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We put forward a new bottom-up AdS/QCD holographic model bearing a distinct treatment of the
pion fields. We argue that a standard approach to the pion description is neither transparent nor totally
satisfactory. In the paper we provide a new one based on a broadened realization of some holographic
principles. The reasoning and the effect of these modifications are explained in detail. The resulting model
has a different set of parameters than the standard AdS/QCD case. We use them to calculate an extensive list
of QCD quantities and find a rather good agreement with the experimental data.
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I. INTRODUCTION

A wide range of studies in the bottom-up AdS/QCD
holography is devoted to the five-dimensional dual descrip-
tion of the light vector and scalar mesons in association
with a realization of the chiral symmetry and the products
of its breaking. The first to appear were the Hard Wall
(HW) [1–3] and the Soft Wall (SW) [4] models. The two
utilize conceptually distinct ways of implementing the bulk
Lagrangian in the five-dimensional anti–de Sitter (AdS)
space-time. In these simplest setups it was attempted to
describe the phenomenology of the vector sector and its
interaction with the pions in Refs. [1–5], and the scalar
sector separately was considered in Refs. [6,7]. The
mentioned models also differ in the way the chiral
symmetry breaking is introduced. Various modifications
and extensions followed, and the ones relevant to this paper
will be mentioned in the text.
In order to build a 5D model within the bottom-up

approach, one mixes the established AdS=CFT prescrip-
tions with various assumptions. The latter might have a
theoretical motivation, but the ultimate criterion for their
validity is leading to a better phenomenological description
for one or another aspect of QCD. The most prominent
example is the introduction of some kind of “wall” to break
the conformal invariance of the AdS metric. The proposals
of a sharp cutoff (HW), a smooth exponential one (SW), or

something in between (e.g., Refs. [8,9]) compete on
phenomenological grounds.
This said, we strongly believe that the field of viable

model modifications is not exhausted yet. In this paper we
construct and investigate a new holographic framework that
is based on the SW setup and is dual to SUð2Þ QCD. From
a theoretical point of view, our goal is a new consistent
description of the Goldstone states (pions). In the common
holographic setup, the Goldstone bosons turn out to be a
part of the gauge field (playing the role of the “Higgs”).
This is not the way chiral symmetry is broken in real QCD.
One way around this would be introducing some sym-
metry-breaking terms: 5D vector meson masses in order to
prevent Goldstones from being eaten, and an extra scalar
term to make the Goldstone masses (mπ) lower than the
natural scale of the composite states (mρ) and to fulfill the
holographic requirements on the profile of the relevant
mode in the extra dimension. Furthermore, by doing so, we
would be able to treat the Goldstones in a transparent and
analytically tractable fashion that is often lacking in other
approaches.
There is also an issue on the phenomenological side.

Various low-energy observables have been calculated within
one or another model and are claimed to be in agreement
with experiment at a level of 10%–30%, but it is rather
common that a given study is concentrated on a specific
set of observables. The purpose of this work is to be as
exhaustive as possible and to make as many predictions for
the observables as can be extracted from this particular
model of QCD with two flavors up to the three-point level.
In the process, we realized that reestimation and gener-

alization of some concepts of the holographic model
construction are necessary. The first one concerns the
duality between the QCD operator and the five-dimensional
field. Another concerns the mass prescriptions for these
fields. Both are established in the so-called AdS=CFT
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dictionary [10], but we dispute its blind following in the
phenomenology-directed approach of AdS/QCD.
The dual operators in the dictionary are understood

rather abstractly—for once, they have no fixed normaliza-
tions attached. We suggest introducing some reference
operators with free coefficients and studying whether they
are eliminated from the physical quantities or not. The
holographic prescriptions for the 5D masses in the dic-
tionary are extremely stringent to the model. We argue that
they should rather be considered as imposing boundary
conditions on otherwise bulk-coordinate-dependent mass
(not the first attempt on this; see, e.g., Refs. [11–13]).
Obviously, a nonzero vector mass means that the local
symmetry is not preserved in the holographic action in the
bulk, but we will see that it is kept on the boundary. In
addition to this, we also introduce an explicit breaking of
the global chiral symmetry towards the vector subgroup in
the scalar sector. That is not conventional, but it turns out
that this kind of symmetry breaking is crucial to achieving
our goal regarding pions.
We would like to stress that the cumulative effect of all

these modifications of the standard bottom-up framework
turns out to be more interesting than was predesigned. For
instance, just demanding the analyticity of solutions of the
equations of motion results in a determined ansatz for the
scalar vacuum expectation value (VEV), which is the driver
behind the chiral symmetry breaking in the holographic
bulk. That leads us to question the common parametrization
of the scalar VEV in terms of the quark mass and chiral
condensate (see also Refs. [9,14,15]). The two aforemen-
tioned nonstandard symmetry violations and this particular
choice of the scalar VEV determine the novel phenomenol-
ogy of our model. Besides, the appearance of several new
parameters hints for a better fit to experiment. Moreover,
after a close examination we will find out that the number of
free parameters could be minimized to that of the traditional
SW, while the described phenomenology remains richer.
The structure of this work is as follows. In Sec. II, we

describe the way the model emerges, starting with the set of
relevant QCD operators and showing the elaborated evo-
lution from the standard approach. In Sec. III, the solutions
to the holographic equations of motion are obtained. The
Regge trajectories of the radial excitations of ρ, a1, a0, π
mesons (the linearity of which is guaranteed by the SW)
together with their decay constants are the phenomeno-
logical quantities of interest there. The structure of the two-
point correlators is well studied in QCD, their high-energy
limit analyzed thanks to the operator product expansion
(OPE). We provide the holographic results for them in
Sec. IV. The three-point correlation functions of Sec. V give
a lot of information on several coupling constants and
the form factors. Finally, in Sec. VI, we summarize all the
observables considered and make some global and par-
ticular fits to determine the model parameters. We conclude
in Sec. VII.

II. HOLOGRAPHIC MODEL

A. Connection to the 4D QCD

The construction of the 5D model begins by selecting a
collection of operators describing the 4D physics of
interest. We use a standard set of QCD operators repre-
sentative of the chiral flavor symmetry and its breaking.
We focus on the two-flavor case and work with the

SUð2Þ generators Ta ¼ σa=2, such that ½Ta; Tb� ¼
iεabcTc;TrðTaTbÞ ¼ δab=2; a, b ¼ 1, 2, 3.
In the vector sector, the conserved QCD currents are

Oa μ
L ¼ Ψ̄Lγ

μðTaÞΨL andOa μ
R ¼ Ψ̄Rγ

μðTaÞΨR. Their com-
binations result in the vector operator Oa μ

V ¼ Oa μ
L þOa μ

R
and the axial vector operatorOa μ

A ¼ Oa μ
R −Oa μ

L . The scalar
condensate transforms as hΨ̄RΨLi¼ð2; 2̄ÞSUð2ÞL×SUð2ÞR and
produces the breaking pattern SUð2ÞL×SUð2ÞR→SUð2ÞV .
The scalar bilinears are given in terms of the flavor
components of Ψ: Ψ̄j

RΨk
L and its conjugate Ψ̄j

LΨk
R. We note

that these QCD operators have some specific normalization,
which we shall keep as a reference one.
Within the holographic approach, the consideration of

the partition function Z4D is the cornerstone concept. Its
conventional structure is

Z4D½ϕO� ¼
Z

½DΨ�½DΨ̄�Expi
Z

d4x

�
LQCDðxÞ

þ
X
j

ϕOj
ðxÞOjðxÞ

�
; ð1Þ

where ϕO are the sources of the corresponding operators.
In holography, one relies on an assumption that the very
functional with the integration over the fundamental degrees
of freedom performed can be associated with a quantity
derived from the 5D by reducing the extra dimension [10].
To exploit the holographic procedure, there is no necessity to
talk about a particular normalization of a given operator; in
the dictionary they are differentiated just by their canonical
dimension and spin. However, some phenomenological
observables in QCD may turn out to be dependent on the
normalization. Thus, to see the possible impact of the
normalization choice, we introduce extra factors gV and
gS in the vector and scalar operators, respectively.
At the same time, we would like to couple the QCD

currents to the electroweak bosons of the SM. There the
symmetry leaves no ambiguity for the couplings given in
terms of the electroweak coupling constants e and g.
The breaking-related operator is a bilinear, and hence its

source is a matrix. We can make the following interpretation
of it: ϕΨ̄Ψ ¼ mq · Idþ ϕa

S · T
a − iϕa

P · Ta, where mq is a
physical source related to the quark mass. The other two
nonphysical sources in the expansion imply that we can
introduce a proper scalarOa

S ¼ ðTaÞjkðΨ̄j
RΨk

L þ Ψ̄j
LΨk

RÞ and
a pseudoscalar operator Oa

P ¼ iðTaÞjkðΨ̄j
LΨk

R − Ψ̄j
RΨk

LÞ.
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To conclude, in the partition function [Eq. (1)], the relevant QCD operators appear as follows in our setup:X
j

ϕOj
ðxÞOjðxÞ ¼ ϕa μ

V ðxÞ · gVOa
V μðxÞ þ ϕa μ

A ðxÞ · gVOa
A μðxÞ þ ϕa

SðxÞ · gSOa
SðxÞ þ ϕa

PðxÞ · gSOa
PðxÞ

þ eAem
μ ·O3 μ

V −
g
2
W−=þ

μ ·O−=þμ
A þ g

2
W−=þ

μ ·O−=þμ
V þ � � � ; ð2Þ

where we use the notation Oþ ¼ O1þiO2ffiffi
2

p , O− ¼ O1−iO2ffiffi
2

p .

B. Standard 5D construction

Applying the gauge-gravity correspondence to the afore-
mentioned operators, we obtain a theory for the left and
right vector fields and a complex scalar field. The holo-
graphic dictionary provides relations between operators
and 5D fields and dictates the masses of the latter:

gVOa
L μ ↔ ðALÞaμ; gVOa

R μ ↔ ðARÞaμ;
M2

LR
2 ¼ M2

RR
2 ¼ 0; ð3Þ

gSΨ̄
j
RΨk

L ↔
R
z
Hjk; gSΨ̄

j
LΨk

R ↔
R
z
H†jk;

M2
HR

2 ¼ −3: ð4Þ

Matter fields live in a curved five-dimensional AdS space
of radius R with the metric

gMN ¼ R2

z2
ηMN; ηMN ¼ diagf1;−1;−1;−1;−1g:

The global symmetries of QCD translate into the
local ones on the 5D side. Consideration of the trans-
formation properties of different fields allows us to con-
struct a gauge invariant Lagrangian with spontaneous
symmetry breaking to the diagonal (vector) subgroup,
SUð2ÞL × SUð2ÞR → SUð2ÞV .
Let us denote the group transformations gL ∈ SUð2ÞL;

gR ∈ SUð2ÞR; h ∈ SUð2ÞV . The canonical choice for the
coset representative ξðπÞ ¼ ðξLðπÞ; ξRðπÞÞ ∈ SUð2ÞL ×
SUð2ÞR is to take ξL ¼ ξ†R ¼ uðπÞ. Then the matrix of
the Goldstone fields goes as follows under a chiral trans-
formation: u → u0 ¼ gLuh† ¼ hug†R. The scalar degrees of
freedom are collected in Σ, transforming as Σ→Σ0 ¼hΣh†.
With these we construct a nonlinear complex scalar
field Hðx; zÞ:

H ¼ uΣu; Σ ¼ fðzÞ · Idþ Tasaðx; zÞ;

u ¼ exp

�
iπaðx; zÞTa

χπ

�
; ð5Þ

for which we have H → H0 ¼ gLHg†R. χπ is a constant
parameter used to normalize the dimensionality of the π
fields. There is no reason to immediately connect it to the

QCD pion decay constant, the commonly used scale. The
scalar VEV, fðzÞ, implements chiral symmetry breaking in
the bulk. This will be discussed in more detail further.
In the vector sector, we have the non-Abelian fields ðALÞM

and ðARÞM, their kinetic terms given by the field strength
tensor FMN ¼ ð∂MAa

N − ∂NAa
M þ CabcAb

MA
c
NÞTa. The

covariant derivative transforming as DMH→gLDMHg†R is

DMH ¼ ∂MH − iALMH þ iHARM: ð6Þ

The general dynamics is governed by the 5D action:

S5D ¼ −
1

4g25

Z
d5x

ffiffiffiffiffiffi
−g

p
e−ΦðzÞTr½FL

MNF
LMN þ FR

MNF
RMN �

þ 1

ks

Z
d5x

ffiffiffiffiffiffi
−g

p
e−ΦðzÞ½TrgMNðDMHÞ†ðDNHÞ

−M2
HTrHH†�: ð7Þ

We introduce here the holographic parameters ½g25� ¼ ½ks� ¼
E−1 in order to retain the standard dimensionalities of the
fields. The particular holographic model is also determined
by the SW setup implemented through the dilaton profile
ΦðzÞ ¼ κ2z2, where κ is a model parameter setting an
overall energy scale [4].

C. Symmetry breaking in the bulk

The major disadvantage of the standard construction,
from our point of view, is that pions, being introduced as
they are, appear at the two-point level just in a combination
ð∂Mπ − AMÞ2. That makes them quite similar to the
Goldstones in the Higgs mechanism and wrongly implies
that they are fully dedicated to contribute to the axial two-
point function (analogous to the mass of a gauge boson). It
is known that the QCD pion should do more than that.
We want to make some changes in the setup so that

the pion can no longer be eliminated by the gauge choice.
The proposal consists in the introduction of a term
providing a nontrivial diagonalization on the ðAM; ∂MπÞ
plane. The natural option is to add some z dependence to
the masses dictated by the holographic dictionary. Other
authors [11,13] have looked into this option motivated by a
different reasoning, and the focus usually stays on the
scalar mass [12,13,16] on the grounds that its z-dependent
part could be attributed to the anomalous dimension of the
relevant quark operator. Obviously, by including masses
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for the 5D gauge fields, we give up the local chiral gauge
invariance. The following expressions for the vector and
scalar masses will be used in this work:

M2
LR

2 ¼ M2
RR

2 ¼ M2ðzÞR2 ¼ 0þ 4μVκ
2z2; ð8Þ

M2
HðzÞR2 ¼ −3þ 4μHκ

2z2: ð9Þ

The quadratic in z terms with μV and μH represent a
minimal option to achieve the stated purpose while keeping
the solutions analytically tractable.
For reasons that shall become clear further on, we also

include a scalar potential term containing a new function
bðzÞ, that explicitly breaks the axial part of the symmetry.
The total five-dimensional action of our model will be

S ¼ −
1

4g25

Z
d5x

ffiffiffiffiffiffi
−g

p
e−ΦðzÞTr½FL

MNF
L MN þ FR

MNF
R MN − 2M2ðzÞðAL

MA
L M þ AR

MA
R MÞ�

þ 1

ks

Z
d5x

ffiffiffiffiffiffi
−g

p
e−ΦðzÞ½TrðDMHÞ†ðDMHÞ −M2

HðzÞTrHH† − bðzÞTrðH þH†Þ�: ð10Þ

To deal with the mixing term between the axial vector
fields and the pions, we make a redefinition of the vector
fields inspired by their would-be gauge transformation
property (in order to keep FMN ¼ F̂MN):

ðALÞM ¼ ξ†GðÂLÞMξG − i∂Mξ
†
GξG; ð11Þ

ðARÞM ¼ ξGðÂRÞMξ†G þ iξG∂Mξ
†
G; ð12Þ

ξG ¼ exp

�
iπaTa

χ̂π

�
: ð13Þ

From now on, we call “vector” the fields Va ¼ Âa
LþÂa

R
2

and “axial” the orthogonal combination Aa ¼ Âa
R−Â

a
L

2
. The

parameter χ̂π is tuned in order to eliminate the mixing:

χ̂π ¼ −χπð1þ βÞ; β ¼ ks
4g25

M2ðzÞ
f2ðzÞ : ð14Þ

We assume that the factor β introduced here has no z
dependence. That is crucial to the determination of the
possible z dependencies of fðzÞ and bðzÞ. The limit β ¼ ∞
corresponds to the absence of the spontaneous breaking and
signifies the restoration of the chiral symmetry.

III. HOLOGRAPHIC EQUATIONS OF MOTION

In holography, one gets from the equations of motion
(EOM) two types of solutions [10,17]. Let us briefly
describe their interpretation within the AdS/QCD frame-
work for the case of a general field φð¼ s; π; V; AÞ and
suppressing the Lorentz and group indices.
The first type of solution is the bulk-to-boundary propa-

gator and describes the evolution of the 5D field from its
boundary value (¼ source): φðx;zÞ¼ φ̂ðx;zÞϕOðxÞ. To sim-
plify the notation, we further use the same symbol (no hat)
for a 5D field and its propagator. The choice of solution is
governed by the holographic prescription for its UV (z ¼ ε)

asymptotics and by the demand of no faster than power-
law growth in the IR (z ¼ ∞). The latter is specific to the
SW-type models.
Another type is the Kaluza-Klein (KK) solution. One

can realize the 5D field in terms of the physical 4D degrees
of freedom with proper quantum numbers, φðnÞðxÞ, as
φðx; zÞ ¼ P∞

n¼0 φnðzÞφðnÞðxÞ, where the sum goes over
the possible radial excitations n. The EOMs define the z
profiles, φnðzÞ, in these KK expansions. These profiles
are subject to a certain orthogonality condition that leads
towards a canonically normalized kinetic term for the four-
dimensional fields after the z coordinate is integrated over
in the holographic action.

A. Vector and axial vector fields

Duality establishes the field-operator correspondence
and the UV behavior of the bulk-to-boundary propagators:

Vaðx; εÞ ¼ 1 · ϕaμ
V ðxÞ ↔ gVOa

VμðxÞ ¼ gVΨ̄γμTaΨ; ð15Þ

Aaðx; εÞ ¼ 1 · ϕaμ
A ðxÞ ↔ gVOa

AμðxÞ ¼ gVΨ̄γμγ5TaΨ: ð16Þ

We work in a holographic gauge Az ¼ Vz ¼ 0 and
∂μAμ ¼ ∂μVμ ¼ 0. The latter condition can be preserved
on shell only, and for the axial field it is necessary to have
no mixing with the pions left. The EOMs for the transverse
part of the vector and axial vector fields are�

∂z
e−Φ

z
∂zVa

μðx; zÞ −
e−Φ

z
□Va

μðx; zÞ

−
M2ðzÞR2e−Φ

z3
Va
μðx; zÞ

�
⊥
¼ 0; ð17Þ

�
∂z

e−Φ

z
∂zAa

μðx; zÞ −
e−Φ

z
□Aa

μðx; zÞ

−
M2ðzÞR2e−Φ

z3
1þ β

β
Aa
μðx; zÞ

�
⊥
¼ 0: ð18Þ
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Analytic solutions can be achieved for an ansatz of the
form

M2ðzÞR2 ¼ 4μV · κ2z2: ð19Þ

The absence of the constant term is due to the holographic
prescription for the vector mass in the UV, and it is a
necessary choice for the correct behavior of the vector bulk-
to-boundary propagator on the boundary. After the Fourier
transformation, we obtain

Vðq; zÞ ¼ Γ
�
1 −

q2

4κ2
þ μV

�
Ψ
�
−

q2

4κ2
þ μV; 0; κ2z2

�
;

Vðq; 0Þ ¼ 1: ð20Þ

The special functionΨ, named after Tricomi, is the solution
of the confluent hypergeometric equation with a proper
behavior at z-infinity. The difference in the axial vector case
consists just in a constant shift μV → μV

1þβ
β ; the axial

vector propagator is

Aðq; zÞ ¼ Γ
�
1 −

q2

4κ2
þ μV

1þ β

β

�

×Ψ
�
−

q2

4κ2
þ μV

1þ β

β
; 0; κ2z2

�
;

Aðq; 0Þ ¼ 1: ð21Þ

The parameter μV remains free and also appears in the
expression of the normalizable solutions. The orthogonality
relation is R

g2
5

R∞
0 dze−κ

2z2z−1Vn=AnðzÞVk=AkðzÞ¼δnk. Then

the z profiles are determined from the EOMs, and the
spectra can be expressed using the discrete parameter
n ¼ 0; 1; 2;…:

VnðzÞ ¼ AnðzÞ ¼ κ2z2
ffiffiffiffiffi
g25
R

r ffiffiffiffiffiffiffiffiffiffiffi
2

nþ 1

r
L1
nðκ2z2Þ; ð22Þ

M2
VðnÞ ¼ 4κ2ðnþ 1þ μVÞ;

M2
AðnÞ ¼ 4κ2

�
nþ 1þ μV þ μV

β

�
: ð23Þ

Here Lm
n ðκ2z2Þ are the generalized Laguerre polynomials.

These solutions are analogous to those obtained in the
standard framework after μV → 0, μVβ → constant. Linearity

of the radial Regge trajectories M2ðnÞ ∼ n is a distinctive
feature of the SW model and indicates a proper realization
of confinement.
The quantum numbers of the corresponding operators

allow us to identify the boundary fields ðV=AÞðnÞðxÞ and the
masses MV=AðnÞ with the massive radial excitations of ρ
and a1 mesons.

Let us consider also an alternative treatment. Having
computed the Green’s function Gðq; z; z0Þ ¼ P

n
φ�
nðzÞφnðz0Þ
q2−M2ðnÞ ,

one can arrive at the following expression for the propa-
gators:

Vðq; zÞ ¼
X
n

FVðnÞVnðzÞ
−q2 þM2

VðnÞ
; ð24Þ

Aðq; zÞ ¼
X
n

FAðnÞAnðzÞ
−q2 þM2

AðnÞ
; ð25Þ

F2
AðnÞ ¼ F2

VðnÞ ¼
8Rκ4

g25
ðnþ 1Þ: ð26Þ

It can be proved that the UV boundary conditions are
respected in this form as well.
Therefore, we have determined two kinds of phenom-

enologically relevant quantities: the masses and the decay
constants related to the states in the vector and axial vector
sectors. The following matrix elements define the exper-
imentally observed quantities Fρ and Fa1 :

h0jOa μ
V ðxÞjρbðpÞi ¼ ϵμδabFρe−ipx ≡ ϵμδab

1

gV
FDð0Þe−ipx;

ð27Þ

h0jOa μ
A ðxÞjab1ðpÞi ¼ ϵμδabFa1e

−ipx ≡ ϵμδab
1

gV
FDð0Þe−ipx:

ð28Þ
In our model, though the masses in the vector and axial
vector channels are different, their decay constants
coincide, while experimentally they are known to be
distinct. The experimental value of Fρ is estimated from
the ρ → eþe− decay rate [18], and Fa1 could be obtained
from the study of the τ decays [19].

B. Scalar and pseudoscalar fields

Let us follow similar steps in the case of spin-zero
fields. Due to the specifics of the linearized form of the H
field,

Hðx; zÞ ¼ fðzÞ þ saðx; zÞTa þ 2ifðzÞ
χπ

πaðx; zÞTa; ð29Þ

the correspondence in the scalar sector is the following:

saðx; εÞ ¼ ε

R
ϕa
SðxÞ ↔ gSOa

SðxÞ ¼ gSΨ̄TaΨ; ð30Þ

πaðx; εÞ ¼ −
ε

R
χπ

2fðεÞϕ
a
PðxÞ ↔ gSOa

PðxÞ ¼ gSΨ̄iγ5TaΨ:

ð31Þ

The associated QCD states are a0 and π mesons.
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The EOMs for the scalar and pseudoscalar fields are

∂z
e−Φ

z3
∂zsa −

e−Φ

z3
□sa −

M2
HðzÞR2

z5
e−Φsa ¼ 0; ð32Þ

∂z
e−Φ

z3
f2ðzÞ∂zπ

a −
e−Φ

z3
f2ðzÞ□πa

þ bðzÞfðzÞR2

z5
e−Φ

1þ β

β
πa ¼ 0: ð33Þ

In the pseudoscalar case we have to choose a function
bðzÞ. The function fðzÞ is already uniquely fixed by the
ansatz selected for M2ðzÞ,

fðzÞR ¼
ffiffiffiffiffiffiffiffiffiffiffi
ks
g25

μV
β

s
· κz: ð34Þ

The condition (34) allows us to write the pion EOM in a
form reminiscent of the vector EOM:

∂z
e−Φ

z
∂zπ

a −
e−Φ

z
□πa þ e−Φ

z3
ðb1 þ 4b2 · κ2z2Þπa ¼ 0;

ð35Þ

where we have assumed that the function bðzÞ is chosen
so that

bðzÞR3 · ð1þ βÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
g25

ksμVβ

s
¼ b1κzþ 4b2 · κ3z3: ð36Þ

Any higher-order terms would result in a nonanalytic
solution. We must impose b1 ¼ 0 in order to fulfill the
boundary condition of Eq. (31). Then, the bulk-to-
boundary propagators are

sðq; zÞ ¼ z
R
Γ
�
3

2
þ μH −

q2

4κ2

�
Ψ
�
1

2
þ μH −

q2

4κ2
; 0; κ2z2

�
;

ð37Þ

πðq; zÞ ¼ −

ffiffiffiffiffiffiffiffiffiffi
g25β
ksμV

s
χπ
2κ

Γ
�
1 − b2 −

q2

4κ2

�

×Ψ
�
−b2 −

q2

4κ2
; 0; κ2z2

�
: ð38Þ

The EOMs and the orthogonality conditions,

R3

ks

Z
∞

0

dze−κ
2z2z−3snðzÞskðzÞ ¼ δnk; ð39Þ

4β

ð1þβÞχ2π
R3

ks

Z
∞

0

dze−κ
2z2z−3f2ðzÞπnðzÞπkðzÞ¼δnk; ð40Þ

bring the following solutions for the KK z-profiles:

snðzÞ ¼
z
R

ffiffiffiffiffi
ks
R

r ffiffiffiffiffiffiffiffiffiffiffi
2

nþ 1

r
ðκzÞ2L1

nðκ2z2Þ;
M2

sðnÞ ¼ 4κ2ðnþ 3=2þ μHÞ; ð41Þ

πnðzÞ ¼
χπ
κ

ffiffiffiffiffiffiffiffiffiffiffi
1þ β

μV

s ffiffiffiffiffiffi
g25
2R

r
ðκzÞ2L1

nðκ2z2Þ;

M2
πðnÞ ¼ 4κ2ðnþ 1 − b2Þ: ð42Þ

Assuming b2 ¼ 1 makes the ground-state Goldstones
massless, mπ ¼ Mπð0Þ ¼ 0. This reveals the goal of
bðzÞ introduced in the scalar potential of the 5D action:
with the analyticity of the solution imposed, it only serves
to nullify the pion masses. However, even without it, we
can generally distinguish the mρ ¼ MVð0Þ and mπ scales
due to the appearance of μV in the vector masses. Notice
that we gain an analytic result for the whole tower of pion
radial excitations, while in most holographic papers one
finds an implicit equation defining numerically just the
ground state.
The alternative expressions for the propagators are

analogous to the ones found in the vector sector

sðq; zÞ ¼ 1ffiffiffi
2

p
X
n

FsðnÞsnðzÞ
−q2 þM2

sðnÞ
; ð43Þ

πðq; zÞ ¼
X
n

FπðnÞπnðzÞ
q2 −M2

πðnÞ
; ð44Þ

F2
sðnÞ ¼ 16κ4

R
ks

ðnþ 1Þ; ð45Þ

F2
πðnÞ ¼ 8κ4

β

1þ β

R
ks

ðnþ 1Þ: ð46Þ

The factor 1=
ffiffiffi
2

p
in front of the scalar propagator is

necessary to conform to the usual definition of the scalar
decay constant. The true value of the decay constant is
found only after one calculates the residue at q2 ¼ M2ðnÞ
of the corresponding two-point function. We follow the
conventions of Ref. [7], and we use their definition of Fs.
In Sec. IV, we will reencounter this quantity in the residue
of the scalar correlator, and the 1=

ffiffiffi
2

p
factor ensures the

agreement between both expressions.
The quantities in the last equations above are related to

the decay constants Fs and Fπ appearing in the one-point
functions

h0jOa
SðxÞjab0i ¼ δabFse−ipx ≡ δab

1

gS
Fsð0Þe−ipx; ð47Þ

h0jOa
PðxÞjπbi ¼ δabFπe−ipx ≡ δab

1

gS
Fπð0Þe−ipx: ð48Þ
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The numerical information on the value of Fs can be found
in the phenomenological studies of Ref. [20]. Fπ appears in
various relations of the chiral perturbation theory, and in
the chiral limit it can be related to the pion decay
constant fπ and the quark condensate through the condition
fπFπ ¼ −h0jqq̄j0i [21].1
The numerical predictions for the decay constants are

provided in Sec. VI.

C. Dynamics and interpretation of f ðzÞ
In this analysis, we would like to stay within the chiral

limit, where on the QCD side the breaking is generated
dynamically by the chiral condensate hqq̄i. In the holo-
graphic bulk we have a sigma-model-type theory, where the
function fðzÞ describes the spontaneous symmetry break-
ing in a nondynamical fashion.
However, there is no clear holographic prescription on

how the chiral symmetry breaking should be realized. In
fact, the specifics of the realization define wholly different
classes of models; e.g., in the framework with the IR cutoff,
one can choose between those of Refs. [1,2], or [3]. In a
general AdS/QCD framework (that of Refs. [1,4]), the
conventional understanding is that the scalar VEV has the
following form (see also Ref. [14]):

fðzÞR ¼ mqzþ
σ

4
z3; ð49Þ

where the parameters mq and σ are believed to correspond
to the physical current quark mass and the chiral con-
densate. This power behavior is a solution of the EOM
written for fðzÞ in the case of the HW model with
ΦðzÞ ¼ 0, while in the SW the powers get multiplied by
the hypergeometric functions (see below). The interpreta-
tion in Eq. (49) is motivated by the AdS=CFT correspon-
dence [10,17]: mq is the physical source for the O ¼ qq̄
operator, and σ is a VEV determined as a one-point
function in the presence of a source, hOiϕ. That means
that if the source (¼ mq) goes to zero, the VEV vanishes
in the case of the normal-ordered observables hOiϕ¼0 ¼ 0.
One has to admit that this is not compatible with QCD,
where the chiral condensate is nonzero in the chiral limit.
Most authors do not try to explain this issue, though in
the HW setup of Ref. [6] they introduce an extra scalar
potential on the IR brane to get around the problem.
In the SW, the function form [Eq. (49)] is not a solution

of the EOM, but it is a common opinion that it should
emerge in the UV asymptotics at least. The problem arises
that while choosing a solution finite at z → ∞, one is left
with only one branch of the equation. Hence, the model

bears a correlation in the definition of the coefficients at z
and z3 terms, mixing the coefficients associated in QCD
with the explicit and spontaneous sources of the breaking.
Various attempts were made to resolve this contradiction:
from manually inserting a different ansatz [8] towards
major modifications of the model dilaton and/or scalar
potential to make a consistent dynamical solution for fðzÞ
[9,12,22]. The latter models give independent predictions
for mq and σ, but in our opinion, they are no longer
compatible with the strict AdS=CFT identification, not to
mention its unclear realization in the chiral case.
It is evident that our ansatz for fðzÞ given in Eq. (34)

does not follow the form of Eq. (49). Nevertheless, the
appearance of Eq. (34) is related to the correct description
of the vector sector. And we put reasonings on the
analyticity and holographic consistency of the previous
sections prior to the issue of possible identifications of the
fðzÞ parameters, especially in light of the discussion
presented above. Let us mention several other arguments.
First, it could be reasonable to demand fðz → ∞ÞR ∼ z (as
is done in Ref. [9]) that fixes the parallel slopes of the
vector and axial vector trajectories in accordance with the
idea of the chiral symmetry not being restored [23,24].
We may attribute our ansatz (34) to the preservation of this
quality in a simple manner. Second, one can speculate that
a mass appearing at the linear in z order is not a current
but a constituent one [25], that light quarks acquire in the
presence of the quark condensate. We will show that,
indeed, the factor could be of an order ∼300 MeV for a
natural value of gS. And finally, we can refer to Ref. [15], in
which it is concluded that because the scale dependence is
not systematically dealt with in the bottom-up holographic
models, it might be advisable to give up on matching to
such quantities as mq and σ.
With a firm resolution to use the ansatz of Eq. (34), let us

nevertheless explore the case where fðzÞ is a solution of the
EOM. In our model, this is not quite standard: there is a
new coefficient μH, and the scalar potential with bðzÞ
makes the equation inhomogeneous:

∂z
e−ΦðzÞ

z3
∂zfðzÞ −

e−ΦðzÞM2
HðzÞR2

z5
fðzÞ − bðzÞ

z5
e−ΦðzÞ ¼ 0:

ð50Þ
The homogeneous part coincides with the EOM of a
conventional SW, but for an addition of μH. The solution
changes accordingly:

fhomðzÞ ∼ ðκzÞ3 · 1F1

�
3

2
þ μH; 2; κ2z2

�

þ κz · Ψ
�
1

2
þ μH; 0; κ2z2

�
;

where 1F1 andΨ are confluent hypergeometric functions of
different types.

1This condition appears in the chiral limit as a consequence
of the equation that one gets considering the divergence of the
axial vector current, fπm2

π ¼ Fπðmu þmdÞ, and the Gell-Mann–
Oakes–Renner relation, f2πm2

π ¼ −ðmu þmdÞh0jqq̄j0i.
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With bðzÞ taken from Eq. (36) [though we might have used any arbitrary coefficient function ∼b1zþ b2z3, it would be
necessary to have b1 ¼ 0 to get a finite result], the particular solution turns out to be [with the use of the relevant Green’s
function Gðz; z0Þ]

fpartðzÞR ¼
Z

∞

0

dz0
bðz0Þe−Φðz0Þ

z05
Gðz; z0Þ ¼ −κb2

1þ β

z
κ2R2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ks
g25

μVβ

s �
1

μH þ 1=2
þ Γ

�
μH þ 1

2

�
Ψ
�
μH þ 1

2
; 0; κ2z2

��
: ð51Þ

We can see that for fðzÞ ¼ fhomðzÞ þ fpartðzÞ, a fðzÞR ∼ z
approximation is an appropriate one if we keep just the
leading asympotics for z → 0. Additionally, we have a
separate source for the ∼z terms aside from those coming
from the Tricomi function.
Moreover, for specific values of μH, we can simplify the

EOM [Eq. (50)] so that a solution of the homogeneous part,
that is finite in the IR, is either linear (∼z) at μH ¼ −1=2 or
cubic (∼z3) at μH ¼ −3=2. The case μH ¼ −1=2 seems
most interesting, as it would prove our choice of the ansatz
if no bðzÞ were present, though the full solution is
fðzÞ ∼ Chomzþ Cpartz ln z. Furthermore, μH ¼ −1=2
makes the scalar tower M2

sðnÞ ¼ 4κ2ðnþ 1Þ look exactly
like a shifted pseudoscalar one, meaning ma0 ¼ mπ0 . A
finite pion mass could be a source of the splitting between
them. We will use the assumption of fixing μH ¼ −1=2 in
one of the phenomenological fits.

IV. TWO-POINT CORRELATORS

Following the duality connection between the 4D par-
tition function and the on-shell holographic action, we
present a definition for the two-point functions, with Oμ

standing for spin-one operators and O for spin-zero:

hgVOa
μðqÞgVOb

νðpÞi

¼ δðpþ qÞ
Z

d4xeiqxhgVOa
μðxÞgVOb

νð0Þi

¼ δ2iSon-shell5D

δiϕa
μðqÞδiϕb

νðpÞ
; ð52Þ

i
Z

d4xeiqxhgVOa
μðxÞgVOb

νð0Þi

¼ δab
�
qμqν
q2

− ημν

�
ΠV;Aðq2Þ; ð53Þ

i
Z

d4xeiqxhgSOaðxÞgSObð0Þi ¼ δabΠs;πðq2Þ: ð54Þ

It is known that there could be divergences present in the
functions of this type. If we perform a simple short-distance
ε cutoff regularization as z → 0, the resulting expressions
are the following:

ΠVðq2Þ ¼
2κ2R
g25

�
μV −

q2

4κ2

��
ln κ2ε2 þ 2γE þ ψ

�
1þ μV −

q2

4κ2

��
; ð55Þ

ΠAðq2Þ ¼
2κ2R
g25

�
μV þ μV

β
−

q2

4κ2

��
ln κ2ε2 þ 2γE þ ψ

�
1þ μV

1þ β

β
−

q2

4κ2

��
; ð56Þ

Πsðq2Þ ¼
4κ2R
ks

�
1

2
þ μH −

q2

4κ2

��
ln κ2ε2 þ 2γE −

1

2
þ ψ

�
3

2
þ μH −

q2

4κ2

��
; ð57Þ

Ππðq2Þ ¼
2κ2R
ks

β

1þ β

�
−1 −

q2

4κ2

��
ln κ2ε2 þ 2γE þ ψ

�
−

q2

4κ2

��
: ð58Þ

The Πs correlator also possesses a ε−2 singularity that is
eliminated after the proper counterterm at the boundary is
introduced. With the series representation of the digamma

function, ψð3
2
þμH− q2

4κ2
Þ¼−γEþ

P
1

nþ1
þP

4κ2

q2−M2
sðnÞ, we

can check that the residue of Πs is a quantity equal to
F2
s as defined in Eq. (45). The same procedure validates

other decay constants.

Alternatively (and in need of a regularization), we can
express the correlators as

ΠVðq2Þ¼
X∞
n¼0

F2
VðnÞ

−q2þM2
VðnÞ

; ΠAðq2Þ¼
X∞
n¼0

F2
AðnÞ

−q2þM2
AðnÞ

;

ð59Þ

DOMÉNEC ESPRIU and ALISA KATANAEVA PHYS. REV. D 101, 074017 (2020)

074017-8



Πsðq2Þ ¼
X∞
n¼0

F2
sðnÞ

−q2 þM2
sðnÞ

; ð60Þ

Ππðq2Þ ¼
X∞
n¼0

F2
πðnÞ

−q2 þM2
πðnÞ

: ð61Þ

These expressions can be achieved using Eqs. (24), (25),
(43), and (44). Though in the case of Πs, the explicit deriv-
ation with sðq; zÞ of Eq. (43) leads as well to the ε−2 singula-
rity and a nonpole term2; both are suppressed in Eq. (60).
It is evident that the correlators of Eqs. (55)–(58) and

those of Eqs. (59), (60), and (61) differ. However, it could
be shown that the differences are encoded within the
polynomial structure of a type C0 þ C1q2. These are the
known ambiguities of a two-point function. With those
subtracted, we arrive at the convergent correlator that has a
similar structure in all the cases:

Π̂ðq2Þ ¼
X∞
n¼0

q4F2ðnÞ
M4ðnÞð−q2 þM2ðnÞÞ : ð62Þ

The most interesting and assumed regularization-
independent quantity in the spin-one sector is the left-right
combination ΠLR:

ΠLRðq2Þ ¼ ΠVðq2Þ − ΠAðq2Þ: ð63Þ

In the region of small Euclidean momenta (Q2 ¼ −q2) at
the ðQ2Þ0 order, we obtain from ΠLR a constant coefficient
that we call F2. Both vector and axial vector correlators
have some nonzero constant factor at this order. Their
difference should establish the one free of the short-
distance ambiguities. Nevertheless, the final quantity still
contains the ε divergence:

F2 ¼ 2Rκ2μV
g25

�
ψð1þ μVÞ − ψ

�
1þ μV

1þ β

β

�
−
1

β

�
ln κ2ε2 þ 2γE þ ψ

�
1þ μV

1þ β

β

���
: ð64Þ

Otherwise, it can be represented as a divergent series:

F2 ¼
X
n

F2
VðnÞ · 4κ2μV=β
M2

VðnÞM2
AðnÞ

¼ 2Rκ2μV
g25β

X
n

nþ 1

ðnþ 1þ μVÞðnþ 1þ μV þ μV=βÞ
: ð65Þ

In QCD, one finds a definition of fπ , the pion decay constant in the chiral limit, in the matrix element

h0jq̄γμγ5Taqð0ÞjπbðpÞi ¼ ipμfπδab: ð66Þ

The experimental value is fπ ¼ 92.07� 1.2 MeV [18]. To make the connection to the model-defined coefficient F, we
have to first introduce some regularization in the latter, and second, take into account that the operators used in the
construction of ΠLR differ from those of Eq. (66) by the yet-undetermined factor gV.

3 Let us assume a vector meson
dominance (VMD)-like regularization, meaning cutting the sum in Eq. (65) at the first term. Further, we will use this VMD
limit to estimate the experimental observable as fπ ¼ Freg=gV . We will see that this assumption brings a good result for fπ.
The next term in the small-Q2 expansion, ðQ2Þ1 order, brings the L10 coefficient:

g2VL10 ¼
1

4

d
dQ2

ðΠVðQ2Þ − ΠAðQ2ÞÞ
����
Q2¼0

¼ R
8g25

�
ψð1þ μVÞ − ψ

�
1þ μV

1þ β

β

�
þ μVψ1ð1þ μVÞ − μV

1þ β

β
ψ1

�
1þ μV

1þ β

β

��
: ð67Þ

The phenomenological value of L10 at the scale of the ρ mass is ð−5.5� 0.7Þ × 10−3 [26].
Now, let us consider the high-energy asymptotics of the calculated two-point functions. The QCD result stemming from

the operator product expansion (OPE) is well known [27,28]:

2The derivation of the scalar two-point function, both in Eq. (57) and in Eq. (60), stands out among other cases. In
Πsðq2Þ ∼ ε−3sðq; εÞ∂zsðq; εÞ, one has to include several orders in the series: sðq; εÞ ∼ εþ ε3 and ∂zsðq; εÞ ∼ ε0 þ ε2. The estimation
of ∂zsðq; εÞ should be performed carefully in the case of the definition of Eq. (43) because of taking the small-z limit inside the
infinite sum.

3The factors gV and gS appear due to the conventions taken in Eqs. (53) and (54). It turns out that they are reabsorbed [using the
matching conditions of Eq. (74)] in the physical parameters of this section, but not in those related to the three-point correlators.
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ΠV;AðQ2Þ=Q2 ¼ Nc

24π2

�
1þ αs

π

�
ln
Q2

μ2
−

αs
24π

Nc

3

hG2i
Q4

þ cV;A
14Nc

27

παshqq̄i2
Q6

; ð68Þ

Πs;πðQ2Þ=Q2 ¼ Nc

16π2

�
1þ 11αs

3π

�
ln
Q2

μ2
þ αs
16π

Nc

3

hG2i
Q4

− cs;π
11Nc

9

παshqq̄i2
Q6

; ð69Þ

cV ¼ 1; cA ¼ −
11

7
; cs ¼ 1; cπ ¼ −

7

11
: ð70Þ

These are computed for the operators with gV ¼ gS ¼ 1. hG2i and hqq̄i are the gluon and quark condensate, and αs is
the strong coupling constant. The scale-dependent quantities here are usually estimated at the scale of chiral symmetry
breaking∼1 GeV: hαsπ G2i ¼ 0.012 GeV4 [27] (lattice: hαsπ G2i ¼ 0.10 GeV4 [29]) and hqq̄i ¼ −ð242� 15Þ3 MeV3 [30] or
−ð235� 15Þ3 MeV3 [31].
The results from our model are the following [assuming that the logarithm regularization in Eq. (55), in fact, can only be

made up to a subtraction constant lnðQ2ε2Þ → ln Q2

μ2
þ λ]:

ΠVðQ2Þ=Q2 ¼ R
2g25

�
ln
Q2

μ2
þ λV þ 2κ2

Q2

�
1þ 2μV

�
ln
Q2

μ2
þ λV þ 1

��
þ 4κ4

3Q4
½−1þ 6μ2V � þ

16κ6

3Q6
μV ½1 − 2μ2V � þO

�
1

Q8

�	
;

ð71Þ
and ΠAðQ2Þ is given by a similar expression with the change μV → μV þ μV

β . For the spin-zero two-point functions
we have

ΠsðQ2Þ=Q2 ¼ R
ks

�
ln
Q2

μ2
þ λS þ

2κ2

Q2

�
1þ ð1þ 2μHÞ

�
ln
Q2

μ2
þ λS þ 1

��

þ 2κ4

3Q4
½1þ 12μHð1þ μHÞ� þ

4κ6

3Q6
½1þ 2μH�½1 − 4μHð1þ μHÞ� þO

�
1

Q8

�	
; ð72Þ

ΠπðQ2Þ=Q2 ¼ R
2ks

β

1þ β

�
ln
Q2

μ2
þ λP þ 4κ2

Q2

�
ln
Q2

μ2
þ λP þ 1

2

�
þ 20κ4

3Q4
þ 16κ6

3Q6
þO

�
1

Q8

�	
: ð73Þ

Matching the corresponding leading logarithmic terms in
Eqs. (71)–(72) and in Eqs. (68)–(69) provides the values of
the 5D coupling constants:

g2V
g25
R

¼ 12π2

Nc
; g2S

ks
R

¼ 16π2

Nc
: ð74Þ

However, the scalar and pseudoscalar correlators have
different asympotics, and an alternative expression from

matching Eqs. (69) and (73) could be g2S
ks
R ¼ β

1þβ
8π2

Nc
. The

results for ks coincide for β ¼ −2, or in the case of the
chiral restoration, at β ¼ ∞. Thus, we reach the conclusion
that the consistency of the large-Q2 asymptotics in the
scalar sector fixes one of the model parameters to β ¼ −2.
We will see further that even in a global fit to the physical
observables where β is allowed to vary, its value settles
close to this one.

For the left-right correlator, the model gives

ΠLRðQ2Þ=Q2¼−
2R
g25

�
κ2

Q2

μV
β

�
ln
Q2

μ2
þλVþ1

�
þ2κ4

Q4
μ2V

1þ2β

β2
þ 4κ6

3Q6

μV
β

�
1−2μ2V

�
3þ3

β
þ 1

β2

��
þO

�
1

Q8

�	
: ð75Þ

Following Eq. (68), we are supposed to obtain the manifestation of chiral symmetry breaking −ημνΠLRðQ2Þ=g2V ¼
−ημν

4παs
Q4 hqq̄i2, while the other terms should vanish in the chiral limit. The relevant combination is estimated in Ref. [32]:

−4παshqq̄i2 ¼ −ð1.0� 0.2Þ × 10−3 GeV6 (in the chiral limit), and in the holographic model we have
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−4παshqq̄i2¼
8κ6

3

R
g2Vg

2
5

μV
β

�
1−2μ2V

�
3þ3

β
þ 1

β2

��
: ð76Þ

The other terms in Eq. (75) have no counterpart in the chiral
limit of QCD: λ in the logarithm regularization can be tuned
to provide any constant piece in the 1=Q2 term, but the
origin of lnQ2=Q2 cannot be explained (the problem also
encountered in Ref. [33]); and the 1=Q4 term can only be
related to mqhqq̄i.
It is a common problem that the holographic models fail

to be a match to QCD in these large-Q2 expansions of the
correlators even on a qualitative level. In the setups with an
IR cutoff [1–3], one faces the absolute lack of the next-to-
leading-order terms in the expansion, and the provided
explanation is that the vector sector does not feel the
symmetry breaking due to the scalar VEV, and the breaking
effect of the cutoff is decoupling exponentially fast at high
energies. Later, it was proposed to introduce the conden-
sates by hand in Ref. [34], or through a dynamical scalar
with appropriate mass terms and potential coupled to
gravity in a braneless approach in Ref. [35].
In the conventional SW model, there appears no 1=Q6

term in the vector correlator. It is a general feature for the
vector two-point functions saturated by the narrow reso-
nances with a spectrum of a type ∼κ2ðnþ 1Þ [36–38]. The
left-right correlator in the SW acquires an order parameter
of the chiral symmetry breaking only from the axial vector
contribution. There are several propositions to make an
improvement in the vector correlator [33,39], and the
appearance of μV in the intercept of the spectrum
[Eq. (23)] can be considered as a possible solution, too.
We can speculate on connecting separately the 1=Q4 and

1=Q6 terms in ΠV and ΠA to the condensates, but that does
not sound reasonable. For instance, the gluon condensate
prediction is distinct in the two channels, in contradiction to
Eq. (68), nor do we find a constant ratio between the 1=Q6

terms. After all, the condensates should manifest them-
selves as a result of the conformality violation, and both the
HW and SW models propose just the simplest ways of
doing it—maybe the leading-order logarithm is the only
term where enough precision can be claimed.
The situation does not become more consistent in the

case of spin-zero two-point functions. The 1=Q4 term in
Eq. (69), associated with the gluon condensate, is coinci-
dent in Eqs. (72) and (73) just in the case of μH ¼ −3=2,
rendering the a0 state massless. And the constant ratio
between the terms at 1=Q6 power can only be achieved with
a positive value of μH, which is not in the least favored in
other observables.
Let us instead consider an alternative large-Q2 expansion

using the two-point functions of Eqs. (59),(60), and (61).
As was mentioned, they are in need of the regularization,
and we assume to make it by cutting the tower of
resonances at some finite number Nm. As the structure

of the correlators [Eqs. (59),(60), and (61)] is the same, the
following asymptotics is true for each one of them:

lim
Q2→∞

ΠðQ2Þ=Q2 ¼
PNm

n¼0 F
2ðnÞ

Q4
−
PNm

n¼0 F
2ðnÞM2ðnÞ
Q6

þO
�

1

Q8

�
: ð77Þ

This expression seems more appealing than those in
Eqs. (71)–(73): it has a unified form, and there are no
unexplicable terms. Furthermore, as in our model
FVðnÞ ¼ FAðnÞ, the large-Q2 limit of ΠLR=Q2 starts with
1=Q6. This is translated to the spin-zero case, where
F2
sðnÞ ¼ 2 1þβ

β F2
πðnÞ and the equality can be achieved

for β ¼ −2. This value of the β factor we have already
seen in the comparison of the leading logarithmic terms.
However, these logarithmic asymptotics themselves do not
appear in this type of regularization; they need to have the
whole infinite tower. Another drawback is that the gluon
condensate comes with the wrong sign in the spin-one cases
and the quark condensate—in the vector and pseudoscalar
channels.
Though these discrepancies are present, the situation for

the 1=Q6 term with this regularization turns out to be more
phenomenologically relevant. The coefficients at 1=Q6

power are the following:

ΠLR∶
4κ6μVðNm þ 1ÞðNm þ 2Þ

π2β
; ð78Þ

Πs∶ −
κ6ðNm þ 1ÞðNm þ 2Þð9þ 4Nm þ 6μHÞ

π2
; ð79Þ

Ππ∶ −
2κ6NmðNm þ 1ÞðNm þ 2Þ

π2
β

1þ β
: ð80Þ

Note that in the VMD limit of Nm ¼ 0, there is no
contribution of this order in the pion correlator due to
mπ ¼ 0. However, the logarithmic-independent quantity of
ΠLR is not only correctly assessed in the qualitative
behavior of its 1

Q2 expansion, but the estimate (78) in the

VMD limit has a better agreement with Ref. [32] than that
of Eq. (76), as we will see in Sec. VI.

V. THREE-POINT COUPLINGS, PION
AND AXIAL FORM FACTORS

The ρnπn1πn2 coupling is obtained from the 5D
Lagrangian as an integral over the three KK z-profiles:

gρn;πn1 ;πn2 ¼
R
ks

Z
dze−Φðκ2z2Þ 1

z3
2f2ðzÞR2 · βð1þ 2βÞ

χ2πð1þ βÞ2
× VnðzÞπn1ðzÞπn2ðzÞ: ð81Þ
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The calculation is straightforward for any given set of
the radial numbers n; n1; n2. In the case that we are
only interested in the ground-state pions n1 ¼ n2 ¼ 0,
the result is

gρn;π;π ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2g25
Rðnþ 1Þ

s
1þ 2β

1þ β
ðδn;0 − δn;1Þ: ð82Þ

We also can examine the electromagnetic form factor
(FF) of the pion Gπðq2Þ, defined as

hπaðk1ÞjOcμ
V ð0Þjπbðk2Þi ¼ iεabcðk1 þ k2ÞμGπðq2Þ: ð83Þ

In the model under investigation, it receives two contribu-
tions:

Gπðq2Þ ¼
1

gV

1þ 2β

1þ β

X
n

δn;0 − δn;1
nþ 1þ μV

�
1 −

q2

q2 −M2
VðnÞ

�
;

ð84Þ

that means that we go beyond the simplest ρð770Þ-
dominance (VMD) approximation. Moreover, a necessary
condition is to normalize Gπð0Þ ¼ 1. That allows us to fix
the value of gV :

gV ¼ 1þ 2β

ð1þ βÞð1þ μVÞð2þ μVÞ
: ð85Þ

Hereby, we notice that the introduction of this factor was of
the utmost importance to the viability of the model, though
we are yet to see its role in the phenomenological fits. The
coupling of the ρð770Þ to the pions is then given by

gρ;π;π ¼
ffiffiffiffiffiffiffiffiffiffi
24π2

Nc

s
ð1þ μVÞð2þ μVÞ: ð86Þ

The final expression for the pion FF is

Gπðq2Þ ¼ 1 −
1

gV

X
n

q2FVðnÞ
M2

VðnÞ
gρn;π;π

q2 −M2
VðnÞ

ð87Þ

¼ 1 −
q2

q2 −M2
Vð0Þ

þ q2M2
Vð0Þ

ðq2 −M2
Vð0ÞÞðq2 −M2

Vð1ÞÞ
;

ð88Þ

and its plot can be seen in Fig. 1. There we also include as a
marker the simplest case of the ρð770Þ-dominated form
factor; it provides a good interpolation in the Q2 ≲ 1 GeV2

region but fails at higher energies. The more conventional
holographic models predict the pion FF above the VMD
result at Q2 ≳ 1 GeV2, as is shown in a summary of HW
and SW results in Ref. [8], the modified-dilaton SW of
Ref. [9] shows a slight improvement, and some other
modifications [13,22] may bring it closer to but not below
the VMD shape. A characteristic feature of our model is
that it makes a prediction beyond the VMD result, and that
brings it much closer to the experimental points in the most
studied region Q2 ≲ 3 GeV2. We only find an example of
similar behavior achieved in the SW model with an
additional quartic term in the scalar potential and a specific
and rather complicated form of the scalar VEV (model IIb
of Ref. [22]). It is also obvious from Fig. 1 that a higher ρ
mass gives a better prediction. The sensitivity to the
variations in the ρ0 mass is rather negligible. The notion
of the valuemρ ≃ 1 GeV originates in an assumption of the
ground state positioned on the linear trajectory of the higher
radial excitations and does not appear much irrelevant in a
holographic construction based on the reproduction of the
linear Regge trajectories. We will come back to this option
in Sec. VI.

FIG. 1. The pion form factor plot. The experimental points belong to CERN [40] (green), DESYand Jefferson Lab data [41] (red), and
CEA/Cornell [42] (blue). The predicted lines are given for the cases with one vector meson exchange (solid), and with two (the other
two). The latter is the case of the model under consideration. mρ ¼ 775 MeV or 1000 MeV and mρ0 ¼ 1465 MeV were assumed.
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The large-Q2 asymptotics of Eq. (88) is

Q4GπðQ2 → ∞Þ ¼ M2
Vð0ÞðM2

Vð0Þ þM2
Vð1ÞÞ

þO
�

1

Q2

�
≃ 1.65 GeV2; ð89Þ

and that is not in accordance with the perturbative QCD
expectation of the 1=Q2like behavior [43]. This is not really
surprising after the discrepancies we have seen in the large-
Q2 behavior of the two-point functions.
At small q2, we obtain

Gπðq2Þ ¼ 1þ q2
1

gV

X
n

FVðnÞgρn;π;π
M4

VðnÞ
þOðq4Þ

¼ 1þ q2
�

1

M2
Vð0Þ

þ 1

M2
Vð1Þ

�
: ð90Þ

The coefficient at q2 is associated with the pion charge
radius and a chiral coefficient L9:

2L9=f2π ¼
1

6
hr2iπ� ¼ 1

M2
Vð0Þ

þ 1

M2
Vð1Þ

; ð91Þ

L9 ¼
f2π
8κ2

3þ 2μV
ð1þ μVÞð2þ μVÞ

: ð92Þ

Experimentally deduced values of these observables

are L9 ¼ ð6.9� 0.7Þ × 10−3 [26] and rπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
hr2iπ�

q
¼

0.659� 0.004 fm [18].
The ρna1n1πn2 coupling can also be found from the 5D

Lagrangian,

gρn;a1n1 ;πn2 ¼
4R
ks

Z
dze−Φðκ2z2Þ 1

z3
fðzÞRðfðzÞ þ bðzÞÞR · β

χπð1þ βÞ
×DnðzÞCn1ðzÞπn2ðzÞ: ð93Þ

For n1 ¼ n2 ¼ 0, we calculate

gρn;a1;π ¼ 4κ

ffiffiffiffiffiffiffiffiffiffiffi
μV

1þ β

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g25

Rð1þ nÞ

s
ðδn;0 − δn;1Þ; ð94Þ

and using the value of gV from Eq. (85), the coupling
between the three ground states is

gρ;a1;π ¼4κ

ffiffiffiffiffiffiffiffiffiffi
μV
1þβ

r ffiffiffiffiffiffiffiffiffiffi
24π2

Nc

s
ð1þβÞð1þμVÞð2þμVÞ

1þ2β
: ð95Þ

The axial form factor as defined by the diagram in Fig. 2
is given by

Ga1ðq2Þ¼
2κ

gV

ffiffiffiffiffiffiffiffiffiffi
μV
1þβ

r X
n

δn;0−δn;1
nþ1þμV

�
1−

q2

q2−M2
VðnÞ

�

ð96Þ

¼ 2κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μVð1þ βÞp
1þ 2β

�
1 −

q2

q2 −M2
Vð0Þ

þ q2M2
Vð0Þ

ðq2 −M2
Vð0ÞÞðq2 −M2

Vð1ÞÞ
�
: ð97Þ

Once the model parameters are fixed, we can determine
from the q2-independent part of this expression the direct
coupling in the a1 → πγ process. Many holographic
models predict zero value for this decay, either due to
the absence of the direct term [2,3] or due to the exact
cancellation of ρ and ρ0 contributions [44]. We consider the
fit to this and other observables in the next section.

VI. FITTING THE OBSERVABLES

With the QCD parameters fixed, Nc ¼ 3; α ¼ 1
137

, we
have three major model parameters—κ; μV; β, and a free
parameter μH, that is mostly used to set a0 mass to the
experimental value (if we neglect the chiral condensate
prediction from the scalar two-point function). The param-
eters g5 and ks are set standardly by Eq. (74).
Let us resume the estimates we have acquired. Defined

from the one-point function are the constants Fρ; Fa1 ; fπ in
the spin-one sector, and Fs, Fπ in the spin-zero sector. The
lepton ρ decay,

Γρ→eþe− ¼ 4πα2F2
ρ

3m3
ρ

¼ 7.04� 0.06 KeV; ð98Þ

provides a high precision: Fρjexp¼0.12124�0.00002GeV2

[18]. This predicts κ ¼ 519 MeV. For the value of Fa1 , we
can refer to a theoretical (and extradimensional as well) work
[44],where they estimateFa1 ¼ 0.26 GeV2. In addition, they
cite (with a proper normalization coinciding with ours) an
experimental result [19], 0.177� 0.014 GeV2, and a lattice

FIG. 2. Axial form factor. The effective coupling ⊗ comprises
the direct contribution and the one mediated through the ρ
mesons.
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one [45], 0.21� 0.02 GeV2. As was already mentioned, our
model impliesFρ ¼ Fa1 . However, it is shown further that the
estimation achieved in some fits lies in between Fρjexp and
Fa1 jexp. It is a fair result for our holographic setup.Moreover,
it is distinct fromother approaches.For instance, the usual SW
model predicts FρjSW ¼ 0.07 GeV2, Fa1 jSW ¼ 0.31 GeV2.
Similarly, in a deformed AdS5 background of Ref. [46], they
find Fa1 somewhat higher and Fρ lower than their exper-
imental values. The leptonic decay of ρ0 is not as widely
discussed, but we can predict, with the model’sFρ0 ¼

ffiffiffi
2

p
Fρ,

the following decay rate: Γρ0→eþe− ¼ 2 ÷ 3 KeV in coinci-
dence, for instance, with Ref. [37].
To evaluate fπ , we will use Eq. (65) with just the first

term in this generally diverging sum. This concession
brings the model prediction close to the experimental value.
In the scalar sector, we have some information from

Ref. [20]: Fs ¼ 0.21� 0.05 GeV2. Matching this result
requires κ ¼ 734 MeV. Thus, we already see that there
is no perfect choice for the κ to satisfy both the scalar
and vector observables. The value of Fπ depends on the
estimation of the chiral condensate hqq̄i ¼ −ð235 ÷
242 MeVÞ3 [30,31], and hence Fπ ¼ 0.14 ÷ 0.15 GeV2.
In the relation between Fs and Fπ , the holographic model
mimics the situation of Fρ and Fa1 for β ¼ −2. For a
general β, however, they can be different as the phenom-
enology would suggest. Thus, on the one hand we can
control the difference as opposed to the spin-one case. But
on the other, we face the fact that for large Q2, they do not
coincide unless β ¼ −2, which runs against the presumed
chiral symmetry restoration at high energies.
In the two-point functions, there appear all the phenom-

enological masses and the aforementioned decay constants.
As well, there are the low-energy observable L10 and the
controversially defined estimations for the condensates
hqq̄i and hG2i. At the same time, due to the general
discordance in definitions related to the large-Q2 limit,
we find it instructive to evaluate separately fπ and Fπ and
use as an independent check the chiral limit condition
fπFπ ¼ −hqq̄i.
There are several decay rates defined by the triple

couplings. The ρ decay exists in our model for n ¼ 0
and 1:

Γρn→πþπ− ¼ ðm2
ρn − 4m2

πÞ3=2
48πm2

ρn

·

�
gρn;π;π þ e2

1

gV

FVðnÞ
m2

ρn

�
2

:

ð99Þ

We are mostly interested in the experimental result for
the ground state ρ, Γρð770Þ→πþπ− ¼ 147.5� 0.8 MeV [18].
The processes ρþ → π0πþ and ρ− → π0π− receive no
electromagnetic contribution, and it is also measured that
Γðρð770Þ0Þ − Γðρð770Þ�Þ ¼ 0.3� 1.3 MeV [18]. We also

remark that the ratio of the leptonic ρ decay to the pion one

has a separate estimation,
Γρ→eþe−

Γρ→πþπ−
¼ð0.40�0.05Þ×10−4 [18].

The a1 → ρπ decay is studied experimentally in eþe− →
τþτ− or τ− → π−π0π0ντ processes, and the partial width at
the tree level is given by the following expression:

Γa1→ρπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

a − ðmρ þmπÞ2Þðm2
a − ðmρ −mπÞ2Þ

q
48πm3

a

×

�
2þ ðm2

a þm2
ρ −m2

πÞ2
4m2

am2
ρ

�
g2ρ;a1;π: ð100Þ

Experimentally, it is known that for the case of a1 →
ðρπÞS-wave it takes 60.19% of the full decay width, and
hence, the value should belong to the area 150 ÷ 360 MeV.
The pion FF profile was already discussed in detail.

From there we use the parameter related to the pion charge

radius rπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
hr2iπ�

q
in the further fittings. The expression

of the axial FF in Eq. (97) allows us to estimate the decay
rate a1 → πγ,

Γa1→πγ ¼
α

4

m2
a −m2

π

m3
a

G2
a1ðm2

a=4Þ ¼ 640� 246 KeV: ð101Þ

This PDG quoted experimental value is given in Ref. [47].
It is also mentioned there that the radiative partial decay
estimation is sensitive to the assumed a1 resonance mass
and the total width, and they use the parameters standard
for their time (35 years ago).
Next, we investigate several options to fix the model

parameters. We would like to begin with β as a free
parameter, thus giving priority to phenomenology over
the large-Q2 asymptotics of Ππðq2Þ. First, we can make a
global fit to the highlighted observables. In holography, to
get the best fit one often minimizes the rms error, defined as

εrms ¼ ðPi
ðδOi=OiÞ2
nobs−npar

Þ1=2, where Oi is an experimental value

of an observable, and δOi is a difference between theo-
retical and experimental expressions. Naturally, this way
the experimental errors are not taken into account at all. But
the number εrms still communicates the relative precision
of the fit and is used to assess the experimental validity of
the model as a whole. Though holographic methods do not
claim high accuracy and the experimental precision of
some of the discussed observables is impossible to reach,
we believe that the more conventional χ2 method could also
be used to provide some extra insight. Thus, in Table I we
present both approaches.
Some comments are in order. For the rms minimization,

we have omitted the Γðρð770Þ0Þ − Γðρð770Þ�Þ estimation
because in this particular situation, the error bars, being
higher than the mean value, turn out to be particularly
important. The inclusion of this observable affects the fit as
a whole to the worse, and the model parameters lie in a very
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different region from any other fit. In this global fit of 15
observables with 4 parameters, we get the best fit with
εrms ¼ 36%, and we consider it a rather good outturn.
In the χ2 minimization,4 the inclusion of the lepton decay

of ρ and Fρ puts a lot of constraint on the fit. Especially, it
seems impossible to achieve simultaneously a good result
for both the lepton and the pion ρ decays. The a1 decays
are also greatly affected by the matching of the model
parameters to the more precisely measured ρ-related
observables. We try to show to what degree some loosening
of the fit affects the predictions. In the “partial A” fit, the
accuracy of ρ → ππ rate dominates the fit and the a1 decays
receive an even worse description. In the “partial B” fit, we
include the quantities with somewhat larger error bars. The
most interesting effect there is a tendency for the higher ρ
mass (resulting, of course, in a very high pion decay rate,
though the coupling itself is moderate gρ;π;π ¼ 7.39). The
rates of a1 → ρπ and a1 → πγ come substantially closer to
the experiment, as well as the a1 mass itself. The increase of
Fρ towards Fa1 jexp once the lepton decay is out of focus is
also evident in both partial fits.
The benefit that Fs gets from the freedom in β is not

substantial, except perhaps for the “partial A” fit. Thus,
though we introduced a potential difference between Fs

and Fπ , other observables turn out to outweigh this bit
of phenomenology.
Next, we recall the theoretical motivation to implant

β ¼ −2 [coincidental large-Q2 behavior in the scalar
sector] and μH ¼ −1=2 [related to the choice of the fðzÞ
ansatz]. We would also follow the tentative phenomeno-
logical preference for the value of μV to be close to −1=2,
which can be seen in Table I. This allows us to suggest a
global fit to the observables with the single remaining free
factor—the original SW scale κ. Table II shows the result of
such fitting. We have fixed β ¼ −2, μV ¼ μH ¼ −1=2 and
looked for the best fit minimizing the rms error. It is
provided by the value κ ¼ 527 MeV. The relative error
εrms ¼ 32% is not small, but it still manifests a slightly
better agreement than that of a completely free rms
minimization due to the bonus of fitting 15 observables
with just one parameter.
Using this fit, we can calculate the triple couplings

gρ;π;π ¼ 6.66; gρ;a1;π ¼ 6.28 · κ ¼ 3.3 GeV:

The experimental quantities (meaning the ones extracted
from the decay rates for the experimental values of
the interacting particles’ masses) are gρ;π;πjexp ¼ 5.94,
gρ;a1;πjexp ¼ 3.9 ÷ 6.0 GeV. In light of the standard
gρ;π;πjSW ¼ 3.33 [8] and gρ;π;πjHW ¼ 4.28 or 5.29 [1], the
agreement for the ρππ coupling seems to be very good.
Let us also take this fit to calculate the gluon condensate

hαsπ G2i from Eqs. (71)–(73). The estimate with the correct

TABLE I. Global fits. The quantities that were fitted are given in a bold script.

rms fit χ2 fit χ2 partial A χ2 partial B

κ ¼ 532 MeV κ ¼ 520 MeV κ ¼ 596 MeV κ ¼ 583 MeV
β ¼ −2.12 β ¼ −1.85 β ¼ −5.44 β ¼ −1.63
μV ¼ −0.50 μV ¼ −0.48 μV ¼ −0.58 μV ¼ −0.46

Observable Experiment μH ¼ −0.65 μH ¼ −0.61 μH ¼ −0.82 μH ¼ −0.79

mρ 775.26� 0.25 MeV 751.4 753.5 775.2 855.9
mρ0 1465� 25 MeV 1303.2 1283.8 1421.6 1445.8
ma1 1230� 40 MeV 912.6 919.2 866.8 1056.3
ma0

1
1654� 19 MeV 1402.4 1387.6 1473.5 1572.8

mπ0 1300� 100 MeV 1064.8 1039.5 1191.6 1165.2
ma0 980� 20 MeV 980 980 980 980
ρ → eþe− 7.04� 0.06 KeV 8.56 7.72 12.23 8.31
ρ → πþπ− 147.5� 0.8 MeV 219.0 253.4 147.3 309.2
Γðρ0Þ − Γðρ�Þ 0.3� 1.3 MeV 1.37 1.40 1.34 1.60
Γðρ→eeÞ
Γðρ→ππÞ × 104 0.40� 0.05 0.39 0.30 0.83 0.27
a1 → πγ 640� 246 KeV 396 396 202 463
a1 → πρ 252� 105 MeV 75.9 87.3 19.7 110.3
rπ 0.659� 0.04 fm 0.742 0.744 0.710 0.656
L10 × 103 −ð5.5� 0.7Þ −8.4 −7.8 −7.2 −7.8
fπ 92.07� 1.2 MeV 96.4 92.5 92.2 104.6
Fρ 0.121237(16) GeV2 0.1276 0.1216 0.1598 0.1528
Fs 0.21� 0.05 GeV2 0.156 0.149 0.196 0.187
Fπ 0.14� 0.03 GeV2 0.152 0.155 0.153 0.213

4Obviously, the values of χ2n are huge. We would like to avoid
frightening the reader with such numbers and let him or her stay
convinced that holographic models are ∼30% accurate in some
sense.
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sign is achieved only from the axial vector two-point
function, 0.020 GeV2 and the pseudoscalar one,
0.16 GeV2. The predictions are an order different, but
we notice that the former is closer to the Shifman-
Vainshtein-Zakharov (SVZ) estimate [27], and the latter
to the lattice one [29]. The other two give a negative sign
for this particular fit, though, for instance, the expression
in the scalar correlator provides 0.016 GeV2 if μV ¼ −1=2;
μH ¼ 0, and in principle can lie in the range of the SVZ
estimate. We can also extract the gluon condensate from
Eq. (77), where the relevant term in the spin-zero case
provides 0.13 GeV2.
Unfortunately, μV ≃ −1=2 in the presented fits leads to

the too-small or even wrong sign value of hqq̄i as defined
from ΠLR in Eq. (76). However, if we turn to the alternative
expressions [Eq. (78)] and assume Nm ¼ 0 (the VMD
limit taken to determine fπ), the prediction with the fit of
Table II is 4παshqq̄i2 ¼ 4.3 × 10−3 GeV6. If the proper
term in the scalar correlator [Eq. (79)] is used, we get
7.1 × 10−3 GeV6. These could be related to the assessment
of Ref. [32]: ð1.0� 0.2Þ × 10−3 GeV6. It is of interest that
for the lnQ2 independent quantity such as ΠLR, its holo-
graphic dual with the number of resonance cutoff demon-
strates a qualitatively relevant behavior, while the ε cutoff
fails. At last, estimating hqq̄i as a product of fπ and Fπ , we
get a rather fair result of hqq̄i ¼ −ð241 ÷ 244 MeVÞ3 if the
“partial B” fit is not taken into account.
Coming back to the interpretation of fðzÞ, we can now

estimate the constant factor of Eq. (34), tentatively related

to the quark mass,mq ¼
ffiffiffiffiffiffiffiffi
ks
g2
5

μV
β

q
κ ¼ 2κ gV

gS

ffiffiffiffi
μV
3β

q
. In the global

fits of Table I, gV ¼ 3.7 ÷ 4.3; assuming that gS ≃ gV ,
we can get mq ∼ 220 ÷ 360 MeV. Such values can only
be related to the constituent quark mass, if any physical
counterpart should be looked for at all.
Finally, we consider some more particular fits in

Table III, focusing on reproducing the masses of the states.
It is a common practice to do so, especially normalizing to
the experimental value of mρ like in the “Physical ρ” fit.
In the “Heavy ρ” fit, we pursue the idea of a higher ρ mass,
that would put it on the radial Regge trajectory defined by
the ρ excitations. The fits’ parameters alter enough from
those of the previous fits to make sizeable deviations for the
values of the observables. Obviously, the results in Table III
are generally less compatible with experiment. However,
we notice that between the two fits, the “Heavy ρ” one is
significantly better in predicting the lepton ρ decay, the a1
decays, L10, and fπ. It is naturally worse for the pion ρ
decay, and the coupling itself is rather large too, at
gρ;π;π ¼ 8.3.

VII. CONCLUSIONS

We have constructed a new holographic model of the
two-flavor QCD and have addressed multiple aspects of it.
We have described the characteristics of dynamical fields
in the scalar and vector sectors corresponding to ρ; a1; a0
and π mesons, analyzed the two-point functions and the

TABLE III. Particular fits. The model parameters are deter-
mined to provide the experimental masses marked in bold.

Physical ρ Heavy ρ

κ ¼ 650 MeV κ ¼ 650 MeV
β ¼ −1.19 β ¼ −1.35
μV ¼ −0.65 μV ¼ −0.41

Observable μH ¼ −0.93 μH ¼ −0.93

mρ (MeV) 775 1000
mρ0 (MeV) 1514 1640
ma1 (MeV) 1230 1230
ma0

1
(MeV) 1790 1790

mπ0 (MeV) 1300 1300
ma0 (MeV) 980 980
ρ → eþe− (KeV) 17.3 8.1
ρ → πþπ− (MeV) 94.2 464.5
Γðρ0Þ − Γðρ�Þ (MeV) 1.28 1.94
Γðρ→eeÞ
Γðρ→ππÞ × 104 1.84 0.17
a1 → πγ (MeV) 1.70 0.43
a1 → πρ (MeV) 84.4 129.9
rπ (fm) 0.701 0.566
L10 × 103 −24.5 −6.7
fπ (MeV) 190.6 110.7
Fρ (GeV2) 0.190 0.190
Fs (GeV2) 0.233 0.165
Fπ (GeV2) 0.409 0.325

TABLE II. Single free parameter (κ) global fit. In bold are the
fitted quantities. This is the best fit with εrms ¼ 32%.

κ ¼ 527 MeV
β ¼ −2

Observable μV ¼ μH ¼ −0.5

mρ (MeV) 745.3
mρ0 (MeV) 1290.9
ma1 (MeV) 912.8
ma0

1
(MeV) 1394.3

mπ0 (MeV) 1054.0
ma0 (MeV) 1054.0
ρ → eþe− (KeV) 8.43
ρ → πþπ− (MeV) 219.5
Γðρ0Þ − Γðρ�Þ (MeV) 1.36
Γðρ→eeÞ
Γðρ→ππÞ × 104 0.38
a1 → πγ (KeV) 413
a1 → πρ (MeV) 80.8
rπ (fm) 0.749
L10 × 103 −8.6
fπ (MeV) 96.9
Fρ (GeV2) 0.1250
Fs (GeV2) 0.153
Fπ (GeV2) 0.153
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structure of the pion and axial FFs, and calculated several
hadronic couplings.
We questioned several steps in the common model-

building strategies and looked for possible generalizations
there. At the same time, we required analyticity of our
solution that prohibited overcomplication of the model and
even suggested some interrelations between its distinct
sectors.
The primary framework is that of the Soft Wall model,

the simplest one validating the confining properties of
QCD in the linearity of the predicted Regge trajectories.
The chiral symmetry breaking occurs as a result of the
dual process in the bulk and is subject to the model
specifics. Not everything turns up in the QCD-like
fashion: there are massless Goldstones and splitting
between the vector and axial vector masses, but the
OPE-motivated appearance of the chiral condensate in
the two-point functions is not exactly met. One can
speculate that introducing a more complicated structure
of the scalar VEV than that of Eq. (34) may fix it. It could
be also interesting to make simultaneous modifications of
the dilaton profile, providing a way to stay consistent with
the EOM (e.g., following the lines of Ref. [9]). However,
first, we will lose the analyticity of the solutions, and
second, we do not believe that the result will turn out
significantly better. Treating the large-Q2 limit of QCD in
AdS/QCD is wielding a double-edged sword: on one side
there is a near conformality, but on the other is the sidestep
from the strongly coupled regime. We cannot suggest any
new route; matching the leading logarithms is very useful
to establish the holographic couplings in terms of Nc, and
the inconsistency of the subleading terms is to be
tolerated. Moreover, in the presented model, the study
of the leading logarithms of Πs and Ππ allowed us to fix
one of the parameters.
We developed a new approach to the description of

the pions. They appear separated from the vector fields,
though it obliges us to break the local gauge invariance in

the bulk. We also introduce a specified scalar potential.
Requirements of analyticity, masslessness of the pions and
fulfillment of the holographic conditions on the boundary
define it completely. Our prediction for the pion FF in the
region Q2 ≲ 3 GeV2 leads us to assume this new rendition
as phenomenologically relevant.
The parametrization of the model is not quite tradi-

tional, because we forsake the use of the quark mass
and chiral condensate in the scalar VEV, exchanging
those for β, and we introduce new parameters in the 5D
masses: μV and μH. Mixing the theoretically and phe-
nomenologically preferred values of these parameters,
we came to a one-parameter fit of Table II that provides
a fair description of the experimental quantities.
Generally, we find that the typical SW scale, κ, can be
of order 500 ÷ 600 MeV.
We believe that the presented model is neither too

artificial nor oversimplified. On the phenomenological
level, it is certainly more successful than the traditional
HW or SW models, while the motivation and assumptions
beyond our modifications are easily accessible.
Among other interesting findings, we would like to

mention our proposal to regularize some of the divergent at
the boundary quantities via cutting the number of contrib-
uting resonances. That is an alternative we have not seen
utilized often by other authors. It provides some interesting
insight in the OPE-related structures and works genuinely
well for the estimation of fπ .
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