and its variants) [1-7],
QCD sum rules [8-11], the 1/N, expansion, where N, is
the number of color charges [12—16], chiral perturbation
theory [17-27], the combined expansion in 1/N,. and chiral
corrections [28,29], and lattice QCD [30], to name but a
few. The experimental information available is robust [31],
which allows detailed comparisons between theory and
experiment.
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On the other hand, the information about the higher-
order electromagnetic moments (electric quadrupole and
magnetic octupole moments) is less profuse. Analyses
about the quadrupole moments of baryons have also been
performed within the quark model (and its variants) [32—
34], light cone QCD sum rules [35,36], the Skyrme model
[37], a QCD parametrization method [38,39], the 1/N,
expansion [14,40,41], chiral perturbation theory [27,42],
and lattice QCD [43,44]. These lattice calculations are
confined to the evaluation of the electromagnetic nucleon to
A transition form factors. In contrast, the experimental data
about quadrupole moments are rather scarce. The only
experimental values reported are the helicity amplitudes for
the process AT — py [31], which can be used to extract the
value of the ratio between the electric quadrupole (E2) and
the magnetic moment (M1), E2/M1.

The present paper is focused on the computation of
quadrupole moments of the ground state baryons in the
context of the 1/N. expansion, which has proven to be
quite effective in the calculation of static properties of
baryons. Concrete examples can be found in the predictions
for baryon masses [45,46], axial-vector [13,45,47] and
vector couplings [47,48]. In all these scenarios, the
approach gives a good description of the spin-flavor
structure of QCD baryons with N, = 3. For the purpose
of the present paper, in Sec. II a survey of the 1/N.
expansion is presented to set the notation and conventions.
In Sec. III the analysis starts with the construction of the
most general spin-2, flavor octet operator which describes
the baryon quadrupole moment. Next, the effects of
flavor SU(3) symmetry breaking (SB) to linear order are
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accounted for in Sec. IV; the detailed construction of
baryon operators which make up the series is described
for each flavor representation present in the tensor product
of the quadrupole moment and the perturbation to identify
redundant operators. Once this task is completed, the full
series is provided in Sec. V. The lack of experimental
information does not allow us to determine the free
parameters of the theory so no attempt to predict any of
the quadrupole moments numerically is made. Instead,
various relations among them are provided. Some of them
are valid in the limit of exact flavor symmetry, and others
are valid even in the presence of SB. Some closing remarks
are provided in Sec. VI. The paper is complemented by the
Appendix, where some useful baryon operator reductions
are listed in order to discard redundant operators.

There are two papers that also address the evaluation of
quadrupole moments of baryons within the 1/N, expan-
sion [40,41]. In these papers, the minimal assumption of the
single photon exchange ansatz is used, which implies that
the photon probing these observables couples to only one
quark line inside the baryon. This reduces the number of
operators involved. This assumption is not used in the
present analysis; instead the full operator basis is used here.
Although this might be counterproductive due to the larger
number of free parameters introduced, in fact, it leads to
interesting relations among quadrupole moments which can
not be determined otherwise. Another noticeable difference
between the approach implemented in Ref. [41] and the one
used here concerns the way SB enters into play. In this
reference SB is accounted for by modifying the spin-spin
terms with ratios between the constituent quark masses. In
the present analysis, as it was pointed out above, SB enters
perturbatively. More details on the subject are provided in
the following sections.

II. A SURVEY OF THE 1/N, EXPANSION OF QCD

The present analysis builds on the seminal work on
large-N, baryons presented in Ref. [45], so only a few
prominent facts will be highlighted here.

In the large-N,. limit, the baryon sector exhibits a
contracted SU(2N) spin-flavor symmetry, where N is
the number of light quark flavors [49,50]. This baryon
representation decomposes under SU(2) x SU(N/) into a
tower of baryon states with spins J = 1/2,3/2,...,N,/2.
The present analysis is done for the special case Ny = 3.
Therefore, the ground state baryons transform as the
completely symmetric product of three 6’s of SU(6), which
is the 56 dimensional representation. Three spin 1/2’s
added together can yield spin 1/2 or spin 3/2, so the 56
representation contains spin-1/2 and spin-3/2 baryons.

Corrections to the large-N . limit are expressed in terms
of 1/N-suppressed operators with well-defined spin-flavor
transformation properties [50]; this approach leads to the
1/N, expansion of QCD.

TABLE 1. SU(2N,) commutation relations.

VT =

[Jl,] ] leljkjk [Ta Tb} _ lfab( TC,

[J G]a] lé‘l]k Gku [Ta th} _ lfabc Glc

[Gta Gjb} l5ljfabCTC+ i 5ab ljk]k+ eljkdaerkc.
) Ny

Concretely, the 1/N_. expansion of a QCD operator at
leading order reads [45]

1
OQCD = chWOI’H (1)

where the sum is over all possible operators O,,
n=0,...,N., which are polynomials in the spin-flavor
generators of total order n. O,, are thus referred to as n-body
operators. The spin-flavor generators can be written as 1-
body quark operators acting on the N .-quark baryon states,
namely,

NC Uk
—qu<—®ﬂ>qw (2a)
(04 2
N, A€
c __ T ~
Te = ;qao ® 2)61,1, (2b)
k Gk
G —an< )qa, (2¢)

where J* are the spin generators, T¢ are the flavor
generators, and G*¢ are the spin-flavor generators. The
SU(2N/) spin-flavor generators satisfy the commutation
relations listed in Table I [45]. The operator coefficients c,,
also have power series expansions in 1/N, beginning at
order unity. On the other hand, ql and ¢, are operators that
create and annihilate states in the fundamental representa-
tion of SU(6) and ¢* and A° are the Pauli spin and Gell-
Mann flavor matrices, respectively. Because the baryon
matrix elements of the spin-flavor generators (2) can be
taken as the values in the nonrelativistic quark model, this
convention is usually referred to as the quark representa-
tion [45].

III. THE QUADRUPOLE MOMENT OPERATOR
IN THE LIMIT OF EXACT SU(3)
FLAVOR SYMMETRY

The electromagnetic current operator can be expanded in
a power series of the photon momentum k, (the multipole
expansion); the series can be expressed as [14]

(Jem)™ o i 4+ QU] 4 .., (3)
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where 4/ is the magnetic moment operator [12] and Q)¢
is the quadrupole moment operator. Q)¢ is a spin-2
object and a flavor octet, so it transforms as (2, 8) under
SU(2) x SU(3). Q1) is a symmetric, traceless tensor in
the spin indices i and j. The electromagnetic current is
T-odd, so that Q)4 is T-even.

The physical interpretation of the operators in the
multipole expansion (3) can readily be seen through their
matrix elements between SU(6) symmetric baryon states.
For example, the magnetic moment for a spin-1/2 baryon
B, for a spin-3/2 baryon By, or for transitions B, — B,
and B), - B,, can be generically denoted by

up = (Blu*°|B), (4)

where the spin and flavor indices, i and a, have been set to 3
and Q =3 + (1/+/3)8, respectively. Hereafter, any oper-
ator of the form X¢ should be understood as X3+
(1/4/3)X8, where X? and X® denote the isovector and
isoscalar components of the operator X¢, respectively.
Similarly, the zero component of the rank-2 tensor (in
spin space) QU4 or equivalently, the # =2, m, =0
component for i = j =3 and a = Q, is usually referred

to as the spectroscopic quadrupole moment [38] for baryon
B, which reads

Qp, = (B,|Q*2|B,). (5)

Angular momentum selection rules forbid a spin-1/2
baryon from having a spectroscopic quadrupole moment.
Similar definitions can also be given for transitions
B), — B,. For instance, for the radiative decay A" — py,
the only multipoles that contribute are the magnetic
moment (M1) and electric quadrupole (E2), which are
defined as [14]

M1 = ek)* (plu*?|A™), (6)

and

L s
£2 = ek (p|Q0at), 9

On the other hand, to extract information about the shape
of a spatially extended particle, its intrinsic quadrupole
moment Q,, given by

Q= [ o3z - ) (®)

is generally used. Q, is defined with respect to the
body-fixed frame. For a charge density concentrated along
the z-direction, Q, is positive and the particle is prolate.
For a charge density concentrated in the equatorial plane

perpendicular to z, Q, is negative and the particle is
oblate [38].

The intrinsic quadrupole moment must be distinguished
from the spectroscopic one measured in the laboratory
frame. Although a spin-1/2 baryon does not have a
spectroscopic quadrupole moment, it may have an intrinsic
one. Indeed, within various models, the proton and A™ are
found to possess a prolate and an oblate deformation,
respectively [38].

The present analysis is focused on the calculation of the
spectroscopic quadrupole moment of baryons; it will be
loosely referred to as the quadrupole moment hereafter. For
this task, the quadrupole moment operator Q)¢ is con-
structed in the framework of the 1/N_ expansion, which
requires to seek all the operator structures that transform as
(2,8) under SU(2) x SU(3), written as polynomials in the
spin-flavor generators J/, T¢, and G [45]. Symmetry
requirements are used in order to eliminate those structures
which are not either T-even or symmetric or traceless in the
spin indices. In this regard, operator structures should
contain an even number of either J, G or a combination
of them, or an odd number of J, G or a combination of
them, along with a factor of i f*° or ie’/* to yield Hermitian
operators. Of course, spin and flavor indices must be
properly saturated to have (2,8) resultant operators. The
1-body operator ic/*G*4, for instance, is T-even and
traceless but antisymmetric in i and j, so it is discarded.

In the limit of exact SU(3) flavor symmetry, the 1/N,
expansion of Q(1)¢ actually starts with the 2-body operator,

ij)a o P a2 i
0y = {J.G/*}y + {J1.G"} = S6U{J". G}, (9)

At 3-body operator level, several possibilities emerge,
for instance,

{Te.{J". 17},
{Gie’ {Ta’ Gje}}’

(T (Ge. G, (G T, G,
dabc{]i’{Tb’GjC}}_ (10)

The use of operator identities [45] restricts the number of
linearly independent operators. In the Appendix some
useful operator reductions are listed. Accordingly, a con-
venient 3-body operator to include in the series is

. o2
O = {1, {7\ 1Y} =360 1) (1)

and all additional 3-body operators are redundant and can
be ignored.

On the other hand, 4-body operators can be constructed
as products of four G’s, two J’s and two T’s, two J’s and
two G’s, three G’s and one J, and three J’s and one G, with
the spin and flavor indices properly saturated. Among these
structures, a convenient 4-body operator is
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= {46 - 5”{J2 {r.G6™1}, (12)

whereas the others, according to the operator reductions
listed in the Appendix, can be expressed in terms of either
(12) and the lower-order operators (9) and (11), or in terms
of (9) itself and its anticommutator with J%. Hence, there is
a second 4-body operator obtained as

o\ = {12, 0{1y. (13)

Now, 5-body operators can be constructed out of the
tensor products of the 4-body operators listed above and
T“, with the proper contraction of spin and flavor indices.
Following the operator reductions of the Appendix, it can
be concluded that there is a single 5-body operator given by

0 = {12, 0", (14)

Therefore, without loss of generality, starting from 05,? )a
(m =2, 3, 4), higher-order operators can be obtained

as anticommutators of these operators with J?, ie.,

Om S ={J%0 ol )a}, for m > 3. There are additional
higher-order operators computed as Onliz {2, 0},

for n even, n > 4.
Thus, in the limit of exact SU(3) flavor symmetry, the
1/N.. expansion of QU4 is written as

N. N.—1
y < 1 e . N L = ~(ija
Q(U)a _ § — kmOEnJ) + § - knOnl) , (15)
m=23 NC n=4,6 NC

where k,,, k, are unknown parameters which also have a
1/N. expansion beginning at order unity; these parameters
are multiplied by a characteristic hadronic quadrupole size
(in fm?). The vanishing trace condition can be easily
verified as

SiigliNa = glia — (. (16)

Expansion (15) can be truncated for arbitrary flavor a
after the first three operators Ogj Ja, 0(” 4 and 0< D uptoa
relative correction of order 1/N2. For N, = 3, only the two
and 05 (if)a
Ogij e s justified for arbitrary N, up to a relative correction

of order 1/N? only when the physical baryons are under
consideration. Thus, for N, = 3, the series reads

operators 04/ are kept. Truncation beyond

Q(ij)a |:{Jl G]a}+{Jj Gza} _51]{Jr Gra}:|

+N—32 [{Tﬂ,{ﬁ,ﬂ'}} —géif{Jz,T“}], (17)

c

up to corrections of order 1/N3.
The quadrupole moments of baryons in the limit of exact

SU(3) flavor symmetry, Q » . can be obtained from the
matrix elements of the baryon operators that make up
Qlia Eq. (17). These matrix elements for N, = 3 are
listed in Tables II-1V, for octet baryons, decuplet baryons,
and decuplet-octet transitions. Although these matrix ele-
ments are provided for the special case N, = 3, its overall
dependence on N. can be better seen from the matrix
elements of the 1-body operators T¢ and G¢, a =3
and a = 8, which occur quite often in the analysis. They
can be rewritten in terms of the quark number and spin
operators [45],

T8 — %(NC _3N), (18a)
G® = 2\1/§(Ji -3J1), (18b)
%(Nu Ny, (18¢)

TABLE II. Matrix elements of baryon operators corresponding to quadrupole moments of octet baryons for N. = 3: SU(3) case.

n P b >0 =t B =0 A
((7.6%) S ! % -2 0
(340767 ) -1 : - 0 1 : - 0
{1 A7 1) -3 : -1 0 ! ~3 2 0
(2 1) . : - 0 - : J
{7 67D " v e N N -4 -4 ~3i
(.67 A .
{7 (1)) g o 0 0 0 -7 -y 0
(83{J%, T8}) 33 33 0 0 0 _33 _3v3 0

4 4 4 4
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TABLEIII. Matrix elements of baryon operators corresponding to quadrupole moments of decuplet baryons for N. = 3: SU(3) case.
ATt At A° A~ o+ >0 - Sl =+0 Q-
(.62 T 0
3300 o3 15 5 5 15 5 5 5 5
(o2 'S N N A T R A R
(T N S S S S-S I S S S
(1.6 oW 3 0 0 0 g
(83{J7,G"8}) % %5 %5 %ﬁ 0 0 0 _54ﬁ _% _%
TSP of wE ef A0 O S B N
<533{‘]27T3}> % %5 153 153 0 0 0 153 15\3 15\3

A‘
A‘

A"

|
J;‘
N‘

GP = - (J, ~ Ji). (184)

N =

where N. = N, + Ny + N, and J' = Ji, + Ji, + Ji.

The leading N. counting of the matrix elements of
operators (18) is deduced as follows: T8, G*3, and {J/, G**}
are order O(N,); J3, T3, G, and {J/,G®} are order
O(N?). By using these counting rules and recalling that the
operator coefficients k; are order unity, the isovector
leading term in the series (17) is order O(N?) and the
subleading one is order O(N;?). The isoscalar leading and
subleading terms, on the contrary, are both order O(N; ).
Higher-order operators 05,17 % are suppressed by a relative
factor of 1/N? with respect to 053 )2“.

With all the partial results properly gathered, the explicit

computation of quadrupole moments can be carried out. An
immediate result is that, for any octet baryon B,

Qe —o, (19

which is the sum of two null quantities (isovector and
isoscalar quadrupole moments) and not the cancellation of
two equal in magnitude but opposite in sign quantities. This

For decuplet baryons the quadrupole moments read

4
Q" =5 am, (ks + k3),

9 (20)

which are valid up to a correction of order 1/N?. Here ¢ B, 18
the electric charge of decuplet baryon Bj given by
4, = (B,|T2|B,). (21)

A few comments are in order here. Equation (20) has
been purposely written in a way to exhibit that the effects of
higher-body operators can readily be accounted for without
altering the basic structure of the equation itself. Thus one

would be prompted to express Eq. (20) in terms of a single
parameter, let us say k, so that

osve) 4

B, = 5 qB;kv (22)

which would be valid to all orders in the 1/N, expansion.
This approach, however, is not entirely correct. The reasons
can be better seen when computing the transition quadru-

SU@3 .
pole moments, Q 1§ ) In this case,
9Pp

SUB3) 2V2

=—k,, 23a
is a completely expected (and consistent) result. QM” 9 2 (232)
TABLE IV. Matrix elements of baryon operators corresponding to transition quadrupole moments for N, = 3: SU(3) case.
Atp A%n = OA 030 DI XU =+0=0 BB
3 33 1 1 1 1 1
{267 ¢ ¢ 7 0 v ~3i v ~3i
(8B{Jr,GY) 0 0 0 0 0 0 0 0
(T3 {P,P})) 0 0 0 0 0 0 0 0
(83{J2. T3}) 0 0 0 0 0 0 0 0
3 (338 1 1 1 i I
{7% 67 0 0 0 7 7 7 7 7
(63{J7,G™®}) 0 0 0 0 0 0 0 0
(T8, {3, 1’} 0 0 0 0 0 0 0 0
(633{J%, T8}) 0 0 0 0 0 0 0 0
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2v2
oy, = —5 ke (23b)
suz) 1 2
Qo 3 gkz, (23c)
V2
Qi =g kz. (23d)
SUB) 2V2
Q2*+Z+ T k27 (233)
Qi) — o, (23f)
2V2
Qélﬁg(? = 9 ks, (23g)
and
Q33 —, (23h)

which are valid up to a correction of order 1/N2. Due to
the fact that the operator coefficients k; participate differ-
ently in Q;ZJB) and Q;%i), there is not a unique way of
recombining these operator coefficients to reduce the
number of free parameters. Therefore, retaining up to 3-
body operators in the 1/N, expansion of quadrupole
moments implies the existence of two free independent
parameters, k, and k5.

In the SU(3) limit, two relations become evident,
namely.

I _sui SU@3 SU@3 SU@3
EQAJrEr) = QA+( ) = _QA—( ) = sz( )
= -V =o'V, (24)

and

SUB) _ ASUB) _ ASUB) _ ASU(3)
QA+[) - QAOn - Q2*+2+ - QE*OEO
2
V3

The last relations have also been noticed within the chiral
constituent quark model analysis of Ref. [34]. As a side
remark, notice that Q;U_(g)_ = Qéy_@_ = 0, which is a well-
known result derived in the quark model [34]. These
transitions are forbidden by U-spin conservation if flavor
symmetry is exact.

Now, it is straightforward to test the combinations
sensitive to / = 3 and / = 2 operators [41]. For the former
case,

=200 ==Y, (25)

Q)Y -303" 4305V — ol =0, (26a)
and for the latter case,
o)/ - QY — 051 1 9" =0, (26b)
oV 203 4 Qi) = o, (26¢)
o) -, =0, (264)
o) —20 0 + oY =0, (26e)

Additional expressions valid in the limit of exact SU(3)
symmetry can be extracted from Ref. [39]. Apart from the
isospin relations (26¢), (26d), and (26¢), a and a vanishing

Qilom), the expressions are given by

R+ P =0, (27a)
20370 1+ Q3B — o, (27b)
3 - ") — (P - Qi) =0, (27¢)
Q) _ gdV) _ 208" — o, (27d)
QY - ol + V2l — V2ol = 0. (27¢)
ot \2 Oyl + \% QN —o,  (270)
Oy - Q- - ol - oY =0, (279)
Qv L guue) \ﬁgsﬂ)@) =0, (27h)

= \/E =8 3 PRI

which are also verified with the expressions obtained
within the formalism presented here. Relations (27a) and
(27b) are easily explained as a consequence of Qqu being

proportional to the electric charge of baryon By

IV. Q@< WITH FIRST-ORDER SU(3)
SYMMETRY BREAKING

In the Standard Model, flavor SU(3) symmetry breaking
is given by the current quark mass term in the QCD
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Lagrangian with m,, m; < m, and transforms as a flavor
octet.

The correction to Q)4 is obtained to linear order in SB
from the tensor product of the quadrupole moment and the
perturbation, which transform under SU(2) x SU(3) as
(2,8) and (0,8), respectively. The representations con-
tained in this tensor product are (2,1), (2,8), (2.8),
(2,10 +10), and (2,27). The task of finding 1/N,
operator expansions for these representations is dealt with
in the following subsections.

A. (2.1)

There is only a 0-body operator transforming as (2,1)
under SU(2) x SU(3),

Of =61, (28)
and a single 1-body operator,
0 = i Jk, (29)

none of which contributes to QU by virtue of the
symmetry or trace conditions discussed above. Thus, the
only nontrivial operator found is the 2-body operator,

2
07 ={J,J} - g5!/12, (30)

because even the 3-body operator,
{1 AT, G} (31)

is also redundant, according to Eq. (A3) of the Appendix.
Therefore, the SB contribution to Q)¢ from the (2, 1)
representation reads’

i 2
031" = 6" {J1 11} 38052, (32)

whereas higher—order operators are consecutively obtained
(ij)a 2
as 0,0 ={J%. 0 1} for m > 1.

2m

B. (2,8)

The (2,8) operators that generate SB corrections to
QUi can be obtained in a close analogy with expressions
(9) and (11) and read respectively for 2- and 3-body
operators,

. 2
0( jla __ daeS({Jz GJB} + {]] Gle}) 51}dd€8{]r Gre}
(33)

and

Hereafter for the ease of notation, On rep Will stand for an n-
body operator belonging to flavor representation rep.

. i 2 i
ng’é)a _ d“eg{Te, {JI’JJ}} _g&t/daeii{JZ’ Te}, (34)

Higher-order operators are obtained as 05;?; g =
(2,00} for n > 2.
Additional (2,8) operators obtained by replacing the

d“*® symbol with the i ¢’ symbol turn out to be T-odd so
they are forbidden by time reversal invariance.

C. (2.27)

The analysis of (2,27) operators is more involved than
the ones previously discussed. In the present case, not only
the symmetry of operators under the exchange of spin
indices must be manifest, but also the symmetry of
operators under the exchange of flavor indices, which is
required for flavor-27 operators. Let S Eij {95} be one of such
operators. The singlet and octet components are subtracted

off s/ 4 1o obtain a genuine flavor-27 operator S(){a}
according to [45]

S(ij){ab} — Siin{“b} 5abS ij){ee}
N} -
N -
— 2_f d“bedyheSEij){gh} ) (35)
Nf -4

The contribution of St/){e%} to QU4 is actually obtained by
setting b = 8 so the contribution is effectively S(/){8},

The 1/N, expansion for a (2,27) operator that contrib-
utes to Q)% begins with a single 2-body operator,

{Gia ]b} +{G/a Glb} 2511{Gra Grb} (36)

which, after subtracting singlet and octet components in
accordance with prescription (35), gets the form,

{Gia’ Gjb} + {Gja’ Gje}
2N, 2
dahedeqh th G]h _ 51/ Gm Grb
o LA GO L G
+ % 5ij5ab{Gre Gre}
3 N} -1 ’
2
- él]dabedegh Grg Grh 37
it {676, (37

After a straightforward algebraic manipulation, the SB
correction to QU4 from this 2-body operator becomes
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0(22?7 — Gm /8}+{G18 /u}+ 51/{7*11 T8}+ 6ljfaqef8he{Tq Th}_ daeS({Jt G/e}+{]] Gle})

1 N, 2 1
5ljd(168 Jr Grel — a8 Jl Jj 51] a8]2__ N N 5ljda€8T€
T3N 42 { } N(Nj+1) o T3N, gNe tNp)
N.(N.+2N;) _..
NeWe ¥ 2N7) s, (38)
6N,
As for 3-body operators, there is a single one given by
o 1 L o 1 ..
SATATL G+ A GO} 4 ST AT G+ {7, G = 287 ({T {7 G + TP I, G, (39)
which turns into
o o 1 S o 1 S o
E{T“,{J’,G]b}+{J],Glb}}—I—E{Tb,{JI,Gm}+{J1,Gm}}— 2 léab{Te,{Jl,Gje}+{J],Gle}}
N
NZ f dabedfge{Tf {Jl ng} + {Jj Gtg}} _ _51/{Ta {Jr Grb}} 51/{Tb {Jr Gra}}
2 1 ) 2 N . o
= 51]51117 Te’ ]” Gre __féz;dabedfgeéz] Tf, Jr’Grg , 40
o LR GRS RS {747,670} (40)
by following the prescription (35). Therefore, the SB correction to Q)¢ from 3-body operators is then given by
O = 3T GP) + (J1.G™)) (TP (I, G} 4 (1.} = 30T (07, G} = 0T (. G))
o 2 1 . N.+N o o
_ dueS Te’ Jl’ JJ = 51]du€8 ]2, Te\ — Cifdue% _]’, Gie J]7 Gie
e LA U R e L v i (1,67} + {77, G})
2N, +N N.+N N.+Ny
4+ = fél/dueé%{]r Gre}_ ( f)éas{Jl J‘}}+7 6”5“8.12. (41)
3 N;+2 Ny(N;+1) 3N(N;+1)

Next 4-body operators can be worked out. They can conveniently constructed as tensor products of a spin-0 and a spin-1
2-body operators. There are two of such operators, namely,

{{J’ Jj} {Gra Grb}} 51]{]2 {Gra Grb}}

(42)
and
{7577} AT T} ) - —5”{J2 {T°.7°}}. (43)
The procedure to subtract singlet and octet components yields, for the former.
i 7j Nf be jgh h
{7} {6, IHAGT G} = d e d L T AG. G
_ %5ij{J2 {Gra Grb}} _|_% 5ijdubedghe{J2 {Grq Grh}} ‘I‘% 1 6ij5ub{]2 {Gre Gre}} (44)
3 ' ’ 3 N]% -4 ' ' 3NZ -1 | | '

f
and for the latter,
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{7731, Tb}}— — O IEATE T =

N o 2 ..
S 4dabedghe{{]t’Jj}’ {Tg’ Th}} _5511{‘]2’ {Ta’ Tb}}

2 Ny
+ = 5 5115ah{]2 {TL Te}}+7 51/dahedqln{J2 {Tq Th}} (45)
3Nf Nf
Finally, the SB contributions from 4-body operators to Q'/)¢ are given by
(ij)a i gj ra r8 1 Nf +2 a8 2 i le +4 ae8 i r re
o =L} 1GYG —— J2 AT T d JLIY TG
sz = I IHA 1 +2Nf(N% 0 o7} +2N2 {7714 13
_3(N, +Nf)Nf o 3N(N.+2N) 2
daeS Te’ Jl’Jj _T-'c ¢ . 5a8 J”J/ — 25 J27 Gra7Gr8
1 Nf+2 . IN;+4 1(Ne+NpN;
_ 51]5(18 JZ’]Z f 5l]da68 ]2 Jr G'e f fazjdaeS JZ’Te
S ) S e S G S e T
1 N.+2N,) ..
——( 2V5) giigas 2, (46)
2 Nf -1
and
8 8r 72 2Ny 8
={{r. AT T }}— (O ATL Y = S d LTI G
f
(Ne+ Np) (N —4) o N(Ne+2Np)(Ny—2) o2
_ ¢ dueS Te7 Jl’Jj __c ¢ 5a8 Jl’J] _Zsi JZ’ Ta,TS
Vo () = S T ) = SR (1 1)
4 2(N.+ NN, —4) .
- 51]5a8 ]2 J2 51]dae8 ]2 J, G ¢ f f 51]due8 JZ’Te
+3N]%—1 { }+3Nf 4 A B3 N2 —4 Vs T
2N, (N.+2N;)(N;=2) ..
( f)( f >51J5t18]2. (47)

3 N(NVG-1)

There is an additional 4-body operator constructed as

%{{J’J’}’{G"‘CG"”} +{G".G" ) (48)

but it can be rewritten in terms of {J2, Og’)a}, so it is
redundant and can be discarded.

To close this section, notice that the flavor singlet and
octet components subtracted off the original flavor 27
operators could have been respectively merged into the

already defined OSQJI)“ and O%)a operators. The reason to
keep these components in the original expression is twofold.
First, the vanishing trace condition is kept in the full
expression, and second, this allows us to disentangle the
effects of different representations, so the corresponding
operator coefficients parametrize pure 27 effects.

D. (2,10+10)

Contrary to the previous case, (2,10 + 10) operators
must be antisymmetric under the exchange of flavor indices,
retaining the symmetry under the exchange of spin indices.

Let AU7)19b] be one of such operators. Thus, in order to get a
genuine flavor 10 + 10 operator A(/)[@] the flavor octet
component must be subtracted off according to [45]

(i )[ab

A(ij)[ab] —_ fabefgheA ij) gh]

Ny

(49)

where, by construction,
fabcA(ij)[ab] =0. (50)

With the above considerations, the series for the (2, 10 +

10) SB operators actually begins with a single 3-body
operator,

ST I GP) 4 (.G} = S (17, {11, G)
LG = (T 6
(TG, (51)

where the octet component to be subtracted off reads
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1 S o
—ifahe[Jz,{Jl,G‘]e} + {J.]’Gle}]‘
Ny

(52)

This last term is particularly interesting. First, notice that itis
T-odd, so in principle it is forbidden in the 1/N . expansion
of Q)?, And secondly, it vanishes under contraction of spin
indices. It is necessary, though, to fulfill condition (50).

Thus, the SB contribution to Q) from (2,10 + 10)
operators is

(ij)a _l a [7i ()8 i 8

1 o o
— AT AL G+ {0, G}

1. 1 ..
—gélJ{Ta,{Jr, GrS}} +§51J{T8,{JF’GVLZ}}’

where the octet component has been safely ignored.
(ij)a
0n+2,10+ﬁ

Higher-order operators are obtained as

{]2 0(’7)“

, n.10+ﬁ}’ for n > 3.

V. A FULL EXPRESSION FOR
QUADRUPOLE MOMENT

The final expression for the quadrupole moment operator
to linear order in SB is

Qlifla 4 sQlif)a, (54)

where Q)4 is the operator whose matrix elements yield
the SU(3) symmetric values; it is given in Eq. (15). In turn,
5QUia includes all the operators due to first-order SB and

(53) s 1 /N, expansion reads
TABLE V. Matrix elements of baryon operators corresponding to quadrupole moments of octet baryons for N. = 3: broken SU(3)
case.
n p e >0 =t = =0 A
(8B{J3,1°}) 0 0 0 0 0 0 0 0
53682 0 0 0 0 0 0 0 0
< 38 3> 3¢ _ 5 5 _1 0 1 1 1 0
(@7, GY) 12V3 12V3 3V3 3V3 12V/3 12V3
33 13e8( r re 5 5 1 1 1 1
o A s A
(ST (. P}) i e -1 0 i i 1 0
(BdP8{J?,T}) _V3 V3 _\V3 0 V3 _\V3 V3 0
33 (38 g g % 0 % #1 141 0
UG, 67 e W Y 3 “5 g
V3 V3 3
(63{T°,T"}) _73 T3 0 0 0 \/75 _4 0
<533f3gef8he{Tg, Th}> _ \/TE ? 0 0 0 ? _4 0
33 13e87e 1 1 1 1 1 1
(O7d*7Te) ~3A 2 v 0 7 3 2 0
(6336%8) 0 0 0 0 0 0 0 0
30713 38 1 1 1 1
TP A G A Wi v 0 7 2 - 0
({18, {13, G311} —ﬁg 45—\/5 0 0 0 _ﬁ ﬁ 0
(6310 (0.6 3 Be V3 0 V3 Ve _3y3 0
<533{T8,{1r,Gr3}}> _54_\/§ % 0 0 0 _? ? 0
02 b
<58§ J%> 3 Zl Z1 Zl Z1 Z1 % ? %
i I J - S S ; ; :
(&3P {JT, G™Y) - - -5 -5 -5 2 2 >
(5 Te, {2, P} _i _i 0 0 0 i i 0
(EBd¥R {2, T4Y) -3 -3 0 0 0 2 7 0
(6.6 4 — % S i g
(83{T8,T%}) 3 3 0 0 0 3 3 0
s g GO N N NN SRR S % P
(6%d88€ T¢) -3 -3 0 0 0 3 3 0
(6°6°8) 1 1 1 1 1 1 1 1
(0T st S S SR SN NS SN SN S
(5318, {J",G"8}}) 1 3 0 0 0 3 3 0
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TABLE VI. Matrix elements of baryon operators corresponding to quadrupole moments of decuplet baryons for N. = 3: broken
SU(3) case.

AT At A° A =xF x+0 e B =0 Q-
(3383, %)) 0 0 0 0 0 0 0 0 0 0
(536%8J2) 0 0 0 0 0 0 0 0 0 0
(@1(7.6) S I T I
<533d3€8{‘]}‘" Gre}> # 457\/§ _45W _%ﬁ? % 0 _ﬁi _ﬁi % 0
A T Y I B R R R
({G3,G*Y}) 33 V3 _\V3 _33 0 0 0 V3 _\V3 0
’ 3 8 8 8 8 8
(521 7%)) $Bf F P 00 0 R
AR SR S S e A SR SR S
33 13¢8 1 1 1 1 1 1
(T S v B 7 0 A T i 0
(6%367%) 0 0 0 0 0 0 0 0 0 0
{1, {7, G¥)) v . R 0 0 0 ooy 0
{7 (2. 6™))) S e T 0 A s
(83{13,{J7,G"*}}) 15V3 5v3 _53 153 0 0 0 5v3 _53 0
’ ’ 1 ) 4 4 4 4
(6318, {17.G™}) e 0 0 ¥ - 0
<588 {J3 J3}> g g 94 94 9 9 9 g 94 9
s R T T A
<533d8e8{Jr Gre}> _g _g _g _g 0 0 0 g g g
’ 4 4 4 4 4 4 2
(@S {T, {1, Y} e -3 0 0 0 ; ; 9
<533 2{3888 {3;22’ T _z% _317'5 _%% _31475 X X X % ? ?
(833{T8, T8Y}) : 2 2 3 0 0 0 25 : 6
)ik N A A A A A S
(0P d*Te) -3 -3 -3 -3 0 0 0 2 p !
(5%35%8) 1 1 1 1 1 1 1 1 1 1
(7% {7.6*)) : 3 3 3 0 0 0 3 1 o
(BT {I7.GY)) 7 2 2 r 0 0 0 S S 15
N1 N, N,
s50liNa — 1 olina 1 O(J 1 ol O
Q - Nn_l Cni n1 + N CnS n8 Z n— cn 27 n27 + Z _Cn 27 n27
n=24""¢ n=2""°¢ n= C n= 46
N
~ 1 (if)a
+ 23:5 N cn,10+ﬁon’10+ﬁ' (55)
n=>y,
At the physical value N, = 3, the series is truncated as
o ipa | 1 ia | 1 ipa , 1 1 1 (if)a
sQUa — N—Ccz.lo +N_c 28028 +N2 €3 8038 +N_Ccz 2702 27 +N2 €3 2703 27 +N2 310410% 10,790 (50)

where the operators (921 , O%)a, Ogi’{;)“, Og’é);, Og 47> and 03”1 o.70 &TC given in Egs. (32), (33), (34), (38), (41), (53),

respectively. The operator coefficient c,, yp accompany the n-body operator belonging to the flavor representation rep. The
matrix elements of the operators in the expansion (56) are listed in Tables V-VII for the sake of completeness.

Thus, the complete quadrupole moments of decuplet baryons [SU(3) symmetric value plus first-order SB effects] for
N, = 3 are given by
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TABLE VIIL

Matrix elements of baryon operators corresponding to transition quadrupole moments for N, = 3: broken SU(3) case.

Tyt

>
+
S

E*OA 2*020 TEY-

=}
N

[1]
S
[1]
[=)
[
|
[1]
|

538{]3’ ]3}>
533538]2)

d3"8{‘]37 G3e}>
633d3€8{‘,r’ Gre}>
d388{Te, {J?ﬁ]?}}>
533d3€8{]2’ Te})
{G33, G38}>

533{7‘37 T8}>

533f3<(/ef8he{Tq7 Th}>

533d368Te>
533538)
{1° {7, G*})

(1%.47.6%)))

(

(

(

(

(

(

(

(

(

(

(

(

(

<533{T3, {‘]"7 GrS}}>
IRUSTRCE
(. ))
<533588J2>

<d8€8{13’ G3€}>
<533d8€8{‘]r7 Gre})
(T (1Y)
<533d8e,8{]2’ Te}>
(G*.6*y)
<533{T8, T8}>

(
(
(
(
(

533f89ef8he{Tg’ Th }>

533d868Te>

533588)
{T°.{.G*}})
533{7"8, {]” Gr8}}>

‘—‘OO
"—‘OO
|

S OO u"_‘OO
X

W=
c o o«\ c o
W
W=
(98]
S

OOOQ‘OO
SIS
w

|
W=
[SSI1S)

W=

ﬁ‘oooo co o
Wi WIS

|_oooo o

|
W|_OOOO (=) [=NeNeloNe) (=N el o) [= i)
S

|

|

|
W|_OOOO O&‘OOOO
S o

&

‘—OOO
|—'OOO’
|—‘OOO

o8]

(=) OOOOO&
(98]

(=) OOOOO&
(98]

S OO OO OO OO0 oo o oo (=) ooooo§‘_ooo§|
[\e)
OOOOOO&

w

OOOOOOOOOOOOOOOQ‘ OOOOOS"—‘
Wi o))

w

OOOOOOOOOOOOOOOQ‘ OOOOOQ“'—‘
WIS X

‘—'OO
w2 o O
-

w

-0 O O O w [l e e
- S
(98]
"—‘OOO’

~ S
—§‘_OOOO§‘

S

|
() SO OO OO OoOw S O OO
S IS, - =Y
| |
() OO OO O O OWw OO OO
Sk 4l &k

4 2 4
Opr+ =3 ky + k + Crg+cC [ +3e ]
A 961A++( 2 3) + 3\/§ €21 9\/-( 2.8 3,8) 10\/- Cr27 327
4 2 4
Qpr = +(ky + k +— {c + c }
A CIA (ky 3) + 3\/- 1 6\/- 227 327

Opo =~y =2 (crg+c38) + [ +4 }
0 = C - C C C )
A 3\/§ 21 9\/§ 2.8 3.8 30\/— 2 27 3,27

4 2 8 1 4
O\ = ky + k ch1———=(crg+c ——[c +=c ]
A CIA (ky %) 3\@ 21 9\/§( 28 3,8) 10\@ 227 T 36327
4 2 4 4
Osiv =—qsr(ky +k3) + —=cr1 +—=(crg+ ¢ [c + c ],
o) 9612+( 2 3) 33 2.1 9\5( 2.8 3,8) 30\[ 2,27 327
Q = [ +4 ]
0 = C C c
> 3 2.1 30\/— 227 327
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4 2 4 1 4

Qy:- = §Qz**(k2 + k3) + ﬁcz,l - % (cr8+c38) + m [02,27 + §C3,27} , (57¢g)

4 2 5 4
QE*‘:§ 2o (ky 4 k3) + 3\/§ 21+30\/-[227+30327} (57h)

2 4 11 4
Qei0 = ——=0Cr1 +——=(crg + ¢ ——[c +=c ], 571
=0 3\/§ 2.1 9\/5( 2.8 3.8) 30\/5 2,27 3 3,27 ( )

and

4 2 4 9 4 .
Qq- = g4 (ky + k3) + EWE c1+ 3 (cr8+c38) + 3073 [02,27 + 503,27} . (57j)

Notice that SB effects induce nonvanishing contributions to the quadrupole moments of neutral decuplet baryons. Notice

also that there is no contribution from the flavor 10 + 10 representation.
For the transition quadrupole moments the expressions are

2V/2 2 2 1 2 1 1 2
Orp = o ky + 9 \/;Cz,s + G \/; [02,27 + 3 C3,27] ~ g \/363.10+10; (58a)
2V/2 2 2 1 2 1 1 2
QAOn = Tkz + § \/;02.8 + B \/; |:C2y27 + §C3y27:| - § §C3,10+1‘0, (58]3)
V2 2V/2 1
Oswop = 3 3k2 9 o 2875 [02,27 +3 33 27] (58¢)
V2 1 2 2 2 1
Qsrox0 = Tkz ~5\/3¢28 + 15V3 [02,27 + 503,27] . (58d)
2[ 1 1 2
Qyrigs = e ko + 3 \/; {02 27+ 3 363 27} + 9 \/;03,10+1'07 (58e)
2 2 1 2 1 1 2
Qyi-3- = — 5 \/;Cz,s 15 \/; [02,27 3 C3,27] 9 \/;C3,10+1_0’ (58f)
2V/2 1 2 1 1 2
Qgrogo = o ky — 3 \/; [02,27 + 3 C3,27] + 9 \/;C3.10+1'0a (58g)
1 2
Qzi-z- = €28 — ]5 Cz 27 + 36327| ~g\/ 36310410 (58h)
|
Notice that the flavor singlet representation does not Oprr — Qp+ — Qpo 4+ Op- =0, (59b)
contribute in this case but the flavor 10 + 10 one does.
The isospin relations listed in Sec. III, this time for the Qs+ — 20500 + Q5= =0, (59¢)
complete expressions for quadrupole moments are, for
I = 3 operators, Qp+p — Quo, =0, (594)
Oparr —39p+ +3Qp0 — Qp- =0, (59a) Qs-+x+ = 2Q50p0 + Qye-y- =0, (5%)
i.e., they are fulfilled in the presence of first-order SB,
and for / = 2 operators, which is a completely expected result.
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Additional expressions fulfilled in the presence of first-
order SB are

Relation (60f) is remarkable because in the SU(3) limit,
QEU_@_ = QéU_g)_ =0, and still the degeneracy between
these two quantities is not lifted by first-order SB effects. In

(Qe- + Qrv) = (Qao + Q) =0, (60a) consequence, if € ~m; is a (dimensionless measure) of
) SU(3) breaking, corrections to Egs. (60) should arise are
3(Qar = Qo) (Qar — Q=) =0, (60b)  order 2

Flavor SB is evaluated in Ref. [39] by replacing the spin-
L2 o, 60 spin terms in the expressions for the quadrupole moments
L Quv + Ca (60c) with a quadratic quark mass dependence as obtained from
70.. o — a one-gluon exchange interaction between the quarks. SB is
Qo + Qoo + Qo =0, (60d) then characterized by the ratio r = m,,/m; of u and s quark
O L masses. The counterparts of relations (27) with SB effects
Op-+Qa =59z~ +3Q0 =0, (60e) are also found to vanish in Ref. [39]. However, in the
o o —0 (60f) formalism presented here, they are now given by
yoy- — Keesm = U,
J
4 8 8 1 4
Opr + Op+ = Cry— Crg — c3g + Crp7 +—=C327, 6la
A A W3 2,1 93 2.8 93 338 15v3 2,27 453 327 (61a)
2 4 4 1 2
200+ Qarv =—zC1— T =Cs — T =Cis T Ca27 + 327, 61b
A A /A 2.1 W3 2.8 33 3.8 10v3 227 15v3 327 (61b)
3(Qz- = Qs-) = (Qo- — Qu-) =0, (61c)
4 2 2
Op- — Q- = V2055 = KNG C38— —15\/§C3,27 + 9\/563,10+E’ (61d)
4 8 4
QA* - Q2*+ + \/EQAer - \/EQEHZJr = _mC3'8 + T\/gC3'27 — mc&lwﬁ’ (616)
1 1 2 2 13 14
Q50 — —= Q5050 + —=Osiop = Crq + Crg — Cr oy — €397, 61f
50 NG $+050 NG THOA W3 2,1 03 2.8 30v3 227 453 3,27 (61f)
1 1 4 2 2
Qs —Qz- ——=Qiz ——=Qyoy- = ———C38 — c327 + 3 10.10° 61
> NG NG SIDY 9v/3 3.8 15v3 327 9v/3 3.10+10 (61¢g)
1 2 2 2 4 13 23 1
Oz + —= Qzeog —\/:Q* = cr1+ crg+ c38 — Cr27 ——=C327+ —=Csq10.70- (O1h
=0 \/i =+0=0 3 S OA 3\/§ 2,1 9\/§ 2.8 9\/§ 3.8 30\/§ 2,27 45\/§ 3,27 9\/§ 3,10+10 ( )
I
Qz- - Qp —V20z= =0. (62)

Equation (61c) is the only agreement between the
analysis of Ref. [39] and the present one, as far as SB
effects in the quadrupole moments are concerned. A
noticeable difference lies in the vanishing value of Qo
in the presence of SB even to order O(r?) found in that
reference, compared to Eq. (57¢), which attains in principle
a nonzero value precisely due to first-order SB.

In the context of the 1/N,. expansion analysis of
Ref. [41], an additional relation is provided with N_-
independent coefficients that holds for all values of N,
in all cases of SB analyzed there. The relation, correspond-
ing to Eq. (4.23) in that reference, reads

With the results presented here, the above relation
actually reads

QE*— - QQ— - \/EQE*-E—
4 2 2

=———=038———=C327 + —=C1 10.70" 63

93 3.8 15v3 3,27 9,/3  310+10 (63)
Hence, SB affects relation (63) only at 3-body operator
level and higher. Should these operators be removed
from the series (56), the single-photon exchange ansatz
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prediction would be recovered. Equivalently, relation (63)
vanishes when leading and subleading terms in 1/N,. are
retained in the series (56). Beyond that point, it gets
modifications.

VI. CLOSING REMARKS

The main aim of the present paper is to construct the
1/N,. expansion of the baryon operator whose matrix
elements between SU(6) baryon states yields the actual
values of the spectroscopic quadrupole moments. This
operator has well-defined properties: It is a spin-2 and a
flavor octet object, which means that it transforms as (2, 8)
under SU(2) x SU(3). It is a symmetric and traceless
tensor in the spin indices. And most importantly, it is even
under time reversal.

The operator is first constructed under the assumption of
an exact SU(3) flavor symmetry; it is denoted by Q7). For
the physical value N, = 3, QU4 is given by Eq. (17). The
effects of SB are accounted for to linear order through the
operator §Q(/)4, given by Eq. (56), which comprises all
the operators that fall into the flavor representations
allowed by the tensor product of the quadrupole moment
and the perturbation. These representations are (2,1),
(2,8), (2,8), (2,10 + 10), and (2,27). The 1/N,. expan-
sions of the operators that satisfy the properties mentioned
above are given in detailed. The matrix elements of the
operator Q) 4 §Q(i)e yield the actual values of the
quadrupole moments. They are listed in Egs. (57) and (58)
for baryon decuplet and baryon decuplet-octet transitions.
For baryon octet, the values are found to be zero, which is
consistent with angular momentum selection rules. These
expressions are given in terms of the free parameters of the
theory. Retaining up to 3-body operators, there are two
parameters (k, and k;) for the case of exact flavor
symmetry and six more introduced by SB (c,y, ¢y,
C38, C227, C327, and €3.10410)" All in all, there are eight
undetermined parameters. Unfortunately, the experimental
information [31] is rather scarce, so at this time, it is not
possible to perform a least-squares fit to compare theory

and experiment and extract information on these parame-
ters. Any other attempts of reducing the number of free
parameters are fruitless. The only pieces of information
known up to now are those corresponding to the transition
AT — p [31]. The difficulties in measuring quadrupole
moments depend on many factors. For instance, except for
Q~, all of the decuplet baryons decay strongly, so couplings
of the form decuplet-decuplet-y are available only through
virtual processes, which are difficult to measure [40].

To overcome the lack of experimental information on
quadrupole moments, some relations among them are
provided instead. Apart from the isospin relations (59)
that must be satisfied by quadrupole moments in the
presence of SB, other relations are also provided, (60),
which can be quite useful in the future, when additional
experiments are envisaged. In the meantime, the predic-
tions of the 1/N. expansion are in accordance with
expectations.
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APPENDIX: REDUCTION OF BARYON
OPERATORS

Different n-body operators that satisfy the properties
imposed to make up the 1/N, expansion of Q)¢ can be
constructed. However, some of them are linearly dependent
and can be written in terms of the chosen linearly
independent ones by using operator identities [45]. In this
section a list of operator reductions, as complete as
possible, is presented to identify those operators which
are not eligible in the 1/N, expansion of QU/)¢. Each one
of the relations provided contains, on the left-hand side, the
presumably dependent operator whereas, on the right-hand
side, its equivalence in terms of the chosen operator basis.

1. 2-body operators

. . 1 ..
{Gle’Gje} _g&l}{Gre’ Gre} —

. . . ) 2 ..
dahc({Glb’jS} 4 {Gjh’ Glc}) _§5zjdabc{Grb, Grc} — S

Ny=1[ . = 2
iy Z i 2
2Ny [{J’J} 3 J}

(A1)

N,=2 o . 2 ..
——= {{J’, G} + {11, G} =50, G Y. (A2)
.
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2. 3-body operators

2(N. +Ny)(Np—1

(/AT G} + {7 AT, G} ) = —5”{1’ {1°.G"}} = N,

) |:{Ji’_]j} _gal‘fﬂ}, (A3)

Ny

(17,1667} =351 (6.6} =

|y -3, (A%9)

{Gm {Te Gje}}+{Gja {Te Gw}} _5;/{Gra {Te Gre}}

_ (Ne +Np)(Ny =
Ny

D [{J’ Gi“} + {J), G4} — 25”{]’ G’“}] (A5)
Ny—1 . 2 i
(G5 1%, G+ {6 1%, G}y = 3G 1.6} = 4t (e s =300y | (a0

dabc({Jt {Tb GjC}}+{JJ {Tb Gtc}}) %&jdabc{Jr {Tb Grc}}

N, - o2 (N.+N) (N, -

f a i i 2 a ¢ f /
= T 4J, Iy —=o9{J=, T

N 2N oy -2y + ¥,

2) [{J’ G/} + {J, G} — 26”{]’ G”‘}] (A7)

3. 4-body operators

dbcd({Gm {G]b {Grc Grd}}}—F{GJ“ {sz {Grc Grd}}}) 251]dbcd{Gma {Gmb {Gn Grd}}}

:N8N [N (N + 2N) + 6N + 2N - § [{J’ Gy + {J1, G} — 25u{]r Gra}]
f
B (Nf+2\gvf : [{Jz (/.G + {72 A, G} - 5”{12 e Gm}}} (A8)
f

duhc{{Glb G/c} {Gre Gre}} 5l]duhL{{Gmb Gmn} {Gre Gre}}
_ 3NN +2Nj)(Ny =2)
8 N;
N2
4N2

o S 2 ..
|:{Jl,Gja}+{J],Gm}—§5l]{Jr, Gra}:|

[WMGMHPMWN Mﬂwmﬂ (A9)

dabc{{]i"]j}’ {Tb,TC}} _%5ijdabc{{Jr,Jr}’ {Tb,Tc}}

(Ne +Np)(Np—4)
Ny

-ﬂﬁWﬂ}wGﬂ} wwaﬂm%} ﬁnwum-%%ﬂwﬁ (A10)

dabc{{‘]i"]/} {Grb Grc}} 5ljdabc‘{]2 {Grb Grc}}

=—ﬁ£4hﬂﬂur0ﬂ} RG] SN [ e 3] )
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{{Ji’ Gja}’ {Gre’ Gre}} + {{Jj’ Gia}’ {Gre’ Gre}} _

4
N2
2N,

{{]r, Gra}’ {(;ie7 Gje}} _ %5“{{]", Gm}, {Gme’ Gme}} =

P GRY) L2069 =300 0. 6|

Ny—1
Ny

2

35ij{{‘]m, Gma}’ {(;re7 Gre}}

3 o S
= 2N (N, +2N)) {{Jl, G} +{/. G} = 38", G’”}}

(A12)

[{{Ji, JI} I, Gy — %51‘-/‘{]2, {J7,G™}} . (A13)

4. 5-body operators

dabc{{]i’Jj}’ {Jr’ {Tb, Grc}}} _gaijdabc{JZ’ {Jr’ {Tb,GrC}}}

_Ny-2

(N, +N;)(N; -2)
+ 1</f /

[{{Jf, JIY I, Gy} - %5""{127 v G’“}}} ’

- [{J%{Ta,{ftﬂ}}}—§aff{ﬂ,{ﬂ,ra}}}

(A14)
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LN 2N, - 1)

2
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N3
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8 N,
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(A15)
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