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Precise extractions of αs from τ → ðhadronsÞ þ ντ and from eþe− → ðhadronsÞ below the charm
threshold rely on finite energy sum rules where the experimental side is given by integrated spectral
function moments. Here we study the renormalons that appear in the Borel transform of polynomial
moments in the large-β0 limit and in full QCD. In large β0, we establish a direct connection between the
renormalons and the perturbative behavior of moments often employed in the literature. The leading IR
singularity is particularly prominent and is behind the fate of moments whose perturbative series are
unstable, while those with good perturbative behavior benefit from partial cancellations of renormalon
singularities. The conclusions can be extended to QCD through a convenient scheme transformation to the
C scheme together with the use of a modified Borel transform which make the results particularly simple;
the leading IR singularity becomes a simple pole, as in large β0. Finally, for the moments that display good
perturbative behavior, we discuss an optimized truncation based on renormalization scheme (or scale)
variation. Our results allow for a deeper understanding of the perturbative behavior of integrated spectral
function moments and provide theoretical support for low-Q2 αs determinations.
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I. INTRODUCTION

Extractions of the strong coupling, αs, at lower energies
can be very precise due to increased sensitivity to the
higher-order corrections, as long as the nonperturbative
contributions are under good control. The prominent
example of this type of αs determination is the extraction
from inclusive hadronic decays of the τ lepton, which have
been used since the 1990s as a reliable source of informa-
tion about QCD dynamics [1,2]. Although the decay rate
receives a non-negligible contribution from nonperturba-
tive effects, it is largely dominated by perturbative QCD,
which renders feasible a competitive extraction of the
strong coupling [3–6]. Recently, a similar αs determination
was introduced [7] making use of a compilation of data for
eþe− → ðhadronsÞ below the charm threshold [8]. An
attractive feature of this new analysis is that the systematics
is under very good control, although the error due to the
data is still somewhat large.1

Both analyses rely on finite energy sum rules (FESRs)
where, on the experimental side, one has weighted integrals
of the experimentally accessible hadronic spectral func-
tions. Exploiting the analyticity properties of the quark-
current correlators one is able to express the theoretical
counterpart of the sum rules as an integral in a closed
contour on the complex plane of the variable s—which
represents the invariant mass of the final-state hadrons—
thereby circumventing the breakdown of perturbative QCD
at low energies. In this framework, the perturbative con-
tribution is obtained from the complex integration of the
Adler function in the chiral limit, which nowadays is
exactly known up to α4s [10,11]. When performing this
integration, one must adopt a procedure to set the renorm-
alization scale. The two most widely used ones are fixed
order perturbation theory (FOPT) [12], in which the scale is
kept fixed, and contour improved perturbation theory
(CIPT) [13,14], where the scale varies along the contour
resumming the running of the coupling. The procedures
lead to different series and to values of αs that are different.
This difference remains one of the dominant uncertainties
in the αs extraction from τ decays [4,6]. In the case of
eþe− → ðhadronsÞ, the difference is significantly smaller,
but still non-negligible [7].
In the discussion of perturbative expansions in QCD

one must take into account a basic but important fact:
the perturbative series are divergent and, at best, they are
asymptotic expansions—as discovered by Dyson in the
context of QED in 1952 [15]. The series is better
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1This new type of αs extraction has been recently included in
the 2019 update of the Particle Data Group world average, under
the “low-Q2 category” [9].
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understood in terms of its Borel transform, which sup-
presses the factorial growth of the perturbative coefficients
and allows for an understanding of the higher-order
behavior in terms of singularities along the real axis in
the Borel plane. These singularities are the renormalons of
perturbation theory [16].
An optimal use of an asymptotic series of this type can

be achieved (most often) by truncating it at the smallest
term [17]. In this procedure, the error one makes is
parametrically of the form e−p=α where p > 0 is a constant
and α the expansion parameter. In QCD, the expansion
parameter, αsðQ2Þ, runs logarithmically which implies
that the truncation error is ∼ðΛ2

QCD=Q
2Þp, where Q2 is

the Euclidian momentum. These power corrections are a
necessary feature of perturbative QCD and are, of course,
related to the higher-dimension terms in the operator
product expansion (OPE). In the Borel plane, their mani-
festation is the appearance of renormalon singularities
along the real axis at specific locations related to their
dimensionality.
In realistic αs analyses the nonperturbative contributions

must be taken into account. These include the OPE
condensates as well as duality violations (DVs) which
are due to resonances and are not encoded in the OPE
expansion [18–21]. In order to extract from the data αs and
the nonperturbative parameters in a self-consistent way, i.e.,
without relying on external information, one resorts to the
use of several (pseudo) observables. Those are built using
the fact that any analytic weight function gives rise to a
valid FESR, with an experimental side that can be com-
puted from the empirical spectral functions and a theoreti-
cal counterpart that can be obtained from the integral along
the complex contour.
The main guiding principle behind the judicious choice

of weight functions that enter a given analysis has been, for
a long time, the suppression of nonperturbative contribu-
tions. The different analyses of hadronic tau decay data
can be divided into two categories. In one of the analysis
strategies, one strongly suppresses the poorly known higher-
order OPE condensates [4,7]. In this case, duality violations
are larger and one must include them; this is done relying on
a parametrization that can be connected with fundamental
properties of QCD [21]. In the other, only moments that
suppress duality violations are used [5,6]. The price to pay in
this case is the contamination of the results by the neglected
higher-order OPE condensates [22]. Apart from issues
related to nonperturbative contaminations, since the work
of Ref. [23], it is known that the different weight functions
lead to distinct perturbative series that are not equally well
behaved. Some of those used in the literature [5,6] have a
poor perturbative convergence and are therefore not the ideal
choice in precise αs analyses.
The main purpose of this work is to understand the

perturbative behavior of the different integrated spectral
function moments at intermediate and high orders by

studying the renormalon singularities appearing in their
Borel transform. The perturbative behavior of the different
moments is intricate, in fact, each of the moments is a
different asymptotic expansion with different renormalon
contributions and conclusions about their perturbative
behavior have to be drawn almost case by case. As is
customary, we will use the large-β0 limit of QCD as a
guide. In this limit, all renormalon singularities are double
poles, with the exception of the leading IR singularity,
which is simple. A number of facts can be established.
First, the Borel transform of polynomial moments of the
Adler function is always less singular than the Borel
transform of the Adler function itself. An infinite number
of renormalon poles become simple poles. Second, the
renormalon poles corresponding to the OPE condensate(s)
to which the moment is maximally sensitive are not reduced
(or canceled). What we mean by “maximally sensitive”will
become clearer in the remainder, but these two facts are
enough to draw interesting conclusions about the behavior
of the different moments and help explain the instabilities
(or “run-away behavior”) identified in Ref. [23]. We will
show that the leading IR renormalon is largely responsible
for the unstable behavior of moments that are highly
sensitive to the gluon condensate. We also show that an
absence of the leading IR pole and partial cancellations of
the renormalon singularities are behind the good perturba-
tive behavior of some of the moments.
Turning to QCD, the situation is more complicated,

mainly because the renormalon poles become branch
points. The Borel transform has superimposed branch cuts.
We will show that most of the difficulties in QCD can be
circumvented by a convenient scheme transformation, to
the so-called C scheme [24], together with the use of a
modified Borel transform introduced in Ref. [25].2 In this
framework, the Borel transform of the moments can be
calculated exactly in terms of the Borel transform of the
Adler function—which is one of the main results of this
paper, Eq. (41). The parallel with the large-β0 limit is
apparent and the results are formally identical. In fact, we
show that the leading IR singularity is also a simple pole in
this case. The enhancement and suppression of renormalon
singularities identified in large β0 is, therefore, also present
in QCD which explains the similarity between the pertur-
bative behavior of moments in the two cases. We then study
the behavior of a few emblematic moments in QCD, using a
recent reconstruction of the higher-order terms based on
Padé approximants [27]. Finally, we show how to optimize
the truncation of the moments with good perturbative
behavior in the spirit of an asymptotic series exploiting
scheme transformations. The procedure we employ has
been suggested for the τ hadronic width in Ref. [24] but had

2The use of modified Borel transforms in combination with the
C scheme in similar contexts has been suggested by Jamin and
Peris [26].
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never been investigated systematically for different inte-
grated moments.
This work is organized as follows. In Sec. II, we present

the theoretical framework. In Sec. III, we discuss the
renormalon content of polynomial moments and their
phenomenological consequences, both in large β0 and in
QCD. In Sec. IV, we discuss the optimized truncation of the
moments with good perturbative behavior through scheme
transformations. In Sec. V, we present our conclusions.
Finally, in the Appendix A we present our conventions for
the QCD β function; Appendix B contains further details
about the Borel integral of the moments discussed in
this work.

II. THEORETICAL FRAMEWORK

In the low-Q2 αs determinations from hadronic τ decays
and from eþe− → ðhadronsÞ one uses FESRs constructed
from integrated moments of the experimental hadronic
spectral functions. In the case of eþe− → ðhadronsÞ, one
has access to the electromagnetic vacuum polarization
spectral function, which mixes isospin 0 and 1. Below
the charm threshold one can safely work in the chiral limit,
apart from the inclusion of perturbative corrections arising
from the strange-quark mass. In hadronic τ decays, the
decay width of the τ lepton into hadrons normalized to
the decay width of τ → ντe−ν̄e can be separated exper-
imentally into three distinct components: the vector and
axial vector, Rτ;V=A, arising from the ðūdÞ-quark current,
and the contributions with net strangeness, intermediated
by the ðūsÞ-quark current. In the extractions of the strong
coupling αs, the focus is on the nonstrange contributions
since they have a smaller contamination from nonpertur-
bative effects and the quark masses in this case can safely
be neglected. Since the FESRs we discuss here, and in
particular the choice of moments, were primarily intro-
duced in the context of τ decays, we will present them
in this context. The translation to eþe− → ðhadronsÞ is
straightforward and the perturbative contribution, in par-
ticular, is essentially identical [7].
We define a generalized observable RðwiÞ

τ;V=Aðs0Þ that can
be written as a weighted integral over the experimentally
accessible spectral functions as

RðwiÞ
τ;V=Aðs0Þ¼12πSEWjVudj2

Z
1

0

dxwiðxÞ

×

�
ImΠð1þ0Þ

V=A ðxs0Þþ
2x

1þ2x
ImΠð0Þ

V=Aðxs0Þ
�
; ð1Þ

where wiðxÞ is any analytic weight function and x ¼ s=s0.

The correlators Πð1Þ
V=A and Πð0Þ

V=A are the transverse and
longitudinal parts of

Πμν
V=AðpÞ≡ i

Z
dxeipxhΩjTfJμV=AðxÞJνV=Að0Þ†gjΩi; ð2Þ

formed from the quark currents JμV=ðAÞ ¼ ðūγμðγ5ÞdÞðxÞ; we
define Πð1þ0Þ

V=A ¼ Πð1Þ
V=A þ Πð0Þ

V=A. Setting s0 ¼ m2
τ in Eq. (1)

and with the particular choice of weight function

wτðxÞ ¼ ð1 − xÞ2ð1þ 2xÞ ð3Þ

dictated by kinematics we have Rτ;V=A ≡ RðwτÞ
τ;V=Aðm2

τÞ,
the hadronic decay width normalized to the decay width
of τ− → ντe−ν̄e.
In precise extractions of αs from τ decays it has become

customary to exploit other analytic weight functions,
conveniently chosen in order to suppress or enhance the
different contributions to the decay rate. The generalized

observable RðwiÞ
τ;V=Aðs0Þ can be decomposed as

RðwiÞ
τ;V=Aðs0Þ ¼

Nc

2
SEWjVudj2

�
δtreewi

þ δð0Þwi ðs0Þ

þ
X
D≥2

δðDÞ
wi;V=A

ðs0Þ þ δDVwi;V=A
ðs0Þ

�
; ð4Þ

where Nc is the number of colors, SEW is an electroweak
correction, and Vud is the quark-mixing matrix element.

The perturbative terms are represented by δtreewi
and δð0Þwi ðs0Þ,

where the former corresponds to the partonic result, while
the latter encode the αs corrections computed in the chiral
limit. The OPE corrections of dimension D are collected in

the terms δðDÞ
wi;V=A

ðs0Þ and, finally, duality violation correc-

tions are given by δDVwi;V=A
ðs0Þ.

The leading contribution to RðwiÞ
τ;V=Aðs0Þ stems from

perturbative QCD. It is obtained from the perturbative
expansion of the correlators of Eq. (2), which is the
dimension zero term in the OPE expansion that can be
written, for Πð1þ0ÞðsÞ, as

Πð1þ0Þ
OPE ¼

X∞
D¼0;2;4.::

CDðsÞ
ð−sÞD=2 ; ð5Þ

where the sum is done over all the contributions from
gauge-invariant operators of dimension D. The case D ¼ 0
is the perturbative part and D ¼ 2 are small mass correc-
tions. The first nonperturbative contribution starts at D ¼ 4
and is dominated by the gluon condensate. The s depend-
ence in the Wilson coefficients CDðsÞ arise from the
logarithms in their perturbative description and is higher
order in αs. In the case of the gluon condensate the leading
logarithm is known but, to an excellent approximation, the
coefficient C4ðsÞ can be treated as a constant [28]. Little is
known for the logarithms in the higher-dimension con-
densates, but it is customary, based on the experience with
D ¼ 4, to neglect their s dependence as well and treat all
CD as effective coefficients with no s dependence.
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The theoretical treatment of the observables RðwiÞ
τ;V=A is

done in the framework of FESRs, relating the experimental
results to counterclockwise contour integrals along the
circle jsj ¼ s0 in the complex plane of the variable s.
To eliminate the conventions related to renormalization it is
convenient to work with the Adler function

DðsÞ ¼ −s
d
ds

Πð1þ0ÞðsÞ: ð6Þ

In terms of the Adler function, the perturbative correction
of Eq. (4) can be written as [12]

δð0Þwi ¼ 1

2πi

I
jxj¼1

dx
x
WiðxÞD̂pertðs0xÞ; ð7Þ

where WiðxÞ ¼ 2
R
1
x dzwiðzÞ is the weight function. The

reduced Adler function, D̂, which intervenes in Eq. (7), is
defined in order to separate the partonic contribution

1þ D̂ðQ2Þ ¼ 12π2

Nc
DðQ2Þ; ð8Þ

whereQ2 ≡ −s. Accordingly, the perturbative expansion of
the function D̂ starts at order αs and can be written as

D̂pertðsÞ ¼
X∞
n¼1

anμ
Xnþ1

k¼1

kcn;k½log ð−s=μ2Þ�k−1; ð9Þ

where aμ ¼ αsðμÞ=π. The only independent coefficients in
this expansion are the cn;1; all the others can be written with
the used of renormalization group equations in terms of the
cn;1 and β-function coefficients. At present, the coefficients
of the expansion are known up to c4;1 (five loops) [10,11].
Resumming the logarithms with the choice μ2 ¼ −s the
result is (for nf ¼ 3)

D̂pertðQ2Þ¼
X∞
n¼1

cn;1anQ

¼ aQþ1.640a2Qþ6.371a3Qþ49.08a4Qþ�� � ;
ð10Þ

from which the known independent coefficients can be read
off. (Henceforth we will often omit the subscript “pert” in
perturbative quantities.)
The perturbative series of Eq. (9) is divergent. It is

assumed that it must be an asymptotic series [16] to the true
(unknown) value of the function being expanded. The
divergence stems from the factorial growth of the cn;1
coefficients at large order and it is, therefore, convenient to
work with the Borel-Laplace transform of the series

B½D̂�ðtÞ≡X∞
n¼0

rn
tn

n!
; ð11Þ

which has a finite radius of convergence and where
rn ¼ cnþ1;1=πnþ1. The original expansion is then, by
construction, the asymptotic series to the inverse Borel
transform (the usual Laplace transform) given by

D̂ðαÞ≡
Z

∞

0

dte−t=αB½D̂�ðtÞ: ð12Þ

On the assumption that the integral exists, the last equation
defines unambiguously the Borel sum of the asymptotic
series. However, the divergence of the original series is
related to singularities in the t variable known as renorma-
lons. They appear at both positive and negative integer
values of the variable u ¼ β1t

2π (with the exception of u ¼ 1).
In particular, the IR renormalons, that lie on the positive
real axis, obstruct the integration in the Borel sum.
A prescription to circumvent these poles becomes neces-
sary, which entails an ambiguity in the Borel sum of the
series. This remaining ambiguity is expected on general
grounds to be canceled by corresponding ambiguities in the
power corrections of the OPE. At large orders, the UV pole
at u ¼ −1, being the closest to the origin, dominates the
behavior of the series. The coefficients of the series are,
therefore, expected to diverge with sign alternation at
sufficiently high orders.
The calculation of the perturbative contribution to FESR

observables requires that one performs the integral of
Eq. (7). A prescription for the renormalization scale μ—
which enters through the logarithms of Eq. (9)—must be
adopted in the process. In the procedure known as CIPT
[13,14] a running scale μ2 ¼ Q2 is adopted and the running
of αs is resummed along the contour with the QCD beta
function. With this procedure the perturbative contribution
is cast as

δð0ÞCI;wi
¼

X∞
n¼1

cn;1J
ðnÞ
CI;wi

ðs0Þ; with

JðnÞCI;wi
ðs0Þ ¼

1

2πi

I
jxj¼1

dx
x
WiðxÞanð−s0xÞ: ð13Þ

A strict fixed order prescription, known as FOPT,
corresponds to the choice of a fixed scale μ ¼ s0. The
coupling can then be taken outside the integrals which are
now performed over the logarithms of Eq. (9) as

δð0ÞFO;wi
¼

X∞
n¼1

ans0
Xn
k¼1

kcn;kJ
ðk−1Þ
FO;wi

; with

JðnÞFO;wi
≡ 1

2πi

I
jxj¼1

dx
x
WiðxÞlnnð−xÞ: ð14Þ

The FOPT series can be written as an expansion in the
coupling as
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δð0ÞFO;wi
¼

X∞
n¼1

dðwiÞ
n anQ; ð15Þ

where the coefficients now depend on the choice of weight
function.
The chosen prescription for the renormalization group

improvement of the series affects, in practice, the precise
extraction of the strong coupling from hadronic τ decays. It
remains, as of today, one of the main sources of theoretical
uncertainty in these αs determinations [4–7]. The two
prescriptions define two different asymptotic series with
rather different behaviors. Inevitably, the analysis of the
reliability of the two procedures requires knowledge about
higher orders of the series. In particular, some of the
arguments often put forward in favor of CIPT—in an
attempt to leave aside the issue with the higher orders—
mention a “radius of convergence” [2,29], a notion that
contradicts the fact that the series are both asymptotic.
Here we employ the estimate for the higher-order

coefficients of the series obtained from a careful and
systematic use of Padé approximants [27]. The results of
Ref. [27] are model independent and corroborate to a large
extent the results obtained in the context of renormalon
models, in which the series is modeled by a small number of
dominant renormalon singularities employing the available
knowledge about their nature [12,23,30], as well as those
obtained from conformal mappings that make use of the
location of renormalon sigularities [31].Wewill also exploit
scheme variations as a method to improve convergence of
the perturbative series and discuss their usefulness in
realistic extractions of αs from hadronic τ decays.

III. RENORMALONS IN SPECTRAL
FUNCTION MOMENTS

Several moments of the spectral functions have been
used in low-Q2 αs determinations from hadronic τ data and
eþe− → ðhadronsÞ [4–6,22,28]. Since the FESR requires
the weight function to be analytic it is customary to employ
polynomials, which we denote in terms of their expansions
in monomials as

wiðxÞ ¼
X
k¼0

bðwiÞ
k xk: ð16Þ

Of particular importance are the weight functions that are
“pinched,” i.e., weight functions that are zero at x ¼ 1, and

that have bðwiÞ
0 ¼ 1 such as the kinematic moment

wτ ¼ ð1 − xÞ2ð1þ 2xÞ ¼ 1 − 3x2 þ 2x3: ð17Þ

Another important class of weight functions identified
in [23] are those that contain the linear term in x. We will
discuss these two classes of moments in detail below.

The series for δð0Þwi inherits the divergence of the Adler
function expansion and accordingly is also amenable to a
treatment in terms of its Borel transform. However, the

renormalon content of the Borel transformed δð0Þwi is differ-
ent from the Adler function counterpart, as we discuss in
the remainder of the section.

A. Results in large β0
We start investigating the renormalons in δð0Þwi in the

large-β0 limit of QCD [16]. These results are obtained by
first considering a large number of fermion flavors, Nf, but
keeping Nfαs constant. The qq̄ bubble corrections to the
gluon propagator are order one in this power counting and
must be summed to all orders. This dressed gluon propa-
gator is used to obtain all the leading Nf corrections, at
every αs order, to a given observable. In the end, Nf is
replaced by the leading β-function coefficient, effectively
incorporating a set of non-Abelian contributions [32].
Accordingly, the αs evolution is performed at one loop.
In this limit, the Borel transformed Adler function is

known to all orders in perturbation theory and it can be
written in a compact form as [16,33,34]

B½D̂�ðuÞ ¼ 32

3π

eðCþ5=3Þu

ð2 − uÞ
X∞
k¼2

ð−1Þkk
½k2 − ð1 − uÞ2�2 ; ð18Þ

where C is a parameter which depends on the renormal-
ization scheme. For C ¼ 0 we have MS. This result
displays explicitly the renormalon poles. They are all
double poles with the exception of the leading IR pole
at u ¼ 2, which is simple. The IR poles are particularly
important in the subsequent discussion and, in particular,
their connection to OPE condensates. Each of the IR poles
that appear at a given position u ¼ p in the Borel transform
of the Adler function can be mapped to the existence of
contributions of dimension D ¼ 2p in the OPE [16]. This
explains, for example, the absence of a pole at u ¼ 1 since
there is no gauge-invariant D ¼ 2 condensate in the OPE.
This nontrivial connection between perturbative and non-
perturbative physics will also be manifest in the Borel

transform of δð0Þwi .
Using this result, the Borel transform of δð0Þwi can be

obtained from Eq. (7) employing the Borel integral
representation of the Adler function, Eq. (12). One can
then write

δð0Þwi ¼
1

2π

Z
2π

0

dϕWiðeiϕÞ
Z

∞

0

dte−t=αsð−s0eiϕÞB½D̂�ðtÞ; ð19Þ

where we performed the change of variables x ¼ eiϕ. In the
large-β0 limit, the β function is truncated at its first term3

3For our conventions regarding the QCD β function we refer to
Appendix A.
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1

αsðQ2Þ ¼
β1
2π

ln

�
Q2

Λ2

�
: ð20Þ

The exponential in Eq. (19) can be written as

e−t=αsð−s0xÞ ¼ e−t=αsðs0Þe−iuðϕ−πÞ: ð21Þ

Inverting the order of integration and using Eq. (12) one can

read off the Borel transform of δð0Þwi

B½δð0Þwi � ¼
�
1

2π

Z
2π

0

dϕWiðeiϕÞe−iuðϕ−πÞ
�
B½D̂�ðuÞ: ð22Þ

The prefactor of Eq. (22) can be obtained analytically for
polynomial weight functions. For the monomial wi ¼ xn

one finds4

B½δð0Þxn � ¼
2

1þ n − u
sinðπuÞ
πu

B½D̂�ðuÞ: ð23Þ

One immediately sees that the sinðπuÞ reduces an infinite
number of UV and IR double poles in B½D̂�ðuÞ to simple

poles. In this sense, one can say that B½δð0Þwi � is significantly
less singular than the Adler function counterpart, a fact that
has been exploited in Ref. [27].
The prefactor of Eq. (23) is also highly nontrivial. It

cancels the zero at u ¼ 1þ n in sinðπuÞ, which means that
the pole at u ¼ 1þ n of B½D̂�ðuÞ remains double (or single,
in the case of u ¼ 2). This is clearly not a coincidence and
is related to the nonperturbative contributions to Rτ;V=A.
To expose this connection, consider the contribution
of D ≥ 4 in the OPE expansion, Eq. (5), to Rτ;V=A which
can be cast as

δðDÞ
wi;V=A

¼ 6πi

ð−s0ÞD=2

I
dx

wiðxÞ
xD=2 CDðxs0Þ: ð24Þ

For a monomial wiðxÞ ¼ xn—and to the extent that the s
dependence of the coefficients CD can be neglected, as
discussed previously—this reduces to

δðDÞ
xn;V=A ¼ 6πi

ð−s0ÞD=2 CD

I
dx

1

x−nþD=2 : ð25Þ

For positive integer values of n, the integral in the last
equation is only nonvanishing for −nþD=2¼1. Therefore,
as is well known, under these assumptions, for wi ¼ xn the
only contribution comes from the condensates with D ¼
2ðnþ 1Þ which, in turn, is related to the pole in the Borel
transform of the Adler function at u ¼ nþ 1.
It becomes apparent that the prefactor of Eq. (23) is not

accidental: the pole in B½D̂�ðuÞ that corresponds to the
condensate that contributes maximally to moments of w ¼
xn is not canceled by the prefactor of Eq. (23). For
monomials xn with n ≥ 0 three cases can be distinguished:

(i) If n ¼ 0, all poles become simple poles, since there
is no contribution from OPE condensates, apart from
the αs-suppressed terms, under the assumptions of
Eq. (25). In particular, the pole at u ¼ 2 which was
simple is exactly canceled and the function is regular
at u ¼ 2.

(ii) If n ¼ 1, the dominant contribution from the OPE is
the one fromD ¼ 4. The pole at u ¼ 2 related to this
OPE contribution is not canceled and all other IR
and UV poles become simple poles. This is a distinct

situation because it is the only case where B½δð0Þxn � is
singular at u ¼ 2, in all other cases the leading IR
singularity is located at u ¼ 3.

(iii) Finally, if n ≥ 2, all IR poles for u > 2 become
simple poles, with the exception of the pole at
u ¼ nþ 1, which remains double and is now the

only double pole in B½δð0Þxn �—all others are reduced to
simple poles by the zeros of sinðπuÞ. In this case, the
pole at u ¼ 2 that corresponds to the contributions
due to the gluon condensate is again exactly can-
celed by sinðπuÞ and the function is analytic
at u ¼ 2.

In Table I, we show the residues of the dominant UVand
IR poles for the first six monomials, which are the building
blocks for most of the moments used in the literature.
Residues of the double poles are shown as boxed numbers.
The results of this table can be used to understand a few
features of specific cases. For example, in the Borel
transform of the kinematic moment, Eq. (17), a partial

TABLE I. Residues for the dominant poles in the Borel transform of δð0Þwi for the first six monomials. Boxed numbers refer to residues
of double poles, all other poles are simple poles.

wðzÞ u ¼ −2 u ¼ −1 u ¼ 1 u ¼ 2 u ¼ 3 u ¼ 4 u ¼ 5

1 8.411 × 10−4 2.672 × 10−2 0 0 −21.00 −18.53 −29.43
z 6.309 × 10−4 1.781 × 10−2 0 17.85 −41.99 −27.79 −39.24
z2 5.047 × 10−4 1.336 × 10−2 0 0 6.999 −55.58 −58.86
z3 4.206 × 10−4 1.069 × 10−2 0 0 41.99 −32.42 −117.7
z4 3.605 × 10−4 8.907 × 10−3 0 0 21.00 55.58 −104.0
z5 3.154 × 10−4 7.634 × 10−3 0 0 14.00 27.79 117.7

4This result has been used in Refs. [27,31].
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cancellation of the leading UV renormalon is manifest: its
residue is reduced by a factor of 3.3. The perturbative series
associated with this moment is expected to display a more
tamed behavior, with the asymptotic nature setting in later.
We are now in a position to reassess some of the findings

of Ref. [23] in the light of these results. One of the main
observations of Ref. [23] is that the perturbative series for
moments of weight functions that contain the monomial x
tend to be badly behaved, in the sense that the series never
stabilizes around the true value of the function, it displays
what was called a run-away behavior. This can be directly
linked to the fact that the Borel transform of these moments
are the only ones that have the singularity at u ¼ 2. The
contribution of this renormalon to the coefficients of the
series is fixed sign and it is large at higher orders.
In order to establish the correspondence between the

leading renormalons and the behavior of the perturbative
series, we will make use of an even simpler model. Since
the series is dominated by the leading renormalons, we can
construct an approximation to the result in large β0 using
only the leading UV pole and the first two IR poles, which
corresponds to truncating the sum in Eq. (18) at its first
term. We know from the works of Refs. [12,23,27] that
such a minimalistic model should be largely sufficient to
capture the main features of the full result in large β0. In
Fig. 1 we confirm this expectation by plotting the results for
the Adler function in large β0 and in its truncated version,
normalized to the value of the Borel integral in each case,
which removes an overall normalization effect that is
immaterial here [throughout this paper we use αsðm2

τÞ ¼
0.316ð10Þ [35] ]. In Fig. 1, one sees that the results are
essentially identical for our purposes. However, the sim-
plicity of this model prevents the study of moments that are

maximally sensitive to condensates with dimension D ≥ 8,
because the corresponding renormalon poles are not
included.
We start by considering the moment of wðxÞ ¼ x. The

perturbative expansion of δð0Þx in the truncated model for
FOPT and CIPT is displayed in Fig. 2(a). The FOPT series
shows the “run-away behavior” identified in Ref. [23]. It
overshoots the true value, at first, and later crosses it and
runs into the asymptotic regime with almost no stable
region. The CIPT series is better behaved but also over-
shoots the true value and then runs into the asymptotic
behavior, with sign alternating coefficients, much earlier
than FOPT. To understand this pattern we can use the

Borel transform of δð0Þx which is rather simple in the
truncated model,

B½δð0Þx �TðuÞ ¼
4e5u=3 sinðπuÞ

27π2

�
8

u
þ 8ð5u − 4Þ

3ð2 − uÞ2 −
ð13uþ 19Þ
3ð1þ uÞ2

−
ð17u − 57Þ
ð3 − uÞ2

�
: ð26Þ

The result exhibits the UV pole at u ¼ −1, as well as the IR
poles at u ¼ 2 and u ¼ 3. All poles are simple due to the
zeros of the sinðπuÞ in the prefactor. We also note that
the Borel transform has a regular part, which stems from the
first term within square brackets (the would-be pole at zero
is also canceled by the prefactor). In Fig. 2(c) we show the
breakdown of the different contributions to the perturbative
series in FOPT. The series is dominated by the regular
contribution which initially overshoots the true value. At
higher orders, the first IR and UV poles dictate the
tendency and the series never stabilizes around the true
value. The IR contribution is negative and is responsible for
the run-away behavior, with a superimposed sign alterna-
tion from the UV pole.
We now turn to the pinched moments without the term in

x. In Fig. 2(b), we show the results for w ¼ 1 − x2. The

Borel transform of δð0Þ
1−x2 is regular at u ¼ 2 and the leading

UV pole is partially canceled, as we can infer from the
results of Table I. This translates into a smoother series.
Now the FOPT series nicely approaches the true value and
remains stable around it for several orders until eventually
entering the asymptotic regime, when the leading UV pole
takes over. The result for CIPT, on the other hand, is less
accurate [red dashed line in Fig. 2(b)]. It approaches the
Borel sum of the series only when the asymptotic behavior
has already set in.
Finally, we comment on the results for wðxÞ ¼ 1. This

moment lies somewhere in between the two extreme cases
we discussed above. It also benefits from being regular at
u ¼ 2 but the partial cancellation of singularities that
happens in pinched moments is not present. In this case,
FOPT is able to approach the result although at the expense
of overshooting it for the first four orders or so. We omit the

FIG. 1. Adler function order by order in αs in large β0 and in the
truncated version that includes only the leading UV and the first
two IR renormalon poles. Both results are normalized to the
respective Borel integrals. The horizontal band gives the ambi-
guity arising from the IR poles, in the prescription of Ref. [12].
Here and elsewhere we use αsðm2

τ Þ ¼ 0.316ð10Þ [35].
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plots in this case for the sake of brevity (the result in the
context of Borel models can be found in Ref. [23]). One
should finally remark that, in general, the perturbative

series for δð0Þwi are better behaved than the Adler function
series, shown in Fig. 1. This fact is a consequence of the

Borel transform of δð0Þwi being significantly less singular than
the Adler function counterpart. The sign alternation in the
Adler function starts already at Oðα5sÞ and the perturbative
series never stabilizes around the Borel sum. This does not
prevent, however, the pinched moments without the linear
term from having a very good perturbative behavior, as
exemplified in Fig. 2(b).

1. Partial conclusions

We are in a position to draw a few conclusions from the
study of spectral function moments in large β0 and its
truncated form:

(i) The Borel transform of δð0Þwi for polynomial weight
functions is less singular than the Borel transform of
the Adler function. The prefactor that appears in

B½δð0Þwi � cancels an infinite number of poles. Precisely

for this reason, the perturbative expansions of δð0Þwi

are in general smoother than the Adler function
counterpart.

(ii) The pattern of the remaining poles in the Borel
transform of δð0Þwi can be understood in terms of the
contributions from the OPE condensates. The Borel
transform has a pole at u ¼ 2 if and only if theweight
function contains a term proportional to x. The
behavior of the perturbative series associated with
these moments is qualitatively different and the true
value of series is not well approached neither by
FOPT nor by CIPT, as already discussed in Ref. [23].

(iii) The Borel transform of the moments from the
monomials wðxÞ ¼ xn, with n > 1, has only one

(a) (b)

(c) (d)

FIG. 2. Perturbative series for the moments wðxÞ ¼ x and wðxÞ ¼ 1 − x2 order by order in αs in the truncated version of the large-β0
limit (see text for details) with s0 ¼ m2

τ (a),(b). Breakdown of the contributions from the leading singularities for the same moments in
FOPT (c),(d). Results are normalized to the respective Borel integrals. The horizontal band represents the ambiguity arising from IR
renormalon poles, calculated as in Ref. [12]. (a) δð0Þ, wðxÞ ¼ x, truncated large-β0. (b) δð0Þ, wðxÞ ¼ 1 − x2, truncated large-β0.

(c) Contributions to δð0Þx (FOPT). (d) Contributions to δð0Þ
1−x2 (FOPT).
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double pole at u ¼ nþ 1, related to the OPE
condensate withD ¼ 2ðnþ 1Þ to which the moment
is maximally sensitive, in the sense of Eq. (25).

(iv) Moments that are pinched and do not contain the
term proportional to x are particularly stable. Their
Borel transform is regular at u ¼ 2 and there is a
partial cancellation of the leading UV renormalon,
which translates into a smoother series. The series,
in these cases, is well described by FOPT while
CIPT struggles to approach the Borel sum and
runs into the asymptotic behavior already at Oðα4sÞ
or Oðα5sÞ.

In the remainder we will discuss the case of QCD. With
the use of a convenient scheme transformation and a
redefinition of the Borel transform one is able to show
that results in QCD are very similar to the ones obtained in
large β0.

B. Results in QCD

Two main ingredients enter the discussion of the pre-
vious section. First, we have full knowledge about the
renormalon structure of the Adler function. In particular we
know which poles exist and if they are double or simple
poles, exactly. Second, in the derivation of Eq. (23),
because we work in the large-β0 limit, we made use of
the one-loop running of αs. In the case of QCD, on the other
hand, we have to be content with a partial knowledge about
the renormalon structure of the Adler function. The
positions of the singularities are unchanged, but now they
are no longer poles and become branch cuts. The running of
the coupling is also much more involved when terms
beyond one loop are included in the β function. In order
to be able to obtain an analytical expression for the Borel

transform of δð0Þwi , it is useful to leave the MS scheme and
work in another class of schemes which have a particularly
simple β function.
Without loss of generality, we will employ the C scheme

introduced in Ref. [24] in the derivation we perform below.
The implementation of the C scheme is based on the fact
that, when going from an input scheme, say the MS, to
another scheme that we denote with hatted quantities, the
QCD scale parameter Λ changes as [36]

Λ̂ ¼ ΛMSe
c1=β1 ; ð27Þ

where the coefficient c1 is the first nontrivial coefficient in
the perturbative expansion of the coupling â≡ α̂s=π in

terms of a≡ αMS
s =π,

â ¼ aþ c1a2 þ c2a3 þ � � � : ð28Þ

With the expression of the scale-invariant QCD Λ param-
eter one can then relate the two schemes with a continuous
parameter C, that measures the shift in Λ, by

1

âQ
þβ2
β1

ln âQ¼ 1

aQ
þβ1

2
Cþβ2

β1
lnaQ−β1

Z
aQ

0

da

β̃ðaÞ ; ð29Þ

where C ¼ −2c1
β1

, we defined

1

β̃ðaÞ≡
1

βðaÞ −
1

β1a2
þ β2
β21a

; ð30Þ

and we have made explicit the renormalization scale
dependence in aQ. A relation that is important in the
remainder is the analog of Eq. (20) in the C scheme which
reads

1

âQ
¼ β1

2
ln

�
Q2

Λ̂2

�
þ β1C

2
−
β2
β1

ln âQ: ð31Þ

In this scheme, the β-function is known exactly and reads

−Q
dâQ
dQ

≡ β̂ðâQÞ ¼
β1â2Q

ð1 − β2
β1
âQÞ

: ð32Þ

This fact enormously simplifies the task of obtaining a

closed form for the Borel transform of δð0Þwi in QCD. Finally,
we remark that the dependence on the scheme parameter C
is, in fact, governed by the same function

−2
dâQ
dC

¼ β1â2Q
ð1 − β2

β1
âQÞ

: ð33Þ

The coupling becomes smaller for larger values of C and
the theory ceases to be perturbative for C ≈ −1.5 (using the
MS scheme as input) [24]. This means that the coupling in
the C scheme depends on a particular combination of the
scale and scheme parameters αs ≡ αsðQ2eCÞ. Scale and
scheme variations become, therefore, completely equiva-
lent. The explicit expressions for the perturbative coeffi-
cients relating the MS and the C schemes, together with
further details, can be found in the original publications
[24,37]. Finally, we remark that there is no value of C that
corresponds strictly to the MS, but for C ≈ 0 the results
are very similar (at one loop, C ¼ 0 corresponds to the
MS exactly).
For schemes in which the β-function takes the form of

Eq. (32) it is convenient to work with a modified Borel
transform defined as [25]

B½D̂�ðtÞ ¼
X∞
n¼1

Γð1þ ƛtÞ
Γðnþ 1þ ƛtÞ n

ĉn;1
πn

tn; ð34Þ

where ƛ ¼ β2=ðβ1πÞ and ĉn;1 are the Adler function
coefficients in the C scheme. With this definition, the
Borel sum of the series now reads
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D̂ðα̂sðQ2ÞÞ ¼
Z

∞

0

dt
t
e−t=α̂sðQ2Þ ½t=α̂sðQ2Þ�ƛt

Γð1þ ƛtÞ B½D̂�ðtÞ: ð35Þ

The asymptotic expansion to the latter result is obtained
using Eq. (34) in (35) and gives, as expected [25],

D̂ ¼
X∞
n¼1

ĉn;1ânQ: ð36Þ

The modified Borel transform has renormalon singularities
at the same location as the usual Borel transform, but their
exponent is shifted. As demonstrated in Ref. [25], if the
usual Borel transform has a singularity of the form

B½D̂�ðuÞ ∼ 1

ðp − uÞα ; ð37Þ

the modified Borel transforms behaves for u ∼ p as

B½D̂�ðuÞ ∼ 1

ðp − uÞα−2πp
β1
ƛ
; ð38Þ

with the exponent of the singularity shifted by 2πp
β1

ƛ ¼
þ2pðβ2=β21Þ and, as before, u ¼ β1t

2π .
Let us now calculate the modified Borel transform of δð0Þwi

in the C scheme. The calculation is very similar to what was
done in large β0. Using Eq. (35) in Eq. (7) we obtain

δð0Þwi ¼ 1

2π

Z
2π

0

dϕWiðeiϕÞ
Z

∞

0

dt
t
e−t=α̂sð−s0eiϕÞ

×
½t=α̂sð−s0eiϕÞ�ƛt

Γð1þ ƛtÞ B½D̂�ðtÞ: ð39Þ

With the use of Eq. (31) one finds

e−t=α̂sð−s0eiϕÞ ¼ e−t=α̂sðs0Þe−iuðϕ−πÞ
�
α̂sð−s0eiϕÞ
α̂sðs0Þ

�ƛt
; ð40Þ

and inverting the order of the integration in Eq. (39) one
obtains, for the monomial weight function wðxÞ ¼ xn, the
following result:

B½δð0Þxn �ðuÞ ¼
2

1þ n − u
sinðπuÞ
πu

B½D̂�ðuÞ: ð41Þ

This shows that the relation of Eq. (23) is, in fact, much
more general, since any scheme can be brought to the C
scheme without loss of generality. The prefactor is the same
in QCD and in large β0, and so is the enhancement of the
renormalon associated with the contribution with dimen-
sionD ¼ 2ðnþ 1Þ in the OPE.5 The main difference is that
in QCD the singularities of B½D̂�ðuÞ are, in general, branch

points and are no longer poles. The exponent of the
singularities is related to the anomalous dimension of
the associated operator contributing to the OPE.
To make further progress, let us look at the explicit

structure of the IR singularities. In the notation of [12], the
singularities of the usual Borel transform are written as

B½D̂IR
p �≡ dIRp

ðp−uÞ1þγ̃ ½1þ b̃ðpÞ1 ðp−uÞþ b̃ðpÞ2 ðp−uÞ2þ�� ��;

ð42Þ

where the constants γ̃ and b̃ðpÞi depend on the anomalous
dimension of the associated operator in the OPE as well as
on β-function coefficients. The explicit expression for the
exponent γ̃ is

γ̃ ¼ 2p
β2
β21

−
γð1ÞOd

β1
; ð43Þ

where the anomalous dimension associated with the oper-
ator Od is defined as

−μ
d
dμ

OdðμÞ ¼ ðγð1ÞOd
aμ þ γð2ÞOd

a2μ þ � � �ÞOdðμÞ: ð44Þ

For the modified Borel transform we have then

B½D̂IR
p � ∼ 1

ðp − uÞ1þγ̃−2πp
β1
ƛ
¼ 1

ðp − uÞ1−γ
ð1Þ
Od

=β1
; ð45Þ

where the first factor on the right-hand side of Eq. (43) is
exactly canceled by the shift in the singularity of Eq. (38).

For the discussion of the Borel transformed δð0Þwi it is crucial
to inspect the leading IR renormalon. This renormalon is
related to the gluon condensate which can be expressed in
terms of the scale-invariant combination haG2i [38]. In this
case, the leading IR singularity of the Adler function in the
C scheme, and using the modified Borel transform, reduces
simply to

B½D̂IR
2 � ∼ 1

ð2 − uÞ ; ð46Þ

which is a simple pole, exactly as in the large-β0 limit. This
is remarkable because, with Eq. (41), one can directly
translate many of our conclusions from large β0 to QCD, in

particular, B½δð0Þwi � has a pole at u ¼ 2 if and only if the
weight function contains a term proportional to x. The

conclusion that B½δð0Þwi � is less singular also remains valid,
and it is again true that the singularity associated with the
contributions in the OPE to which the moment is max-
imally sensitive is not altered by the prefactor of Eq. (41).

5An approximate relation between the Borel transformed Adler
function and the Borel transform of δð0Þwτ can be found in [31]. The
result of Eq. (41) is fully general.
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In view of the above discussion, and the results of
Eqs. (41) and (46), we learn that the same mechanisms of
suppression, enhancement, and cancellation of renormalon
singularities identified in large β0 are also at work in QCD.
Similarities between the results in the two cases were
identified in Ref. [23] although the explicit connection with

the renormalon singularities of B½δð0Þwi � was not investigated
in that work. Although in QCD we have only partial
information about the renormalon singularities, and in
particular about their numerator, we are in a position to
speculate that the reason behind the good or bad perturba-
tive behavior of the different moments is rooted in the same

interplay between the renormalons of B½δð0Þwi �.
Here, we study the QCD perturbative series for different

moments using the model-independent reconstruction of
the higher-order coefficients of Ref. [27], where the
mathematical method of Padé approximants was used to
describe the series. In Fig. 3, we show results for four

emblematic moments, in FOPT and CIPT, with s0 ¼ m2
τ

and in the MS; the shaded bands represent an uncertainty
that stems from the Padé-approximant method, as discussed
in [27]. In Figs. 3(a) and 3(b), the results for two moments
that display good perturbative behavior are shown: wτ

and wðxÞ ¼ 1 − x2, respectively. The horizontal yellow
bands represent an estimate for the Borel integral of the
moments within the Padé-approximant description. Again,
the FOPT series approaches the true value, as predicted by
the Padé approximants, and is rather stable around it until at
least the eighth order. (We relegate to Appendix B a more
detailed discussion about the Borel integrals together with a
comparison with results from the model of Refs. [12,23],
which are similar to ours.)
In Fig. 3(c), we show the results for the monomial

wðxÞ ¼ x, which exacerbates the run-away behavior that
stems from the leading IR singularity, as in the large-β0
case of Fig. 2(a). Here CIPT is in relatively good agreement

(a) (b)

(c) (d)

FIG. 3. Perturbative series for four emblematic moments order by order in αs within the higher-order reconstruction of the QCD
perturbative series with the use of Padé approximants of Ref. [27], in MS and with s0 ¼ m2

τ . The shaded bands represent uncertainties
associated with the Padé approximants as discussed in the original reference [27]. (a),(b) We show moments with good perturbative
behavior, while (c),(d) displays results for moments containing the term x, which show the run-away behavior of the perturbative series.
(a) δð0Þ, wðxÞ ¼ ð1 − xÞ2ð1þ 2xÞ, PAs. (b) δð0Þ, wðxÞ ¼ 1 − x2, PAs. (c) δð0Þ, wðxÞ ¼ x, PAs. (d) δð0Þ, wðxÞ ¼ 1 − x, PAs.
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with the true results, but this is not the case for other
moments containing the linear term, such as wðxÞ ¼ 1 − x,
shown in Fig. 3(d). This moment inherits the run-away
behavior of the monomial and both FOPT and CIPT are
rather unstable, never stabilizing around the true result.
Finally, one can corroborate our conclusion that the bad

perturbative behavior of moments containing the linear
term is related to the leading IR singularity by considering
the “alternative model” of Ref. [23]. In this case, a model
for the QCD Adler function is constructed without the
leading IR singularity. In the C scheme and using the
modified Borel transform, this means that, for this model,

the Borel transform of δð0Þwi is regular at u ¼ 2, since in the
prefactor of Eq. (41) the pole is canceled by the zero in
sinðπuÞ. As shown in [23], the run-away behavior is not
present in this case, which shows, once more, that it stems

from the leading IR singularity in B½δð0Þwi �.
In conclusion, with the use of the C scheme and the

modified Borel transform, the relation between the Borel

transform Adler function and the Borel transform of δð0Þwi are
formally the same in QCD and in the large-β0 limit. The
singularities related to the contributions in the OPE are

equally enhanced or suppressed and, in general, δð0Þwi is
significantly less singular than the Adler function. In the
case of the leading IR renormalon the parallel is strict since
within this framework it is a simple pole both in QCD and in
large β0. The phenomenological consequences are then the
same: moments with a linear term in x display an unstable
perturbative behavior. Finally, the moments with good
perturbative behavior in large β0 are also well behaved in
QCD, at least if FOPT is used. The results from the model-
independent Padé-approximant reconstruction of the series
are qualitatively similar to the “Borelmodel” ofRefs. [12,23]
which attests to the robustness of our conclusions.

IV. OPTIMAL TRUNCATION WITH SCHEME
VARIATIONS

We close this work with a discussion of the optimal
truncation of the (asymptotic) series associated with the
moments that display good perturbative behavior. In
Refs. [24,39] it has been suggested that, in the spirit of
an asymptotic series, the optimal truncation for the per-
turbative expansion of the Adler function and of integrated
moments is achieved by choosing the scheme (or scale) in
which the last known coefficient of the series vanishes. In
this case, by construction, the smallest term of the series,
which is zero, is precisely the last known term, which
makes it the ideal point for the optimal truncation of the
asymptotic series.6 Through this procedure, one expects to

make maximum use of the available information from
perturbative QCD. Here we show that this type of opti-
mization works very well in FOPT for all the moments with
good perturbative behavior, within the reconstruction of the
series provided by the Padé approximants of Ref. [27].
We will work in the C scheme and perform variations of

the continuous scheme parameter C. However, as discussed
in Sec. III B, in this scheme, scale and scheme trans-
formations are essentially equivalent and the same results
can be achieved by renormalization scale variations.
Let us illustrate the procedure with the help of a concrete

case. The FOPT expansion for wðxÞ ¼ 1 − x2 and s0 ¼ m2
τ

in the C scheme is given by

δð0Þ
1−x2 ¼ 1.333âQ þ ð6.186þ 3CÞâ2Q

þ ð27.77þ 33.17Cþ 6.750C2Þâ3Q
þ ð119.4þ 246.4Cþ 124.0C2 þ 15.19C3Þâ4Q
þ ð90.73þ 1512Cþ 1329C2 þ 398.9C3

þ 34.17C4 þ 1.333c5;1Þâ5Q þ � � � ; ð47Þ

where we show the four exactly known contributions (up to
and including α4s) plus the first unknown contribution,
proportional to c5;1. At order α5s, the terms without c5;1
depend only on β-function coefficients and lower cn;1 and
are known exactly. It is customary to include the fifth term
in realistic αs analysis through an estimate of c5;1 which
here is taken to be c5;1 ¼ 277� 51 [27]—but we will see
that the results do not depend strongly on the value of c5;1.
The optimized truncation is obtained then by finding the

value(s) ofC for which the coefficient of â5Q vanishes. In the
case of 1 − x2, for FOPTwith our central value for c5;1, one
finds two such values: C1 ¼ −1.463 and C2 ¼ −0.4763.
The former leads to a rather unstable series, that we discard,
since the coupling is already entering the nonperturbative
regime [α̂sðC1; m2

τÞ ¼ 0.531] while the latter is still in the
perturbative regime [α̂sðC2; m2

τÞ ¼ 0.355] and gives rise to
the optimized result. In Fig. 4(a) we compare the optimized

series for δð0Þ
1−x2 (green dot-dashed line) with the usual MS

result (solid blue line) using the higher-order coefficients
and theBorel sum from the description ofRef. [27].One sees
that the optimized FOPT series approaches the true value
faster than the MS result, already at Oðα3sÞ, and remains
rather stable around it. This optimization is related to the
larger value of α̂s which leads to a series that “converges”
faster than the MS one.7 With the optimized series, an
estimate of the true result is obtained with the truncation at
Oðα5sÞ which gives

6It is not guaranteed that the truncation at the smallest term,
which is known as superasymptotic approximation, is always the
optimal truncation, but experience shows that it is very often the
case [17].

7This can be seen as a manifestation of Carrier’s rule:
“Divergent series converge faster than convergent series because
they do not have to converge” [17].

DIOGO BOITO and FABIO OLIANI PHYS. REV. D 101, 074003 (2020)

074003-12



δð0Þ
1−x2ðâτ; C ¼ −0.4763Þ ¼ 0.2358� 0.0017; ð48Þ

where the error is due to the variation of c5;1 within one
sigma. It is clear from Fig 4(a) that this leads to an excellent
agreement with the true result—as predicted from the results
of [27]—which reads 0.2364� 0.0020. One should also
remark that the procedure is rather independent of the value
of c5;1 that is used. An uncertainty due to the value of αs, for
example, would be about one order of magnitude larger than
the uncertainty shown in Eq. (48). An attempt to apply the
same procedure to the CIPT series does not lead to any
significant improvement with respect to the (already bad)
result obtained in the MS, as shown in the red and purple
lines in Fig. 4.
The optimization can also be applied to the kinematic

moment, wτ. The result is again very good and the
acceleration of the series is even more obvious, as dis-
played in Fig. 4(b). For illustration, we also show, in gray,

the series in a scheme with larger value of C, namely C ¼
0.8 for which α̂sðC ¼ 0.8; m2

τÞ ¼ 0.2554. One sees that in a
scheme with a very small value of the coupling the
convergence is smooth but very slow for practical purposes,
where only the first few terms are available. Similar results
can be obtained for the other moments that have a good
perturbative behavior. As an example, in Fig. 4(c) we show
the result of the optimization of one of the pinched
moments introduced in Ref. [6].
It is also interesting to analyze a borderline case, namely

that of wðxÞ ¼ 1. This is not a moment with a bad per-
turbative behavior (it does not have a linear term in x),
but it is also not among the most stable perturbative
series, since it does not benefit from the partial cancella-
tion of renormalons. The result in this case is shown in
Fig. 4(d). Here the MS series overshoots the true value
up to Oðα4sÞ, as shown in Fig. 4(d). In this case, the value
of C that optimizes the truncation turns out positive and
the optimal scheme has a smaller value of αs than in MS.

(a) (b)

(c) (d)

FIG. 4. Perturbative series in FOPT and CIPT, for s0 ¼ m2
τ , in the MS and in the optimal C scheme for three moments with good

perturbative behavior (a)–(c), as well as for the moment of wðxÞ ¼ 1, in (d). (b) The results in gray show a series with large value of C,
for illustration purposes. The coefficients at Oðα5Þ and larger, as well as the Borel sum, are obtained from the description with Padé
approximants [27]. Here we refrain from showing the error bands in each of the perturbative series to avoid cluttering up the plots.
(a) δð0Þ, wðxÞ ¼ 1 − x2. (b) δð0Þ, wðxÞ ¼ ð1 − xÞ2ð1þ 2xÞ. (c) δð0Þ, wðxÞ ¼ 1 − 4x3 þ 3x4. (d) δð0Þ, wðxÞ ¼ 1.
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The optimization is achieved by avoiding the overshooting
of the true result that is prominent in the MS series. The
final result is more stable than that in the MS and one could
expect a smaller error from the truncation of the series, but
the acceleration is not very significant.
Finally, moments with bad perturbative behavior do not

improve in any significant way when we apply the
optimization described here. A more stable perturbative
expansion for these moments can be achieved with the
method of conformal mappings, making use of the infor-
mation about the location of the renormalon singularities
[40–43]. Even with this technique, in some cases, the series
approaches the true value only at high orders.

V. CONCLUSIONS

In this work, we have discussed in detail the perturbative
behavior of integrated spectral function moments and the
connection with the renormalon singularities of their Borel
transformed series, denoted B½δð0Þwi �. The understanding of
the perturbative expansion of such moments is important in
guiding the choice of moments employed in realistic αs
determinations from low-Q2 FESRs. Moments with tamed
perturbative expansions are more reliable and lead to
smaller uncertainties from the truncation of perturbation
theory.
In large β0, one can easily establish the relation between

the renormalons of the Adler function and those of the
integrated moments in the MS scheme. An infinite number
of renormalon poles of the Adler function is canceled and

B½δð0Þwi � is significantly less singular. In particular, for
polynomial moments, the leading IR pole is exactly
canceled unless the weight function contains a term
proportional to x. The weight functions with this term
are therefore the only ones that are singular at u ¼ 2 and
they display an unstable perturbative behavior that stems
from the contribution of this IR pole to the perturbative
series. For the pinched moments that had been identified as
having a good perturbative behavior in Ref. [23], we found
additional cancellations of renormalon singularities, which
are related to a better behavior at higher orders and
postpone the asymptotic regime of the series.
Using the C scheme and a modified Borel transform we

have been able to show, in Eq. (41), that the relation
between Borel transformed moments and the Borel trans-
formed Adler function is the same in QCD and in large β0.
In Eq. (46), we have also shown that the leading IR
singularity in this framework is again a simple pole.
These are the main results of this paper since they allow
us to conclude that the same mechanisms of enhancement,
suppression, and partial cancellation of renormalon singu-
larities responsible for the behavior of the perturbative
moments in large β0 are operative in QCD as well. The
similar behavior of the integrated spectral function
moments in the two cases is therefore no surprise and

again the pinched moments without the linear term are the
best ones (as pointed out in Ref. [23]). The instabilities
related to the leading IR pole are also present in QCD.
Finally, we have shown that it is possible to use

renormalization scheme (or scale) variations to accelerate
the convergence of the moments that display good pertur-
bative behavior. This had been suggested in Ref. [24] for
the Rτ ratio but it had never been investigated systemati-
cally before.
In conclusion, we have been able to understand the

instabilities and stabilities of the perturbative expansions of
integrated spectral function moments in terms of their
renormalons. Apart from the implications for the choice
of moments in precise αs analysis, our results can be used in
the context of Borel models for the Adler function, since we
have shown that scheme transformations and the modified
Borel transform can be used in order to simplify the
structure of the leading IR singularity, related to the gluon
condensate, which becomes a simple pole. In fact, the
results in large β0 and QCD are therefore much more
similar than previously thought. Our findings also suggest
that alternative expansions that suppress some of the
renormalons may lead to much more stable results, and
we plan to investigate this issue further in the near future.
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APPENDIX A: CONVENTIONS FOR THE
QCD β-FUNCTION

We define the QCD β function as

βðaμÞ≡−μ
daμ
dμ

¼ β1a2μþβ2a3μþβ3a4μþβ4a5μþβ5a6μþ�� � ;

ðA1Þ

where the first five coefficients are known analytically
[44,45]. It is important to highlight that β1 and β2 are
scheme independent and, in our conventions, they are
given by

β1 ¼
11

2
−
1

3
Nf; β2 ¼

51

4
−
19

12
Nf; ðA2Þ
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with Nf being the number of flavors. In the particular case
of Nf ¼ 3, relevant here, we have

β1 ¼
9

2
; β2 ¼ 8: ðA3Þ

APPENDIX B: DETAILS ON THE BOREL
INTEGRALS FROM PADÉ APPROXIMANTS

In this Appendix we discuss in further detail how the
Borel integrals, or “true values,” of the perturbative series
are obtained. We also compare our results with those
of Ref. [23].
Our results are based on the reconstruction of the higher-

order coefficients performed in Ref. [27], using Padé
approximants. Several methods have been studied in
[27], using different variants of rational approximants
and constructing the approximants to the Borel transformed
Adler function, to the Borel transformed δð0Þwτ , as well as to

the FOPT expansion of δð0Þwτ . Due to the less singular

structure of B½δð0Þwτ �, Padé approximants built to this
Borel transform converge faster and were the basis for
the main result of Ref. [27], which we use here. The
coefficients of the Adler function are then extracted,

indirectly, from the series of δð0Þwτ . With these coefficients,
given in Table 6 of Ref. [27], one can obtain the expansion
of any moment, in FOPT or CIPT, rather accurately up to
order Oðα10s Þ.
The main advantage of the use of Padé approximants is

that the method is almost completely model independent. In
this framework, however, no unique representation of the
Borel transformed Adler function is obtained, which makes
the task of calculating the Borel integrals for each moment
less straightforward. In order to estimate the Borel integrals
we have constructed new Padé approximants, following the

same methods of Ref. [27], to each of the Borel transformed

δð0Þwi . In all cases where the moments have good perturbative
behavior, the approximants converge very fast, only three
coefficients suffice to obtain a rather stable result. This
means that the prediction from these Padé approximants are
based only on the exactly known QCD results. From the
Borel transform described by the Padés one can then easily
calculate the Borel integral. Of course, more than one Padé
can be built from the same input and we have constructed
many different approximants, belonging to different
sequences and also using D-log Padés [27], in order to
estimate the horizontal error band shown in Figs. 3 and 4.
The moments containing the linear term x, however, lead to
less stable results. In order to obtain a stable description of
the Borel transform it is necessary to use more coefficients
in the construction of the Padé approximants—which make
these results less model independent since they require
input from the higher-order coefficients predicted in [27].
The final uncertainties in the horizontal (yellow) bands take
into account the dispersion of the results from the use of
different Padé approximants as well as the original uncer-
tainty in the prediction of the coefficients of Ref. [27]. In
most cases, the former dominates.
Finally, it is interesting to compare our Borel integrals

with the ones from the description of Refs. [12,23]. In these
works, the Borel transformed Adler function is modeled
with its first three dominant renormalons, the leading UV
and the first two IR singularities. The residues of the
singularities are fixed such as to reproduce the known QCD
results. The main advantage of this procedure is that one
obtains a unique description of the Borel Adler function,
from which all the results are derived. The disadvantage is a
possible residual model dependence which could lead to
unaccounted systematics. The results from the Padés are,
however, in very good agreement with the “reference
model” of [23], although the uncertainties in the latter

(a) (b)

FIG. 5. Same as in Figs. 3(a) and 3(d). We add, for comparison, the result for the Borel integral from the reference model of Ref. [23]
(green band, with an offset). (a) δð0Þ, wðxÞ ¼ ð1 − xÞ2ð1þ 2xÞ, PAs. (b) δð0Þ, wðxÞ ¼ 1 − x, PAs.
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case, stemming only from the imaginary ambiguities in the
Borel integral, are usually smaller. In Fig. 5, we compare
the two approaches to the Borel integral, for two exemplary
moments, and show that they lead to very similar results.

The Borel integral from the reference model of [12] is
shown as a green band, with a horizontal offset with respect
to the results from Padé approximants, in yellow. In both
cases, the FOPT series is preferred.
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