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The work concerns the quasielastic charged current neutrino-neutron and antineutrino-proton inter-
actions. Single, double, and triple spin asymmetries are computed and analyzed. The spin asymmetries are
sensitive to the axial form factor of the nucleon. In particular, the target-recoil double spin asymmetry and
the lepton-target-recoil triple spin asymmetry depend strongly on the axial form factor of the nucleon.
Indeed, the sign and shape of these components depend on the axial mass parameter. All the asymmetries,
except the lepton polarization, are observables well suited to study the nonstandard interactions described
by the second-class current contribution.
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I. INTRODUCTION

The spin observables, in particles collisions, have been
intensively studied for many years [1–4]. They contain
information about the structure of the scattering amplitude
and the structure of the particles participating in the
interaction. The meson photoproduction is a good example
of the process for which the spin observables are utilized to
constrain the form of the scattering amplitude [5,6].
Another example is the elastic ep scattering. Indeed, from
the measurements of the spin asymmetries, the form factor
ratio Gp

E=G
p
M is extracted [7–12], Gp

E=M is electric/magnetic
form factor of the proton.
In this work, we consider the polarization observables in

the quasielastic charged current (CCQE) neutrino (anti-
neutrino)-neutron (proton) scattering. Progress in studies of
the fundamental properties of the neutrinos requires more
precise knowledge of the neutrino-nucleon and neutrino-
nucleus cross sections [13,14]. The CCQE νμ-nucleon
scattering is the process that is very important for the
experimental investigations of the neutrino oscillation
phenomenon. Indeed, in the long-baseline experiments,
such as T2K [15] or Noνa [16], the CCQE νμ-nucleus
events are analyzed to obtain the neutrino oscillation
parameters and CP-violation phase (CP denotes charge
conjugation parity symmetry). On the other hand, the
theoretical description of the CCQE neutrino-nucleon

interaction is the input for the nuclear models for the
ν-nucleus scattering.
The CCQE νμ-nucleon interaction is described by a

simple model. Indeed, the scattering amplitude is para-
metrized by four form factors, two vector and two axial.
The axial contribution dominates the CCQE cross section.
After some simplifications, it is parametrized by the axial
form factor FA [17]. The accurate estimate of the axial
nucleon form factor FA is necessary to reduce the uncer-
tainty of the predictions of the neutrino-nucleus scattering
cross sections, which is desired to lower the systematic
uncertainty of the measurement of the oscillation param-
eters and the CP-violation phase, in the lepton sector.
The axial nucleon form factor is extracted from the

neutrino-nucleus scattering data. However, it is a difficult
task because of the complexity of the nuclear effects [18].
So far, the most accurate information about FA is obtained
from the analysis of the neutrino-hydrogen and the neu-
trino-deuteron scattering data [19–25]. Usually, to simplify
the analysis, it is assumed that FA has a dipole form.
However, an effort has been made to search for deviations
from the dipole shape [26–30]. Unfortunately, to get a clear
evidence for a nondipole dependence, it is necessary to
collect more informative data.
The so-called second-class current (SCC) [31] describes

a contribution to the electroweak nucleon vertex not
allowed by the Standard Model. In last several decades,
SCC has been studied theoretically (for recent review, see
Fatima et al. [32]) and experimentally [22,33–35].
However, no evidence for the SCC contribution has been
obtained so far.
The studies of the spin properties in the CCQE ν-nucleon

interactions should extend our knowledge about the
elementary electroweak nucleon vertex. Indeed, we showed
[36–38] that the spin observables contain nontrivial
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information about the nonresonant background contribu-
tion in the single pion production (SPP) processes induced
by interactions of neutrinos with nucleons. In this work, we
aim to study the axial and the SCC contributions to the spin
observables in the CCQE scattering. In particular, we focus
on the investigation of the sensitivity of the spin observ-
ables to the axial and SCC form factors.
We consider seven spin observables. Among three single

spin asymmetries: the recoil polarization asymmetry, the
lepton asymmetry, and the polarized target asymmetry, the
last one has been not discussed for the CCQE scattering yet.
But it was studied for the SPP in the neutrino-nucleon
scattering [38]. Already in the 60s, Adler [39], Pais [40],
and Block [41] investigated the properties of the polariza-
tion of the recoil nucleon and the charged lepton in
the CCQE neutrino-nucleon interactions. A report by
Llewellyn Smith [42] summarizes these works. Recently,
the polarization properties of the τ-lepton, produced in the
CCQE ντ-nucleon scattering, have been investigated
[43–45]. Bilenky and Christova studied the axial contri-
bution to the nucleon polarization in the CCQE νμ-nucleon
scattering [46,47]. Whereas in Ref. [32], the SCC con-
tribution to the lepton and the recoil nucleon polarizations
is estimated. Eventually, the polarization properties of the
final lepton and the knockout nucleon, in the CCQE
neutrino-nucleus scattering, are discussed in Refs. [48–50]
and [51], respectively.
Besides the polarization asymmetries, we consider the

lepton-recoil, target-lepton, target-recoil double spin asym-
metries, as well as target-lepton-recoil triple spin asym-
metry. All these observables have been not studied for the
CCQE scattering yet.
To discuss the physical properties of the asymmetries, we

calculate their components in spin basis. Eventually, we
provide with the numerical analysis of the results. We show
that the spin observables contain the information about the
axial structure of the nucleon,which is complementary to the
spin averaged cross section measurements. They are also
sensitive to possible signals from the nonstandard inter-
actions, described by SCCs. In particular, the target-recoil
asymmetry is sensitive to the axial form factor. Indeed,
the sign and the shape of transverse-transverse and normal-
normal components of the target-recoil asymmetry depend
on the value of the axial mass MA. Similar dependence is
obtained for the components of the lepton-target-recoil
asymmetry (longitudinal-normal-normal, longitudinal-
transverse-transverse, and longitudinal-transverse-normal).
The spin asymmetries are experimentally investigated in

hadron-hadron collisions (meson-nucleon, baryon-baryon),
photoproduction processes, lepton-lepton, and lepton-
nucleon collisions [52–54]. However, in the CCQE νN
scattering, the spin asymmetries have not been measured
yet. Experimental studies of the neutrino interactions are
more challenging than, for instance, the investigations of
the electron-nucleon interactions. On the other hand, the

measurement of the spin observables demands well control
of the beam and the target [55,56]. Moreover, to study the
interactions of the neutrinos with neutrons, the neutrino-
nucleus scatterings are analyzed. It is known that the
polarization observables are modified by the nuclear effects
[48], but in this work, we focus on the simplest scenario,
interactions of neutrinos with free nucleons.
Despite the difficulties described above, already in the

60s, Block [41] proposed the measurement of the recoil
polarization of the nucleon in the CCQE νN scattering. The
idea was to adopt the bubble chamber detector technique.
The development of new experimental techniques, such as
the liquid argon time projection chamber [57–59], should
allow performing precision measurements of the neutrino
scattering cross sections. We hope that with the usage of the
new experimental methods, the measurement of the spin
observables, presented in this paper, will be feasible in the
future.
The paper is organized as follows: in Sec. II, the

necessary formalism is introduced. Section III contains
the definition of the spin observables and Sec. IV presents
the discussion of the numerical results. Appendix presents
convention and normalization used in the paper. In the
Supplemental Material [60], we give the components of the
asymmetries calculated in spin basis as well as the analytic
formulas for the spin asymmetries in the vector and the
tensor form.

II. FORMALISM

A. Kinematics

Let us consider two CCQE scattering processes,

νμðkÞ þ nðpÞ → μ−ðk0Þ þ pðp0Þ;
ν̄μðkÞ þ pðpÞ → μþðk0Þ þ nðp0Þ; ð1Þ

where N ¼ p (proton) or N ¼ n (neutron).
The momenta of neutrino, lepton, target nucleon, and

recoil nucleon are denoted as it is given below.

kα ¼ ðE;kÞ; k0α ¼ ðEk0 ;k0Þ; pα ¼ ðEp;pÞ;
p0α ¼ ðEp0 ;p0Þ; ð2Þ

where Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. In the next part of the text, m and

M stand for the lepton and the averaged nucleon mass,
respectively.
The four-momentum transfer is defined by

qα ¼ kα − k0α ¼ ðω;qÞ; ð3Þ

where ω and q denote the transfer of an energy and a
momentum, respectively.
The components of the asymmetry tensors are calculated

in the coordinate system so that z-axis goes along the
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momentum q, hence qμ ¼ ðω; 0; 0; jqjÞ, the axis z and y lie
in the scattering plane spanned by k0 and k vectors,
whereas x is normal to the scattering plane; see Fig. 1.
The spin asymmetries are expressed as functions of the

Mandelstam variables,

t ¼ qμqμ ≡ q · q ¼ q2 ¼ −Q2; s ¼ ðpþ kÞ2;
u ¼ ðp − k0Þ2: ð4Þ

The analytic formulas take simpler form when the scalar

su ≡ s − u ð5Þ

is used.

B. Cross section

The differential crosss ection, in the laboratory frame, is
given by the formula

d6σ
d3k0d3p0 ¼

jMj2
64π2MEEk0Ep0

δð4Þðp0 þ k0 − k − pÞ; ð6Þ

where M is the scattering matrix. In the one-boson
exchange approximation, it has the form

iM ¼ cos θC
GFffiffiffi
2

p jμðk0; sl;kÞJμðp0; sN0
;p; sNÞ; ð7Þ

where GF ¼ 1.16639 × 10−5 GeV−2 is a Fermi constant;
θC is the Cabibbo angle, cos θC ¼ 0.9737; by sl, sN , and sN

0

the charged lepton, the target nucleon, and the recoil
nucleon spins are denoted, respectively. The spin of the
neutrino is omitted as it is a state of definite helicity.

The M matrix is given by the contraction of lepton
current,

jαðk0; sl;kÞ ¼ ūðk0; slÞγαð1 − xγ5ÞuðkÞ; ð8Þ

with hadron current,

Jμðp0; sN0
;p; sNÞ ¼ ūðp0; sN0 ÞΓμ

þðqÞuðp; sNÞ; ð9Þ

where Γμ
þðqÞ is the electroweak nucleon vertex. Its analytic

form is given in the next section.
After several simplifications, the differential cross sec-

tion reads

dσ0
dt

≡ dσ
dt

ðsN0 ¼ sl ¼ sN ¼ 0Þ ¼ G2
Fcos

2θC
128πM2E2

I ; ð10Þ

where

I ≡ Lμνðsl → 0ÞHμνðsN → 0; sN
0
→ 0Þ: ð11Þ

HμνðsN0
; sNÞ ¼ TrðΛðp0; sN0

;MÞΓμ
þΛðp; sN;MÞγ0Γν†γ0Þ

ð12Þ

is the hadronic tensor, whereas

Lμν ¼ TrðΛðk0; sl; mÞγμð1 − xγ5Þ=kγνð1 − xγ5ÞÞ ð13Þ

is the lepton tensor, x ¼ �1 for neutrino/antineutrino,
=k ¼ γμkμ. In the above expressions, the projection operator

Λðp; s;MÞ≡ 1

2
ðpþMÞð1þ γ5=sÞ ð14Þ

is introduced. Notice that for fully polarized state
sμsμ ¼ −1. The differential cross section, averaged over
initial spins and summed over final spins, reads dσ̄=dt ¼
4dσ0=dt.

C. Hadronic current

The hadronic current has the vector-axial structure.
Indeed, the electroweak nucleon vertex reads [42,61]

Γμ
þðqÞ ¼ γμFV

1 ðtÞ þ iσμνqν
FV
2 ðtÞ
2M

þ qμ
FV
3 ðtÞ
M

−
�
γμFAðtÞ þ qμ

FPðtÞ
2M

þ iσμνqν
FA
3 ðtÞ
M

�
γ5:

ð15Þ

The functions FV
i and FA

i (i ¼ 1, 2, 3) refer to vector and
axial form factors of the nucleon, respectively. If one
assumes time reversal invariance (standard recruitment),
then all form factors are real.

FIG. 1. The polarization basis vectors for the fermions in the
CCQE ν-nucleon scattering. The full (green) ball denotes
the target. The blue, red, and green arrows are the momenta
of the neutrino, the charged lepton, and the recoil nucleon,
respectively. The vectors χ, ξ, and ζ are the elements of the basis
for the spins of target, recoil nucleon, and lepton, respectively.

SPIN ASYMMETRIES IN QUASIELASTIC CHARGED CURRENT … PHYS. REV. D 101, 073002 (2020)

073002-3



It is convenient to characterize the elements of the
weak current according to the G-parity transformation
[31]. The vector current contributions, described by FV

1

and FV
2 form factors, transform similarly as their analogs in

the Standard Model. Similarly, the axial current induced by
the FA and FP has the same G-parity property as their
analog in the Standard Model. Hence, the standard part of
the electroweak vertex reads
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FIG. 3. Caption the same as in Fig. 2 but for the CCQE ν̄μp scattering.
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FIG. 2. Energy dependence of the components of single spin asymmetries PlðEÞ (left column), T NðEÞ (middle column), and PN 0 ðEÞ
(right column), given by the ratios of the total cross sections; see Eqs. (50)–(52). Results obtained for the CCQE νμn scattering, the axial
mass MA ¼ 0.8, 0.9, 1.0, 1.1, 1.2 GeV, and FA

3 ¼ 0. The longitudinal/transverse components are shown in top/bottom row.
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Γμ
þð1ÞðqÞ ¼ γμFV

1 ðtÞ þ
iσμνqν
2M

FV
2 ðtÞ

−
�
γμFAðtÞ þ

qμ

2M
FPðtÞ

�
γ5: ð16Þ

Then ūðp0ÞΓμ
þð1ÞuðpÞ is called the first-class current.

There are many phenomenological parametrizations of
the vector form factors; see, e.g., [62]. But without losing
the generality of the discussion, we consider the dipole
parametrization [63],

FV
1 ðtÞ ¼

ð1 − ðt=4M2Þðμp − μnÞÞ
1 − t=4M2

GDðtÞ;

FV
2 ðtÞ ¼

μp − μn − 1

1 − t=4M2
GDðtÞ; ð17Þ

where μp ¼ 2.793 and μn ¼ −1.913 are proton and neutron
magnetic moments expressed in nuclear magneton unit,
whereas

GDðtÞ ¼
�
1 −

t
M2

V

�
−2
; MV ¼ 0.84 GeV: ð18Þ

The parametrization of the axial form factor, used in the
analysis, is given in Sec. IV. The pseudoscalar axial form
factor, FP, is related to FA as follows [17]:

FPðtÞ ¼
4M2

ðm2
π − tÞFAðtÞ; ð19Þ

where mπ is the pion mass.

If the G parity is weakly violated, then the form factors
FV
3 and FA

3 do not vanish, and contribute to the so-called
second-class current, described by the vertex

Γμ
þð2ÞðqÞ ¼ qμ

FV
3 ðtÞ
M

− iσμνqνγ5
FA
3 ðtÞ
M

: ð20Þ

We impose the conserved vector current theorem to
constrain the SCC. Then, FV

3 ¼ 0; however, there is no
such constraint for the axial FA

3 form factor. Therefore, FA
3

is the function that parametrizes the SCC contribution.
To distinguish between the first and the second-class

contributions, we introduce the notation

Hμν ¼ Hμν
ð1Þ þ Hμν

ð12Þ þ Hμν
ð2Þ; ð21Þ

where

Hμν
ð1Þ ≡ TrðΛðp0; sN0

;MÞΓμ
þ;ð1ÞΛðp; sN;MÞΓ̄ν

þ;ð1ÞÞ; ð22Þ

Hμν
ð2Þ ≡ TrðΛðp0; sN0

;MÞΓμ
þ;ð2ÞΛðp; sN;MÞΓ̄ν

þ;ð2ÞÞ; ð23Þ

Hμν
ð12Þ ≡ TrðΛðp0; sN0

;MÞΓμ
þ;ð1ÞΛðp; sN;MÞΓ̄ν

þ;ð2ÞÞ
þ TrðΛðp0; sN0

;MÞΓμ
þ;ð2ÞΛðp; sN;MÞΓ̄ν

þ;ð1ÞÞ: ð24Þ

In the above, Hμν
ð1Þ refers to the standard hadronic tensor

(the first-class contribution only), whereas Hμν
ð12Þ and Hμν

ð2Þ
describe the second-class current corrections to the had-
ronic tensor.
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The spin averaged cross section is easily calculated.
Indeed, assuming the full form of (15) and reality of the
form factors, one gets

I ¼ I ð1Þ þ I ð2Þ þ I ð12Þ; ð25Þ
where

I ðaÞ ¼ L0;μνH
μν
ðaÞðsN → 0; sN

0
→ 0Þ; a ¼ 1; 12; 2 ð26Þ
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FIG. 6. Caption the same as in Fig. 5 but for the CCQE ν̄μp scattering.
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and

I ð1Þ ¼
1

4M2
½8FAFPm2M2ðt −m2Þ þ F2

Pm
2tðt −m2Þ þ 4F2

AM
2ðm2ð4M2 −m2Þ þ s2u − 4M2tþ t2Þ

þ 4FV2

1 M2ðt2 −m2ðm2 þ 4M2Þ þ s2u þ 4M2tÞ þ 8FV
1F

V
2M

2ðt −m2Þð2tþm2Þ
þ FV

2
2ðt3 − 4m4M2 − s2utþ ð4M2 −m2Þt2Þ − 16ðFV

1 þ FV
2 ÞFAM2sutx�; ð27Þ

I ð2Þ ¼
1

2M2
½m2FV2

3 ð5m2M2 − ð2m2 þ 5M2Þtþ 2t2Þþ2tFA2

3 ð4m2M2 − su2 − ðm2 þ 4M2Þtþ t2Þ�; ð28Þ

I ð12Þ ¼ −4m2su

��
FV
1 þ t

4M2
FV
2

�
FV
3 þ

�
FA þ t

4M2
FP

�
FA
3

�
: ð29Þ

Above results are consistent with [42].

III. SPIN OBSERVABLES

In the most general case, the differential cross section
formula has the form

dσ ¼ dσ0ð1þ Pμ
l s

l
μ þ T μ

Ns
N
μ þ Pμ

N0sN
0

μ þ slμsN
0

ν Aμν
lN0

þ slμsNν B
μν
lN þ sNμ sN

0
ν CμνNN0 þ slμsNν sN

0
α Dμνα

lNN0 Þ: ð30Þ
The above expression contains the following seven spin
observables [5]:

(i) Recoil polarization asymmetry Pμ
N0

(ii) Lepton polarization asymmetry Pμ
l

(iii) Polarized target asymmetry T μ
N

(iv) Lepton-recoil asymmetry Aμν
lN0

(v) Target-lepton asymmetry Bμν
lN

(vi) Target-recoil asymmetry CμνNN0
Target-lepton-recoil asymmetry Dμνα

lNN0
We calculated the spin asymmetry vectors and tensors

using the full form of the current (15) and assuming that the

form factors are complex-value functions. The analytic
results are given in the Supplemental Material [60].

A. Vector and tensor components of spin asymmetries

We introduce the spin basis to discuss the physical
properties of the spin asymmetries which are as follows:

(i) Basis for the outgoing lepton (see Fig. 1)

ζμL ¼ 1

m

�
jk0j; Ek0k0

jk0j
�

ζμT ¼
�
0;

k0 × ðk × qÞ
jk0 × ðk × qÞj

�

ζμN ¼
�
0;

k × q
jk × qj

�
;

ð31Þ
where L, T, and N denote longitudinal to the lepton
momentum, transverse to the lepton momentum,
and normal to the scattering plane components,
respectively.

(ii) Basis for the recoil nucleon

ξμL ¼ 1

M

�
jqj; Ep0q

jqj
�
; ξμT ¼

�
0;

q × ðk × qÞ
jq × ðk × qÞj

�
;

ξμN ¼
�
0;

k × q
jk × qj

�
; ð32Þ

(iii) Basis for the target nucleon

χμL ¼ 1

E
ð0;kÞ; χμT ¼

�
0;

k × ðk × qÞ
jk × ðk × qÞj

�
;

χμN ¼
�
0;

k × q
jk × qj

�
: ð33Þ

We have made the standard choice for the basis vectors for
the lepton (31) and recoil nucleon (32). For the target
nucleon, the longitudinal vector is parallel to the neutrino
momentum, and χμN is normal to the scattering plane. With
this choice of the basis vectors, the axial symmetry around
the neutrino momentum k is maintained; hence, the
azimuthal dependence can be easily integrated out.

FIG. 8. Axial mass dependence of the roots of the equa-
tions: CNN

NN0 ðE ¼ 1 GeV; Q2Þ ¼ 0 (solid line) and CTTNN0 ðE ¼
1 GeV; Q2Þ ¼ 0 (dashed line) obtained for the CCQE ν̄μp
scattering.
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Having the spin basis we calculate the longitudinal (L),
transverse (T), and normal (N) components of the polari-
zation asymmetry for the recoil nucleon and the outgoing
lepton

PX
N0 ≡ ξXμP

μ
N0 and PX

l ≡ ζXμP
μ
l ; X ¼ L; T; N;

ð34Þ

respectively. If all the form factors are real, then

PN
N0 ¼ PN

l ¼ 0: ð35Þ
Three independent components of the polarized target

asymmetry are given by

T X
N ≡ χXμT

μ
N; X ¼ L; T; N: ð36Þ

For real form factors, T N
N ¼ 0.

The components of the double spin asymmetry tensor are
defined by

BXY
lN ≡ ζXμ χ

Y
νB

μν
lN; AXY

lN0 ¼ ζXμ ξ
Y
νA

μν
lN0 ;

CXYNN0 ¼ χXμ ξ
Y
ν C

μν
NN0 : ð37Þ

For real form factors,
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FIG. 9. Energy dependence of the target-recoil-lepton spin asymmetry DlNN0 ðEÞ, given by the ratios of the total cross sections, see
Eqs. (56), calculated for the CCQE νμn scattering, for MA ¼ 0.8, 0.9, 1.0, 1.1, 1.2 GeV, FA

3 ¼ 0.
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0 ¼ AyN
lN0 ¼ ByN

lN ¼ CyNNN0 ¼ ANy
lN0 ¼ BNy

lN ¼ CNy
NN0 ;

y ¼ L or T: ð38Þ
Then each tensor has five nonvanishing components.
Eventually, the components of the triple spin asymmetry

are defined by

DXYZ
lNN0 ≡ ζXμ χ

Y
ν ξ

Z
αD

μνα
lNN0 : ð39Þ

When the form factors are real, the components given by
the contraction of Dμνα

lNN0 tensor with odd number of normal
basis vector vanish, e.g., DNLT

lNN0 ¼ 0 or DNNN
lNN0 ¼ 0; hence,

there are 14 independent components.

Tensor components of the spin asymmetries, calculated
assuming that form factors are real and FV

3 ¼ 0, are given in
the Supplemental Material [60].
Operationally, each asymmetry can be represented by the

cross section ratio. For the single spin asymmetries, we
introduce the ratio

Rðdσ=dt; SXÞðE; tÞ ¼
dσ
dt ðSXÞ − dσ

dt ð−SXÞ
dσ
dt ðSXÞ þ dσ

dt ð−SXÞ

¼
P

c¼�1c
dσ
dt ðcSXÞP

c¼�1
dσ
dt ðcSXÞ

; ð40Þ
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FIG. 10. Caption the same as in Fig. 9 but for the CCQE ν̄μp scattering.
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where SX ¼ ξX, ζX, or χX and X ¼ L, T,N. The above ratio
schematically can be written as

Rðdσ; SXÞ ¼
dσð↑Þ − dσð↓Þ
dσð↑Þ þ dσð↓Þ ; ð41Þ

where the arrows indicate the direction of the spin SX.
It is easy to see that

PX
N0 ðE; tÞ ¼ Rðdσ=dt; ξXÞðE; tÞ;

PX
l ðE; tÞ ¼ Rðdσ=dt; ζXÞðE; tÞ;

T X
NðE; tÞ ¼ Rðdσ=dt; χXÞðE; tÞ: ð42Þ

For the double spin asymmetry, we introduce the ratio

Rðdσ=dt; SX; S0YÞðE; tÞ≡
P

c1;c2¼�1c1c1
dσ
dt ðc1SX; c2S0YÞP

c1;c2¼�1
dσ
dt ðc1SX; c2S0YÞ

;

ð43Þ

→
dσ
dt ð↑;↑Þ þ dσ

dt ð↓;↓Þ − dσ
dt ð↑;↓Þ − dσ

dt ð↓;↑Þ
dσ
dt ð↑;↑Þ þ dσ

dt ð↓;↓Þ þ dσ
dt ð↑;↓Þ þ dσ

dt ð↓;↑Þ
:

ð44Þ

Then,
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FIG. 11. The dependence of the target-recoil-lepton asymmetry DlNN 0 ðE ¼ 1 GeV; Q2Þ on Q2, Eq. (48), obtained for the CCQE ν̄μp
scattering for MA ¼ 0.8, 0.9, 1.0, 1.1, 1.2 GeV and FA

3 ¼ 0.
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AXY
lN0 ðE; tÞ ¼ Rðdσ=dt; ζX; ξYÞðE; tÞ; ð45Þ

BXY
lN ðE; tÞ ¼ Rðdσ=dt; ζX; χYÞðE; tÞ; ð46Þ

CXYNN0 ðE; tÞ ¼ Rðdσ=dt; χX; ξYÞðE; tÞ: ð47Þ

For the triple spin asymmetry, we introduce the ratio

DXYZ
lNN0 ðE; tÞ≡ Rðdσ=dt; ζX; ξY; χZÞðE; tÞ

¼
P

c1;c2;c3¼�1c1c2c3
dσ
dt ðc1ζX; c2χY; c3ξZÞP

c1;c2;c3¼�1
dσ
dt ðc1ζX; c2χY; c3ξZÞ

:

ð48Þ

We present also the asymmetries given by the ratios of the
total cross sections; in this case,

Rðσ; SXÞðEÞ≡
P

c¼�1cσðcSXÞP
c¼�1σðcSXÞ

; σ ¼
Z

dt
dσ
dt

: ð49Þ

Similar ratios are defined for the double and the triple spin
asymmetries.
In order to unify the notation, the ratios of the total cross

sections are denoted similarly as the corresponding ratios of
dσ=dt cross sections, namely

PX
N0 ðEÞ → Rðσ; ξXÞðEÞ; ð50Þ

PX
l ðEÞ → Rðσ; ζXÞðEÞ; ð51Þ

T X
NðEÞ → Rðσ; χXÞðEÞ; ð52Þ

AXY
lN0 ðEÞ → Rðσ; ζX; ξYÞðEÞ; ð53Þ

BXY
lN ðEÞ → Rðσ; ζX; χYÞðEÞ; ð54Þ

CXYNN0 ðEÞ → Rðσ; χX; ξYÞðEÞ; ð55Þ

DXYZ
lNN0 ðEÞ → Rðσ; ζX; ξY; χZÞðEÞ: ð56Þ

IV. NUMERICAL RESULTS AND DISCUSSION

We start the discussion of the results from the analyses of
the sensitivity of spin asymmetries to the axial contribution.
The numerical calculations are made assuming that

(i) all form factors are real;
(ii) the SCC vanishes, hence FV

3 ¼ 0 and FA
3 ¼ 0;

(iii) the axial form factor is given by the dipole para-
metrization,

FAðtÞ ¼
gA

ð1 − t
M2

A
Þ2 ; ð57Þ

where MA is the axial mass, which for the default
value takes 1 GeV, and gA ¼ 1.2723� 0.0023 [64].
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We present the numerical results for two types of asym-
metries, namely, given by the ratios of total and dσ=dt cross
sections. The first depend on the energy E, whereas the
latter is a function of E and Q2 ¼ −t.
In the preanalyses, we considered also the parametri-

zation of FA defined by the sum of two monopoles [27].
But it turned out that effectively this parametrization
works very similarly as the dipole with MA ¼ 1.4 GeV.
Therefore, in this work, we present the results only for FA
given by Eq. (57). To mimic different shapes of FA, the
value of MA is varied, namely, MA ¼ 0.8, 0.9, 1.0, 1.1,
and 1.2 GeV.
In Figs. 2 and 3, we present the dependence of the

components of the single spin asymmetries on the energy.
Here, the asymmetries are given by the ratios of the total
cross sections; see Eqs. (50)–(52). We present the plots for
both the CCQE processes, namely, νμn and ν̄μp inter-
actions. The impact of the axial contribution on the recoil
nucleon and the lepton polarizations is discussed in
Refs. [32,46]. Our results confirm the conclusions of
previous investigations, namely, the outgoing muon polari-
zation, for both types of processes, weakly depends on the
shape of the axial form factor. But the recoil polarization,
for the ν̄μp scattering, is sensitive to FA.
As has been mentioned in the introduction, the polarized

target asymmetry has been not studied yet. Similarly, as for
PN0 , the longitudinal and transverse components of the T N ,
calculated for ν̄μp scattering, are sensitive to the axial
contribution. The change of the functional Q2 dependence

of FA results in distortion of the shape of the components of
T N . This effect is the strongest for the antineutrino
scattering for large Q2 values; see Fig. 4.
The double spin asymmetries given by the ratios of total

cross sections are plotted in Figs. 5 and 6. Among three
observables AlN0 ðEÞ, BlNðEÞ, and CNN0 ðEÞ, the last one—
the target-recoil double spin asymmetry is the most
sensitive to the axial contribution. In particular, this effect
is visible for the components CTTNN0 and CNN

NN0 . Indeed, a
reduction of the axial mass leads to an increasing of the
amplitude of the components CTTNN0 and CNN

NN0 and a change
of their signs from positive to negative. Indeed, for
instance, for ν̄μp scattering at fixed energy (E ¼ 1 GeV)
for large values of MA, the observables CTTNN0 ðE;Q2Þ and
CNN
NN0 ðE;Q2Þ are negative, whereas for large MA, they take

the positive values in full Q2 range; see Fig. 7. Hence, the
asymmetries CTTNN0 and CNN

NN0 are well-suited observables for
estimation of the value of the MA and for studies of the Q2

dependence of FA. For an illustration of this property, let us
present the numerical solutions of two equations, obtained
for the CCQE ν̄μp scattering,

0 ¼ CTTNN0 ðE ¼ 1 GeV; Q2Þ; ð58Þ
0 ¼ CNN

NN0 ðE ¼ 1 GeV; Q2Þ: ð59Þ
The roots of the above equations depend on the value of
MA; see Fig. 8. Notice that for too small values of the axial
mass the first equation has no solution, whereas for too
large values of MA, the second equation has no roots.
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Moreover, for the value of MA ≈ 1.0 GeV, which is
suggested by the recent neutrino scattering data analyses,
the roots of Eq. (59) monotonically depend on MA.
The triple spin asymmetries, DlNN0 ðEÞ, are shown in

Figs. 9 and 10, respectively. Similarly, as for the tensor

CNN0 , the spin asymmetry components calculated for ν̄μp
scattering are more sensitive to the axial form factor shape
than the components calculated for neutrino scattering.
In Fig. 11, we plot theQ2 dependence of the components of
theDlNN0 ðE ¼ 1 GeV; Q2Þ. The most sensitive to the shape
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FIG. 14. Caption the same as in Fig. 13 but for the CCQE ν̄μp scattering.
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of the axial form factor are the asymmetries obtained from
the contraction of the longitudinal component of the lepton
spin vector with the tensor Dμνα

lNN0, namely, the components
DLNN

lNN0 , DLTT
lNN0 , and DLTL

lNN0 . Analogically, as for the double
spin asymmetry case, the sign of these components
depends on the value of MA.
The SCC contribution in the lepton and the recoil spin

asymmetries was studied in Ref. [32]. In our analysis, we
additionally consider polarized target asymmetry, double
spin asymmetries, and triple spin asymmetry. In this part of
the work, the numerical results are obtained assuming that

(i) all form factors are real;
(ii) FA

3 form factor is given by [32]

F3
AðtÞ ¼

F3
Að0Þ

ð1 − t=M2
AÞ2

; ð60Þ

where Fð0Þ
A is an unknown parameter and for

numerical calculations F3
Að0Þ ¼ −1, 0, and 1;

(iii) FV
3 ¼ 0;

(iv) MA ¼ 1.0 GeV in (57) and (60).
To reduce the number of figures, we show only the
components of the spin asymmetries which are sensitive
to change of F3

A. In Fig. 12, the single spin asymmetries are
plotted, whereas in Figs. 13 and 14, we show the double
spin asymmetries, as a function of energy, calculated for
νμn and ν̄μp interactions, respectively. The triple spin
asymmetries are plotted in Figs. 15 and 16. Concluding
this part, we state that outgoing muon spin asymmetry is
insensitive to the SCC contribution, whereas other single,
double, and triple spin asymmetries are good observables
for studying the signal from the nonstandard interactions.

V. SUMMARY

The spin observables in the CCQE νμn and ν̄μp
interactions have been studied. We considered seven spin
asymmetries. Five of them, namely, the polarized target
asymmetry, double and triple asymmetries have been not
discussed yet. All asymmetries were calculated analyti-
cally; they are given, in the covariant form, in Sec. I of the
Supplemental Material [60]. To discuss the physical proper-
ties of the asymmetries, we introduced the spin basis
vectors and the physical components of the asymmetries
were computed and given in Sec. II of the Supplemental
Material [60]. Eventually, we studied the dependence of the
spin asymmetries on the axial and SCC contributions.
We showed that the target-recoil asymmetry, CNN0 , as

well as the lepton-target-recoil asymmetry, DlNN0 , are well-
suited observables for studying the axial nucleon form
factor. Indeed, the sign and magnitude of the components
CNN
NN 0 , CT T

NN 0 depend strongly on the axial mass value.
Similar effect is found for the components DLNN

lNN0 , DLTT
lNN0 ,

and DLTL
lNN0 . Eventually, we showed that all the spin

asymmetries, except the lepton polarization asymmetry,
are promising observables for investigation of the non-
standard interactions in the neutrino scattering processes.
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APPENDIX: CONVENTION, NORMALIZATION,
AND KINEMATICS

We work with the metric tensor

gμν ¼ diagð1;−1;−1;−1Þ: ðA1Þ

For the Levi-Civita tensor, we keep the normalization so
that

ϵ0123 ¼ 1: ðA2Þ

The Dirac field of 1=2-particle of mass M, momentum p,
and spin s is normalized so that

ūðp; sÞuðp; s0Þ ¼ 2Mδss0 ;

uðp; sÞūðp; sÞ ¼ 1

2
ð1þ γ5=sÞðpþMÞ: ðA3Þ
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