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The unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix has been well established by both
direct and indirect measurements without any evidence of discrepancy. The CKM weak phase α is directly
measured using an isospin analysis in B → ππ and B → ρρ assuming that electroweak penguin
contributions are ignorable. However, electroweak penguins are sensitive to NP, hence, it is important
to experimentally estimate their effects. We determine the size of both electroweak penguin and isospin
amplitudes, directly from B → ππ and B → ρρ experimental data, using in addition the indirectly measured
value of α. We find that electroweak penguin contribution are indeed small and agree with SM expectations
within 1σ. We also find that there is a mild enhancement of the ΔI ¼ 1

2
transition amplitude.
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I. INTRODUCTION

The measurements of CKM phases (i.e., α, β, γ) are very
crucial in understanding CP violation, consequently a great
deal of effort has been put in over last few decades to
measure them as accurately as possible. The unitarity
triangle obtained from these phase measurements is com-
pared with other indirect measurements [1,2] to test for new
physics (NP) beyond the standard model (SM). At present
no discrepancy has been observed between the direct and
indirect measurements of the weak phases. The current
measurements are set to improve significantly given the
large sample of data expected at the LHCb and Belle II
collaborations.
While the measurements of weak phases have been the

hallmark of Belle and BABAR collaboration, the methods
that enabled the accurate measurements of weak phases
have marked an important era in the progress toward

understanding CP violation. The measurement of the weak
phase α requires dealing with penguin contributions that
pollute this process, however, this issue is resolved by using
an isospin analysis [3–6]. Indeed, the method of isospin
analysis is used to measure α not only using B → ππ modes
but also B → ρρ modes. The electroweak penguin could in
principle also contribute to these modes and, again, pollute
the measurement of α, but its contribution is expected to be
small within the SM. Since electroweak penguins are
sensitive to NP, it is important to experimentally estimate
their effects. However, such an estimation is not possible
using isospin alone and requires one extra piece of
information, as we will elaborate in detail.
In this paper we have assumed SM and kept the

electroweak penguin contributions. We then try to answer,
how well the theory fits with the available experimental
data. We make an assumption that the indirect measure-
ments of α [1,2] are indeed the correct value of α. This
indirect measurement of α readily provides the one extra
piece of information. We estimate the size of the electro-
weak penguin using data from both B → ππ and B → ρρ
modes. We find that the electroweak penguin contributions
are indeed small and in 1σ agreement with theoretical
expectations within the SM. Given the current large errors
in the measurements, there is neither any evidence of NP
nor any evidence of isospin violation. The measurement of
time dependent asymmetry in B0 → ρ0ρ0 not only enables
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testing isospin but also removes an ambiguity in the
solution of the weak phase α.
Our study also has particular relevance for B → ρρ, since

using the mode involves several approximations. For
instance, ρ0 is a neutral vector meson and has sizeable
mixing with the photon resulting in long distance contri-
butions that can mimic contributions from the electroweak
penguins. Also, a I ¼ 1 amplitude can, in principle,
contribute resulting in corrections to the isospin analysis.
Moreover, the small contributions from transverse polar-
izations are ignored in the experimental analysis. It is
reassuring to find that B → ρρ also works well under these
assumptions which gives us more confidence in the validity
of these approximations.
We take into account all possible penguin contributions

into consideration and begin by describing the well known
isospin in B → ππ modes. The analysis for B → ρρ is
similar. The B → ππ amplitudes can in general be written
as [7,8]

1
ffiffiffi

2
p Aþ− ¼ ðT þ EÞeiγ þ

�

Pþ 2

3
PC
EW

�

e−iβ;

A00 ¼ ðC − EÞeiγ þ
�

PEW þ 1

3
PC
EW − P

�

e−iβ;

Aþ0 ¼ ðT þ CÞeiγ þ ðPEW þ PC
EWÞe−iβ; ð1Þ

where, Aþ−; A00, and Aþ0 correspond to B0 → πþπ−,
B0 → π0π0, and Bþ → πþπ0, respectively. The complex
topological amplitudes T, C and P, PEW, and PC

EW indicate
“tree,” “color-suppressed-tree,” “penguin,” “electroweak-
penguin” and “color-suppressed electroweak-penguin”
amplitudes correspondingly and each of the amplitude
includes the corresponding strong phases. There is also a
smaller penguin annihilation amplitude which contributes
to the B0 decay modes and does not affect the isospin
relation within the SM. It is customary to deal with
redefined amplitudes where the amplitudes of the modes
are rotated by e−iγ and those of the conjugate modes rotated

by eiγ, such that Ãþ− ¼ e−iγAþ− and ˜̄Aþ− ¼ eiγĀþ−, and

the amplitudes Ã00, Ãþ0 and ˜̄A00, ˜̄Aþ0 defined similarly. It is
easy to see that no observables are altered by this
redefinition. We can cast the amplitudes in terms of α
such that

1
ffiffiffi

2
p Ãþ− ¼ ðT þ EÞ þ Xeiα;

Ã00 ¼ ðC − EÞ þ Yeiα;

Ãþ0 ¼ ðT þ CÞ þ ðX þ YÞeiα; ð2Þ

where, X ¼ ð−P − 2
3
PC
EWÞ and Y ¼ ðP − PEW − 1

3
PC
EWÞ.

The conjugate amplitudes ˜̄Aþ−, ˜̄A00 and ˜̄Aþ0 are obtained

as usual from the amplitudes Ãþ−, Ã00 and Ãþ0 by
switching the sign of the weak phase α.
An interesting point to note here is that X þ Y depends

only on electroweak penguins PEW and the color sup-
pressed counterpart PC

EW [7]. Hence X þ Y serves as a
measure of pure electroweak contributions in B → ππ. As
evident from the above definitions, the amplitudes implic-
itly follow the isospin relations:

1
ffiffiffi

2
p Ãþ− þ Ã00 ¼ Ãþ0;

1
ffiffiffi

2
p ˜̄Aþ− þ ˜̄A00 ¼ ˜̄Aþ0: ð3Þ

These two isospin relations in Eq. (3) are inherently two
triangle equations and the two triangles are described, up to
a finite ambiguity, by the lengths of the sides and the
relative angle between any related side of the two triangles.
This requires “seven” measurements in total. The already
measured branching fractions Bij as well as direct CP
asymmetries Cij, defined as

Bij ¼
jÃijj2 þ j ˜̄Aijj2

2
; Cij ¼

jÃijj2 − j ˜̄Aijj2
jÃijj2 þ j ˜̄Aijj2

; ð4Þ

provide complete information about each individual tri-
angle. There is yet another measurement related to phase

between Ãij and ˜̄Aij obtained by the measurement of time-
dependent CP asymmetry in B → πþπ−, i.e., Sþ− which is
defined as

Sþ− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − C2þ−

q

sinð2αeffÞ; ð5Þ

where, 2αeff ¼ 2αþ 2Δα or π − 2αeff ¼ 2αþ 2Δα and

2Δα is the phase between ˜̄Aþ− and Ãþ−. However, without
the measurement of α, the measurement of 2αeff , by itself
provides no information on 2Δα and the isospin triangle
cannot be drawn if there is an electroweak penguin
contribution. Hence, we use the indirect measurement of
α as an input to estimate 2Δα. The two triangles then
indicated by Eq. (3) are presented in the coordinate
framework diagrammatically in Fig. 1. Conventionally,
electroweak penguins are ignored and the amplitudes

Ãþ0 ¼ ˜̄Aþ0, which means that the corresponding sides of
the two triangles overlap and the two triangles with their
relative orientation are fixed. This seventh measurement,
αeff then directly enables the measurement of α with
ambiguities. In the presence of electroweak penguins
PEW þ PC

EW ≠ 0, it is easily noted that there are seven
independent hadronic parameters and one cannot determine
these seven parameters as well as the weak phase α from
only seven possible independent measurements. We hence
use the α obtained by indirect measurements and translate
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the difference between “direct” and “indirect” measure-
ments to a bound on Δα and the electroweak penguins.
We can determine the magnitudes of the amplitudes

Ãij; ˜̄Aij, using Eq. (4), resulting in the two triangles (Fig. 1),
with the sides expressed in terms of coordinates as follows:

1

2
jÃþ−j2 ¼ x21 þ y21 ¼

1

2
fBþ−ð1þ Cþ−Þg

jÃþ0j2 ¼ l21 ¼ Bþ0ð1þ Cþ0Þ
jÃ00j2 ¼ ðx1 − l1Þ2 þ y21 ¼ B00ð1þ C00Þ

1

2
j ˜̄Aþ−j2 ¼ x22 þ y22 ¼

1

2
fBþ−ð1 − Cþ−Þg

j ˜̄Aþ0j2 ¼ x23 þ y23 ¼ Bþ0ð1 − Cþ0Þ
j ˜̄A00j2 ¼ ðx3 − x2Þ2 þ ðy3 − y2Þ2 ¼ B00ð1 − C00Þ: ð6Þ

The solutions for the coordinates in terms of experimental
observables are given by,

l1 ¼ jÃþ0j

x1 ¼
1
ffiffiffi

2
p jÃþ−j cos θ y1 ¼

1
ffiffiffi

2
p jÃþ−j sin θ

x2 ¼
1
ffiffiffi

2
p j ˜̄Aþ−j cos θ0 y2 ¼

1
ffiffiffi

2
p j ˜̄Aþ−j sin θ0

x3 ¼ j ˜̄Aþ0j cosðθ0 − θ̄Þ y3 ¼ j ˜̄Aþ0j sinðθ0 − θ̄Þ ð7Þ

where cos θ and cos θ̄ are determined using cosine law
in terms of the amplitudes which are expressed in terms
of observables using Eq. (6). sin θ and sin θ̄ are then
each obtained up to a two fold ambiguity. The other
unknown θ0 ¼ θ þ 2Δα, where the phase 2Δα itself has

a two-fold ambiguity and is given by 2Δα¼2αeff−2α or
2Δα¼π−2αeff−2α. It is easily seen from Eq. (7) that there
is an sixteen-fold ambiguity in the solutions of the
coordinates. However, we find that only eight solutions
result in the correct value of 2αeff , resulting in an eight-fold
ambiguity in the solution to the amplitudes. It is well
known that α can be measured with up to eight-fold
ambiguity using the conventional technique. Hence, a
eight-fold ambiguity in the determination of decay ampli-

tudes Ãij, ˜̄Aij is consistent with expectation.
In Table I we have summarized the experimental inputs

used in our analysis to generate the data sets as normal
distributions around the observed central values with errors
and available correlations. Furthermore, we ensure that the
simulated data sets are in compliance with Eq. (3) by
imposing triangle inequalities for the respective triangles.
In addition, −1 ≤ fCij; Sijg ≤ 1 has been implemented to
allow only physically allowed values. For each choice of
data set satisfying the constraints, we obtain eight possible
equivalent solutions for the amplitudes. We find that for
B → ππ that the triangles obtained by simulated amplitudes
close in only about half of the cases. Whereas, for the
B → ρρ mode the valid cases reduce to only a few percent.
The closure of the isospin triangles is ensured by the
isospin bounds [8,9] on B00 and the observed values of B00

are very small and barely satisfy the isospin bounds for both
B → ππ and B → ρρ modes.
Having determined the complex decay amplitudes, the

topological amplitudes T þ E, C − E, X, Y and the
observable S00 can all be determined for each data set.
Our interest is in estimating the size of the electroweak
penguin. We hence determine, the ratios of the penguin
contributions compared to the tree contributions generically
denoted by RP ¼ fX̃; Ỹ; X̃ þ Ỹg as

FIG. 1. An illustration of the isospin triangles depicted in the
complex coordinate plane. The figure defines the notation of
coordinates and angles used to obtain the solutions of decay
amplitudes including ambiguities. There is a sixteen-fold ambi-
guity in the solutions of coordinates as can be seen from Eq. (7),
hence, there are sixteen distinct orientations of the triangles
drawn in this figure. However, only eight solutions result in the
correct value of 2αeff .

TABLE I. The table shows the used experimental values of the
branching fraction, direct CP asymmetry and time-dependent CP
asymmetry of B → ππ and B → ρρmodes observed in [1,10–12],
respectively. Note that in order to maintain consistency between
the definitions of Cij in [1,10–12] and Eq. (4), the signs of Cþ0 in
Table I has been reversed as compared to the values reported
in [1,10–12].

B → ππ B → ρρ

Bþ− × 10−5 0.512� 0.019 2.77� 0.19
Cþ− −0.31� 0.05 0.0� 0.09
Sþ− −0.67� 0.06 −0.14� 0.13
corrðCþ−; Sþ−Þ 0.21 −0.02
B00 × 10−5 0.159� 0.026 0.096� 0.015
C00 −0.33� 0.22 0.2� 0.9
S00 � � � 0.3� 0.7
corrðC00; S00Þ � � � 0.0
Bþ0 × 10−5 0.55� 0.04 2.4� 0.19
Cþ0 −0.03� 0.04 0.05� 0.05
α 91.9� 3.0
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X̃ ¼ X
jT þ Cj Ỹ ¼ Y

jT þ Cj
X̃ þ Ỹ ¼ X þ Y

jT þ Cj≡ zeiδTC ; ð8Þ

where z is defined in Eq. (12) and δTC is the strong phase
of T þ C.
The parameter z has been theoretically estimated earlier.

It is well known that only the ΔI ¼ 3
2

part of the
Hamiltonian contributes to the decay B� → π�π0, and
the tree and electroweak part of the ΔI ¼ 3

2
Hamiltonian

are related [13] assuming only that C7 and C8 can be
neglected, as follows:

HEW
ΔI¼3

2

¼ −
3

2

VtbVtd

VubVud

C9 þ C10

C1 þ C2

Htree
ΔI¼3

2

ð9Þ

The equality ˜̄Aþ0 ¼ Ãþ0 is broken by electroweak penguins
and these amplitudes are expressed as

Ãþ0 ¼ ðT þ CÞ þ zeiαðT þ CÞ; ð10Þ

˜̄Aþ0 ¼ ðT þ CÞ þ ze−iαðT þ CÞ; ð11Þ
where,

z ¼ −
3

2

�
�
�
�

VtbVtd

VubVud

�
�
�
�

C9 þ C10

C1 þ C2

≈ −0.013
�
�
�
�

VtbVtd

VubVud

�
�
�
�
: ð12Þ

The value of ratio of CKM elements ðVtbVtdÞ=ðVubVudÞ is
obtained from Ref. [1].
The 68.27% and 95.45% confidence levels for RP

obtained from the probability distribution functions are
shown in Figs. 2 and 3 for B → ππ and B → ρρ decay

modes respectively. Also plotted are the corresponding
estimates for the observable S00, derived from the ampli-
tudes. It can be seen that if S00 is measured some of the
solutions can be eliminated. In Fig. 2, we have chosen to
present only one out of the eight possible solutions where
X̃ þ Ỹ is in agreement with the SM estimate within
one standard deviation. Measurements of the associated

FIG. 2. The predicted 68.27% and 95.45% confidence levels for
the topological amplitudes and S00 versus Sþ− are illustrated for
B → ππ modes. The light blue, light green, and light gray
contours correspond to the topological ratios X̃, Ỹ and X̃ þ Ỹ
respectively. The diamond symbol “red diamond” at −0.0327
represents the SM value of z. Out of the eight possible solutions,
we have chosen to present the one where X̃ þ Ỹ is consistent with
SM expectations. The validity of this solution can easily be
verified by a measurement of S00, whose estimate is shown in the
figure on the right.

FIG. 3. The topological amplitudes and S00 versus Sþ− are
illustrated for B → ρρ modes. The details of the contours are the
same an in Fig. 2. Notice that X̃ þ Ỹ, is consistent with SM
expectations for four of the solutions. With an accurate meas-
urement of S00, whose estimate is shown in the figure on the right,
the correct ambiguity can be identified. 1σ bands for the
measurement of S00 are superimposed along with our estimates
for ready reference.
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time-dependent CP asymmetry S00 can reduce or even
eliminate the ambiguity.
The rotated amplitudes Ãij for the decay B → ππ can

also be decomposed [6] in terms of I ¼ 0 and I ¼ 2 isospin
amplitudes as follows:

1
ffiffiffi

2
p Ãþ− ¼ Ã2 − Ã0

Ã00 ¼ 2Ã2 þ Ã0

Ãþ0 ¼ 3Ã2; ð13Þ

with analogous expressions for the three conjugate mode

amplitudes ˜̄Aij. A graphical representation of Eq. (13) is
shown in Fig. 4. The measurements of the seven observ-
ables enable the complete determination of the four isospin

amplitudes Ã0, Ã2,
˜̄A0, and

˜̄A2. The isospin amplitudes Ã0

and Ã2 are easily written in terms of the topological
amplitudes as follows:

Ã0 ¼
C − 2T − 3E

3
þ Y − 2X

3
eiα ð14Þ

Ã2 ¼
Cþ T

3
þ X þ Y

3
eiα ð15Þ

We have studied the ratios of the isospin amplitudes
generically denoted by

RI ¼ fÃ0=Ã2;
˜̄A0=

˜̄A2; Ã0=
˜̄A0; Ã2=

˜̄A2g

Note that Ã0=Ã2 ¼ A0=A2 and ˜̄A0=
˜̄A2 ¼ Ā0=Ā2.

We find that for B → ππ the hierarchy of isospin
amplitudes is jA2j≈ jĀ2j≲ jA0j< jĀ0j whereas for B → ρρ
it follows that jA2j ≈ jĀ2j < jA0j ≈ jĀ0j. These observa-
tions can be easily verified from Figs. 5 and 6. The right
side plot of Fig. 6 deserves special consideration. It is easy

to see that A0=A2 and Ā0=Ā2 can be written in terms of the
topological amplitudes and has the form

A0

A2

¼ xeiδx þ iyeiδy ð16Þ

Ā0

Ā2

¼ xeiδx − iyeiδy ð17Þ

where x, y, δx, and δy are complicated function of
topological amplitudes and α. Hence, the overlapping plots
seen the right side figure in Fig. 6 happen if

A0

A2

≈
Ā0

Ā2

⇒ y ¼ 0 ⇒
C − E
T þ E

≈
Y
X
: ð18Þ

To conclude we have shown that assuming the value of α
obtained from indirect measurements and available exper-
imental data for B → ππ and B → ρρ observables, all

FIG. 4. An illustration of the isospin triangles depicted in
isospin space. the isospin amplitudes Ã0, Ã2,

˜̄A0 and
˜̄A2 defined in

Eq. (13) are illustrated here.

FIG. 5. The predicted 68.27% and 95.45% confidence levels of
isospin ratios for B → ππ modes. The gray, blue, green, and
orange contours correspond to A0=A2, Ā0=Ā2, A0=Ā0, and A2=Ā2

isospin amplitude ratios, respectively. The solution presented
corresponds to ambiguity presented in Fig. 2.

FIG. 6. The predicted isospin amplitudes ratios for B → ρρ
modes. See Fig. 5 for details. Two other solutions correspond to
reflections around the horizontal axis.
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topological and isospin amplitudes can be extracted. These
solutions come with an eightfold ambiguity, and only one
solution yields small values of electroweak penguins,
consistent with SM expectations. Measurements of the
associated time-dependent CP asymmetry S00 can reduce
or even eliminate the ambiguity. The interesting conclusion
drawn is that the size of that electroweak penguin con-
tributions are consistent with theoretical expectations given
the current experimental uncertainties. Improved accuracy
in the measurements of observables for these modes and of
the indirect measurement of α will help in understanding
the electroweak penguin contributions to hadronic modes.
We also find a hierarchy among the isospin amplitudes with
mild enhancement of the ΔI ¼ 1

2
transition amplitude.
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