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Effects of bulk symmetry breaking on AdS/QCD predictions
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We put forward a new bottom-up AdS/QCD holographic model bearing a distinct treatment of the
pion fields. We argue that a standard approach to the pion description is neither transparent nor totally
satisfactory. In the paper we provide a new one based on a broadened realization of some holographic
principles. The reasoning and the effect of these modifications are explained in detail. The resulting model
has a different set of parameters than the standard AdS/QCD case. We use them to calculate an extensive list
of QCD quantities and find a rather good agreement with the experimental data.
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I. INTRODUCTION

A wide range of studies in the bottom-up AdS/QCD
holography is devoted to the five-dimensional dual descrip-
tion of the light vector and scalar mesons in association
with a realization of the chiral symmetry and the products
of its breaking. The first to appear were the Hard Wall
(HW) [1-3] and the Soft Wall (SW) [4] models. The two
utilize conceptually distinct ways of implementing the bulk
Lagrangian in the five-dimensional anti-de Sitter (AdS)
space-time. In these simplest setups it was attempted to
describe the phenomenology of the vector sector and its
interaction with the pions in Refs. [1-5], and the scalar
sector separately was considered in Refs. [6,7]. The
mentioned models also differ in the way the chiral
symmetry breaking is introduced. Various modifications
and extensions followed, and the ones relevant to this paper
will be mentioned in the text.

In order to build a 5D model within the bottom-up
approach, one mixes the established AdS/CFT prescrip-
tions with various assumptions. The latter might have a
theoretical motivation, but the ultimate criterion for their
validity is leading to a better phenomenological description
for one or another aspect of QCD. The most prominent
example is the introduction of some kind of “wall” to break
the conformal invariance of the AdS metric. The proposals
of a sharp cutoff (HW), a smooth exponential one (SW), or
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something in between (e.g., Refs. [8,9]) compete on
phenomenological grounds.

This said, we strongly believe that the field of viable
model modifications is not exhausted yet. In this paper we
construct and investigate a new holographic framework that
is based on the SW setup and is dual to SU(2) QCD. From
a theoretical point of view, our goal is a new consistent
description of the Goldstone states (pions). In the common
holographic setup, the Goldstone bosons turn out to be a
part of the gauge field (playing the role of the “Higgs”).
This is not the way chiral symmetry is broken in real QCD.
One way around this would be introducing some sym-
metry-breaking terms: 5D vector meson masses in order to
prevent Goldstones from being eaten, and an extra scalar
term to make the Goldstone masses (m,) lower than the
natural scale of the composite states (m,,) and to fulfill the
holographic requirements on the profile of the relevant
mode in the extra dimension. Furthermore, by doing so, we
would be able to treat the Goldstones in a transparent and
analytically tractable fashion that is often lacking in other
approaches.

There is also an issue on the phenomenological side.
Various low-energy observables have been calculated within
one or another model and are claimed to be in agreement
with experiment at a level of 10%-30%, but it is rather
common that a given study is concentrated on a specific
set of observables. The purpose of this work is to be as
exhaustive as possible and to make as many predictions for
the observables as can be extracted from this particular
model of QCD with two flavors up to the three-point level.

In the process, we realized that reestimation and gener-
alization of some concepts of the holographic model
construction are necessary. The first one concerns the
duality between the QCD operator and the five-dimensional
field. Another concerns the mass prescriptions for these
fields. Both are established in the so-called AdS/CFT
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dictionary [10], but we dispute its blind following in the
phenomenology-directed approach of AdS/QCD.

The dual operators in the dictionary are understood
rather abstractly—for once, they have no fixed normaliza-
tions attached. We suggest introducing some reference
operators with free coefficients and studying whether they
are eliminated from the physical quantities or not. The
holographic prescriptions for the 5D masses in the dic-
tionary are extremely stringent to the model. We argue that
they should rather be considered as imposing boundary
conditions on otherwise bulk-coordinate-dependent mass
(not the first attempt on this; see, e.g., Refs. [11-13]).
Obviously, a nonzero vector mass means that the local
symmetry is not preserved in the holographic action in the
bulk, but we will see that it is kept on the boundary. In
addition to this, we also introduce an explicit breaking of
the global chiral symmetry towards the vector subgroup in
the scalar sector. That is not conventional, but it turns out
that this kind of symmetry breaking is crucial to achieving
our goal regarding pions.

We would like to stress that the cumulative effect of all
these modifications of the standard bottom-up framework
turns out to be more interesting than was predesigned. For
instance, just demanding the analyticity of solutions of the
equations of motion results in a determined ansatz for the
scalar vacuum expectation value (VEV), which is the driver
behind the chiral symmetry breaking in the holographic
bulk. That leads us to question the common parametrization
of the scalar VEV in terms of the quark mass and chiral
condensate (see also Refs. [9,14,15]). The two aforemen-
tioned nonstandard symmetry violations and this particular
choice of the scalar VEV determine the novel phenomenol-
ogy of our model. Besides, the appearance of several new
parameters hints for a better fit to experiment. Moreover,
after a close examination we will find out that the number of
free parameters could be minimized to that of the traditional
SW, while the described phenomenology remains richer.

The structure of this work is as follows. In Sec. II, we
describe the way the model emerges, starting with the set of
relevant QCD operators and showing the elaborated evo-
lution from the standard approach. In Sec. I1I, the solutions
to the holographic equations of motion are obtained. The
Regge trajectories of the radial excitations of p, a;, ag, #
mesons (the linearity of which is guaranteed by the SW)
together with their decay constants are the phenomeno-
logical quantities of interest there. The structure of the two-
point correlators is well studied in QCD, their high-energy
limit analyzed thanks to the operator product expansion
(OPE). We provide the holographic results for them in
Sec. I'V. The three-point correlation functions of Sec. V give
a lot of information on several coupling constants and
the form factors. Finally, in Sec. VI, we summarize all the
observables considered and make some global and par-
ticular fits to determine the model parameters. We conclude
in Sec. VIL

II. HOLOGRAPHIC MODEL
A. Connection to the 4D QCD

The construction of the 5D model begins by selecting a
collection of operators describing the 4D physics of
interest. We use a standard set of QCD operators repre-
sentative of the chiral flavor symmetry and its breaking.

We focus on the two-flavor case and work with the
SU(2) generators T, =o0,/2, such that [T,, T, =
i€gpe T To(T, Ty) = 84p/2; a, b =1, 2, 3.

In the vector sector, the conserved QCD currents are
O =¥, y"(T*)¥, and OR" = Wy (T*)¥. Their com-
binations result in the vector operator O}* = O} + O%"
and the axial vector operator O% " = O%" — O *. The scalar
condensate transforms as (Px¥; ) =(2,2) sU(2),xsu(2), and

produces the breaking pattern SU(2), x SU(2)z — SU(2),,.
The scalar bilinears are given in terms of the flavor
components of ¥: W,W¥ and its conjugate P; ¥%. We note
that these QCD operators have some specific normalization,
which we shall keep as a reference one.

Within the holographic approach, the consideration of
the partition function Z,p, is the cornerstone concept. Its
conventional structure is

Zolpol = [ DVDHExpI [ ' [.cQCD(x>

+ Yo, (0,3, ()

where ¢o are the sources of the corresponding operators.
In holography, one relies on an assumption that the very
functional with the integration over the fundamental degrees
of freedom performed can be associated with a quantity
derived from the 5D by reducing the extra dimension [10].
To exploit the holographic procedure, there is no necessity to
talk about a particular normalization of a given operator; in
the dictionary they are differentiated just by their canonical
dimension and spin. However, some phenomenological
observables in QCD may turn out to be dependent on the
normalization. Thus, to see the possible impact of the
normalization choice, we introduce extra factors gy and
gs in the vector and scalar operators, respectively.

At the same time, we would like to couple the QCD
currents to the electroweak bosons of the SM. There the
symmetry leaves no ambiguity for the couplings given in
terms of the electroweak coupling constants e and g.

The breaking-related operator is a bilinear, and hence its
source is a matrix. We can make the following interpretation
of it: pgy = my - 1d + ¢§- T — iy - T, where m, is a
physical source related to the quark mass. The other two
nonphysical sources in the expansion imply that we can

introduce a proper scalar O = (7¢) jk(‘i’{e‘l‘f + @) k) and
a pseudoscalar operator O% = i(T%) ; (] P — PR ¥% ).
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To conclude, in the partition function [Eq. (1)], the relevant QCD operators appear as follows in our setup:

Z(Po, (x)0;(x) = $y" (x) - gy O, ,(x) + 3" (x) - gy OF ,(x) + §§(x) - gsO5(x) + P (x) - gsOp (x)

A Oy =Sl O L S o (2)

040 (- _ O'=i0?
V2 V2 o

where we use the notation O =

B. Standard 5D construction

Applying the gauge-gravity correspondence to the afore-
mentioned operators, we obtain a theory for the left and
right vector fields and a complex scalar field. The holo-
graphic dictionary provides relations between operators
and 5D fields and dictates the masses of the latter:

gOL < (AL, 9Ok, < (Ar)jis
M2R* = M%R* = 0; (3)

- R . - R ..
gsTfelPIk‘ <> zH]k, gs\Pi\Pﬁ <> zHT]k,

MAR? = 3. )

Matter fields live in a curved five-dimensional AdS space
of radius R with the metric

2
gMszTWMN’ nuy = diag{1,-1,-1,—1,—1}.

The global symmetries of QCD translate into the
local ones on the 5D side. Consideration of the trans-
formation properties of different fields allows us to con-
struct a gauge invariant Lagrangian with spontaneous
symmetry breaking to the diagonal (vector) subgroup,
SU22), xSUQ2)g = SU(2)y,.

Let us denote the group transformations g; € SU(2),,
gr € SU(2)g. h € SU(2),.. The canonical choice for the
coset representative &(rw) = (&, (n),Ex(n)) € SU(2), x
SU(2)g is to take &, = .f; = u(m). Then the matrix of
the Goldstone fields goes as follows under a chiral trans-
formation: u — u' = g uh’ = hug',"e. The scalar degrees of
freedom are collected in X, transforming as ¥ — X' = hZh'.
With these we construct a nonlinear complex scalar
field H(x, z):

H = uZu, Y= f(z)-1d+ T9"(x, z2),
1 Ta
‘= exp <M> (5)
Xz

for which we have H - H' = gLHg;. Xr 1S a constant
parameter used to normalize the dimensionality of the z
fields. There is no reason to immediately connect it to the

I
QCD pion decay constant, the commonly used scale. The
scalar VEV, f(z), implements chiral symmetry breaking in
the bulk. This will be discussed in more detail further.
In the vector sector, we have the non-Abelian fields (4, ),,
and (Ag),,, their kinetic terms given by the field strength
tensor  Fyy = (OyAY — OyAYy + C°ALAS)T?.  The
covariant derivative transforming as D,,H — g; Dy H g; is

The general dynamics is governed by the 5D action:

1
i =g~ Tr[FL  FLMN 4 FR pRMN)

5
1
+o- / & x/=ge I [Trg"N (D H) (DyH)
— M%TrHHT). (7)

We introduce here the holographic parameters [g2] = [k,] =
E~" in order to retain the standard dimensionalities of the
fields. The particular holographic model is also determined
by the SW setup implemented through the dilaton profile
®(z) = k*z%, where k is a model parameter setting an
overall energy scale [4].

C. Symmetry breaking in the bulk

The major disadvantage of the standard construction,
from our point of view, is that pions, being introduced as
they are, appear at the two-point level just in a combination
(Oym — Ay)?. That makes them quite similar to the
Goldstones in the Higgs mechanism and wrongly implies
that they are fully dedicated to contribute to the axial two-
point function (analogous to the mass of a gauge boson). It
is known that the QCD pion should do more than that.

We want to make some changes in the setup so that
the pion can no longer be eliminated by the gauge choice.
The proposal consists in the introduction of a term
providing a nontrivial diagonalization on the (A, Oy7)
plane. The natural option is to add some z dependence to
the masses dictated by the holographic dictionary. Other
authors [11,13] have looked into this option motivated by a
different reasoning, and the focus usually stays on the
scalar mass [12,13,16] on the grounds that its z-dependent
part could be attributed to the anomalous dimension of the
relevant quark operator. Obviously, by including masses
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for the 5D gauge fields, we give up the local chiral gauge
invariance. The following expressions for the vector and
scalar masses will be used in this work:

M3R? = MAR*> = M*(2)R* = 0 + 4uyk®z%,  (8)

My (2)R* = =3 + dupi2>. 9)
|

The quadratic in z terms with uy and up represent a
minimal option to achieve the stated purpose while keeping
the solutions analytically tractable.

For reasons that shall become clear further on, we also
include a scalar potential term containing a new function
b(z), that explicitly breaks the axial part of the symmetry.
The total five-dimensional action of our model will be

1
§=- i dx\/=ge O Te[Fly FL YN  FRFRMN — 2M2(2) (AL AR M + AR ARM)]
5

+ ki / B /=Ge~O [Te(Dyy H)' (DM H) — M2, (2)TrHH' — b(2)Tr(H + H')]. (10)

To deal with the mixing term between the axial vector
fields and the pions, we make a redefinition of the vector
fields inspired by their would-be gauge transformation
property (in order to keep Fyy = Fyn):

(AL)M - ‘SI;<AL)M'§G - i@Mé‘Lé‘(;, (11)
(AR = Ec(AR) WG + iEcOMES. (12)
in?T®
fG:exp< ~ > (13)
X
From now on, we call “vector” the fields V¢ :ﬁ
and “axial” the orthogonal combination A% = ﬁ. The

parameter y, is tuned in order to eliminate the mixing:

kg MP(2)
4gk (o)

We assume that the factor f introduced here has no z
dependence. That is crucial to the determination of the
possible z dependencies of f(z) and b(z). The limit f = oo
corresponds to the absence of the spontaneous breaking and
signifies the restoration of the chiral symmetry.

)?n:_)(ﬂ(l+ﬂ)v p (14)

III. HOLOGRAPHIC EQUATIONS OF MOTION

In holography, one gets from the equations of motion
(EOM) two types of solutions [10,17]. Let us briefly
describe their interpretation within the AdS/QCD frame-
work for the case of a general field ¢(= s,7,V,A) and
suppressing the Lorentz and group indices.

The first type of solution is the bulk-to-boundary propa-
gator and describes the evolution of the 5D field from its
boundary value (= source): ¢(x,z) =@(x,z)po(x). To sim-
plify the notation, we further use the same symbol (no hat)
for a 5D field and its propagator. The choice of solution is
governed by the holographic prescription for its UV (z = €)

I

asymptotics and by the demand of no faster than power-
law growth in the IR (z = oo0). The latter is specific to the
SW-type models.

Another type is the Kaluza-Klein (KK) solution. One
can realize the 5D field in terms of the physical 4D degrees
of freedom with proper quantum numbers, ¢, (x), as
@(x,2) = 3% 5 @u(2)@(n)(x), where the sum goes over
the possible radial excitations n. The EOMs define the z
profiles, ¢,(z), in these KK expansions. These profiles
are subject to a certain orthogonality condition that leads
towards a canonically normalized kinetic term for the four-
dimensional fields after the z coordinate is integrated over
in the holographic action.

A. Vector and axial vector fields

Duality establishes the field-operator correspondence
and the UV behavior of the bulk-to-boundary propagators:

Vi(x,e) = 1- 4 (x) < gy0, () = g B To®,  (15)
A(x,e) = 1- ' (x) < gy 0%, (x) = gy BpysTO%. (16)

We work in a holographic gauge A, =V, =0 and
0,A¥ = 0,V# = 0. The latter condition can be preserved
on shell only, and for the axial field it is necessary to have
no mixing with the pions left. The EOMs for the transverse
part of the vector and axial vector fields are

-d

e ?® e
(9Z 78ZVZ(X’ Z) - 7 DV;Z(X, Z)

2 Ze—q)
—%vg(m))l 0, (17)

e“b €_q>
<8Z 78ZAZ<X7 Z) - 7 DAZ(X, Z)

_Mz(z)Rze_(I> 1+p
2 p

A,‘j(x,z)) =0. (18)

L
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Analytic solutions can be achieved for an ansatz of the
form

M?(2)R? = 4uy - K*72. (19)

The absence of the constant term is due to the holographic
prescription for the vector mass in the UV, and it is a
necessary choice for the correct behavior of the vector bulk-
to-boundary propagator on the boundary. After the Fourier
transformation, we obtain

q* q*
V(%z)zl‘(l—m—l—ﬂ‘,)‘l‘( 42+/4V,01<z>
V(q.0)=1. (20)
The special function ¥, named after Tricomi, is the solution

of the confluent hypergeometric equation with a proper
behavior at z-infinity. The difference in the axial vector case

consists just in a constant shift uy, — py %}; the axial
vector propagator is

2
A(q,z):F(l—fQ—F py ;ﬂ)

2
q I+p
X ‘P(— —4K2 + py —ﬂ ,0; K2Z2> ’
A(g,0) = 1. (21)

The parameter yy remains free and also appears in the
expression of the normalizable solutions. The orthogonality

relation is 2fo dze ™% 77V, /A, (2)Vi/Ax(z) = 8,i. Then

the z proﬁles are determined from the EOMs, and the
spectra can be expressed using the discrete parameter

n=0,1,2,...:
—KZ\/gsw 22)

M3 (n) =42 (n+ 1+ py),

M3 (n) = 4«* <n+ 1 +//lv+/%>. (23)

Va(z) =

Here L7 (k?z?) are the generalized Laguerre polynomials.
These solutions are analogous to those obtained in the
standard framework after uy, — 0, £~ 7 — constant. Linearity
of the radial Regge trajectories M?(n) ~ n is a distinctive
feature of the SW model and indicates a proper realization
of confinement.

The quantum numbers of the corresponding operators

allow us to identify the boundary fields (V//A) ,(x) and the
masses My, 4(n) with the massive radial excitations of p
and a; mesons.

Let us consider also an alternative treatment. Having

@5 (2)en(2)
n qZ_ M2 <n> bl
one can arrive at the following expression for the propa-
gators:

computed the Green’s function G(q,z,7') =

V(g.z) = Z—_sz(j_);;’;v(a) , (24)
Alq.2) = Zn:if;é(f;";a) , (25)
F3(n) = F3(n) = 8’; (nt1).  (6)

It can be proved that the UV boundary conditions are
respected in this form as well.

Therefore, we have determined two kinds of phenom-
enologically relevant quantities: the masses and the decay
constants related to the states in the vector and axial vector
sectors. The following matrix elements define the exper-
imentally observed quantities F, and F,,:

. 1 )
x)|p’(p)) = ¢€ e’ =e —Fp(0)e™'PY,
Oot‘z/ﬂ b ﬂéapr ipx ﬂéab Fr(0 px
v
(27)
. 1 .
(0/0%" ()|l (p)) = e#6™ F , e=P¥ = e#3 — F p (0)e~11".
9v
(28)

In our model, though the masses in the vector and axial
vector channels are different, their decay constants
coincide, while experimentally they are known to be
distinct. The experimental value of F, is estimated from
the p — e*e™ decay rate [18], and F,, could be obtained
from the study of the = decays [19].

B. Scalar and pseudoscalar fields

Let us follow similar steps in the case of spin-zero
fields. Due to the specifics of the linearized form of the H
field,

2if(z)

T

H(x,z) = f(z) + s*(x,2)T* + z(x,2)T¢  (29)

the correspondence in the scalar sector is the following:

s(x.e) = 2 h4(x) < gsO4(x) = g FT¥.  (30)
7(x.€) = -;;gg) P (x) <> gsOB(x) = gsPiysTP.

(31)

The associated QCD states are ay and 7 mesons.
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The EOMs for the scalar and pseudoscalar fields are

e—(I) e—(I) M2 (Z)R2 B
ZZ—382SG —Z—3DS(1—HT€ ©Sa :0, (32)

0

-0

e ® 2 € 2
azz—3f (Z)az”a_z—gf (z)0r

b(z)f(2)R* _41+p
CICLPRET

= 0. (33)

In the pseudoscalar case we have to choose a function
b(z). The function f(z) is already uniquely fixed by the
ansatz selected for M?(z),

F@R = [ 55w (34)

The condition (34) allows us to write the pion EOM in a
form reminiscent of the vector EOM:

e—CD e—CP e—CP
82 —31727a e Dﬂa + 3 (bl + 4b2 . Kzzz)ﬂ'a = O,
Z Z Z

(35)

where we have assumed that the function b(z) is chosen
so that

2

b(z)R? vﬂ

(1+5) = bikz+4by -’ (36)

Any higher-order terms would result in a nonanalytic
solution. We must impose b; = 0 in order to fulfill the
boundary condition of Eq. (31). Then, the bulk-to-
boundary propagators are

z (3 q* 1 q*
s(q.2) :EF<§+/"H_E)\P<§+/4H ™ 1200672 ).

(37)
2 2
95P Xx q
T 1l=by,——
2 =\ 2 ( : 4x2>
2
X ‘P(—bz 22 O,KQZZ). (38)
The EOMs and the orthogonality conditions,
R [ _22 3
[ dze s (2)si(2) = (39)
s JO
43 R

Wk_/o T dze T (D) m (D m(2) =5 (40)

bring the following solutions for the KK z-profiles:

M2( ) = 4i%( n—|—3/2+/41.1) (41)
_X= 1+p 95 271
L(
m,(z Py . VzR (xz)
M2(n) =4*(n+ 1= by). (42)

Assuming b, =1 makes the ground-state Goldstones
massless, m, = M,(0) =0. This reveals the goal of
b(z) introduced in the scalar potential of the 5D action:
with the analyticity of the solution imposed, it only serves
to nullify the pion masses. However, even without it, we
can generally distinguish the m, = M /(0) and m, scales
due to the appearance of yy in the vector masses. Notice
that we gain an analytic result for the whole tower of pion
radial excitations, while in most holographic papers one
finds an implicit equation defining numerically just the
ground state.

The alternative expressions for the propagators are
analogous to the ones found in the vector sector

s(q.z) IZ +M2 (43)
F2(n) = 16K4£(n+ 0, (45)
F2(n) = 8K41f_ﬂk£;(n+ . (46)

The factor 1/4/2 in front of the scalar propagator is
necessary to conform to the usual definition of the scalar
decay constant. The true value of the decay constant is
found only after one calculates the residue at > = M?(n)
of the corresponding two-point function. We follow the
conventions of Ref. [7], and we use their definition of F.
In Sec. IV, we will reencounter this quantity in the residue

of the scalar correlator, and the 1/\/§ factor ensures the
agreement between both expressions.

The quantities in the last equations above are related to
the decay constants F; and F, appearing in the one-point
functions

s F (0)e™P*, (47)

(0/04(x) af) = 67 F e = 5
Js

i F,(0)e™iP*.  (48)

a (v ﬂ.h
(0103 (x)[") s

__ sab —ipx — sab
=6 F,,e Pr =4
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The numerical information on the value of F; can be found
in the phenomenological studies of Ref. [20]. F, appears in
various relations of the chiral perturbation theory, and in
the chiral limit it can be related to the pion decay
constant f, and the quark condensate through the condition

The numerical predictions for the decay constants are
provided in Sec. VL.

C. Dynamics and interpretation of f(z)

In this analysis, we would like to stay within the chiral
limit, where on the QCD side the breaking is generated
dynamically by the chiral condensate (¢g). In the holo-
graphic bulk we have a sigma-model-type theory, where the
function f(z) describes the spontaneous symmetry break-
ing in a nondynamical fashion.

However, there is no clear holographic prescription on
how the chiral symmetry breaking should be realized. In
fact, the specifics of the realization define wholly different
classes of models; e.g., in the framework with the IR cutoff,
one can choose between those of Refs. [1,2], or [3]. In a
general AdS/QCD framework (that of Refs. [1,4]), the
conventional understanding is that the scalar VEV has the
following form (see also Ref. [14]):

f@)R=m,z+ %13, (49)
where the parameters m, and ¢ are believed to correspond
to the physical current quark mass and the chiral con-
densate. This power behavior is a solution of the EOM
written for f(z) in the case of the HW model with
®(z) = 0, while in the SW the powers get multiplied by
the hypergeometric functions (see below). The interpreta-
tion in Eq. (49) is motivated by the AdS/CFT correspon-
dence [10,17]: m, is the physical source for the O = ¢g
operator, and ¢ is a VEV determined as a one-point
function in the presence of a source, (O),. That means
that if the source (= m,) goes to zero, the VEV vanishes
in the case of the normal-ordered observables (O),_, = 0.
One has to admit that this is not compatible with QCD,
where the chiral condensate is nonzero in the chiral limit.
Most authors do not try to explain this issue, though in
the HW setup of Ref. [6] they introduce an extra scalar
potential on the IR brane to get around the problem.

In the SW, the function form [Eq. (49)] is not a solution
of the EOM, but it is a common opinion that it should
emerge in the UV asymptotics at least. The problem arises
that while choosing a solution finite at z — oo, one is left
with only one branch of the equation. Hence, the model

'This condition appears in the chiral limit as a consequence
of the equation that one gets considering the divergence of the
axial vector current, f,m2 = F,(m, + my), and the Gell-Mann—
Oakes—Renner relation, f2m2 = —(m, + m4){0|qg|0).

bears a correlation in the definition of the coefficients at z
and z3 terms, mixing the coefficients associated in QCD
with the explicit and spontaneous sources of the breaking.
Various attempts were made to resolve this contradiction:
from manually inserting a different ansatz [8] towards
major modifications of the model dilaton and/or scalar
potential to make a consistent dynamical solution for f(z)
[9,12,22]. The latter models give independent predictions
for m, and o, but in our opinion, they are no longer
compatible with the strict AdS/CFT identification, not to
mention its unclear realization in the chiral case.

It is evident that our ansatz for f(z) given in Eq. (34)
does not follow the form of Eq. (49). Nevertheless, the
appearance of Eq. (34) is related to the correct description
of the vector sector. And we put reasonings on the
analyticity and holographic consistency of the previous
sections prior to the issue of possible identifications of the
f(z) parameters, especially in light of the discussion
presented above. Let us mention several other arguments.
First, it could be reasonable to demand f(z — o0)R ~ z (as
is done in Ref. [9]) that fixes the parallel slopes of the
vector and axial vector trajectories in accordance with the
idea of the chiral symmetry not being restored [23,24].
We may attribute our ansatz (34) to the preservation of this
quality in a simple manner. Second, one can speculate that
a mass appearing at the linear in z order is not a current
but a constituent one [25], that light quarks acquire in the
presence of the quark condensate. We will show that,
indeed, the factor could be of an order ~300 MeV for a
natural value of gg. And finally, we can refer to Ref. [15], in
which it is concluded that because the scale dependence is
not systematically dealt with in the bottom-up holographic
models, it might be advisable to give up on matching to
such quantities as m, and o.

With a firm resolution to use the ansatz of Eq. (34), let us
nevertheless explore the case where f(z) is a solution of the
EOM. In our model, this is not quite standard: there is a
new coefficient yy, and the scalar potential with b(z)
makes the equation inhomogeneous:

e—d)(z) e—CD(z)M2 (Z)R2
0, —5—0.f(2) ————~"—
Z Z Z

(50)

The homogeneous part coincides with the EOM of a
conventional SW, but for an addition of yy. The solution
changes accordingly:

3
Frm@) ~ (2 (54 i 227

1
+ Kz - \P(E + up,0; K222>,

where | F'; and ¥ are confluent hypergeometric functions of
different types.
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With b(z) taken from Eq. (36) [though we might have used any arbitrary coefficient function ~b,z + b,z>, it would be
necessary to have b; = 0 to get a finite result], the particular solution turns out to be [with the use of the relevant Green’s

function G(z,7')]

©  b(7)e ®) —xb, z [k, 1 1 1
R = U i / = —‘ _— F — lP — < k22 . 1
Srart(2) A dz e G(z,7) e ggﬂvﬂ H+1/2+ p 5 |8 i+ 5. 0z (51)

We can see that for f(z) = from(2) + fpar(2), a f(2) R~z
approximation is an appropriate one if we keep just the
leading asympotics for z — 0. Additionally, we have a
separate source for the ~z terms aside from those coming
from the Tricomi function.

Moreover, for specific values of uy, we can simplify the
EOM [Eq. (50)] so that a solution of the homogeneous part,
that is finite in the IR, is either linear (~z) at uy = —1/2 or
cubic (~z%) at uy = —3/2. The case uy = —1/2 seems
most interesting, as it would prove our choice of the ansatz
if no b(z) were present, though the full solution is
f(2) ~ Chomz + CpanzInz.  Furthermore,  uy = —1/2
makes the scalar tower M?(n) = 4x*(n + 1) look exactly
like a shifted pseudoscalar one, meaning m,, = my. A
finite pion mass could be a source of the splitting between
them. We will use the assumption of fixing yy = —1/2 in
one of the phenomenological fits.

IV. TWO-POINT CORRELATORS

Following the duality connection between the 4D par-
tition function and the on-shell holographic action, we
present a definition for the two-point functions, with O,

|

[
standing for spin-one operators and O for spin-zero:

(9vOi(q)gvOL(p))
= 8(p+q) / d*xe'™ (g, 0% (x) gy OL(0))
_ % (52)
i / d*xe#* (g, 08 (x) 9, 0% (0))
o (4 a9

i/d4xeiqx<gs(9“(x)gg(9b(0)> = 5abns'”(q2). (54)

It is known that there could be divergences present in the
functions of this type. If we perform a simple short-distance
& cutoff regularization as z — 0, the resulting expressions
are the following:

Iy (q*) = % <ﬂv - %) [IHK2€2 +2yp + W(l + py — 4q—:2>} ; (55)
(g% = % <MV +%—%) [an282 + 2y + l//<1 ‘f‘ﬂv% _4q_:2>}’ (56)
I(q*) = 4'ZR G + Hi = %) [lmc%2 +2yg — % + w@ + p = f—;ﬂ : (57)
,(¢4?) = 2’ZR % <—1 - 4"7> {m K€ + 2y + l//(— 4‘1—;)} . (58)

The I, correlator also possesses a €2 singularity that is
eliminated after the proper counterterm at the boundary is
introduced. With the series representation of the digamma

. 2 2
function, w(%—l—yH—%):—yE—l—Zn—il—l-Zqz_“T"%(n), we
can check that the residue of Il is a quantity equal to

F? as defined in Eq. (45). The same procedure validates
other decay constants.

[
Alternatively (and in need of a regularization), we can
express the correlators as

) 2 (n ) %n
M) =Y s, i)=Y~

n=0 n=0 A

(59)
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o 2(n

i)=Y s )
= Fn)

I, (¢*) = ;m (61)

These expressions can be achieved using Egs. (24), (25),
(43), and (44). Though in the case of I, the explicit deriv-
ation with s(q, z) of Eq. (43) leads as well to the £ singula-
rity and a nonpole term?; both are suppressed in Eq. (60).

It is evident that the correlators of Egs. (55)—(58) and
those of Egs. (59), (60), and (61) differ. However, it could
be shown that the differences are encoded within the
polynomial structure of a type Cy + C;q*. These are the
known ambiguities of a two-point function. With those
subtracted, we arrive at the convergent correlator that has a
similar structure in all the cases:

2Rk
R {w(l + py) —w(l +py
5

F? =

s

Otherwise, it can be represented as a divergent series:

1+

. © AF2(n
fi(g?) = ; 7 (n)(q_; (—1—)1\/[2 o (62)

The most interesting and assumed regularization-
independent quantity in the spin-one sector is the left-right
combination I, p:

HLR(CIZ) = Hv(qz) - HA(Q2)~ (63)

In the region of small Euclidean momenta (Q> = —¢?) at
the (Q?)° order, we obtain from I, ; a constant coefficient
that we call F2. Both vector and axial vector correlators
have some nonzero constant factor at this order. Their
difference should establish the one free of the short-
distance ambiguities. Nevertheless, the final quantity still
contains the & divergence:

)—;(lnkzsz+2y5+y/<l+ﬂV1;ﬁ)>]. (64)

n—+1

2 - ZF%/(”) '4’<2ﬂv//3 N ZRKZHV

- : (65)
M3 (n)M3(n) 93P z,;(nJr Lt py)(n+ 1+ py + py/P)
In QCD, one finds a definition of f, the pion decay constant in the chiral limit, in the matrix element
(017,rsTq(0)|7"(p)) = ip,uf26"". (66)

The experimental value is f, = 92.07 &+ 1.2 MeV [18]. To make the connection to the model-defined coefficient F, we

have to first introduce some regularization in the latter, and second, take into account that the operators used in the

construction of I1; , differ from those of Eq. (66) by the yet-undetermined factor gv.3 Let us assume a vector meson

dominance (VMD)-like regularization, meaning cutting the sum in Eq. (65) at the first term. Further, we will use this VMD

limit to estimate the experimental observable as f, = Fy,/gy. We will see that this assumption brings a good result for f ;.
The next term in the small-Q? expansion, (Q?)! order, brings the L, coefficient:

1 d
gyLio = 1407 (My(Q?) —T1,(Q?)) oo
R 1 1 1
T [w(l + pv) —w(l + py ;ﬁ> + pvyi (1 + py) _ﬂv%ﬁ%(l + py ;ﬂﬂ (67)

The phenomenological value of L, at the scale of the p mass is (=5.5 +0.7) x 1073 [26].
Now, let us consider the high-energy asymptotics of the calculated two-point functions. The QCD result stemming from
the operator product expansion (OPE) is well known [27,28]:

*The derivation of the scalar two-point function, both in Eq. (57) and in Eq. (60), stands out among other cases. In
,(g%) ~ e3s(q.€)0.5(q, &), one has to include several orders in the series: s(q, &) ~ & + & and 9,s(q, ) ~ &° + £2. The estimation
of 0,s(q,¢€) should be performed carefully in the case of the definition of Eq. (43) because of taking the small-z limit inside the
infinite sum.

The factors gy and gg appear due to the conventions taken in Eqgs. (53) and (54). It turns out that they are reabsorbed [using the
matching conditions of Eq. (74)] in the physical parameters of this section, but not in those related to the three-point correlators.
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N. a\, 0> a, N (G?) 14N, na,(qq)*
N 2 2 c 1% = - % e c T

VA(Q )/Q 2Ur M2 ( =+ 71') nﬂz 2Ux 3 Q4 + CyA 27 Q6 ’ (68)

N lla Q%> a, N.(G? 1IN, za,(qg)?
. 2 2 _ c s ) In =2 s Ve — c A ) 69
w0/ = (14 58w o BB Lemndg (69)

11 7
— 1 = —_-—— = 1 = -

cy , C4 - s , Cy T (70)

These are computed for the operators with g, = gg = 1. (G?) and {qg) are the gluon and quark condensate, and a; is
the strong coupling constant. The scale-dependent quantities here are usually estimated at the scale of chiral symmetry
breaking ~1 GeV: (% G?) = 0.012 GeV* [27] (lattice: (% G?) = 0.10 GeV* [29]) and (gg) = —(242 % 15)° MeV? [30] or
—(235 £ 15)* MeV? [31].

The results from our model are the following [assuming that the logarithm regularization in Eq. (55), in fact, can only be
made up to a subtraction constant In(Q%&?) — ln%2 + Al:

2 2x2 2 At 16x5
,(0*)/0* = 295{ g +/1V+Q {1+2uv(ln§ + Ay + )}+3—g4[—1+6;42v] 6#v[ Z”V]+O<Q8>}

30
(71)
and I1,(Q?) is given by a similar expression with the change py, — py —I—’%. For the spin-zero two-point functions
we have
2 252 2
11,(0%)/0* = {1nQ2 s+ [1 + (1 + 2uy) <1n%+/15+1>]
2x* 45 1
+ o [0+ 12u5 (1 + pg)] + o (14 2up][1 = 4y (1 4+ pg)] + O = | ¢ (72)
30 30 0
R P 0? 4t [ Q? 1T 20&* 16x° 1
I,(0%)/0* =< In5+ip+— |InS5+Ap+=| +——+—++ 0 = 5. 73
(0%)/0 2,{sle/),{anJr ptgr Tt Attt T O\ (73)
|
Matching the corresponding leading logarithmic terms in  matching Eqgs. (69) and (73) could be 92 ’ The
Eqgs. (71)—(72) and in Egs. (68)—(69) provides the values of SR 1+ﬂ N
as- qs- p results for k; coincide for f = —2, or in the case of the

the 5D coupling constants: chiral restoration, at f = oo. Thus, we reach the conclusion

1622 that the consistency of the large-Q? asymptotics in the
== . (74) scalar sector fixes one of the model parameters to f§ = —2.
R N, We will see further that even in a global fit to the physical
observables where S is allowed to vary, its value settles
close to this one.

2 2
g 127
9%/—5 = ) 9s

However, the scalar and pseudoscalar correlators have
different asympotics, and an alternative expression from

For the left-right correlator, the model gives

2 2 2 142 4
Mer(9)/0°= R{gf/;(l Q”V“) 54” v ;ﬂ+3gﬁﬂ1fv [l 24 (3+ﬁ+ﬂ2>}+O<Q8)} 73)

Following Eq. (68), we are supposed to obtain the manifestation of chiral symmetry breaking —n”DHLR(Qz) /g5 =

Ny 42‘1‘ {q@)*, while the other terms should vanish in the chiral limit. The relevant combination is estimated in Ref. [32]:

—4ra,(qg)> = —(1.0 £0.2) x 1073 GeV® (in the chiral limit), and in the holographic model we have
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3 _2_8K6R/4V[_ 2( 3 1)]

drag(qq) 3 Ad P 1-2u 3+ﬁ+ﬁ2 (76)
The other terms in Eq. (75) have no counterpart in the chiral
limit of QCD: 4 in the logarithm regularization can be tuned
to provide any constant piece in the 1/Q? term, but the
origin of In Q?/Q? cannot be explained (the problem also
encountered in Ref. [33]); and the 1/Q* term can only be
related to m,(qq).

It is a common problem that the holographic models fail
to be a match to QCD in these large-Q? expansions of the
correlators even on a qualitative level. In the setups with an
IR cutoff [1-3], one faces the absolute lack of the next-to-
leading-order terms in the expansion, and the provided
explanation is that the vector sector does not feel the
symmetry breaking due to the scalar VEV, and the breaking
effect of the cutoff is decoupling exponentially fast at high
energies. Later, it was proposed to introduce the conden-
sates by hand in Ref. [34], or through a dynamical scalar
with appropriate mass terms and potential coupled to
gravity in a braneless approach in Ref. [35].

In the conventional SW model, there appears no 1/Q°
term in the vector correlator. It is a general feature for the
vector two-point functions saturated by the narrow reso-
nances with a spectrum of a type ~k*(n + 1) [36-38]. The
left-right correlator in the SW acquires an order parameter
of the chiral symmetry breaking only from the axial vector
contribution. There are several propositions to make an
improvement in the vector correlator [33,39], and the
appearance of py in the intercept of the spectrum
[Eq. (23)] can be considered as a possible solution, too.

We can speculate on connecting separately the 1/Q* and
1/Q° terms in ITy, and I, to the condensates, but that does
not sound reasonable. For instance, the gluon condensate
prediction is distinct in the two channels, in contradiction to
Eq. (68), nor do we find a constant ratio between the 1/Q°
terms. After all, the condensates should manifest them-
selves as a result of the conformality violation, and both the
HW and SW models propose just the simplest ways of
doing it—maybe the leading-order logarithm is the only
term where enough precision can be claimed.

The situation does not become more consistent in the
case of spin-zero two-point functions. The 1/Q* term in
Eq. (69), associated with the gluon condensate, is coinci-
dent in Egs. (72) and (73) just in the case of uy = —3/2,
rendering the a, state massless. And the constant ratio
between the terms at 1/Q° power can only be achieved with
a positive value of pg, which is not in the least favored in
other observables.

Let us instead consider an alternative large-Q? expansion
using the two-point functions of Egs. (59),(60), and (61).
As was mentioned, they are in need of the regularization,
and we assume to make it by cutting the tower of
resonances at some finite number N,,. As the structure

of the correlators [Egs. (59),(60), and (61)] is the same, the
following asymptotics is true for each one of them:

St F2(n) 3ol F2(n)MP(n)
thnooH(Qz)/ 0% = o 05
+ 0(&). (77)

This expression seems more appealing than those in
Egs. (71)—(73): it has a unified form, and there are no
unexplicable terms. Furthermore, as in our model
Fy(n) = F4(n), the large-Q? limit of I1, z/Q? starts with
1/Q° This is translated to the spin-zero case, where
F2(n) = 21%/3F 2(n) and the equality can be achieved
for f = —2. This value of the f factor we have already
seen in the comparison of the leading logarithmic terms.
However, these logarithmic asymptotics themselves do not
appear in this type of regularization; they need to have the
whole infinite tower. Another drawback is that the gluon
condensate comes with the wrong sign in the spin-one cases
and the quark condensate—in the vector and pseudoscalar
channels.

Though these discrepancies are present, the situation for
the 1/Q° term with this regularization turns out to be more
phenomenologically relevant. The coefficients at 1/Q°
power are the following:

. 4K6/"V(Nm + l)(Nm —+ 2)

LR - ﬂzﬂ (78)
I KON + DNy, +7[22)(9+4Nm+6yH)’ (79)
I, : 2N, (N + DN, +2) B (80)

n° 1+

Note that in the VMD limit of N, =0, there is no
contribution of this order in the pion correlator due to
m, = 0. However, the logarithmic-independent quantity of
[T,z is not only correctly assessed in the qualitative
behavior of its Q2 expansion, but the estimate (78) in the
VMD limit has a better agreement with Ref. [32] than that
of Eq. (76), as we will see in Sec. VL.

V. THREE-POINT COUPLINGS, PION
AND AXIAL FORM FACTORS

The p,x, m,, coupling is obtained from the 5D
Lagrangian as an integral over the three KK z-profiles:

22122 142
o = e LR 012

(1 +p)
XV, (2)7,, (2)m,, (2). (81)
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The calculation is straightforward for any given set of
the radial numbers n,n;,n,. In the case that we are
only interested in the ground-state pions n; = n, =0,
the result is

202 1+28

m“rﬁ( —8,1).-  (82)

9, =

We also can examine the electromagnetic form factor
(FF) of the pion G,(g?*), defined as

(7 (ky)| OV (0)|7" (k2))

In the model under investigation, it receives two contribu-
tions:

11428 e >
G, 2 = ,
@) 9y 1+ﬁzn+1+ﬂv< q* — M3, (n)

(84)

= ie? (ki + k2)'Gr(q?).  (83)

that means that we go beyond the simplest p(770)-
dominance (VMD) approximation. Moreover, a necessary
condition is to normalize G,(0) = 1. That allows us to fix
the value of gy:

1428
(T+B0 +puy)2+mpy)

gv = (85)

Hereby, we notice that the introduction of this factor was of
the utmost importance to the viability of the model, though
we are yet to see its role in the phenomenological fits. The
coupling of the p(770) to the pions is then given by

2472
g/).n.lr = N. (1 +MV)(2 +/"V)' (86)
Pion Form Factor
Gr(@)

e T ——
B e Ry

The final expression for the pion FF is

1 quV<n) gp,,,n',n:
) =10 2 N ) = M) o
.7 4*M3(0)
q* = M3(0) (g% = M(0))(q* = My (1))

(88)

and its plot can be seen in Fig. 1. There we also include as a
marker the simplest case of the p(770)-dominated form
factor; it provides a good interpolation in the Q> < 1 GeV?
region but fails at higher energies. The more conventional
holographic models predict the pion FF above the VMD
result at Q> > 1 GeV?, as is shown in a summary of HW
and SW results in Ref. [8], the modified-dilaton SW of
Ref. [9] shows a slight improvement, and some other
modifications [13,22] may bring it closer to but not below
the VMD shape. A characteristic feature of our model is
that it makes a prediction beyond the VMD result, and that
brings it much closer to the experimental points in the most
studied region Q% <3 GeV2. We only find an example of
similar behavior achieved in the SW model with an
additional quartic term in the scalar potential and a specific
and rather complicated form of the scalar VEV (model IIb
of Ref. [22]). It is also obvious from Fig. 1 that a higher p
mass gives a better prediction. The sensitivity to the
variations in the p’ mass is rather negligible. The notion
of the value m, ~ 1 GeV originates in an assumption of the
ground state positioned on the linear trajectory of the higher
radial excitations and does not appear much irrelevant in a
holographic construction based on the reproduction of the
linear Regge trajectories. We will come back to this option
in Sec. VL.

,,,,,,,,,,,,,

VMD, m,=775 MeV
————— Model, m,=1000 MeV
---------- Model, m,=775 MeV

,,,,,,,,,,,,,

i ] Q*(GeV?)

FIG. 1.

8 10

The pion form factor plot. The experimental points belong to CERN [40] (green), DESY and Jefferson Lab data [41] (red), and

CEA/Cornell [42] (blue). The predicted lines are given for the cases with one vector meson exchange (solid), and with two (the other
two). The latter is the case of the model under consideration. m, = 775 MeV or 1000 MeV and m, = 1465 MeV were assumed.
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The large-Q? asymptotics of Eq. (88) is

Q'G(Q* — o) = M} (0)(M7(0) + M7(1))

+ O(é) ~1.65GeV2,  (89)

and that is not in accordance with the perturbative QCD
expectation of the 1/Q?like behavior [43]. This is not really
surprising after the discrepancies we have seen in the large-
Q? behavior of the two-point functions.

At small ¢>, we obtain

Gu(q*) =1 +q2£§:%f”")”+0( *)

1 1
—iHa (sz@ +sz<1>>' 60

The coefficient at ¢> is associated with the pion charge
radius and a chiral coefficient Lg:

1 . 1 1
2L9/f;2z=6<r2> :m+m, (91)

82 (1 +uy) 2+ py)

Experimentally deduced values of these observables

are Ly = (6.940.7) x 107 [26] and r, () =
0.659 £ 0.004 fm [18].

The p,a,, ,, coupling can also be found from the 5D
Lagrangian,

_4R o) L [RR(f(2) +b(2))R -
N e N (Y
X D, (2)Cy, (2)m,, (2). (93)

For n; = n, = 0, we calculate

Hy 29%
= 4k, | (810 —5,1). (94
g[)n,a],ﬂ K 1+ﬂ R(l +l’l)\ n,0 n,l) ( )

and using the value of gy from Eq. (85), the coupling
between the three ground states is

_ py 2477 (1) (1+py) (2 +pv)
gp~"l*”_4’<\/1+ﬂ\/ N. 1+28 - (%)

The axial form factor as defined by the diagram in Fig. 2
is given by

+
ay

FIG. 2. Axial form factor. The effective coupling ® comprises
the direct contribution and the one mediated through the p
mesons.

2
2 Hy Z < q >
v 1+p4=n+1 +ﬂv g’ —M(n)

(%)
2K/ py(1+P) [1_ q*
o 1428 q* — M3(0)
q*M7(0)
TR0 - szu))]- ®7)

Once the model parameters are fixed, we can determine
from the g*-independent part of this expression the direct
coupling in the a; — my process. Many holographic
models predict zero value for this decay, either due to
the absence of the direct term [2,3] or due to the exact
cancellation of p and p’ contributions [44]. We consider the
fit to this and other observables in the next section.

VI. FITTING THE OBSERVABLES

With the QCD parameters fixed, N, = 3,a = ﬁ, we
have three major model parameters—x, uy, 3, and a free
parameter py, that is mostly used to set a, mass to the
experimental value (if we neglect the chiral condensate
prediction from the scalar two-point function). The param-
eters gs and k, are set standardly by Eq. (74).

Let us resume the estimates we have acquired. Defined
from the one-point function are the constants F,, F, , f in
the spin-one sector, and F;, F, in the spin-zero sector. The
lepton p decay,

47za2F,2,
0 —7044006KeV,  (98)
P

Fp—>e+e 3m

provides a high precision: F p\exp =0.12124 £0.00002 Ge V>
[18]. This predicts x = 519 MeV. For the value of F, , we
can refer to a theoretical (and extradimensional as well) work
[44], where they estimate F, = 0.26 GeV?. In addition, they
cite (with a proper normalization coinciding with ours) an
experimental result [19], 0.177 £ 0.014 GeV?, and a lattice
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one [45],0.21 £ 0.02 GeV?. As was already mentioned, our
modelimplies ¥, = F, . However, itis shown further that the
estimation achieved in some fits lies in between F |, and
F, |exp. It is a fair result for our holographic setup. Moreover,
itis distinct from other approaches. For instance, the usual SW
model predicts F,|gw = 0.07 GeV?, F, |sw = 0.31 GeV=.
Similarly, in a deformed AdS5 background of Ref. [46], they
find F, somewhat higher and F, lower than their exper-
imental values. The leptonic decay of p’ is not as widely
discussed, but we can predict, with the model’s F;, = V2F s
the following decay rate: I'y_,,+,- =2+ 3 KeV in coinci-
dence, for instance, with Ref. [37].

To evaluate f,, we will use Eq. (65) with just the first
term in this generally diverging sum. This concession
brings the model prediction close to the experimental value.

In the scalar sector, we have some information from
Ref. [20]: F, = 0.21 4 0.05 GeV?. Matching this result
requires k = 734 MeV. Thus, we already see that there
is no perfect choice for the x to satisfy both the scalar
and vector observables. The value of F, depends on the
estimation of the chiral condensate (g¢g) =—(235=+
242 MeV)? [30,31], and hence F, = 0.14 +0.15 GeV>.
In the relation between F; and F,, the holographic model
mimics the situation of F, and F, for = -2. For a
general 3, however, they can be different as the phenom-
enology would suggest. Thus, on the one hand we can
control the difference as opposed to the spin-one case. But
on the other, we face the fact that for large Qz, they do not
coincide unless f = —2, which runs against the presumed
chiral symmetry restoration at high energies.

In the two-point functions, there appear all the phenom-
enological masses and the aforementioned decay constants.
As well, there are the low-energy observable L, and the
controversially defined estimations for the condensates
(qg) and (G?). At the same time, due to the general
discordance in definitions related to the large-Q? limit,
we find it instructive to evaluate separately f, and F, and
use as an independent check the chiral limit condition
f IIF T = _<QQ>

There are several decay rates defined by the triple
couplings. The p decay exists in our model for n =0
and 1:

m2 —4m2)3/2 1 Fy(n)\2
F/)n_’”+7f_ frg M . (gpn’ﬂ’” + eZV()> .

2 2
48zxm;, gy m;

(99)

We are mostly interested in the experimental result for
the ground state p, I',(770)—z+,~ = 147.5 0.8 MeV [18].
The processes p* — z°z% and p~ — 7%z~ receive no
electromagnetic contribution, and it is also measured that

T(p(770)°) = T(p(770)%) = 0.3 + 1.3 MeV [18]. We also

remark that the ratio of the leptonic p decay to the pion one
has a separate estimation, ?”%: (0.40-+0.05) x 10~* [18].

portx

The a; — pr decay is studied experimentally in e* e~ —
777 or v — 1~ 2’7, processes, and the partial width at
the tree level is given by the following expression:

02 = Oy + m ) (2 = (m, = m,)?)

Lypr =
P 487m3
(m§+m3—m%>2>
< (2+ P ) R (100)
( 4mam/1 P

Experimentally, it is known that for the case of a; —
(P7) g yave it takes 60.19% of the full decay width, and
hence, the value should belong to the area 150 +~ 360 MeV.

The pion FF profile was already discussed in detail.
From there we use the parameter related to the pion charge

radius r, = 1/ (r2)™ in the further fittings. The expression

of the axial FF in Eq. (97) allows us to estimate the decay
rate a; — 7y,

am? —m? 5 /2
ay—»ry — ZTGQI (ma/4) = 640 £ 246 KeV. (101)

a

r

This PDG quoted experimental value is given in Ref. [47].
It is also mentioned there that the radiative partial decay
estimation is sensitive to the assumed a; resonance mass
and the total width, and they use the parameters standard
for their time (35 years ago).

Next, we investigate several options to fix the model
parameters. We would like to begin with f as a free
parameter, thus giving priority to phenomenology over
the large-Q? asymptotics of I1,(g?). First, we can make a
global fit to the highlighted observables. In holography, to
get the best fit one often minimizes the rms error, defined as

ems = (O M)l/ ?, where O; is an experimental value

b Robs—Tpar

of an observable, and 60; is a difference between theo-
retical and experimental expressions. Naturally, this way
the experimental errors are not taken into account at all. But
the number &, still communicates the relative precision
of the fit and is used to assess the experimental validity of
the model as a whole. Though holographic methods do not
claim high accuracy and the experimental precision of
some of the discussed observables is impossible to reach,
we believe that the more conventional y> method could also
be used to provide some extra insight. Thus, in Table I we
present both approaches.

Some comments are in order. For the rms minimization,
we have omitted the I'(p(770)°) — T'(p(770)*) estimation
because in this particular situation, the error bars, being
higher than the mean value, turn out to be particularly
important. The inclusion of this observable affects the fit as
a whole to the worse, and the model parameters lie in a very
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TABLE I. Global fits. The quantities that were fitted are given in a bold script.
rms fit 52 fit x* partial A x?* partial B
k=532MeV  k=520MeV k=596 MeV k=583 MeV
p=-2.12 p=-185 p=-544 p=-1.63
uy = —0.50 uy = —0.48 uy = —0.58 ny = —0.46
Observable Experiment uy = —0.65 uy = —0.61 g = —0.82 uy = —0.79
m, 775.26 £ 0.25 MeV 751.4 753.5 775.2 855.9
my 1465 + 25 MeV 1303.2 1283.8 1421.6 1445.8
my, 1230 £+ 40 MeV 912.6 919.2 866.8 1056.3
my 1654 + 19 MeV 1402.4 1387.6 1473.5 1572.8
My 1300 4+ 100 MeV 1064.8 1039.5 1191.6 1165.2
My, 980 + 20 MeV 980 980 980 980
p—ete 7.04 £ 0.06 KeV 8.56 7.72 12.23 8.31
p—ortn 147.5 £ 0.8 MeV 219.0 2534 147.3 309.2
I'(p°) —T(p*) 0.3+ 1.3 MeV 1.37 1.40 1.34 1.60
e x 10t 0.40 + 0.05 0.39 0.30 0.83 0.27
a, - wy 640 £ 246 KeV 396 396 202 463
a, = np 252 £ 105 MeV 75.9 87.3 19.7 1103
Ty 0.659 £ 0.04 fm 0.742 0.744 0.710 0.656
Ly x 103 —(5.5+£0.7) -84 -7.8 =72 -7.8
I 92.07 £ 1.2 MeV 96.4 92.5 922 104.6
F, 0.121237(16) GeV? 0.1276 0.1216 0.1598 0.1528
F, 0.21 £ 0.05 GeV? 0.156 0.149 0.196 0.187
F, 0.14 £ 0.03 GeV? 0.152 0.155 0.153 0.213

different region from any other fit. In this global fit of 15
observables with 4 parameters, we get the best fit with
&ms = 36%, and we consider it a rather good outturn.

In the »° minimization,” the inclusion of the lepton decay
of p and F, puts a lot of constraint on the fit. Especially, it
seems impossible to achieve simultaneously a good result
for both the lepton and the pion p decays. The a; decays
are also greatly affected by the matching of the model
parameters to the more precisely measured p-related
observables. We try to show to what degree some loosening
of the fit affects the predictions. In the “partial A” fit, the
accuracy of p — zz rate dominates the fit and the a; decays
receive an even worse description. In the “partial B” fit, we
include the quantities with somewhat larger error bars. The
most interesting effect there is a tendency for the higher p
mass (resulting, of course, in a very high pion decay rate,
though the coupling itself is moderate g, , , = 7.39). The
rates of a; — pr and a; — ny come substantially closer to
the experiment, as well as the a; mass itself. The increase of
F, towards F, |, once the lepton decay is out of focus is
also evident in both partial fits.

The benefit that F; gets from the freedom in f is not
substantial, except perhaps for the “partial A” fit. Thus,
though we introduced a potential difference between F

*Obviously, the values of y2 are huge. We would like to avoid
frightening the reader with such numbers and let him or her stay
convinced that holographic models are ~30% accurate in some
sense.

and F,, other observables turn out to outweigh this bit
of phenomenology.

Next, we recall the theoretical motivation to implant
= =2 [coincidental large-Q> behavior in the scalar
sector] and uy = —1/2 [related to the choice of the f(z)
ansatz]. We would also follow the tentative phenomeno-
logical preference for the value of uy to be close to —1/2,
which can be seen in Table 1. This allows us to suggest a
global fit to the observables with the single remaining free
factor—the original SW scale k. Table II shows the result of
such fitting. We have fixed f = -2, uy = uy = —1/2 and
looked for the best fit minimizing the rms error. It is
provided by the value x = 527 MeV. The relative error
&ms = 32% 1is not small, but it still manifests a slightly
better agreement than that of a completely free rms
minimization due to the bonus of fitting 15 observables
with just one parameter.

Using this fit, we can calculate the triple couplings

6.66,  Gpayn =628k =3.3 GeV.

9pan =
The experimental quantities (meaning the ones extracted
from the decay rates for the experimental values of
the interacting particles’ masses) are g, . lex, = 5.94,
Ip.aralexp =39+6.0 GeV. In light of the standard
Gprxlsw = 3.33 [8] and g, , ,[w = 4.28 or 5.29 [1], the
agreement for the pzz coupling seems to be very good.
Let us also take this fit to calculate the gluon condensate
(% G?) from Egs. (71)—(73). The estimate with the correct
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TABLE II. Single free parameter (x) global fit. In bold are the
fitted quantities. This is the best fit with e.,, = 32%.
Kk = 527 MeV

p=-2
Observable uy = uyg = —0.5
m, (MeV) 745.3
m,y (MeV) 1290.9
m,, (MeV) 912.8
my (MeV) 1394.3
my (MeV) 1054.0
mg, (MeV) 1054.0
p—ete” (KeV) 843
p— rntnm (MeV) 2195
C(p%) —T(p*) MeV) 1.36
oo x 104 0.38
a; — ny (KeV) 413
a, — np (MeV) 80.8
r, (fm) 0.749
Ly x 103 -8.6
fr MeV) 96.9
F, (GeV?) 0.1250
F; (GeV?) 0.153
F, (GeV?) 0.153

sign is achieved only from the axial vector two-point
function, 0.020 GeV> and the pseudoscalar one,
0.16 GeV2. The predictions are an order different, but
we notice that the former is closer to the Shifman-
Vainshtein-Zakharov (SVZ) estimate [27], and the latter
to the lattice one [29]. The other two give a negative sign
for this particular fit, though, for instance, the expression
in the scalar correlator provides 0.016 GeV? if uy, = —1/2,
1y = 0, and in principle can lie in the range of the SVZ
estimate. We can also extract the gluon condensate from
Eq. (77), where the relevant term in the spin-zero case
provides 0.13 GeV?2.

Unfortunately, py ~ —1/2 in the presented fits leads to
the too-small or even wrong sign value of (¢g) as defined
from I1; ; in Eq. (76). However, if we turn to the alternative
expressions [Eq. (78)] and assume N,, =0 (the VMD
limit taken to determine f), the prediction with the fit of
Table II is 4za,{qg)* = 4.3 x 1073 GeV®. If the proper
term in the scalar correlator [Eq. (79)] is used, we get
7.1 x 1073 GeV®. These could be related to the assessment
of Ref. [32]: (1.0 £ 0.2) x 107> GeV®. It is of interest that
for the In Q7 independent quantity such as II, g, its holo-
graphic dual with the number of resonance cutoff demon-
strates a qualitatively relevant behavior, while the & cutoff
fails. At last, estimating (gq) as a product of f, and F,, we
get a rather fair result of (¢g) = —(241 + 244 MeV)? if the
“partial B” fit is not taken into account.

Coming back to the interpretation of f(z), we can now
estimate the constant factor of Eq. (34), tentatively related

— [Redve _ opgv iy
to the quark mass, m, = AP = 2k RVATE In the global

TABLE III. Particular fits. The model parameters are deter-
mined to provide the experimental masses marked in bold.
Physical p Heavy p
k = 650 MeV Kk = 650 MeV
p=-1.19 p=-1.35
uy = —0.65 uy = —041
Observable uy = —0.93 uy =—0.93
m, (MeV) 775 1000
m, (MeV) 1514 1640
mg, (MeV) 1230 1230
my (MeV) 1790 1790
my (MeV) 1300 1300
mg, (MeV) 980 980
p— ete” (KeV) 17.3 8.1
p = ntam (MeV) 94.2 464.5
T'(p°) —T(p*) (MeV) 1.28 1.94
e x 10t 1.84 0.17
p—nm)
a; — y (MeV) 1.70 0.43
a; — np (MeV) 84.4 129.9
r, (fm) 0.701 0.566
Ly x 103 —24.5 —6.7
[z MeV) 190.6 110.7
F, (GeV?) 0.190 0.190
F, (GeV?) 0.233 0.165
F, (GeV?) 0.409 0.325

fits of Table I, gy = 3.7 +4.3; assuming that gg =~ gy,
we can get m, ~ 220+ 360 MeV. Such values can only
be related to the constituent quark mass, if any physical
counterpart should be looked for at all.

Finally, we consider some more particular fits in
Table III, focusing on reproducing the masses of the states.
It is a common practice to do so, especially normalizing to
the experimental value of m,, like in the “Physical p” fit.
In the “Heavy p” fit, we pursue the idea of a higher p mass,
that would put it on the radial Regge trajectory defined by
the p excitations. The fits’ parameters alter enough from
those of the previous fits to make sizeable deviations for the
values of the observables. Obviously, the results in Table I1I
are generally less compatible with experiment. However,
we notice that between the two fits, the “Heavy p” one is
significantly better in predicting the lepton p decay, the a,
decays, L, and f,. It is naturally worse for the pion p
decay, and the coupling itself is rather large too, at

prx = 8.3.

VII. CONCLUSIONS

We have constructed a new holographic model of the
two-flavor QCD and have addressed multiple aspects of it.
We have described the characteristics of dynamical fields
in the scalar and vector sectors corresponding to p, a;, a,
and 7 mesons, analyzed the two-point functions and the
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structure of the pion and axial FFs, and calculated several
hadronic couplings.

We questioned several steps in the common model-
building strategies and looked for possible generalizations
there. At the same time, we required analyticity of our
solution that prohibited overcomplication of the model and
even suggested some interrelations between its distinct
sectors.

The primary framework is that of the Soft Wall model,
the simplest one validating the confining properties of
QCD in the linearity of the predicted Regge trajectories.
The chiral symmetry breaking occurs as a result of the
dual process in the bulk and is subject to the model
specifics. Not everything turns up in the QCD-like
fashion: there are massless Goldstones and splitting
between the vector and axial vector masses, but the
OPE-motivated appearance of the chiral condensate in
the two-point functions is not exactly met. One can
speculate that introducing a more complicated structure
of the scalar VEV than that of Eq. (34) may fix it. It could
be also interesting to make simultaneous modifications of
the dilaton profile, providing a way to stay consistent with
the EOM (e.g., following the lines of Ref. [9]). However,
first, we will lose the analyticity of the solutions, and
second, we do not believe that the result will turn out
significantly better. Treating the large-Q? limit of QCD in
AdS/QCD is wielding a double-edged sword: on one side
there is a near conformality, but on the other is the sidestep
from the strongly coupled regime. We cannot suggest any
new route; matching the leading logarithms is very useful
to establish the holographic couplings in terms of N, and
the inconsistency of the subleading terms is to be
tolerated. Moreover, in the presented model, the study
of the leading logarithms of Il and IT, allowed us to fix
one of the parameters.

We developed a new approach to the description of
the pions. They appear separated from the vector fields,
though it obliges us to break the local gauge invariance in

the bulk. We also introduce a specified scalar potential.
Requirements of analyticity, masslessness of the pions and
fulfillment of the holographic conditions on the boundary
define it completely. Our prediction for the pion FF in the
region Q% < 3 GeV? leads us to assume this new rendition
as phenomenologically relevant.

The parametrization of the model is not quite tradi-
tional, because we forsake the use of the quark mass
and chiral condensate in the scalar VEV, exchanging
those for f, and we introduce new parameters in the 5D
masses: uy and py. Mixing the theoretically and phe-
nomenologically preferred values of these parameters,
we came to a one-parameter fit of Table II that provides
a fair description of the experimental quantities.
Generally, we find that the typical SW scale, k, can be
of order 500 + 600 MeV.

We believe that the presented model is neither too
artificial nor oversimplified. On the phenomenological
level, it is certainly more successful than the traditional
HW or SW models, while the motivation and assumptions
beyond our modifications are easily accessible.

Among other interesting findings, we would like to
mention our proposal to regularize some of the divergent at
the boundary quantities via cutting the number of contrib-
uting resonances. That is an alternative we have not seen
utilized often by other authors. It provides some interesting
insight in the OPE-related structures and works genuinely
well for the estimation of f,.
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