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Spectroscopic parameters and decay channels of the vector resonance Yð2175Þ are studied by
considering it as a diquark-antidiquark state with the quark content sus̄ū. The mass and coupling of
the tetraquark Yð2175Þ are calculated using the QCD two-point sum rules by taking into account various
quark, gluon and mixed condensates up to dimension 15. Partial widths of its strong decays to ϕf0ð980Þ,
ϕη, and ϕη0 are computed as well. To this end, we explore the vertices Yϕf0ð980Þ, Yϕη, and Yϕη0, and
calculate the corresponding strong couplings by means of the QCD light-cone sum rule method. The
coupling GYϕf of the vertex Yϕf0ð980Þ is found using the full version of this method, and by treating the
scalar meson f0ð980Þ as a diquark-antidiquark tetraquark state. The couplings gYϕη and gYϕη0 , however, are
calculated by applying the soft-meson approximation to the light-cone sum rule method. Prediction for the
mass of the resonance mY ¼ ð2173� 85Þ MeV is in excellent agreement with the data of the BABAR
Collaboration [Phys. Rev. D 74, 091103 (2006)], and within errors of calculations is compatible with the
result reported by BESIII [Phys. Rev. D 91, 052017 (2015)]. The full width Γfull ¼ ð91.1� 20.5Þ MeV of
the Yð2175Þ saturated by its three strong decay channels is in a reasonable agreement with existing
experimental data.

DOI: 10.1103/PhysRevD.101.074012

I. INTRODUCTION

The resonances fYg with the quantum numbers JPC ¼
1−− constitute two families of particles, interpretation of
which is one of interesting and yet unsettled problems of
the high energy physics. Members of the first family
populate the mass region m ¼ 4.2–4.7 GeV, and were
observed by different collaborations. These resonances
reside very close to each other, and are more numerous
than vector charmonia c̄c from this mass range. Hence, at
least some of these resonances have different quark-gluon
structure, and are presumably states built of four valence
quarks. Besides a suggestion about the tetraquark nature of
heavy fYg states, there are various alternative models to
account for their parameters and decay channels.
Another family of the fYg resonances occupies the light

segment of meson spectroscopy and incorporates the
famous “old” state Yð2175Þ, and new ones Xð2239Þ and
Xð2100Þ seen recently. The structure Yð2175Þ was dis-
covered by the BABAR collaboration in the initial-state

radiation process eþe− → γISRϕf0ð980Þ as a resonance in
the ϕf0ð980Þ invariant mass spectrum [1]. The mass and
width of this resonance measured by BABAR amount to
m ¼ ð2175� 10� 15Þ and Γ ¼ ð58� 16� 20Þ MeV,
respectively. The same structure was seen also by the
BESIII collaboration in the exclusive decay J=ψ →
ηϕπþπ− [2]. The spectroscopic parameters of the Yð2175Þ
extracted in this experiment differ from original results and
are m ¼ ð2200� 6� 5Þ and Γ ¼ ð104� 15� 15Þ MeV.
Recently, anomalously high cross section at

ffiffiffi
s

p ¼
2232 MeV was observed by the BESIII collaboration in
the channel eþe− → ϕKþK−, which may be explained by
interference of different resonances [3]: more data are
necessary to decide whether Yð2175Þ contributes to
enhancement of this cross section or not. Because the
Yð2175Þ was seen by BABAR and confirmed by the BESII,
BESIII, and Belle collaborations [2,4,5], its existence is not
in doubt, but an uncertain situation with the mass and full
width of this resonance requires further experimental and
theoretical studies.
Other resonances that may be considered as candidates

to light exotic vector mesons were discovered by the
BESIII collaboration. The first of them, i.e., Xð2239Þ,
was fixed in the process eþe− → KþK− as a resonant
structure in the cross section shape line [6]. The second
resonance Xð2100Þ was seen in the ϕη0 mass spectrum in
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the process J=ψ → ϕηη0 [7]. The quantum numbers of
Xð2239Þ were determined unambiguously, whereas a sit-
uation with Xð2100Þ remains unclear. Indeed, because of a
scarcity of experimental information the collaboration
could not clearly distinguish two 1þ and 1− assumptions
for the spin-parity JP of the resonance Xð2100Þ. Hence,
BESIII extracted its mass and full width using both of these
options. Obtained results differ from each other and depend
on assumption about the parity of the state Xð2100Þ.
Theoretical interpretations of the light vector resonances

comprise all available models and approaches of the high
energy physics. Thus, the Yð2175Þ was considered as 23D1

excitation of the ordinary s̄s meson [8,9]. It was explained
also as a dynamically generated state in the ϕKK̄ system
[10], or as a resonance appeared due to self-interaction
between ϕ and f0ð980Þ mesons [11]. A hybrid meson with
structure s̄sg [12] and a baryon-antibaryon qqsq̄q̄s̄ state
which couples strongly to the ΛΛ̄ channel are among
alternative models of the Yð2175Þ resonance. There were
attempts to interpret Yð2175Þ as a vector tetraquark with
ss̄ss̄ or sss̄s̄ contents [13–15] (see Ref. [6] for other
models). The resonance Xð2100Þ was examined in the
framework of the QCD sum rule method in Refs. [16,17].
Recently, we explored the light resonances Xð2100Þ and

Xð2239Þ as the axial-vector and vector sss̄s̄ tetraquarks
[18], respectively. Besides spectroscopic parameters we
also investigated the strong decays Xð2100Þ → ϕη0 and
Xð2100Þ → ϕη, and calculated their partial widths. Pre-
dictions obtained for the mass and width of the axial-vector
state allowed us to identify it with the resonance Xð2100Þ,
because our theoretical predictions are very close to its para-
meters measured by the BESIII collaboration. We classified
Xð2239Þ as the vector tetraquark sss̄s̄ and found a reason-
able agreement between theoretical and experimental results.
In the present work, we continue our investigations of the

light vector resonances and concentrate on features of the
state Yð2175Þ (hereafter, Y). Our treatment of this state dif-
fers from existing analyses. Thus, we consider it as a vector
tetraquark with content sus̄ ū rather than as a state sss̄s̄.
The traditional assumption about the quark content of the Y
is inspired by the fact that it was discovered in ϕf0ð980Þ
invariant mass distribution. Because in the standard model
of mesons one treats the ϕ and f0ð980Þ as vector and scalar
particles with the same s̄s structure, then it is natural to
assume that Y is built of four valence s quarks.
But the conventional quark-antiquark model of mesons

in the case of light scalar nonets meets with evident
difficulties. In fact, the nonet of scalar mesons in the q̄q
model may be realized as 13P0 states. In accordance with
various computations, masses of the scalars 13P0 are higher
than 1 GeV. They were identified with the isoscalar mesons
f0ð1370Þ and f0ð1710Þ, the isovector a0ð1450Þ or iso-
spinor K�

0ð1430Þ states, i.e., with scalars from the second
light nonet. But masses of the mesons from the first nonet
are lower than 1 GeV, and they cannot be included into this

scheme. Therefore, to explain experimental information on
their masses, and an unusual mass hierarchy inside of the
nonet Jaffe made a suggestion on a four-quark nature of
these particles [19].
An updated model of the light scalar nonets is based on

assumption about a diquark-antidiquark structure of these
particles, which appear as mixtures of spin-0 diquarks
from (3̄c; 3̄f) representation with spin-1 diquarks from
(6c; 3̄fÞ representation of the color-flavor group [20]. In
Refs. [21,22] we investigated the scalar mesons f0ð500Þ
and f0ð980Þ as admixtures of the SUfð3Þ basic light L ¼
½ud�½ūd̄� and heavy H ¼ ð½su�½s̄ū� þ ½ds�½d̄s�Þ= ffiffiffi

2
p

tetra-
quark states, and calculated their spectroscopic parameters
and full widths. Obtained predictions agree with existing
experimental data, therefore we consider the f0ð980Þ as the
exotic four-quark meson. Once we accept this model, a
treatment of the Y as a vector tetraquark Y ¼ ½su�½s̄ ū�
becomes quite reasonable.
We calculate the spectroscopic parameters of the vector

tetraquark Y ¼ ½su�½s̄ū� and explore some of its decay
channels. The mass and coupling of the Y are evaluated
using the QCD two-point sum rule method [23,24]. We
investigate the strong decays Y → ϕf0ð980Þ,Y → ϕη, and
Y → ϕη0, and find their partial widths. To this end, we use
the QCD light-cone sum rule (LCSR) method [25], and
calculate the couplingsGYϕf, gYϕη, and gYϕη0 corresponding
to the strong vertices Yϕf0ð980Þ, Yϕη, and Yϕη0, respec-
tively. The coupling GYϕf is computed by employing the
full version of the LCSR method, whereas in the case of
gYϕη, and gYϕη0 this method is supplemented by a technique
of the soft-meson approximation [26–28]. Because the light
component of f0ð980Þ is irrelevant for analysis of the decay
Y → ϕf0ð980Þ, we treat f0ð980Þ as a pure H state.
This article is organized as the following way: In Sec. II

we calculate the mass and coupling of the tetraquark Y. The
strong decays of this state are considered in Secs. III and IV.
In Sec. III we analyze the process Y → ϕf0ð980Þ using the
LCSR method and find the partial decay width of this
channel. The partial widths of the decay modes Y → ϕη,
and Y → ϕη0 are calculated in Sec. IV. In Sec. V we analyze
the obtained results, and give our conclusions.

II. SPECTROSCOPIC PARAMETERS OF THE
TETRAQUARK Y: THE MASS mY AND

CURRENT COUPLING f Y

To evaluate the mass mY and coupling fY of the vector
tetraquark Y, we use the QCD two-point sum rule method
and start our calculations from analysis of the correlation
function,

ΠμνðpÞ ¼ i
Z

d4xeipxh0jT fJYμ ðxÞJY†ν ð0Þgj0i; ð1Þ

where JYμ ðxÞ is the interpolating current for the Y state.
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The current for a tetraquark with JP ¼ 1− can be built of
a scalar diquark and vector antidiquark or/and a vector
diquark and scalar antidiquark. There are several options to
construct alternative currents with required spin-parities,
but because a scalar diquark (antidiquark) is a most stable
two-quark state [29], for JYμ we use the structure

Cγ5 ⊗ γμγ5C − Cγμγ5 ⊗ γ5C: ð2Þ

This current consists of two components, and each of
them describes a vector tetraquark. The whole structure
corresponds to a vector tetraquark with definite charge-
conjugation parity JPC ¼ 1−−. Indeed, the charge-conjuga-
tion transforms diquarks to antidiquarks and vice versa,
therefore the minus sign between two components in
Eq. (2) generates the current with C ¼ −1.
The last question to be solved is a color structure of

constituent diquarks and antidiquarks. Thus, to get the
color-singlet current JYμ they should have the same color
structures and be either in color triplet ½3̄c� ⊗ ½3c� or sextet
½6c� ⊗ ½6̄c� configurations. The current of the type (2) and
built of color-sextet diquark-antidiquark has the following
form [30]:

J1μ ¼ uTaCγ5sb½ūaγμγ5Cs̄Tb þ ūbγμγ5Cs̄Ta �
− uTaCγμγ5sb½ūaγ5Cs̄Tb þ ūbγ5Cs̄Ta �: ð3Þ

The triplet current (2) is given by the expression

J3μ ¼ uTaCγ5sb½ūaγμγ5Cs̄Tb − ūbγμγ5Cs̄Ta �
− uTaCγμγ5sb½ūaγ5Cs̄Tb − ūbγ5Cs̄Ta �: ð4Þ

In Eqs. (3) and (4) a and b are color indices, and C is the
charge-conjugation matrix.
The J1μ and J3μ are color-singlet currents composed

of color-sextet and -triplet diquark-antidiquark pairs,
respectively. To see this, let us consider in a detailed form
J1μ. The color-sextet, i.e., color-symmetric a ↔ b nature
of the antidiquark fields in Eq. (3) is evident. The first
component of J1μ, for example, in the explicit color-singlet
form is

ðuTaCγ5sb þ uTbCγ5saÞ½ūaγμγ5Cs̄Tb þ ūbγμγ5Cs̄Ta �; ð5Þ

where both the diquark and antidiquark are symmetric in
color indices. It is not difficult to see that diquarks uTaCγ5sb
and uTbCγ5sa lead to identical results, hence it is enough in
J1μ to keep one of them. The similar analysis is valid for the
second component of J1μ as well. In the case of the current
J3μ, we see that the antidiquark fields in Eq. (4) are color-
triplet or color-antisymmetric constructions. The color-
triplet diquark field, for example, in the first component
of J3μ is ðuTaCγ5sb − uTbCγ5saÞ, and both uTaCγ5sb and

−uTbCγ5sa give again the same results. Therefore, we use
one of them in the current J3μ and get (4).
An appropriate form of the current JYμ that ensures

stability and convergence of the sum rules, which are
actual in the case of light tetraquarks [31], is superposition
of J1μ and J3μ. In the present work we use JYμ ¼
ðJ1μ þ J3μÞ=2, and get

JYμ ðxÞ ¼ ½uTaðxÞCγ5sbðxÞ�½ūaðxÞγμγ5Cs̄TbðxÞ�
− ½uTaðxÞCγμγ5sbðxÞ�½ūaðxÞγ5Cs̄TbðxÞ�: ð6Þ

The JYμ ðxÞ is a sum of two colorless terms, but belongs
neither to sextet nor to triplet representations of the color
group being the admixture of such states J1μ and J3μ.
To obtain sum rules for the mass and coupling of Y, we

should express the correlation function in terms of these
spectral parameters, and also calculate ΠμνðpÞ using quark-
gluon degrees of freedom. The first expression forms the
physical side of the sum rulesΠPhys

μν ðpÞ, whereas the second
one constitutes their QCD side ΠOPE

μν ðpÞ. In terms of the
tetraquark’s parameters the correlation function has the
following form:

ΠPhys
μν ðpÞ ¼ h0jJYμ jYðpÞihYðpÞjJY†ν j0i

m2
Y − p2

þ � � � : ð7Þ

Equation (7) is derived by saturating the correlation
function with a complete set of JPC ¼ 1−− states and
carrying out integration in Eq. (1) over x. As usual,
contributions arising from higher resonances and con-
tinuum states are denoted above by dots.
The correlator ΠPhys

μν ðpÞ can be further simplified if one
introduces the matrix element,

h0jJYμ jYðpÞi ¼ fYmYϵμ; ð8Þ

where ϵμ is the polarization vector of the Y state. Then the

correlation function ΠPhys
μν ðpÞ takes the simple form

ΠPhys
μν ðpÞ ¼ m2

Yf
2
Y

m2
Y − p2

�
−gμν þ

pμpν

m2
Y

�
þ � � � ; ð9Þ

and contains the Lorentz structure corresponding to the
vector state. Because a part of this structure proportional to
gμν receives contribution only from the vector states, we
work with this term and corresponding invariant ampli-
tude ΠPhysðp2Þ.
The QCD side of the sum rules is given by the same

correlation function ΠμνðpÞ but expressed in terms of the
quark propagators. Substituting the interpolating current
into Eq. (1), and contracting the quark fields, we get
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ΠOPE
μν ðpÞ ¼ i

Z
d4xeipxfTr½γ5S̃b0bs ð−xÞγ5γνSa0au ð−xÞ�Tr½Saa0u ðxÞγ5S̃bb0s ðxÞγ5γμ�

þ Tr½γμγ5S̃b0bs ð−xÞγ5Sa0au ð−xÞ�Tr½Saa0u ðxÞγνγ5S̃bb0s ðxÞγ5�
þ Tr½Saa0u ðxÞγ5S̃bb0s ðxÞγ5�Tr½γμγ5S̃b0bs ð−xÞγ5γνSa0au ð−xÞ�
þ Tr½γ5S̃b0bs ð−xÞγ5Sa0au ð−xÞ�Tr½Saa0u ðxÞγνγ5S̃bb0s ðxÞγ5γμ�g; ð10Þ

where

S̃qðxÞ ¼ CSTqðxÞC: ð11Þ

In the formula above SqðxÞ is the light quark propagator, for
which we employ the expression

Sabq ðxÞ ¼ i
=x

2π2x4
δab −

mq

4π2x2
δab −

hq̄qi
12

�
1 − i

mq

4
=x

�
δab

−
x2

192
hq̄gsσGqi

�
1 − i

mq

6
=x

�
δab

−
=xx2g2s
7776

hq̄qi2δab −
igsG

μν
ab

32π2x2
½=xσμν þ σμν=x�

−
x4hq̄qihg2sG2i

27648
δab

þmqgs
32π2

Gμν
abσμν

�
ln
�
−x2Λ2

4

�
þ 2γE

�
þ � � � ;

ð12Þ

where γE ≃ 0.577 is the Euler constant and Λ is the QCD
scale parameter. In Eq. (12) Gαβ

ab ¼ Gαβ
A tAab, where tA ¼

λA=2 with λA being the Gell-Mann matrices and
A;B;C ¼ 1; 2;…8. Let us note that the gluon field strength
tensor is fixed at x ¼ 0, i.e., GA

αβ ≡GA
αβð0Þ.

To find the required sum rules, we extract the invariant
amplitude ΠOPEðp2Þ corresponding to the structure gμν, and
equate it toΠPhysðp2Þ. We apply the Borel transformation to
both sides of the obtained equality, which is necessary to
suppress contributions of the higher resonances and con-
tinuum states. At the next stage, using an assumption on
quark-hadron duality, we carry out the continuum sub-
traction. After these standard manipulations the sum rule
depends on new parametersM2 and s0: the first of themM2

is the Borel parameter generated by the Borel transforma-
tion, whereas s0 is the continuum threshold parameter that
dissects contributions of the ground state and higher
resonances from each another. Remaining operations to
find the sum rules for mY and fY are similar to ones
presented numerously in the literature, and therefore, we
skip further details. It is worth noting that calculation of
ΠOPEðp2Þ in the present article is performed by taking into
account nonperturbative terms up to dimension 15.

The obtained sum rules contain various vacuum con-
densates, and depend on the s quark’s mass and on two
auxiliary parameters M2 and s0. Values of the vacuum
condensates and the mass of s quark used in numerical
computations are collected in Table I. Here, we also write
down the parameters of the ϕ, f0ð980Þ, η, and η0 mesons
which are necessary to calculate partial widths of the decay
processes.
The condensates characterize nonperturbative features

of the vacuum and do not depend on a problem under
consideration. On the contrary, the Borel and continuum
threshold parameters M2 and s0 should be chosen for each
sum rule computation individually and must meet restric-
tions imposed on them by the QCD sum rule method. The
main constraints on M2 and s0 are connected with con-
vergence of the operator product expansion (OPE) which
we fix by means of the ratio

RðM2Þ ¼ ΠDimNðM2; s0Þ
ΠðM2; s0Þ

; ð13Þ

and with the restriction on the pole contribution (PC)

PC ¼ ΠðM2; s0Þ
ΠðM2;∞Þ : ð14Þ

In Eqs. (13) and (14) ΠðM2; s0Þ is the invariant amplitude
ΠOPEðp2Þ obtained after the Borel transformation and

TABLE I. Vacuum condensates and spectroscopic parameters
of the mesons used in numerical computations.

Quantity Value

hq̄qi −ð0.24� 0.01Þ3 GeV3

hs̄si 0.8hq̄qi
m2

0 ð0.8� 0.1Þ GeV2

hq̄gsσGqi m2
0hq̄qi

hs̄gsσGsi m2
0hs̄si

hαsG2

π i ð0.012� 0.004Þ GeV4

ms 93þ11
−5 MeV

mϕ ð1019.461� 0.019Þ MeV
mf ð990� 20Þ MeV
mη ð547.862� 0.018Þ MeV
mη0 ð957.78� 0.06Þ MeV
fϕ ð215� 5Þ MeV
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subtraction procedures, and ΠDimNðM2; s0Þ denotes a last
term (or a sum of last few terms) in OPE. At the minimum
of the working window for the Borel parameter, we require
RðM2Þ ≃ 0.01 and use a sum of three terms DimN ¼
Dimð13þ 14þ 15Þ to estimate RðM2

minÞ. At maximum
allowed value of M2, we demand fulfillment of the
condition PC > 0.2.
In general, mY and fY extracted from the sum rules

should not depend on the Borel parameter M2. But in
actual computations the best thing one can do is find a
plateau where dependence of physical quantities on M2 is
minimal. The continuum threshold parameter s0 separates
a ground-state contribution from the ones due to higher
resonances and continuum states. In other words, s0
should be below the first excited state of the particle
under discussion Y. In the case of conventional hadrons,
masses of excited states are known either from exper-
imental measurements or from alternative theoretical
studies. For exotic particles the situation is more com-
plicated: there is not information on their radial and/or
orbital excitations. It is worth noting that for tetraquarks
this problem was addressed only in few publications
[32–34]. Therefore, one chooses s0 by demanding maxi-
mum for PC and, at the same time, a stability of an
extracting physical quantity. In such analysis very impor-
tant is control over self-consistency of the prediction for
mY and s0 used for these purposes:

ffiffiffiffiffi
s0

p
may exceed mY

approximately ½0.3; 0.6� MeV to be below a first excited
state of Y. Uncertainties in the choice of the M2 and s0
are the main sources of theoretical errors in the sum rule
calculations, which however can be systematically kept
under control.
Numerical analysis allows us to fix the regions

M2 ∈ ½1.2; 1.7� GeV2; s0 ∈ ½6; 6.5� GeV2 ð15Þ

as ones which obey the constraints imposed on M2 and s0.
Thus, at M2 ¼ 1.2 GeV2 the convergence of the OPE is
fulfilled, because a contribution of the last three terms to the
Borel transformed and subtracted invariant amplitude
ΠðM2; s0Þ does not exceed 0.3% of its value. At M2 ¼
1.2 GeV2 the pole contribution forms 60% of ΠðM2; s0Þ,
whereas at M2 ¼ 1.7 GeV2 it amounts to approximately
30% of the whole result.
The massmY and coupling fY are plotted in Figs. 1 and 2

as functions ofM2 and s0: one can inspect their dependence
on the Borel and continuum threshold parameters which is
considerable for fY.
Our results for the spectroscopic parameters of the

tetraquark Y are

mY ¼ ð2173� 85Þ MeV;

fY ¼ ð2.8� 0.5Þ × 10−3 GeV4: ð16Þ

Comparing mY with
ffiffiffiffiffi
s0

p
we see that

ffiffiffiffiffi
s0

p −mY ¼
½0.28; 0.38� MeV is a reasonable mass gap to separate Y
from its excitations.
As is seen, the mY is in excellent agreement with the

datum of the BABAR collaboration ð2175�10�15ÞMeV.
It is lower than the new result ð2200� 6� 5Þ MeV
reported by BESIII, but within errors of calculations is
compatible with this measurement as well. In this situation
decays of the tetraquark Y become of special interest,
because predictions for partial widths of the different
channels and for the full width of the Y are important to
verify our assumption on its structure.

III. THE DECAY Y → ϕf 0ð980Þ
The process Y → ϕf0ð980Þ is one of dominant strong

decays of the tetraquark Y. To calculate partial width of this
channel, we extract the strong coupling GYϕf of the vertex
Yϕf0ð980Þ in the context of the LCSR method and express
it in terms of various vacuum condensates and distribution
amplitudes (DAs) of the ϕ meson.
To derive the light-cone sum rule for the coupling GYϕf,

we start from analysis of the correlation function,

1.2

1.4

1.6
M2 GeV2

6.0

6.2

6.4

s0 GeV2

2.0

2.1

2.2

2.3

mY GeV

FIG. 1. The mass mY of the tetraquark Y as a function of the
Borel and continuum threshold parameters.

1.2

1.4

1.6
M2 GeV2

6.0

6.2

6.4

s0 GeV2

0.20

0.25

0.30

0.35

fY 102 GeV4

FIG. 2. Dependence of the coupling fY on M2 and s0.
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Πμðp; qÞ ¼ i
Z

d4xeipxhϕðqÞjT fJfðxÞJY†μ ð0Þgj0i; ð17Þ

where JYμ ðxÞ is the interpolating current of Y introduced
in Eq. (6).
As it has been emphasized above, we consider the scalar

meson f0ð980Þ [in formulas we use f ¼ f0ð980Þ] as a pure
H state. Interpolating current for such state is given by
expression

JfðxÞ ¼ ϵϵ̃ffiffiffi
2

p f½uTaðxÞCγ5sbðxÞ�½ūcðxÞγ5Cs̄Te ðxÞ�

þ ½dTaðxÞCγ5sbðxÞ�½d̄cðxÞγ5Cs̄Te ðxÞ�g; ð18Þ

where ϵϵ̃ ¼ ϵdabϵdce.
Then, the phenomenological side of the sum rule is

determined by the formula

ΠPhys
μ ðp; qÞ ¼ h0jJfjfðpÞi

p2 −m2
f

hfðpÞϕðqÞjYðp0Þi

×
hYðp0ÞjJY†μ j0i
p02 −m2

Y
þ � � � ; ð19Þ

where p0, and p, q are 4-momenta of the initial and final
particles, respectively. To simplify ΠPhys

μ ðp; qÞ we express
the matrix elements in terms of physical parameters of
the particles involved into the decay process. The matrix
element hYðp0ÞjJ†μj0i is given by Eq. (8), whereas for
h0jJfjfðpÞi we use

h0jJfjfðpÞi ¼ Ffmf: ð20Þ

We parametrize the vertex hfðpÞϕðqÞjYðp0Þi by means of
the expression

hfðpÞϕðqÞjYðp0Þi ¼ GYϕf½ðp0 · qÞðε� · ε0Þ
− ðq · ε0Þðp0 · ε�Þ�; ð21Þ

where GYϕf is the strong coupling which should be
determined using the sum rule, and ε�μ is the polarization
vector of the ϕ meson. This information on the matrix
elements is enough to get the phenomenological side of the
sum rule which reads

ΠPhys
μ ðp; qÞ

¼ GYϕf
mYfYmfFf

2ðp02 −m2
YÞðp2 −m2

fÞ

×

�
ðm2

f −m2
Y −m2

ϕÞε�μ þ
m2

Y þm2
f −m2

ϕ

m2
Y

p · ε�qμ

�
:

ð22Þ

It is seen that the function ΠPhys
μ ðp; qÞ contains two Lorentz

structures which can be employed to derive the required
sum rule. In the present study we choose the structure
proportional to the polarization vector ε�μ.
The second component of the sum rule ΠOPE

μ ðp; qÞ is
obtained by substituting the interpolating currents into the
correlation function (17), contracting the relevant quark
fields, and expressing a final expression in terms of quarks’
light-cone propagators SqðxÞ, and distribution amplitudes
of the ϕ meson.
After contracting the quark fields the matrix element in

Eq. (17) contains numerous terms of the forms

½AðxÞ�abαβhϕðqÞjs̄aαðxÞsbβð0Þj0i;
½BðxÞ�abαβhϕðqÞjs̄aαð0ÞsbβðxÞj0i; ð23Þ

where α and β are the spinor indices. Here AðxÞ and
BðxÞ are some combinations of the propagators Sqð�xÞ,
S̃qð�xÞ ¼ CST

qð�xÞC, and γ5ðσÞ matrices. In calculations
we use the light-cone propagator of the u, d, and s quarks,
which is determined by the formula

Sab
q ðxÞ ¼ i=x

2π2x4
δab −

mq

4π2x2
δab −

hq̄qi
12

�
1 − i

mq

4
=x

�
δab

−
x2

192
m2

0hq̄qi
�
1 − i

mq

6
=x

�
δab

− igs

Z
1

0

du

�
=xGμν

abðuxÞσμν
16π2x2

−
iuxμ
4π2x2

Gμν
abðuxÞγν

−
imq

32π2
Gμν

abðuxÞσμν
�
ln

�
−x2Λ2

4

�
þ 2γE

��
:

ð24Þ
The first two terms in (24) are the perturbative components
of the propagator, whereas others are nonperturbative con-
tributions. The terms ∼Gμν appear due to expansion of
SqðxÞ on the light cone and describe interactions with the
gluon field. In our analysis, we neglect terms proportional
to mq, but, at the same time, take into account the
ones ∼ms.
Apart from propagators the functionΠOPE

μ ðp; qÞ depends
also on nonlocal matrix elements of the quark operator s̄s
sandwiched between the vacuum and ϕ state. To express
these matrix elements using the ϕ meson’s distribution
amplitudes, we expand s̄ðxÞsð0Þ [this analysis is valid for
s̄ð0ÞsðxÞ as well] over the full set of Dirac matrices ΓJ and
project them onto the color-singlet states,

s̄aαðxÞsbβð0Þ →
1

12
δabΓJ

βα½s̄ðxÞΓJsð0Þ�; ð25Þ

where ΓJ

ΓJ ¼ 1; γ5; γμ; iγ5γμ; σμν=
ffiffiffi
2

p
: ð26Þ

S. S. AGAEV, K. AZIZI, and H. SUNDU PHYS. REV. D 101, 074012 (2020)

074012-6



The matrix element of the operators s̄ðxÞΓJsð0Þ can be
expanded over x2 and written down in terms of the ϕ
meson’s two- and three-particle DAs of different twist. In
the case ΓJ ¼ 1 and iγμγ5 we use the definitions

h0js̄ðxÞsð0ÞjϕðqÞi¼−if⊥ϕ ε ·xm2
ϕ

Z
1

0

dueiūqxψk
3ðuÞ; ð27Þ

and

h0js̄ðxÞγμγ5sð0ÞjϕðqÞi ¼
1

2
fkϕmϕϵμναβε

νqαxβ

×
Z

1

0

dueiūqxψ⊥
3 ðuÞ: ð28Þ

For the structures ΓJ ¼ γμ and σμν we have

h0js̄ðxÞγμsð0ÞjϕðqÞi

¼ fkϕmϕ

�
ε · x
q · x

qμ

Z
1

0

dueiūqx
�
ϕk
2ðuÞ þ

m2
ϕx

2

4
ϕk
4ðuÞ

�

þ
�
εμ − qμ

ε · x
q · x

�Z
1

0

dueiūqxϕ⊥
3 ðuÞ

−
1

2
xμ

ε · x
ðq · xÞ2m

2
ϕ

Z
1

0

dueiūqxCðuÞ þ � � �
�
; ð29Þ

and

h0js̄ðxÞσμνsð0ÞjϕðqÞi

¼ if⊥ϕ
�
ðεμqν − ενqμÞ

Z
1

0

dueiūqx
�
ϕ⊥
2 ðuÞ þ

m2
ϕx

2

4
ϕ⊥
4 ðuÞ

�

þ 1

2
ðεμxν − ενxμÞ

m2
ϕ

q · x

Z
1

0

dueiūqx½ψ⊥
4 ðuÞ − ϕ⊥

2 ðuÞ�

þ ðqμxν − qνxμÞ
ε · x

ðq · xÞ2 m
2
ϕ

Z
1

0

dueiūqxDðuÞ þ � � �
�
;

ð30Þ

respectively. Here ū ¼ 1 − u, and mϕ and ε are the mass
and polarization vector of the ϕ meson, respectively. In the
equations above the functions CðuÞ and DðuÞ denote the
combinations of the two-particle DAs

CðuÞ ¼ ψk
4ðuÞ þ ϕk

2ðuÞ − 2ϕ⊥
3 ðuÞ;

DðuÞ ¼ ϕk
3ðuÞ −

1

2
ϕ⊥
2 ðuÞ −

1

2
ψ⊥
4 ðuÞ: ð31Þ

The twists of the distribution amplitudes are shown as
subscripts in the relevant functions. It is seen that the CðuÞ
and DðuÞ include the two-particle leading twist DAs

ϕkð⊥Þ
2 ðuÞ, the twist-3 distribution amplitudes ϕkð⊥Þ

3 ðuÞ
and ψkð⊥Þ

3 ðuÞ, as well as twist-4 distributions ϕkð⊥Þ
4 ðuÞ

and ψkð⊥Þ
4 ðuÞ. Expressions of the matrix elements

h0js̄ðxÞΓJGμνðvxÞsð0ÞjϕðqÞi in terms of the higher twist
DAs of the ϕ meson, as well as detailed information on
their properties, were reported in Refs. [35–39].
The main contribution to ΠOPE

μ ðp; qÞ comes from the
terms (23), where all of the propagators are replaced by
their perturbative components (see Fig. 3). Contribution of
this diagram can be computed using the ϕ meson two-
particle distribution amplitudes. The one gluon-exchange
diagrams shown in Fig. 4 are corrections, which can be
expressed and calculated by utilizing three-particle DAs of
the ϕ meson. An analytic expression of the ΠOPE

μ ðp; qÞ in

FIG. 3. The leading order diagram contributing to ΠOPE
μ ðp; qÞ.

FIG. 4. The one-gluon exchange diagrams, which can be expressed in terms of the ϕ meson’s three-particle DAs.
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terms of the ϕ meson’s DAs is rather cumbersome, there-
fore we do not provide it here.
In our analysis we employ the invariant amplitude

ΠOPEðp02; p2Þ proportional to ε�μ and match it to the

corresponding function fromΠPhys
μ ðp; qÞ. These amplitudes

depend on p02 and p2, therefore one should perform the
double Borel transformation over the variables p02 and p2:

ΠOPEðM2
1;M

2
2Þ ¼ B

M2
1

p02B
M2

2

p2 ΠOPEðp02; p2Þ: ð32Þ

The Borel transformed amplitude ΠOPEðM2
1;M

2
2Þ can be

calculated in accordance with a scheme explained in
Ref. [40], and expressed as a double dispersion integral.
But to simplify manipulations following after the Borel
transformation, we can relate the parametersM2

1 andM
2
2 to

each other using M2
1

M2
2

¼ m2
Y

m2
f
and introduce a common param-

eter M2 through the relation

1

M2
¼ 1

M2
1

þ 1

M2
2

: ð33Þ

This implies replacements

M2
1 ¼

m2
f þm2

Y

m2
f

M2;

M2
2 ¼

m2
f þm2

Y

m2
Y

M2; ð34Þ

in the sum rules, and allows us to perform integration
over one of variables in the double dispersion integral.
The obtained expressions in this step depend also on the
parameter u0 with

u0 ¼
M2

1

M2
1 þM2

2

¼ m2
Y

m2
f þm2

Y
: ð35Þ

As a result of the above procedure we get a single integral
representation for ΠOPEðM2Þ which considerably simplifies
the continuum subtraction: formulas necessary to carry out
this procedure can be found in Appendix B of Ref. [40].
The DAs of the ϕ meson depend on numerous param-

eters. For example, the leading twist DAs of the longitu-
dinally and transversely polarized ϕmeson are given by the
expression

ϕkð⊥Þ
2 ðuÞ ¼ 6uū

�
1þ

X∞
n¼2

akð⊥Þ
n C3=2

n ð2u − 1Þ
�
; ð36Þ

where Cm
n ð2u − 1Þ are the Gegenbauer polynomials.

Equation (36) is the general expression for ϕkð⊥Þ
2 ðuÞ. In

our calculations we employ twist-2 DAs with a

nonasymptotic term akð⊥Þ
2 ≠ 0. The models for the higher

twist DAs and values of the relevant parameters at the
normalization scale μ0 ¼ 1 GeV are taken from
Refs. [38,39] (see Tables 1 and 2 in Ref. [39]).
The sum rule for the coupling GYϕf contains the quark,

gluon and mixed condensates and the s-quark mass which
are moved to Table I. The spectroscopic parameters of the
particles involved into the decay Y → ϕf0ð980Þ are also
input information of computations. The mass and coupling
of the tetraquark Y have been evaluated in the present work.
For the mass of the ϕ and f0ð980Þ mesons we use their
experimental values (see Table I). The coupling Ff of the
meson f0ð980Þ is borrowed from Ref. [21], where it was
treated as the four-quark system,

Ff ≡ FH ¼ ð1.35� 0.34Þ × 10−3 GeV4: ð37Þ

Finally, the sum rule depends on the Borel and continuum
threshold parameters: M2 and s0 are auxiliary parameters
of computations, and the result should be insensitive to
their choices. But in real analysis we can only minimize
these effects and fix convenient working windows for the
M2 and s0:

M2 ∈ ½2.4; 3.4� GeV2; s0 ∈ ½6; 6.5� GeV2: ð38Þ

In accordance with our studies the strong coupling GYϕf
is equal to

GYϕf ¼ ð1.62� 0.41Þ GeV−1: ð39Þ

The width of the decay Y → ϕf0ð980Þ is determined by the
expression

ΓðY → ϕfÞ ¼ G2
Yϕfm

2
ϕ

24π
λ

�
3þ 2λ2

m2
ϕ

�
; ð40Þ

where

λ≡ λðmY;mϕ; mfÞ ¼
1

2mY
½m4

Y þm4
ϕ þm4

f

− 2ðm2
Ym

2
ϕ þm2

Ym
2
f þm2

ϕm
2
fÞ�1=2: ð41Þ

Then computations yield

ΓðY → ϕfÞ ¼ ð49.2� 17.6Þ MeV: ð42Þ

The prediction for ΓðY → ϕfÞ is the main result of this
section which will be used to estimate the full width of the
tetraquark Y.

IV. THE DECAYS Y → ϕη AND Y → ϕη0

The next two strong decays of the tetraquark Y are the
channels Y → ϕη and Y → ϕη0. Here, we consider in a
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detailed form the dominant process Y → ϕη, and write
down final results for the second mode Y → ϕη0.
In the framework of the LCSR method the correlation

function necessary to study the vertex Yϕη is given by the
expression

Πμνðp; qÞ ¼ i
Z

d4xeipxhηðqÞjT fJϕμ ðxÞJY†ν ð0Þgj0i; ð43Þ

where Jϕμ ðxÞ is the interpolating current for the vector ϕ
meson

Jϕμ ðxÞ ¼ s̄ðxÞγμsðxÞ: ð44Þ

The phenomenological side of the sum rule can be written
down in the form

ΠPhys
μν ðp; qÞ ¼ h0jJϕμ jϕðpÞi

p2 −m2
ϕ

hϕðpÞηðqÞjYðp0Þi

×
hYðp0ÞjJY†ν j0i
p02 −m2

Y
þ � � � ; ð45Þ

and simplified further using the matrix elements:

h0jJϕμ jϕðpÞi ¼ fϕmϕϵμ; ð46Þ

and

hϕðpÞηðqÞjYðp0Þi ¼ gYϕηεμναβpμqνϵ�αϵ0β; ð47Þ

where ϵ0β is the polarization vector of the tetraquark Y,
and gYϕη is the strong coupling corresponding to the
vertex Yϕη.
Simple manipulations allow us to recast ΠPhys

μν ðp; qÞ into
the form

ΠPhys
μν ðp; qÞ ¼ gYϕη

fϕmϕfYmY

ðp2 −m2
ϕÞðp02 −m2

YÞ
× εμναβpαqβ þ � � � ; ð48Þ

where the only term is the contribution arising from the
ground-state particles: effects of the higher resonances and
continuum states are denoted by dots. The correlation
function ΠPhys

μν ðp; qÞ has a simple Lorentz structure. The
invariant amplitude ΠPhysðp02; p2Þ, which will be used to
derive the sum rule for the coupling gYϕη, can be obtained
from Eq. (48) by factoring out the structure εμναβpαqβ.
We extract the second component of the sum rule, i.e.,

the invariant amplitude ΠOPEðp02; p2Þ from the correlation
function ΠOPE

μν ðp; qÞ. In the case under analysis it is given
by the following expression:

ΠOPE
μν ðp; qÞ ¼ −i

Z
d4xeipx½γ5S̃ibs ðxÞγμS̃bis ð−xÞγ5γν

þγνγ5S̃
ib
s ðxÞγμS̃bis ð−xÞγ5�αβ

× hηðqÞjūaαð0Þuaβð0Þj0i: ð49Þ

As is seen, the correlation function is written down in
terms of the s quark propagators and local matrix elements
of the η meson. Dependence of ΠOPE

μν ðp; qÞ on the local
matrix elements of a final meson is the distinctive feature of
the LCSR method when applied to tetraquark-meson-
meson vertices. Treatment of such vertices requires some
additional manipulations, which we are going to explain
below. But before that we have to find ΠOPE

μν ðp; qÞ by
rewriting the matrix elements hηðqÞjūaαð0Þuaβð0Þj0i in terms
of the η meson’s parameters. To this end, we expand
ūaαð0Þuaβð0Þ and determine the standard matrix elements of
the η meson that contribute to the correlation function.
These operations have been discussed in the previous
section, therefore here we omit further details.
The performed analysis shows that the matrix element

hηðqÞjūγμγ5uj0i contributes to the correlation function
ΠOPE

μν ðp; qÞ. It is defined by the formula

hηðqÞjūγμγ5uj0i ¼ −i
fqηffiffiffi
2

p qμ; ð50Þ

where fqη is the decay constant of the η meson’s q
component. The matrix element (50) differs from similar
expressions of other pseudoscalar mesons. This is con-
nected with the mixing in the η − η0 system which can be
described using either the octet-singlet or quark-flavor
basis of the flavor SUfð3Þ group. The latter is more
convenient and simple for applications, and was used in
Refs. [41–43] to explore different exclusive processes. This
scheme is utilized in the present work as well.
In the quark-flavor basis the decay constants of the

mesons η and η0 can be extracted from the equality

� fqη fsη

fqη0 fsη0

�
¼ UðφÞ

�
fq 0

0 fs

�
; ð51Þ

where UðφÞ is the mixing matrix

UðφÞ ¼
�
cosφ − sinφ

sinφ cosφ

�
; ð52Þ

with φ ¼ 39°:3� 1°:0 being the mixing angle in the quark-
flavor basis. The constants fq and fs in Eq. (51) are given
by the formulas

fq ¼ ð1.07� 0.02Þfπ; fs ¼ ð1.34� 0.06Þfπ; ð53Þ

where fπ ¼ 131 MeV is the pion decay constant.
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Using Eqs. (49) and (50), we can obtain the invariant
amplitude ΠOPEðp02; p2Þ which should be equated to
ΠPhysðp02; p2Þ in order to derive the sum rule for the strong
coupling gYϕη. But, as we have been emphasized above,
a treatment of tetraquark-meson-meson vertices in the
context of the LCSR method differs from standard analysis
of the previous section [28]. In fact, the LCSR for vertices
of conventional mesons depends on distribution amplitudes
of one of final mesons, which contain all information
about nonperturbative dynamical features of the meson.
The same arguments are valid for the tetraquark-tetraquark-
meson vertices as well [40]. But in the case of the
tetraquark-meson-meson vertices, after contracting relevant
quark fields, due to a four-quark structure of the tetraquark,
the correlation function contains only local matrix elements
of one of final mesons. Then the momentum of this meson
should be set q ¼ 0 which is necessary to satisfy the four-
momentum conservation at the vertex. This leads to
essential modifications in the calculational scheme,
because now we have to complete the LCSR method with
technical methods of the soft-meson approxima-
tion [26,28].
In the soft limit q → 0, we get p0 ¼ p, as a result we

have to perform one-variable Borel transformation of the
invariant amplitudes [28]. For the physical (phenomeno-
logical) side this leads to the formula

BΠPhysðp2Þ ¼ gYϕηfϕmϕfYmY
e−m

2=M2

M2
þ � � � ; ð54Þ

where m2 ¼ ðm2
ϕ þm2

YÞ=2.
In the soft-meson approximation the phenomenological

side of the sum rule has a more complicated organization
than in the case of the full LCSR method. The reason is that
in the soft limit contributions connected with higher
resonances and continuum states demonstrate complicated
behavior. Indeed, some of these terms even after the Borel
transformation remain unsuppressed and appear as con-
taminations in the phenomenological side [26]. Therefore,
before carrying out the continuum subtraction they should
be excluded from BΠPhysðp2Þ by means of some manip-
ulations. This problem is solved by acting on the phenom-
enological side of the sum rule by the operator [26,27]

PðM2; m2Þ ¼
�
1 −M2

d
dM2

�
M2em

2=M2

; ð55Þ

which eliminates contaminating terms. Then contributions
of higher resonances with regular behavior can be sub-
tracted from the QCD side by benefiting from the quark-
hadron duality assumption.
The operator PðM2; m2Þ should also be applied to the

QCD side of the sum rule. Then the strong coupling gYϕη
can be determined from the sum rule

gYϕη ¼
1

fϕmϕfYmY
PðM2; m2ÞΠOPEðM2; s0Þ; ð56Þ

where ΠOPEðM2; s0Þ is the invariant amplitude ΠOPEðp2Þ
after the Borel transformation and continuum subtraction
procedures. Our calculations carried out by taking into
account nonperturbative terms up to dimension 5 yield

ΠOPEðM2; s0Þ ¼
fqηms

8
ffiffiffi
2

p
π2

Z
s0

4m2
s

dse−s=M
2

þ fqηm2
s

6
ffiffiffi
2

p
M2

hs̄si þ fqη
12

ffiffiffi
2

p
M2

hs̄gsσGsi:

ð57Þ

The width of the decay Y → ϕη is given by the following
expression:

ΓðY → ϕηÞ ¼ g2Yϕηλ
3ðmY;mϕ; mηÞ
12π

: ð58Þ

Numerical analysis leads to the results

gYϕη ¼ ð1.85� 0.38Þ GeV−1;

ΓðY → ϕηÞ ¼ ð35.8� 10.4Þ MeV: ð59Þ

It is worth noting that in computations of gYϕη, we have
used the following working regions for M2 and s0:

M2 ∈ ½1.3; 1.8� GeV2; s0 ∈ ½6; 6.5� GeV2: ð60Þ

The partial width of the second process Y → ϕη0 can be
computed by utilizing the expressions obtained for the first
decay. The corrections are connected with mass of the η0

meson and coupling fqη0 , and required replacements,

fqη0 ¼ fq sinφ; λ → λðmY;mϕ; mη0 Þ; ð61Þ

can be easily implemented into analysis. For the parameters
of the second process we obtain

gYϕη0 ¼ ð1.59� 0.31Þ GeV−1;

ΓðY → ϕη0Þ ¼ ð6.1� 1.7Þ MeV: ð62Þ

Saturating the full width of the Y resonance by three
decay channels considered in the present work, we get

Γfull ¼ ð91.1� 20.5Þ MeV: ð63Þ

This estimate coincides neither with the BABAR data nor
with measurements of the BESIII collaboration, but is close
to the latter.
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V. ANALYSIS AND CONCLUDING NOTES

We have explored the resonance Y by modeling it as a
light vector tetraquark with the content ½su�½s̄ū�. In the
tetraquark model it was considered until now as a vector
½ss�½s̄s̄� or ðss̄Þðss̄Þ particles. Our treatment is motivated by
the dominant decay channel Y → ϕf0ð980Þ of the Y, where
it was observed as a resonant structure in the ϕf0ð980Þ
invariant mass distribution. A suggestion on the quark
content of the Y depends on the structures of the final-state
particles: one can consider the f0ð980Þ either as a scalar
meson s̄s or as a particle composed of the four valence
quarks. In the second picture the vector compound Y ¼
½su�½s̄ū� emerges as a quite natural assignment for this
resonance. Calculations carried out in the present work lead
to the following predictions for mY and Γfull of such a state:

mY ¼ ð2173� 85Þ MeV; Γfull ¼ ð91.1� 20.5Þ MeV:

ð64Þ

The result for the mass mY is in accord with the BABAR
data, but is compatible with BESIII measurements as well.
The full width Γfull has the small overlapping region with
Γ ¼ ð58� 16� 20Þ MeV extracted in Ref. [1], but agree-
ment with data of the BESIII collaboration is considerably
better. In calculations of the Γfull, we have taken into
account only three strong decays of the resonance Y. But
decay modes Y → ϕππ; KþK−πþπ−; K�ð892Þ0K̄�ð892Þ0
of Y (seen experimentally and/or theoretically possible)
and other channels have not been included into analysis.

Partial width of these decays may significantly improve the
present prediction for Γfull.
Encouraging is our estimate for the ratio

ΓðY → ϕηÞ
ΓðY → ϕfÞ ≈ 0.73; ð65Þ

which almost coincides with its experimental value ≈0.74.
The latter has been extracted from available information on
the ratios [44] [Y is denoted there ϕð2170Þ]

ΓðY → ϕηÞ × ΓðY → eþe−Þ
Γtotal

¼ 1.7� 0.7� 1.3; ð66Þ

and

ΓðY → ϕfÞ × ΓðY → eþe−Þ
Γtotal

¼ 2.3� 0.3� 0.3: ð67Þ

Unfortunately, precision of the experimental data and
uncertainties of the theoretical results do not allow us to
make more strong statements about decay modes of the
tetraquark Y.
As is seen, our suggestion on a nature of the resonance

Yð2175Þ as the vector tetraquark with the content ½su�½s̄ū�
has led to reasonable agreements with existing experimen-
tal data. Theoretical analyses of decay channels left beyond
the scope of the present work, as well as their detailed
experimental studies, will be of great help to answer open
questions about the structure of the resonance Yð2175Þ.
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