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I present results for top-quark double-differential distributions in transverse momentum and rapidity.
Second- and third-order soft-gluon corrections derived from next-to-next-to-leading-logarithm resumma-
tion are added to the complete next-to-leading-order result, and the combination is denoted as approximate
N3LO. The corrections are large and they reduce theoretical uncertainties. The theoretical results are in
good agreement with recent data from the LHC.
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I. INTRODUCTION

Top-quark production is a central topic in particle
physics due to the unique properties of the top quark
and its potential role in exploring new physics. Both top-
anti-top production and single-top production have been
intensively studied theoretically and experimentally for
over two decades. Total cross sections, top-quark differ-
ential distributions in transverse momentum, rapidity,
and invariant mass, as well as various asymmetries have
all been calculated theoretically and measured experimen-
tally at the Tevatron and the LHC to high precision (see
Ref. [1] for a review). Top-quark double-differential dis-
tributions have also more recently been measured at the
LHC [2–5]; they provide yet another important test of the
Standard Model.
Top-quark differential distributions in tt̄ production

have been calculated at next-to-leading order (NLO) in
Refs. [6–8], and at next-to-next-to-leading order (NNLO)
in Refs. [9–11]. Furthermore, soft-gluon corrections
beyond the fixed-order results have been calculated for
such distributions based on resummation at next-to-
leading-logarithm (NLL) accuracy in Refs. [12,13] and
at next-to-next-to-leading-logarithm (NNLL) accuracy in
Refs. [14–18].
The soft-gluon corrections are an important subset of

the QCD corrections, and they are numerically dominant.
These soft corrections in tt̄ production provide excellent
approximations at NLO and NNLO to the complete set of
QCD corrections and, in fact, they predicted the NNLO
results with very high accuracy—to the per mille level—
for both the total cross section and the top-quark

differential distributions in transverse momentum and
rapidity [1,15,17]. In going beyond the NNLO results,
the soft-gluon corrections provide significant enhance-
ments and a reduction of scale dependence when calculated
at next-to-NNLO (N3LO) [18,19]. We denote results with
these second- and third-order soft-gluon corrections as
approximate N3LO (aN3LO). Such aN3LO results for top-
quark single-differential distributions in transverse momen-
tum and rapidity have appeared in [18]. There are also
calculations for single-differential distributions at NNLO
plus a prescription-based resummation in the (boosted) soft
limit in Ref. [20], but in our formalism we prefer to do
fixed-order expansions, which do not require prescriptions,
for the reasons detailed in Ref. [1,13] as well as due to
the fact that our expansions have been very successful in
approximating the complete corrections at NLO and
NNLO, as noted above.
In this paper, we go beyond single-differential distribu-

tions and we provide new results for double-differential
distributions in top-quark transverse momentum and rap-
idity through aN3LO. The theoretical calculation of these
distributions has now become important since there are
recent relevant data from the LHC [2–5]. In the next
section, we provide a brief overview of the calculation.
In Sec. III, we provide results for the distributions and
compare them with data from the LHC. We conclude
in Sec. IV.

II. SOFT-GLUON CORRECTIONS

We consider partonic processes in top-quark production,

f1ðp1Þ þ f2ðp2Þ → tðptÞ þ t̄ðpt̄Þ þ X; ð1Þ

with f1 and f2 representing quarks or gluons in the
colliding protons, and we define the usual partonic kin-
ematical variables from the 4-momenta of the particles,
s ¼ ðp1 þ p2Þ2, t ¼ ðp1 − ptÞ2, and u ¼ ðp2 − ptÞ2.
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We begin with a brief discussion of soft-gluon correc-
tions for top-anti-top pair production. These corrections
come from the emission of soft (i.e., low-energy) gluons,
and they arise from partial cancellations of infrared
divergences between real-emission diagrams and diagrams
with virtual quanta. Soft-gluon corrections take the form
of plus distributions of logarithms of a threshold variable
which measures kinematical distance from partonic thresh-
old. We note that partonic threshold is a generalized notion
of threshold: the top-anti-top pair is not necessarily
produced at rest.

For tt̄ production in single-particle-inclusive (1PI) kin-
ematics, the partonic threshold variable is defined by
s4 ¼ sþ tþ u − 2m2

t , where mt is the top-quark mass,
and s, t, and u are the partonic kinematical variables
defined above. At partonic threshold, s4 vanishes. For the
nth-order corrections in the perturbative series, the soft-
gluon terms involve plus distributions of the form
½ðlnkðs4=m2

t ÞÞ=s4�þ with 0 ≤ k ≤ 2n − 1 at nth order in
the strong coupling, αs.
The factorized form of the double-differential cross

section in proton-proton collisions in 1PI kinematics is

d2σpp→tt̄

dpTdY
¼

X
f1;f2

Z
dx1dx2ϕf1=P1

ðx1; μFÞϕf2=P2
ðx2; μFÞσ̂f1f2→tt̄ðs4; s; t; u; μF; μRÞ; ð2Þ

where pT is the top-quark transverse momentum, Y is the top-quark rapidity, μF and μR are the factorization and
renormalization scales, respectively, ϕf=P are parton distribution functions (PDF) for parton f in the proton, and σ̂f1f2→tt̄ is
the hard-scattering partonic cross section.
The resummation of soft-gluon corrections follows from the factorization of the cross section in moment space [12,21].

We define moments of the partonic cross section as σ̂ðNÞ ¼ R smax
4

0 ðds4=sÞe−Ns4=sσ̂ðs4Þ, and note that logarithms of s4
transform in moment space into logarithms of N, with the latter exponentiating. We also define moments of the PDF as
ϕðNiÞ ¼

R
1
0 e

−Nið1−xiÞϕðxiÞdxi. We also consider the parton-parton cross section d2σf1f2→tt̄=ðdpTdYÞ and define its
moments as

d2σf1f2→tt̄ðNÞ
dpTdY

¼
Z

Smax
4

0

dS4
S

e−NS4=S
d2σf1f2→tt̄ðS4Þ

dpTdY
; ð3Þ

where S4=S ¼ −ð1 − x1Þu=s − ð1 − x2Þt=sþ s4=s. We then write the factorized moment-space parton-parton cross section
in 4 − ϵ dimensions, as

d2σf1f2→tt̄ðN; ϵÞ
dpTdY

¼ ϕf1=f1ðN1; μF; ϵÞϕf2=f2ðN2; μF; ϵÞσ̂f1f2→tt̄ðN; μF; μRÞ: ð4Þ

A refactorized form of this cross section [12,21] is

d2σf1f2→tt̄ðN; ϵÞ
dpTdY

¼
�Y

i¼1;2

JiðNi; μF; ϵÞ
�
tr

�
Hf1f2→tt̄ðαsðμRÞÞSf1f2→tt̄

�
mt

NμF
; αsðμRÞ

��
: ð5Þ

The infrared-safe hard function Hf1f2→tt̄ does not depend on N, and it describes contributions from the amplitude and from
the complex conjugate of the amplitude. The soft function Sf1f2→tt̄ describes the emission of noncollinear soft gluons in the
process. Both the hard and the soft functions are process-dependent matrices in color space in the partonic scattering. The Ji
denote functions that describe universal soft and collinear emission from the incoming partons.
Comparing Eqs. (4) and (5), we get the following expression for the moment-space hard-scattering partonic

cross section,

σ̂f1f2→tt̄ðN; μF; μRÞ ¼
Q

i¼1;2JiðNi; μF; ϵÞ
ϕf1=f1ðN1; μF; ϵÞϕf2=f2ðN2; μF; ϵÞ

× tr

�
Hf1f2→tt̄ðαsðμRÞÞSf1f2→tt̄

�
mt

NμF
; αsðμRÞ

��
: ð6Þ

The N dependence of the soft matrix Sf1f2→tt̄ is resummed via renormalization-group evolution[12],

Sf1f2→tt̄
b ¼ ðZf1f2→tt̄

S Þ†Sf1f2→tt̄Zf1f2→tt̄
S ð7Þ
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where Sf1f2→tt̄
b is the unrenormalized quantity and Zf1f2→tt̄

S is a matrix of renormalization constants. Thus, Sf1f2→tt̄ obeys the
renormalization-group equation

�
μ
∂
∂μþ βðgsÞ

∂
∂gs

�
Sf1f2→tt̄ ¼ −ðΓf1f2→tt̄

S Þ†Sf1f2→tt̄ − Sf1f2→tt̄Γf1f2→tt̄
S ð8Þ

where g2s ¼ 4παs and β is the QCD beta function. The evolution of the soft function is controlled by the soft anomalous
dimension matrix, Γf1f2→tt̄

S , which is calculated from the coefficients of the ultraviolet poles of eikonal diagrams.
The moment-space resummed cross section is derived from the renormalization-group evolution of the soft function and

the other N-dependent functions in Eq. (6), and it is given by [1,12,13,15,21]

σ̂f1f2→tt̄
resum ðNÞ ¼ exp

�X
i¼1;2

EfiðNi; μFÞ
�
tr

�
Hf1f2→tt̄ðαsð

ffiffiffi
s

p ÞÞ

× exp

�Z ffiffi
s

p
=Ñ0

ffiffi
s

p
dμ
μ
Γ†f1f2→tt̄
S ðαsðμÞÞ

�
Sf1f2→tt̄

�
αs

� ffiffiffi
s

p
Ñ0

��
exp

�Z ffiffi
s

p
=Ñ0

ffiffi
s

p
dμ
μ
Γf1f2→tt̄
S ðαsðμÞÞ

��
: ð9Þ

FIG. 1. The top-quark double-differential distributions, d2σ=ðdpTdYÞ, at 8 TeV LHC energy, are displayed as functions of pT for four
different values of rapidity. The LO, NLO, aNNLO, and aN3LO results are shown with central scale μ ¼ mT (solid lines) and scale
variation mT=2 and 2mT (dotted lines). The K-factors relative to LO are shown in the inset plots.
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The first exponential resums universal soft and collinear
contributions from the incoming partons [22,23]. The
process-dependent hard and soft functions are known to
one loop [13,14,16]. The soft anomalous dimensions for
the partonic processes qq̄ → tt̄ and gg → tt̄ are known at
one [12] and two [14,15,24,25] loops.
We expand the NNLL resummed cross section to second

and third orders and match to complete analytical NLO
results. By doing an expansion, we avoid the problems with
the divergence in the resummed expression which would
require a prescription. As has been explained before [13],
such prescriptions have failed to accurately predict the
correct size of the higher-order corrections, in contrast
to our finite-order expansions. The double-differential
distributions derived by adding second-order soft-gluon
corrections to the complete NLO results are denoted as
approximate NNLO (aNNLO); when third-order soft-gluon

corrections are added to the aNNLO result, the distributions
are denoted as aN3LO.

III. TOP-QUARK DOUBLE-DIFFERENTIAL
DISTRIBUTIONS

We now provide theoretical predictions for the top-quark
double-differential distributions in transverse momentum
and rapidity through aN3LO at LHC energies.
In Fig. 1, we show theoretical results for the double-

differential distributions in top-quark transverse momen-
tum and rapidity, d2σ=ðdpTdYÞ, at 8 TeV LHC energy as
functions of the top-quark pT for four different values of
the top-quark rapidity. The upper-left (upper-right) plot is
for a top-quark rapidity of 0 (0.5) while the bottom-left
(bottom-right) plot is for a top-quark rapidity of 1 (2). In
each plot we show results at LO, NLO, aNNLO, and
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FIG. 2. The top-quark double-differential distributions, d2σ=ðdpTdYÞ, at 13 TeV LHC energy, are displayed as functions of pT for
four different values of rapidity. The LO, NLO, aNNLO, and aN3LO results are shown with central scale μ ¼ mT (solid lines) and scale
variation mT=2 and 2mT (dotted lines). The K-factors relative to LO are shown in the inset plots.
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aN3LO with a central scale choice of μ ¼ mT , where
mT ¼ ðp2

T þm2
t Þ1=2 is the transverse mass. We use the

MMHT2014 [26] NNLO PDF throughout, as we are
interested in the growth of the perturbative series. The
scale variation, mT=2 ≤ μ ≤ 2mT , at each order is shown
by the dotted curves. We observe a reduction in scale
variation as the order of the perturbative calculation is
increased, as expected.
The insets in the plots show the K-factors with respect to

the central LO result. It is clear that the higher-order
corrections are large at NLO and aNNLO, and still
significant at aN3LO, for all values of pT and rapidity.
The aN3LO=LOK-factor is around 2. The NLO corrections
are naturally the largest, but there are significant contri-
butions at aNNLO and even at aN3LO. Again, it is clear
from the inset plots that the scale uncertainty decreases
significantly with each higher-order contribution.

In Fig. 2, we show theoretical results for the double-
differential distributions in top-quark transverse momen-
tum and rapidity, d2σ=ðdpTdYÞ, at 13 TeV LHC energy as
functions of the top-quark pT for given values of the top-
quark rapidity in four plots, as before. Again, in each plot
we show results at LO, NLO, aNNLO, and aN3LO with a
central scale choice of μ ¼ mT , and scale variation at each
order is indicated by the dotted curves. The overall
distributions are of course much higher than at 8 TeV
but, again, we observe a reduction in scale variation at
higher orders. The inset plots with K-factors show that the
higher-order corrections are important, as is also the case
at 8 TeV.
In Fig. 3, we show the corresponding theoretical results

for d2σ=ðdpTdYÞ at 14 TeV LHC energy. Again, central
results and scale variation are shown at each order through
aN3LO, and, as before, we observe large K-factors as well
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FIG. 3. The top-quark double-differential distributions, d2σ=ðdpTdYÞ, at 14 TeV LHC energy, are displayed as functions of pT for
four different values of rapidity. The LO, NLO, aNNLO, and aN3LO results are shown with central scale μ ¼ mT (solid lines) and scale
variation mT=2 and 2mT (dotted lines). The K-factors relative to LO are shown in the inset plots.
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as a reduction in scale variation with increasing perturbative
order. The distributions at 14 TeVare somewhat larger than
at 13 TeV, and the K-factors are very similar.
We next compare our theoretical results with recent data

from the CMS experiment at 8 TeV [3] and 13 TeV [4]
LHC energies. Normalized distributions are often used in
the presentation of the data, since this helps to reduce
systematic errors. On the theoretical side, normalized
distributions reduce the dependence on the choice of
PDF sets. The experimental data for the double-differential
distributions are given in terms of discrete transverse-
momentum and rapidity bins, in contrast to the smooth
theoretical functions that we provided. Therefore, we
recalculate the theoretical predictions for the specific
binnings used by CMS at 8 and 13 TeV energies.
In Fig. 4 we show the normalized aN3LO double-

differential distributions, ð1=σÞd2σ=ðdpTdYÞ, at 8 TeV
LHC energy integrated over and averaged in different

pT bins and rapidity interval 0 < jYj < 0.35 (upper-left
plot), 0.35 < jYj < 0.85 (upper-right plot), 0.85 < jYj <
1.45 (bottom-left plot), and 1.45 < jYj < 2.5 (bottom-right
plot), corresponding to the binning from CMS data. We
observe very good agreement of theory with the data in all
four plots. The total theoretical uncertainties, from the
combination of scale variation and PDF uncertainties, have
also been calculated, and they are indicated in the plots by
the dashed curves. We note that the theoretical uncertainties
are comparable to the experimental ones in the first three
pT bins, but they are significantly smaller than the
experimental ones in the largest pT bin.
In Fig. 5 we show the normalized aN3LO double-

differential distributions, ð1=σÞd2σ=ðdpTdYÞ, at 13 TeV
LHC energy integrated over and averaged in different pT
bins and rapidity interval 0 < jYj < 0.5 (upper-left plot),
0.5 < jYj < 1 (upper-right plot), 1 < jYj < 1.5 (bottom-
left plot), and 1.5 < jYj < 2.5 (bottom-right plot),

FIG. 4. The normalized top-quark double-differential distributions, ð1=σÞd2σ=ðdpTdYÞ, for four different rapidity intervals at 8 TeV
LHC energy, are shown at aN3LO (solid lines for μ ¼ mT) with total theoretical uncertainties from scale variation and PDF uncertainties
(dashed lines), and they are compared with CMS data [3].
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corresponding to the binning from CMS data. The inset
plots display the highest-pT bins. We observe good agree-
ment of theory with the data in all four plots. Again, we
calculate the total theoretical uncertainties from scale
variation and PDF uncertainties, and note that they are
similar to the experimental ones for small and medium pT
values, and significantly smaller than the experimental ones
for the larger pT bins.

IV. CONCLUSION

I have presented top-quark double-differential distribu-
tions in transverse momentum and rapidity, including
soft-gluon corrections through aN3LO. The soft-gluon
corrections have been derived from NNLL resummation
of the double-differential cross section. I have provided
detailed theoretical results at 8, 13, and 14 TeV LHC

energies. The corrections are important, they substantially
increase the rates, and they decrease the scale uncertainties.
I have also presented predictions for normalized double-

differential distributions for specific pT and rapidity bins
used by the CMS experiment at the LHC. A comparison
with CMS data shows that the theoretical results provide a
very good description of the data for a wide variety of pT
and rapidity values, at both 8 and 13 TeV LHC energies.
Including scale and PDF uncertainties, we have observed
that the total theoretical uncertainties are either comparable
or smaller than the experimental ones.
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FIG. 5. The normalized top-quark double-differential distributions, ð1=σÞd2σ=ðdpTdYÞ, for four different rapidity intervals at 13 TeV
LHC energy, are shown at aN3LO (solid lines for μ ¼ mT) with total theoretical uncertainties from scale variation and PDF uncertainties
(dashed lines), and they are compared with CMS data [4].
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