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We determine the leading Fock state light front wave functions (LFWFs) of the pion and kaon via light
front projections of the covariant Bethe-Salpeter wave function. Using these LFWFs we study the
multidimensional images of the valence quarks in the pion and kaon that are provided by their generalized
parton distribution functions (GPDs) and transverse momentum dependent parton distribution functions
(TMDs). Moments of the GPDs are taken to obtain the electromagnetic and gravitational form factors of the
pion and kaon, and comparisons to available experimental and lattice data are made. Highlights from this
study include predictions that the mean-squared impact parameter for the quarks in the pion and kaon are:
hb2Tiπu ¼ 0.11 fm2, hb2TiKs ¼ 0.08 fm2, and hb2TiKu ¼ 0.13 fm2, and therefore the s quark in the kaon is
much closer to the center of transverse momentum than the u quark. From the electromagnetic and
gravitational form factors we find that the light-cone energy radii are about 60% smaller than the light-cone
charge radii for each quark sector in the pion and kaon. A quantitative measure of the importance of the
leading Fock state is obtained via comparison with a full Dyson-Schwinger equations calculation
(containing an infinite tower of Fock states) for the pion form factor.

DOI: 10.1103/PhysRevD.101.074014

I. INTRODUCTION

Multidimensional images of the partonic structure of
hadrons are provided by the generalized parton distribution
functions (GPDs) [1–3] and transverse momentum depen-
dent parton distributions functions (TMDs) [4]. These
images encode abundant structural information about
hadrons, e.g., the GPDs provide a unified description of
form factors and parton distribution functions (PDFs),
where the former is related to a hadron’s spatial extent
and the latter describes the light-cone momentum distri-
bution of partons [5,6] within a hadron. Through x-
weighted moments the GPDs are connected with hadron
matrix elements of the energy-momentum tensor, and
therefore shed-light on the spin, energy, and pressure
distributions within hadrons [2,7]. Experimentally, GPDs
are accessible through hard exclusive processes like deeply
virtual Compton scattering (DVCS) or deeply virtual

meson production (DVMP). TMDs illustrate the transverse
motion of the partons in 3-dimensional momentum space,
and therefore complement GPDs. Hadron TMDs can be
extracted from semi-inclusive deep inelastic scattering
(SIDIS) or Drell-Yan processes.
Calculating GPDs and TMDs directly from the funda-

mental theory, quantum chromodynamics (QCD), has
proven very challenging. Lattice QCD has typically been
limited to certain aspects of GPDs and TMDs, such as low
x-weighted moments, together with their k2T-dependence
for TMDs or t-dependence [8–10] for GPDs [11–13].
However, new approaches, such as large-momentum effec-
tive theory (LaMET) [14–17], now enable lattice QCD to
reveal much richer information on GPDs and TMDs.
Model calculations are also crucial, as they can help
provide an intuitive picture of the GPDs and TMDs. For
instance, using the Nambu–Jona-Lasinio model or the
spectral quark model one can calculate the full pion
GPD over the entire kinematic range jxj < 1, jξj < 1

[18]. Such a calculation is based on nonperturbative
covariant Feynman diagrams. An alternative approach is
the light front QCD framework, where the GPDs and
TMDs are determined through overlap representations in
terms of light front wave functions (LFWFs) [19,20]. The
unknown elements are then the nonperturbative LFWFs of
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hadrons. In this work, we will determine the LFWFs of the
pion and kaon from a beyond rainbow-ladder Dyson-
Schwinger equations (DSE) calculation, and then study
the GPDs and TMDs obtained from these LFWFs using
overlap representations. The pion and kaon are of particular
interest as they emerge as the Goldstone bosons associated
with dynamical chiral symmetry breaking (DCSB) in QCD.
Pion and kaon GPDs and TMDs are also experimentally
accessible—in principle—via hadron-hadron collisions
using pion and kaon beams, or through interactions with
the virtual meson cloud around nucleon targets [21,22].
To calculate the LFWFs the standard approach is to

diagonalize the light-cone QCD Hamiltonian within the
light-cone QCD formalism [23]. However, in practice this
is numerically very difficult for exact QCD in four
spacetime dimensions, and therefore effective interactions
are usually adopted [24–29]. An alternative approach is to
solve the covariant Bethe-Salpeter equation and project the
Bethe-Salpeter wave functions onto the light front. This
idea originates from a model calculation by ’t Hooft [30]
and was also used by authors in Refs. [31,32]. In a recent
work the pion’s leading Fock state LFWFs were obtained
from its Bethe-Salpeter wave function provided by a DSE
calculation [33], and used to study the pion TMD. In this
paper we extend this work to the kaon LFWFs and TMDs,
and also the study of pion and kaon GPDs.
In the past few decades the DSE framework has been

applied extensively to hadron physics [34,35]. By solving
the quark’s gap equation and meson’s Bethe-Salpeter
equation, one obtains the covariant Bethe-Salpeter wave
function, from which hadron properties can be determined.
The DSEs respect the (approximate) chiral symmetry in the
light quark sector, and its dynamical breaking, as demon-
strated by satisfying the axial-vector Ward-Takahashi
identity (AV-WTI) [36]. Therefore, the extracted LFWFs
encode the effects from DCSB and provide a realistic
description of the Goldstone bosons at leading-order in the
Fock state expansion. Therefore, DSE predictions for the
two-particle LFWFs of pion and kaon can provide impor-
tant insights into the structure of QCD’s Goldstone bosons.
This paper is organized as follows: In Sec. II we

determine the LFWFs of pion and kaon from their
Bethe-Salpeter wave functions. We then study their
GPDs and related form factors in Sec. III and Sec. IV.
The unpolarized TMDs are determined in Sec. V and a
conclusion is given in Sec. VI.

II. PION AND KAON LIGHT FRONT
WAVE FUNCTIONS

In light-front QCD hadron states are generally described
by a tower of Fock states in a Fock state expansion [23,32].
For a meson with valence quark f and valence anti-quark h̄
the minimal (2-particle) Fock-state configuration is given
by [26,29]

jMi ¼
X
λ1;λ2

Z
d2kT
ð2πÞ3

dx

2
ffiffiffiffiffi
xx̄

p δijffiffiffi
3

p

×Φλ1;λ2ðx; kTÞb†f;λ1;iðx; kTÞd
†
h;λ2;j

ðx̄; k̄TÞj0i; ð1Þ

where kT is the transverse momentum of the quark f [in a
frame where the meson’s transverse momentum vanishes
(PT ¼ 0)], k̄T ¼ −kT , x ¼ kþ

Pþ is the light-cone momentum
fraction of the active quark, and x̄ ¼ 1 − x. The quark
helicity is labeled by λi ¼ ð↑;↓Þ and δij=

ffiffiffi
3

p
is a color

factor.
Reference [37] showed that for pseudoscalar mesons

there are two independent light front wave functions for the
leading Fock state, labeled by ψ0ðx; k2TÞ with lz ¼ 0 and
ψ1ðx; k2TÞ with jlzj ¼ 1. The 2-particle Fock-state configu-
ration is then given by

jMi ¼ jMilz¼0 þ jMijlzj¼1; ð2Þ

where

jMilz¼0 ¼ i
Z

d2kT
2ð2πÞ3

dxffiffiffiffiffi
xx̄

p ψ0ðx; k2TÞ
δijffiffiffi
3

p 1ffiffiffi
2

p

× ½b†f↑iðx; kTÞd†h↓jðx̄; k̄TÞ
− b†f↓iðx; kTÞd†h↑jðx̄; k̄TÞ�j0i; ð3Þ

jMijlzj¼1 ¼ i
Z

d2kT
2ð2πÞ3

dxffiffiffiffiffi
xx̄

p ψ1ðx; k2TÞ
δijffiffiffi
3

p 1ffiffiffi
2

p

× ½k−Tb†f↑iðx; kTÞd†h↑jðx̄; k̄TÞ
þ kþT b

†
f↓iðx; kTÞd†h↓jðx̄; k̄TÞ�j0i; ð4Þ

where k�T ¼ k1 � ik2. The LFWFs are obtained from the
Bethe-Salpeter wave function via the light front projections
[33,38,39]

ψ0ðx; k2TÞ ¼
ffiffiffi
3

p
i
Z

dkþdk−

2π

× TrD½γþγ5χðk; PÞ�δðxPþ − kþÞ; ð5Þ

ψ1ðx; k2TÞ ¼ −
ffiffiffi
3

p
i
Z

dkþdk−

2π

1

k2T
× TrD½iσþikiTγ5χðk; PÞ�δðxPþ − kþÞ; ð6Þ

where the trace is over Dirac indices. The Bethe-Salpeter
wave function is defined by χfh̄ðk; PÞ ¼

R
d4ze−ik·z×

h0jT fðzÞh̄ð0ÞjMðPÞi [40,41], and can be expressed as
χfh̄ðk; PÞ ¼ Sfðkþ P=2ÞΓfh̄ðk; PÞShðk − P=2Þ, where
SðkÞ is the dressed quark propagator and Γðk; PÞ the
meson’s Bethe-Salpeter amplitude [34,42].
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In the framework of the DSEs SðkÞ and Γðk; PÞ
are obtained by solving the quark gap equation and
Bethe-Salpeter equation, respectively. For nonsinglet pseu-
doscalar mesons the AV-WTI should be preserved by
carefully selecting truncation schemes. The simplest sym-
metry-preserving DSE truncation is rainbow-ladder (RL)
and has achieved many successes in the study of hadron
properties [43–45]. A modern extension known as the
DCSB-improved (DB) truncation improves upon the RL
truncation and provides more realistic description of
the pion, kaon, and other hadrons [35]. In this work we
employ the existing DB-kernel solution parametrized in
Refs. [46–48]. Further details about this DSE truncation are
given in Appendix A.
To obtain the pion and kaon LFWFs we first determine

an arbitrary k2T-dependent moment defined by

hxmilzðk2TÞ ¼
Z

1

0

dxxmψ lzðx; k2TÞ: ð7Þ

These can be directly calculated using Eqs. (5) and (6),
that is

hxmi0ðk2TÞ ¼
ffiffiffi
3

p
i

jPþj
Z

dkþdk−

2π

�
kþ

Pþ

�
m

× TrD½γþγ5χðkþ; k−; kT; PÞ�; ð8Þ

hxmi1ðk2TÞ ¼ −
ffiffiffi
3

p
i

jPþjk2T

Z
dkþdk−

2π

�
kþ

Pþ

�
m

× TrD½iσþikiTχðkþ; k−; kT; PÞ�: ð9Þ

Since we have an analytical form for χðk; PÞ obtained
by parametrizing the numerical DSE solution, the two-
dimensional momentum integrations can be completed
with the help of Feynman parametrization. In practice,
we transform the integration variables to rewrite the integral
in the form

hxmilzðk2TÞ ¼
Z

1

0

dααm
Z

dβdγflzðα; k2T; β; γÞ: ð10Þ

Comparison with Eq. (7) then reveals that the LFWFs are
identified as ψ lzðx; k2TÞ ¼

R
dβdγflzðx; k2T; β; γÞ.

We present plots of the leading Fock state LFWFs for the
pion and kaon in Fig. 1. For concreteness, we focus our
discussion to the case of π− and K−, so the d and s are the
valence quarks and ū is valence antiquark. In general we
find that all the LFWFs are smooth functions decaying as
k2T increases or x approaches the end-points. As expected
for light mesons, the x-dependence of the LFWFs is broad
at low k2T and get narrower as k2T increases, approaching an
asymptotic form for large k2T proportional to xð1 − xÞ.
Figure 2 provides an example of how the x-dependence of
ψ0ðx; k2TÞ changes with k2T . The strong support of the
LFWFs at infrared k2T originates from the strength of the

covariant Bethe-Salpeter wave functions at low jkT j, which
is closely connected to DCSB, as illustrated model-inde-
pendently in Ref. [36]. Therefore, our LFWFs faithfully
inherit the DCSB property from the covariant DSEs
calculation. At large k2T , the LFWFs decay as ψ0ðx; k2TÞ ∼
1=k2T and ψ1ðx; k2TÞ ∼ 1=k4T , in line with the perturbative
QCD expectations [49]. The effects of SU(3) flavor
symmetry breaking are clearly apparent in the kaon, as
the heavier s quark gains more support at large x and the
LFWFs become skewed. This indicates that the s quark
carries more of the kaon’s light-cone momentum fraction.
However, these SU(3) flavor symmetry breaking effects
diminish as k2T increases. Further analysis of these effects
will be given in later sections when GPD and TMD results
are presented.
The LFWFs are normalized so that the quark number

sum rule
R
1
0 dxfðx; μ0Þ ¼ 1 is satisfied. Therefore, with

only the leading Fock state the valence quark distribution
function fðx; μ0Þ is given by

FIG. 1. The top row gives the LFWFs for pion and the bottom
row gives the kaon results. The left column is ψ0ðx; k2TÞ and the
right column is ψ1ðx; k2TÞ, where k2T is in GeV2.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

FIG. 2. Pion’s spin-antiparallel LFWF ψ0ðx; k2TÞ at different

values of k2T , normalized to ψN
0 ðx; k2TÞ ¼ ψ0ðx;k2T ÞR

1

0
dxψ0ðx;k2T Þ

.
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fðx; μ0Þ ¼
Z

d2kT
ð2πÞ3 ½jψ0ðx; k2TÞj2 þ k2T jψ1ðx; k2TÞj2�: ð11Þ

This approximation to the full valence quark distribution
function is best at a low hadronic scale μ0, which in Ref. [33]
was determined to be μ0 ¼ 520 MeV. In a nonrelativistic
system ψ1ðx; k2TÞ would vanish because the quarks are in a
relativep-wave, howeverwe find that the contribution to the
quark number sum rule from ψ1ðx; k2TÞ equals 0.36 for
the pion and 0.31 for the kaon. Therefore, we find that the
valence quarks in both the pion and kaon are highly
relativistic. Importantly, the relative strength between
ψ0ðx; k2TÞ and ψ1ðx; k2TÞ in our approach is completely
determined by the Bethe-Salpeter wave function, which
itself is governed by the underlying quark-gluon interaction.
The significant contribution of ψ1ðx; k2TÞ to observables
likely also implies that higher Fock states may not be
negligible in a more realistic calculation. Nevertheless,
the higher Fock states are much more difficult to calculate
and are beyond the scope of this work.

III. GPDS AT ZERO SKEWNESS

The leading twist spin-independent quark GPD for a
meson M is defined in light-cone gauge as

Hq
Mðx; ξ; tÞ ¼

1

2

Z
dz−

2π
eixP

þz−

×

�
Pþ Δ

2

����ψ̄q

�
−
z−

2

�
γþψq

�
z−

2

�����P −
Δ
2

�
;

ð12Þ
where the gauge link is unity [2,20], x denotes the parton’s
averaged light-cone momentum fraction, the skewness
parameter is ξ ¼ − Δþ

2Pþ, and the momentum transfer

t ¼ Δ2 ¼ − 4ξ2m2
MþΔ2

T
1−ξ2 . The physical support region of

Hq
Mðx; ξ; tÞ is given by x ∈ ½−1; 1�, ξ ∈ ½−1; 1� and

t < − 4ξ2m2
M

1−ξ2 . GPDs have two distinct domains, where jxj <
jξj is the Efremov–Radyushkin–Brodsky–Lepage (ERBL)
region and 1 > jxj > jξj is the Dokshitzer–Gribov–
Lipatov–Altarelli–Parisi (DGLAP) region, following the
pattern of their evolution with scale μ, which is implicit in
the definition Eq. (12).
To calculateHq

Mðx; ξ; tÞwe employ its light front overlap
representation. This result can be obtained using light-cone
quantization and expanding the quark field in Eq. (12)
using the canonical field mode expansion and the hadron
state ket using a Fock state expansion. Contracting all the
operators, one gets the light front overlap representation of
the GPD in terms of LFWFs. However, in the ERBL region
this requires the overlap of LFWFs with different numbers
of constituents, i.e., N and N þ 2. The ERBL region is
therefore inaccessible in a leading Fock state expansion due
to the lack of a 4-particle Fock state.

In a meson M with active quark f, the GPD Hf
Mðx; ξ; tÞ

in the DGLAP region can be expressed as the overlap of
LFWFs [19,20,38,50]

Hf
Mðx; ξ; tÞ ¼

Z
d2kT
ð2πÞ3 ½ψ

�
0ðx̂; k̂TÞψ0ðx̃; k̃TÞ

þ k̂T · k̃Tψ�
1ðx̂; k̂TÞψ1ðx̃; k̃TÞ�; ð13Þ

with x̂ ¼ x−ξ
1−ξ, x̃ ¼ xþξ

1þξ, k̂T ¼ kT þ 1−x
1−ξ

ΔT
2

and

k̃T ¼ kT − 1−x
1þξ

ΔT
2
. For the active antiquark h̄, the GPD

can be obtained analogously as [20]

Hh
Mðx; ξ; tÞ ¼ −

Z
d2kT
ð2πÞ3 ½ψ

�
0ðx̂0; k̂0TÞψ0ðx̃0; k̃0TÞ

þ k̂0T · k̃0Tψ�
1ðx̂0; k̂0TÞψ1ðx̃0; k̃0TÞ�; ð14Þ

with x̂0 ¼ 1 − −x−ξ
1−ξ , x̃0 ¼ 1 − −xþξ

1þξ , k̂0T ¼ kT þ 1þx
1−ξ

ΔT
2

and

k̃0T ¼ kT − 1þx
1þξ

ΔT
2
. In the absence of an accessible ERBL

region we limit our study to zero skewness, Hq
Mðx; 0; tÞ,

which still allows access to many interesting quantities,
e.g., the collinear PDF fqMðxÞ, the impact parameter
dependent parton distributions (IPDs) ρqMðx; b2TÞ, the
electromagnetic form factor (EMFF) FMðtÞ, and the gravi-
tational form factor (GFF) Aq;M

2;0 ðtÞ.
We present the GPDs at the model scale μ0 in Fig. 3. For

the ease of comparison, for antiquark h̄ we plot
−Hh

Mð−x; 0; tÞ. Since the GPD reduces to the PDF at zero
momentum transfer, i.e., Hqðx; 0; 0Þ ¼ fqðxÞ. The initial
scale μ0 is determined as follows (see Ref. [33]): At the
scale of Q2 ¼ 4 GeV2, the πN Drell-Yan analysis gives
averaged momentum fraction of valence quark distribution
in pion as 2hxiv ¼ 0.47ð2Þ [51,52] and the lattice QCD
gives 2hxiv ¼ 0.48ð4Þ [53]. To match this result, we
determine μ0 ¼ 0.52 GeV, so that hxiv ¼ 0.5 at μ0 reduces
to hxiv ¼ 0.24 at 2 GeV by NLO DGLAP evolution.

FIG. 3. Hq
Mðx; ξ ¼ 0; tÞ for pion and kaon at the model scale

(μ0 ¼ 520 MeV). The green surface (upper at x ∼ 0.8) is for the s
quark in kaon, blue surface (lower at x ∼ 0.8) is for the ū in kaon,
and the red surface (middle at x ∼ 0.8) is for pion.
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The two-dimensional Fourier transform of Hq
Mðx; 0;Δ2

TÞ
gives the IPDs:

ρqMðx; b2TÞ ¼
Z

d2ΔT

ð2πÞ2H
q
Mðx; 0;−Δ2

TÞeibT ·ΔT : ð15Þ

The IPDs have the interpretation of parton distributions in
the transverse plane [5,6], with x the light-cone momentum
fraction and bT the transverse separation between the active
parton and the origin of transverse center of momentum RT .
In the valence picture with two constituents, RT ¼ xrT;1þ
ð1 − xÞrT;2, where rT;i is the transverse position of ith
quark. The impact parameter is then bT;1 ¼ rT;1 − RT . In
Fig. 4 we plot ρqMðx; b2TÞ for pion and kaon. An important
observation is that as x becomes larger, the width of the
curves shrinks and the quark distributions are more
spatially localized. When x → 1, the width is vanishingly
small and the quark stays near the center of transverse
momentum. This can be understood since when one quark
carries almost all of the light-cone momentum (as x → 1),
then RT → rT;1 and bT;1 → 0, namely, this quark defines
the transverse center of momentum. Alternatively, if we
consider the overlap representation of ρðx; b2TÞ in terms of
LFWFs in the coordinate space, that is [29,54]

ρðx; b2TÞ ¼
1

ð1 − xÞ2
X
λ1;λ2

����Φ̃λ1;λ2

�
x;

bT
1 − x

�����
2

: ð16Þ

where Φ̃λ1λ2ðx; rÞ ¼
R
d2keikrΦλ1λ2ðx; kÞ,1 then, as x → 1

the impact parameter bT must approach zero so bT=ð1 − xÞ
does not go large.
Flavor symmetry breaking effects are clearly evident in

Fig. 4. Typically, at smaller x (x ¼ 0.3) there is more ū
quark than s quark in kaon over the whole bT range. At
larger x (x ¼ 0.7) the situation is reversed. This suggests
the s quark is more likely distributed near the center of kaon
while the u quark is more spread out. We can also look at

ρð0Þðb2TÞ ¼
Z

1

0

dxρðx; b2TÞ; ð17Þ

which characterizes the quark density at transverse sepa-
ration bT . As shown in the lower panel of Fig. 4, the s quark
in kaon favors small bT and ū quark has a broader
distribution, with d quark in pion lying in between.
If we look at their mean-squared bT , i.e., hb2Ti ¼R
d2bTb2T

R
1
0 dxρðx; b2TÞ, we find hb2Tiπu ¼ 0.11 fm2,

hb2TiKs ¼ 0.08 fm2, and hb2TiKu ¼ 0.13 fm2. It is worth
mentioning here that in our calculation, the current quark
mass we used are mζ¼2 GeV

u=d ¼ 4.3 MeV and mζ¼2 GeV
s ¼

110 MeV. This big mass difference gets weakened by the

DCSB, and the difference in the u=d and s quark distri-
butions is no longer so dramatic.
Further, on can define the valencelike distribution

ρð0Þv ðb2TÞ ¼ ρð0Þq ðb2TÞ − ρð0Þq̄ ðb2TÞ, where q is the active quark.

Because ρð0Þq̄ ðb2TÞ vanishes at the model scale in our leading

Fock state calculation, then ρð0Þv ðb2TÞ is equivalent to

ρð0Þq ðb2TÞ plotted in Fig. 4. However, it’s worth mentioning

that ρð0Þv ðb2TÞ is independent of the renormalization scale,
because DGLAP evolution conserves the quark number
density at every slice of bT . Equivalently,Hðx; 0; tÞ evolves
independently of t [5]. Thus the lower panel of Fig. 4 can
also be viewed as the valence (anti-)quark spatial distri-
bution at any scale.

IV. ELECTROMAGNETIC AND
GRAVITATIONAL FORM FACTORS

The electromagnetic form factors of a hadron provide
important information about its spatial structure. The pion
and kaon have one electromagnetic form factor defined by

FIG. 4. Upper panel: IPDs ρqMðx; b2TÞ for the valence quarks in
pion and kaon at model scale (μ0 ¼ 520 MeV). The line styles
are indicated in the plot. For each quark distribution with same
line style, the three peaks from left to right correspond to
x ¼ 0.98, x ¼ 0.7 and x ¼ 0.3 respectively. Lower panel: The
ρð0Þðb2TÞ of pion and kaon as defined in Eq. (17).

1Recall thatΦλ1λ2ðx; kTÞ has been defined in Eq. (1) and can be
easily be related to ψ0ðx; k2TÞ and ψ1ðx; k2TÞ via comparison with
Eqs. (2)–(4).
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X
q¼u;d

hMðp0ÞjeqJμqð0ÞjMðpÞi ¼ ðp0μ þ pμÞFMðtÞ; ð18Þ

with JμqðxÞ ¼ ψ̄qðxÞγμψqðxÞ and t ¼ −Q2 ¼ ðp0 − pÞ2.
The pion and kaon electromagnetic form factors are also
given by the lowest x-weighted moment of their GPDs

FMðtÞ ¼
Z

1

−1
dx½euHu

Mðx; ξ; tÞ þ edHd
Mðx; ξ; tÞ�; ð19Þ

which is independent of skewness ξ because of the
polynomiality property of the GPDs. The result for the
pion’s electromagnetic form factor obtained using Eq. (19)
is given by the dashed curve in Fig. 5. In general we find
that our result overshoots the data for all Q2, and also the
full DSE calculation that uses the Bethe-Salpeter wave
function and a dressed quark-photon vertex to directly
calculate the pion’s form factor [45]. As wewill explain, the
origin of these discrepancies is naturally explained by the
Fock state truncation and the LFWF normalization con-
dition [see Eq. (11)].
At (very) large Q2 perturbative QCD predicts that the

pion’s electromagnetic form factor behaves as [57]

∃Q0 > ΛQCDjQ2FπðQ2Þ ≈
Q2>Q2

0
16πCFαsðQ2Þw2

π; ð20Þ

where wπ is the x−1 moment of parton distribution
amplitude (PDA) wπ ¼

R
1
0 dxx

−1ϕπðx;Q2Þ, where in this
case the PDA ϕπðx;Q2Þ is normalized at the scale of Q2

such that

ϕπðx;Q2Þ ¼
Z
k2T≤Q

2

d2kT
16π3

ψ0ðx; k2TÞ; ð21Þ

Z
1

0

dxϕπðx;Q2Þ ¼ fπ
2

ffiffiffi
3

p ; ð22Þ

where fπ ¼ 92.4 MeV is the pion’s electroweak decay
constant. The DSE calculation based on Eqs. (20)–(22) has
been presented in Ref. [46] and the result is reasonable.
However, the LFWF normalized by Eq. (22) is significantly
smaller than required due to our normalization condition in
Eq. (11). The (very) large Q2 behavior of the pion’s
electromagnetic form factor is dominated by the leading
Fock state, and thus the deviation at large Q2 can be
explained by the normalization condition. Similarly, in a
full calculation some of the charge of the pion will be
carried by the higher Fock states, which would reduce the
normalization of the leading Fock state and thereby bring
our result into much better agreement with data at largeQ2.
However, we see from Fig. 5 that the Q2 dependence of the
LFWF result of the full DSE result does begin to track each
other—only differing by a constant normalization—as Q2

become large. This indicates the onset of the dominance of
the leading Fock state.
The deviation in the low Q2 region is also easy to

understand. The normalized condition for the LFWFs is
such that Fπð0Þ ¼ 1. However, as mentioned higher Fock
states will carry some charge, which, if included, would
cause a modification to the form factor at low to inter-
mediate Q2. In addition, there are important contributions
that can dramatically change the charge radius but do not
impact the charge. Traditionally, these are associated with
vector meson dominance (VMD) contributions. VMD is
associated with meson poles in the timelike region, where
for the pion electromagnetic form factor the rho pole is the
most important. In the LFWF approach these VMD
contributions can only be obtained by including an infinite
tower of Fock states. This is natural in the complete DSE
calculation with a dressed quark-photon vertex, but very
challenging in a rigorous light-front approach. It is there-
fore not possible for a leading Fock state calculation—that
is intimately connected to underlying QCD dynamics—to
give a good description of the electromagnetic form factor
for all Q2.
With the pion’s (Breit-frame) charge radius defined by

r2c ¼ −6
∂FπðQ2Þ
∂Q2

����
Q2¼0

; ð23Þ

we obtain from the leading Fock state calculation
rc ¼ 0.41 fm, which is significantly smaller than the
experiment value of rc ¼ 0.67 fm [58]. A similar result
was also found using a relativistic constituent quark model
based on an effective qq̄ Hamiltonian [59], where a pion

FIG. 5. Electromagnetic form factor FðtÞ of pion in the
spacelike region. The data is the from NA7 Collaboration [55]
(red empty circle) and Jefferson Lab [56] (green filled square).
The dashed (blue) curve is based on the unmodified GPD in
Eq. (13), while the solid (black) curve uses a GPD with a dressed
operator to simulate higher Fock states, see Eq. (24). The dotted
curve is the full rainbow-ladder DSE result from Ref. [45] that
including an infinite tower of Fock states.
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charge radius of rc ¼ 0.45 fm was found [60]. In this work
the authors argue that the discrepancy with experiment can
be corrected by taking into account the constituent quark
charge radius, which is analogous to dressing the vertex as
in a full DSE calculation.
In a complete DSE calculation the operator that defines

the GPDs would be dressed. Such a calculation from the
DSE is very difficult and beyond the scope of this work.
However, we can use an analogous calculation for this
dressed operator from the NJL model to obtain a qualitative
measure of the impact of a dressed vertex, or equivalently
higher Fock states. Using a dressed operator that defines the
GPD from the NJL model [61], we find in the impulse
approximation that our leading Fock state DSE result is
modified such that

H0
dðx; 0; tÞ ¼ Hdðx; 0; tÞ þ δðxÞF̃ρðtÞ

Z
1

−1
dyHI¼1ðy; 0; tÞ;

ð24Þ

where

HI¼1ðx; 0; tÞ ¼ Huðx; 0; tÞ −Hdðx; 0; tÞ; ð25Þ

and the modified GPD at zero skewness is denoted by
H0

dðx; 0; tÞ. Note, in the pion Huðx; 0; tÞ can be obtained
from Hdðx; 0; tÞ by charge symmetry. The second term on
the right-hand side of Eq. (24) comes from the dressing of
the quark vertex in the impulse approximation and provides
an additional contribution (see Appendix B for details).
Using H0ðx; 0; tÞ, we get the solid curve in Fig. 5 and a
charge radius rc ¼ 0.59 fm, with the low to intermediate−t
region also significantly improved.
The modification term in Eq. (24) has many interesting

properties. For instance, its dressing function F̃ρðtÞ
vanishes at t ¼ 0, so the PDF is unchanged, i.e.,
H0ðx; 0; 0Þ ¼ Hðx; 0; 0Þ. While at nonvanishing t, the
modification term proportional to δðxÞ is infinitely neg-
ative. Its integration over x yields a finite suppression to the
electromagnetic form factor. In terms of the overlap
representation, this correction can only be obtained by
including an infinite tower of Fock states containing q̄q
pairs. The modification in Eq. (24) brings no change to
ρðx; b2TÞ for x > 0 and all the results in last section
still hold.
The higher moments of the GPD at ξ ¼ 0, i.e.,

Z
1

−1
dxxmH0qðx; 0; tÞ ¼ Aq

mþ1;0ðtÞjm≥1; ð26Þ

are not affected by this modification term, as a consequence
of the δðxÞ. Among these moments, Aq

2;0ðtÞ contributes
partially to the pion’s gravitational form factor Θ2ðtÞ,
defined through the matrix element of energy-momentum
tensor for one-pion states [62]

hπþðp0ÞjΘμνð0ÞjπþðpÞi ¼ 1

2
½PμPνΘ2ðtÞ

þ ðgμνq2 − qμqνÞΘ1ðtÞ�: ð27Þ

with P ¼ pþ p0, q ¼ p0 − p and t ¼ q2. The form factor
Θ2ðtÞ is scale independent, while its individual quark
contributions Aq

2;0ðtÞ evolve with scale. At the low model
scale, the valence picture gives Θ2ðtÞ ¼

P
q A

q
2;0ðtÞ. As the

scale increases, Aq
2;0ðt; μÞ evolves accordingly to the evo-

lution of the GPD.
In Fig. 6 we show pion’s Ad;π

2;0ðtÞ (solid red curve) at the
scale of 2 GeV and the curve lies within the lattice
simulation data. It is closer to the NJL model result (blue
dashed) [63] than to the spectral quark model [63]. We have
illustrated the kaon GFFs Aū;K

2;0 ðtÞ and As;K
2;0 ðtÞ as well.

A light-cone energy radius can be defined in relation to
the gravitational form factor A2;0ðtÞ, and is given by [65]

hr2E;LCi ¼ −4
∂A2;0ðQ2Þ

∂Q2

����
Q2¼0

; ð28Þ

which can be contrasted with an analogous light-cone
charge radius defined by hr2c;LCi ¼ −4∂FðQ2Þ=∂Q2jQ2¼0.
For the pion we find ru;πc;LC ¼ 0.331 fm and ru;πE;LC ¼ 0.185,
meaning the energy radius is about 56% smaller that the
light-cone charge radius. Both these radii will be impacted
by higher Fock states, however, based on vector meson
dominance the light-cone charge radius will increase more
because it is impacted by the ρ meson pole whereas the
light-cone energy radius is impacted by spin-2 mesons
which are much heavier and further from Q2 ¼ 0.
Therefore, we predict that ru;πE;LC=r

u;π
c;LC ¼ 0.56 is an upper

FIG. 6. The quark part of gravitational form factor Aq
2;0ðtÞ in

pion and kaon. The solid, dash-dash-dotted and dotted curves are
obtained by our DSEs-based LFWFs. All the other curves and
data are taken from [63]. The dot-dashed curve is the spectral
quark model prediction and the dashed curve is by NJL model
with the Pauli-Villars (PV) regularization. The data is from lattice
QCD [64].
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bound on this ratio. For the kaon we find light-cone charge
radii of ru;Kc;LC ¼ 0.358 fm and rs;Kc;LC ¼ 0.281 fm, and

light-cone energy radii of ru;KE;LC ¼ 0.192 fm and rs;KE;LC ¼
0.173 fm. In each case the s quark has a smaller extent than
the u quark.

V. TRANSVERSE MOMENTUM DEPENDENT
PARTON DISTRIBUTION FUNCTIONS

The unpolarized leading-twist TMD is defined as

f1ðx;k2TÞ¼
Z

dξ−d2ξT
ð2πÞ3 eiðξ−kþ−ξT ·kT ÞhPjψ̄ð0Þγþψðξ−;ξTÞjPi;

ð29Þ

with the gauge link omitted. In terms of the leading Fock
state LFWFs the TMD reads [66]

fq1ðx; k2TÞ ¼
1

ð2πÞ3 ½jψ0ðx; k2TÞj2 þ k2T jψ1ðx; k2TÞj2�; ð30Þ

which should be associated with an initial result at a
low scale of μ0 ¼ 520 MeV, just as in the GPD case.
We plot the unpolarized TMD for the pion and kaon
(s quark) in Fig. 7. The ū TMD in kaon can be simply
obtained from s quark distribution by momentum con-
servation, i.e., fū1Kðx; k2TÞ ¼ fs1Kð1 − x; k2TÞ. The distribu-
tion closely resembles the profile of LFWFs. Which
suggests that in a purely valence quark picture the quarks

are most likely to carry around half of the parent hadron’s
light-cone momentum with a small intrinsic transverse
momentum.
The transverse momentum dependence of the TMD has

long been of great interest, and in Fig. 8 we illustrate our
results for fixed values of x. Our results decrease with
increasing jkT j, being concave at low jkT j and becoming
convex as jkT j increases. The inflection point is around
300 MeV. Phenomenologically, postulating a Gaussian
jkT j-dependence is popular and Gaussian-based models
successfully describe much of the existing data [67–73].
The gray dot-dash-dash curve is a Gaussian function
fGðk2TÞ ¼ Ne−k

2
T=hk2Ti employed to fit fd1;πðx ¼ 0.3; k2TÞ at

low jkT j. One can see the fit is good up to around 300 MeV,
i.e., it describes well the intrinsic transverse momentum
dependence. For large jkT j the Gaussian form would
inevitably fail since fq1ðx; k2TÞ ∼ 1=k4T with our LFWFs.
Improving upon the Gaussian model, alternative paramet-
rizations of TMD PDF are also developed in the literature,
see e.g., Refs. [74,75]. We note that they also lead to
qualitatively similar kT-behavior in the infrared.
The x-dependence and kT-dependence in our TMDs are

not factorizable, except for at very large k2T . For instance, in
Fig. 8, the hk2Ti is respectively 0.14 GeV2 and 0.13 GeV2

when fitting fd1;πðx ¼ 0.3; k2TÞ and fd1;πðx ¼ 0.5; k2TÞ to the

Gaussian form fGðk2TÞ ¼ Ne−k
2
T=hk2T i. In recent years, phe-

nomenological studies of TMDs have appreciated the x-
dependence of the jkT j behavior and build it this into their
parametrizations at the low initial scale [73,74]. In this
sense, our result shows qualitative agreement. Note that
TMD evolution also generates significant x-dependence in
the jkT j behavior, as has been shown in Refs. [33,76].
Finally, we report that for the s quark in kaon, hk2Ti is
respectively 0.155 GeV2 and 0.134 GeV2 when fitting
fs1;Kðx ¼ 0.3; k2TÞ and fs1;Kðx ¼ 0.5; k2TÞ to the Gaussian
form. This is slightly larger than the ū or d quarks in pion,
and is a measure of SU(3) flavor symmetry breaking.

FIG. 7. The unpolarized TMD fd1;πðx; k2TÞ of pion (upper panel)
and fs1;Kðx; k2TÞ of kaon (lower panel).

FIG. 8. The jkT j-dependence of pion’s and kaon’s unpolarized
TMD at certain x values. The line styles are indicated in the plot
and further explained in the text.
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VI. CONCLUSION

By projecting the mesons’ covariant Bethe-Salpeter
wave functions onto the light front, we calculate the leading
Fock state LFWFs of the pion and kaon. The kaon’s
LFWFs based on a DSE approach are given for the first
time. These LFWFs are significantly enhanced at low jkT j
and exhibit the perturbative QCD power law behavior at
large jkT j. SU(3) flavor symmetry breaking is revealed in
the kaon’s LFWFs. We also observe a sizable contribution
from the spin-parallel LFWF, suggesting an important role
played by the p-wave component in the pion and kaon as
relativistic composite particles.
We employ the light front overlap representation given in

Eq. (13) to study the GPDs at zero skewness Hðx; ξ ¼ 0; tÞ
for the pion and kaon, and using the IPDs ρðx; b2TÞ, we
determine the spatial distribution of the valence quarks. On
the light front the quarks with larger light-cone momentum
fraction x are generally less spread out in the spatial impact
parameter bT. After integration over x, we find the heavier
quarks are more concentrated at the center of meson, e.g., the
s quark spatial distribution inK− is narrower than the ū quark.
Shortcomings in a leading Fock state truncation are

exposed in the pion’s electromagnetic form factor. An
attempt is made to overcome these issues using a dressing
of the operator that defines the GPD obtained from the NJL
model. The pion and kaon electromagnetic and gravita-
tional form factor then show reasonable agreement with
available experimental and lattice data.
Finally, we give the unpolarized TMDs of pion and kaon.

The phenomenologically popular Gaussian-like kT-
dependence is observed in our result for intrinsic jkT j,
but violated at medium and large jkT j. It is also observed
that the jkT j behavior in our TMD is slightly x-dependent,
suggesting an unfactorizable x- and kT-dependence. In
addition, the valence quarks in kaon have a broader
transverse momentum distribution, as a consequence of
SU(3) flavor symmetry breaking. Starting with the DSE
Bethe-Salpeter wave function we have therefore obtain
comprehensive insights into the pion and kaon valence
quark imaging in both position and momentum space.
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APPENDIX A: PARAMETRIZATION OF
SðkÞ AND Γðk;PÞ

To aid the calculation of the moments hxmilz we use an
accurate parametrization of numerical solutions to the gap
and BSEs in the DCSB-improved truncation to the DSEs
[46,77]. Solutions of theDSE-BSEwith the so-calledDCSB-
improved kernel are available within the literature, both for
the pion and the kaon [46,47]. In this work, we employ these
results and their available parametrization, thatwe remind the
reader of and slightly modify. The quark propagator SðkÞ is
written as the sum of pairs of complex conjugate poles:

SðkÞ ¼
Xn
i¼1

�
zi

i=kþmi
þ z�i
i=kþm�

i

	
; ðA1Þ

with n ¼ 2. The pseudoscalar Bethe-Salpeter amplitude
Γðk;PÞ can be generally decomposed as

Γðk;PÞ ¼ γ5½iEðk;PÞ þ =PFðk;PÞ
þ =kGðk;PÞ þ ½=P; =q�Hðk;PÞ�: ðA2Þ

We employ the dominant terms Eðk;PÞ and Fðk;PÞ, which
are parametrized by:

F ðk;PÞ ¼
Z

1

−1
dαρiðαÞ

�
U1Λ2n1

ðk2 þ αk · Pþ Λ2Þn1

þ U2Λ2n2

ðk2 þ αk · Pþ Λ2Þn2
	

þ
Z

1

−1
dαρuðαÞ

U3Λ2n3

ðk2 þ αk · Pþ Λ2Þn3 ; ðA3Þ

ρiðαÞ ¼
1ffiffiffi
π

p Γð3=2Þ
Γð1Þ ½Cð1=2Þ

0 ðαÞ

þ σi1C
ð1=2Þ
1 ðαÞ þ σi2C

ð1=2Þ
2 ðαÞ�; ðA4Þ

where ρuðαÞ ¼ 3
4
ð1 − α2Þ and fCð1=2Þ

n ; n ¼ 0; 1;…;∞g are
the Gegenbauer polynomials of order 1=2. The value of the
parameters are listed in Table I. The outgoing quark and

TABLE I. Representation parameters. Upper panel: Eq. (A1)—
the pair ðx; yÞ represents the complex number xþ iy. Lower
panel: Eqs. (A2)–(A4). (Dimensioned quantities are given in
GeV).

z1 m1 z2 m2

u (0.44,0.28) (0.46,0.18) (0.12,0.00) ð−1.31;−0.75Þ
s (0.43,0.30) (0.55,0.22) (0.12,0.11) ð−0.83; 0.42Þ

U1 U2 U3 n1 n2 n3 σi1 σi2 Λ

Eπ 2.76 −1.84 0.04 4 5 1 0.0 2.2 1.41
Fπ 1.46 −0.97 0.006 4 5 1 0.0 −0.5 1.13
EK 2.98 −2.0 0.025 4 5 1 −0.4 1.0 1.35
FK 0.86 −0.30 0.004 4 6 1 −0.4 −1.0 1.20
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antiquark in the meson carry momentum kþ P=2 and k −
P=2 respectively, so F ðk;PÞ is even in k · P due to charge
parity.

APPENDIX B: DRESSED GPD OPERATOR AT
ZERO SKEWNESS IN NJL MODEL

The modified GPD given in Eq. (24) is important in
validating our valence picture of pion concerning the pion’s
charge radius. Here we give a quick sketch on how it is
obtained in the NJLmodel, hence list only the basic idea and
important steps/results. Within the impulse approximation,
the pion’s GPD in the NJL model can be calculated as

H0
I¼0;1ðx; ξ; tÞ ¼

Z
d4l
ð2πÞ4 Tr½Γ̄πSΓ · nSΓπS�; ðB1Þ

with momentum assigned in Fig. 9. Here we consider the
GPD of isospin 0 or 1, defined as H0

I¼0 ¼ H0
u þH0

d and
H0

I¼1 ¼ H0
u −H0

d. Flavor matrices are implicitly embedded
in the elements S, Γπ and Γ · n. The notation Γ · n represents
the dash line boxed area.We denote the Γ · n as a violet blob
in other diagrams. It satisfies the inhomogeneous Bethe-
Salpeter equation:

ðB2Þ

Here the red blob is the bare vertex

ðB3Þ

Note the first Dirac delta ensures k� Δ=2 ¼ l� Δ=2 at
leading truncation. The matrices τ0 or τ3 are for isospin
0 or 1, respectively. To solve for Γ · n, one can formally sum
the series

ðB4Þ

Its subleading term

ðB5Þ

can be evaluated via Mellin moments, i.e.,Z
dxxsBIðx;ξ;tÞ¼

X
Ω
2iGΩ

Z
dxxs

Z
d4k
ð2πÞ4δðn · ½xP−k�Þ

×Tr
�
S
�
kþΔ

2

�
=n


τ0

τ3

�
S
�
k−

Δ
2

�
Ω
	
Ω;

ðB6Þ
where Ω denotes any of the five Dirac/isospin structures
appearing in theNJLmodel Lagrangian.2 At ξ ¼ 0 one finds

ðP · nÞ
Z

dxxsBI¼0;1ðx;0; tÞ ¼

−2Gω;ρΠVVðtÞ=n ∶s¼ 0

0 ∶s ≥ 1

ðB8Þ
which uniquely determines the result for BI to be

BI¼0;1ðx; 0; tÞ ¼ −2Gω;ρΠVVðtÞ
δðxÞ
ðP · nÞ=n: ðB9Þ

One can calculate the rest terms analogously and their
summation gives the overall dressed quark correlator:

ðB10Þ

Putting Eq. (B10) back into Eq. (B1), the first term in the
braces gives the bare vertex contribution

HI¼0;1ðx; 0; tÞ ¼
Z

d4k
ð2πÞ4 δðxP · n − l · nÞ

× Tr



Γ̄πS=n ⊗

�
τ0

τ3

	
SΓπS

�
: ðB11Þ

FIG. 9. Triangle diagram (impulse approximation) for
Hðx; ξ; tÞ. The dash line boxed area represents the fully dressed
vertex Γ · n. Lines with arrows indicate dressed quark propa-
gators S and the black blob represents the pion’s Bethe-Salpeter
amplitude Γπ .

2The qq̄ interaction kernel in NJL model is given by

Kαβ;γδ ¼ 2iGπ½ð1Þαβð1Þγδ − ðγ5τiÞαβðγ5τiÞγδ�
− 2iGρ½ðγμτiÞαβðγμτiÞγδ þ ðγμγ5τiÞαβðγμγ5τiÞγδ�
− 2iGωðγμÞαβðγμÞγδ: ðB7Þ
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The second term has x dependence factored out and one
easily finds its contribution is proportional to the lowest
moment of Eq. (B11). Finally we have

H0
Iðx; 0; tÞ ¼ HIðx; 0; tÞ þ

−2Gω;ρΠVVðtÞδðxÞ
1þ 2Gω;ρΠVVðtÞ

×
Z

1

−1
dyHIðy; 0; tÞ: ðB12Þ

Namely, the dressing of the bare vertex introduces
an additional term proportional to δðxÞ, leading back
to the modified GPD in Eq. (24). Used functions in
Eq. (24) are

F̃ρðtÞ ¼ −
2GρΠVVðtÞ

1þ 2GρΠVVðtÞ
ðB13Þ

ΠVVðtÞ ¼ −
Nct
π2

Z
1

0

dyyð1 − yÞE1ð2y − 1; sÞ ðB14Þ

E1ðy; tÞ ¼ E1

�
4M2 − tð1 − y2Þ

4Λ2
UV

�

− E1

�
4M2 − tð1 − y2Þ

4Λ2
IR

�
ðB15Þ

E1ðzÞ ¼
Z

∞

1

e−zt

t
dt: ðB16Þ

Here the proper time regularization is used, with parameters
determined by hadron mass spectrum and decay constant
from Table I in Ref. [78], i.e., ΛIR ¼ 0.24 GeV, ΛUV ¼
0.645 GeV, M ¼ 0.4 GeV and Gρ ¼ 11.0 GeV−2.
Finally, we note that the above dressing diagram

does not modify the unpolarized TMD within the NJL
model. The easiest way to see this is by realizing that in the
NJL model the unpolarized PDF is obtained by integrating
out the transverse momentum of TMD, i.e., fðxÞ ¼R
dk2Tf1ðx; k2TÞ. Since fðxÞ ¼ Hðx; 0; 0Þ receives no contri-

bution from the dressing diagrams, and f1ðx; k2TÞ is always
positive, one deduces any corrections to f1ðx; k2TÞ are zero.

[1] D. Müller, D. Robaschik, B. Geyer, F. M. Dittes, and J.
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