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For the first time, we compute three-loop contributions to all triple vertices in QCD at the symmetric
point. The analytic results are obtained in massless QCD with an arbitrary color group in the Landau gauge.
All new loop integrals are expressed in terms of harmonic polylogarithms at the sixth root of unity. These
corrections allow us to derive expressions for the four-loop QCD beta function in a set of momentum-
subtraction schemes.
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I. INTRODUCTION

The strong coupling constant αs ≡ g2s=ð4πÞ is a funda-
mental parameter of QCD. It enters the predictions of many
Standard Model observables, e.g., the Higgs production
cross section [1] at the LHC, and the uncertainty of αs
significantly influences the comparison between theory and
experiment. In itself, αs is not a physical observable; its
value depends on the scale Q2 and the utilized renormal-
ization prescription (or scheme). The freedom in choosing a
normalization point manifests itself in “running” governed
by the renormalization group (RG) equations

dαsðQ2Þ
d lnQ2

¼ βðαsðQ2ÞÞ: ð1Þ

Given the renormalization scheme (RS), one can calculate
the β function order by order in perturbation theory (PT).
To parametrize the strength of strong interactions, one
usually uses the MS scheme and quotes the value of

αð5Þs ðMZÞ ¼ 0.1179ð10Þ [2] defined in effective QCD with
nf ¼ 5massless flavors and evaluated at the Z-boson mass.
This definition is of great convenience when studying
inclusive observables dominated by short-distance effects.

For almost 20 years the four-loop βMS [3,4] in the MS
scheme has been utilized in state-of-the-art QCD

calculations, and only recently the five-loop result [5–8]
became available in the literature. The latter allows one to
significantly improve the agreement between αs determi-
nations (see, e.g., Ref. [2] for details) in precision mea-
surements carried out at different energy scales.
At lower energies other αs definitions can be more

convenient. For example, in lattice QCD one can introduce
the strong coupling as a particular RG-invariant combina-
tion (the so-called invariant charge) of the vertex and two-
point Green functions evaluated at fixed external momenta
in a fixed (usually Landau) gauge (see, e.g., Refs. [9,10]).
Since lattice results [11] give rise to one of the most precise
determinations of αð5Þs ðMZÞ, it is important to study the
strong coupling and its running in the momentum-sub-
traction (MOM) schemes. In these RSs the vertex functions
and propagators are normalized in such a way that at a
certain kinematic point there are no corrections beyond the
tree level. As a consequence, the renormalized couplings
coincide with the corresponding invariant charges and can
be directly compared to the nonperturbative lattice results.
Contrary to the MS scheme, in the MOM scheme one

needs to know the Green functions beyond the divergent
terms. Some choices of kinematics can make the calcu-
lation quite challenging, especially of vertices. In this
paper, we consider three-point functions that depend on
momenta p1, p2, and q ¼ p1 þ p2 (see Fig. 1) and utilize
the symmetric normalization point (SMOM) in the
Euclidean region p2

1 ¼ p2
2 ¼ q2 ¼ −Q2. One-loop QCD

renormalization in the SMOM scheme in a general linear
gauge has been known for quite a long time, following
the pioneering work in Ref. [12]. At the moment, only
two-loop expressions for the QCD vertices in this kin-
ematics are available in the literature in numerical [13] and
analytical [14] forms, allowing one to find three-loop
[13,15] strong-coupling beta functions in the SMOM
RS. In our work, we exploit modern Feynman-integral
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evaluation methods to improve these results by one more
order of PT. To simplify our calculation, we routinely use
the Landau gauge, in which the gluon propagator is
transversal and there is no need to consider the gauge-
parameter renormalization.
In the context of perturbative QCD (pQCD) one can

relate renormalized couplings aren ≡ αrens =ð4πÞ defined in
different RSs. In what follows, we consider aren ¼ faggg;
accg; aqqgg, which satisfy

μ−2εabare ¼ Zarenaren ¼
�
Z2
ggg

Z3
gg

�
aggg

¼
�

Z2
ccg

Z2
ccZgg

�
accg ¼

�
Z2
qqg

Z2
qqZgg

�
aqqg; ð2Þ

with abare being the bare coupling defined in the dimen-
sionally regularized theory with d ¼ 4 − 2ε. The bare
coupling is divergent and is related to the renormalized
ones aren via divergent factors Zaren . The latter are combi-
nations of the renormalization constants of the three-gluon
(Zggg), ghost-gluon (Zccg), and quark-gluon (Zqqg) vertices
together with those of the gluon (Zgg), ghost (Zcc), and
quark (Zqq) fields.
The vertex renormalization constants denoted collec-

tively by ZV are obtained order by order in perturbation
theory from the bare ΓV

bare vertices by making sure that the
renormalized counterpart ΓV

ren,

ΓV
renðqi; arenÞ ¼ ZVðarenÞΓV

bareðqi; abareÞ;
μ−2εabare ¼ Zarenaren; ð3Þ

is finite for all external momenta qi and satisfies certain
normalization conditions.
In the MS scheme only divergent terms are subtracted,

and one can prove that aMS ¼ aMS
ggg ¼ aMS

ccg ¼ aMS
qqg. On the

contrary, in the SMOM schemes one also subtracts finite
terms and requires that there are noOðarenÞ corrections to a
particular ΓV

ren at the symmetric point, characterized by
momentum Q2. To avoid the appearance of logðQ2=μ2Þ
in the renormalization constants, it is convenient to
choose Q2 ¼ μ2.

The vertex functions of our interest have color and space-
time indices and one can decompose them in terms of basis
tensors with Lorentz-invariant coefficients (form factors).
The choice of the basis is not unique and we make use of a
decomposition that is valid for the symmetric point [14]. To
save space, we present here only terms [13] that are relevant
for the definition of the required vertex renormalization
constants (3):

Γabc
μ ðp1; p2Þ ¼ −igsfabcðpν

1gνμΓccgð−μ2Þ þ…Þ; ð4Þ

Γabc
μνρðp1; p2Þ ¼ igsfabcðTμνρΓgggð−μ2Þ þ…Þ; ð5Þ

Γa
μ;ijðp1; p2Þ ¼ gsTa

ijðγμΓqqgð−μ2Þ þ…Þ: ð6Þ

Here all momenta are assumed to be outgoing, p1

in Eq. (4) corresponds to the antighost, and Tμνρ ¼
gμνðp1 − p2Þρ þ � � � represents the tensor that enters into
the tree-level three-gluon vertex. The SU(N) generators Ta

ij

in the quark-gluon vertex (6) satisfy ½Ta; Tb�ij ¼ ifabcTc
ij

with structure constants fabc.
The expressions for the bare form factors ΓV

bare with V ¼
fggg; ccg; qqgg are extracted from the tensor vertices by
means of the projectors given in Ref. [14]. To define aggg in
the respective SMOM scheme (MOMggg) via Eq. (2), we
require that at the symmetric point Γggg

ren ð−μ2Þ ¼ 1, i.e.,
Zggg

−1 ¼ Γggg
bareð−μ2Þ. In the same way one can relate the

bare coupling abare to accg or aqqg by requiring that either
Γccg
ren ð−μ2Þ ¼ 1 (MOMh) or Γqqg

ren ð−μ2Þ ¼ 1 (MOMq). Since
field renormalization constants also enter into Eq. (2), we
have to impose conditions on Zgg, Zcc, and Zqq in the
SMOM scheme: there should be no corrections to the
corresponding tree-level propagator for the external
momentum q2 ¼ −μ2.
From Eq. (2) one can deduce that two renormalization

prescriptions for aren, say aR and aMS, are related via finite
correction factors XR:

aR ¼ ðZaR=Za
MS
ÞaMS ≡ aMSXR ¼ aMS

�
1þ

X
l

XðlÞ
R al

MS

�
:

ð7Þ
Given XR at L loops, one can determine the (Lþ 1) MOM-
scheme beta functions from βMS via a relation that is valid
in the Landau gauge,

βR ≡ daR
d ln μ2

¼ ∂aRðaMSÞ
∂aMS

· βMSðaMSÞ; aMS ¼ aMSðaRÞ;

ð8Þ

where in the final step we invert Eq. (7) to express βR in
terms of aR. The main aim of this paper is to calculate the

three-loop corrections Xð3Þ
R to the relations (7) between

FIG. 1. For symmetric point integrals p2
1 ¼ p2

2 ¼ q2, and for
auxiliary integrals we use p2

1 ¼ p2
2; q

2 ¼ xp2
1.
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aggg, accg, aqqg, and aMS. As one of the applications of our
result, we use the four-loop beta function in the MS scheme
[3,4] to find the corresponding beta functions βggg, βccg, and
βqqg in the considered SMOM schemes.

II. DETAILS OF THE CALCULATION

We generate Feynman diagrams with DIANA [16], and
obtain 8, 106, and 2382 graphs for the Γggg

ren three-gluon
vertex at one, two, and three loops, respectively. Both
ghost-gluon and quark-gluon vertices give rise to 2, 33, and
688 diagrams at the same loop levels. After the application
of projectors [14] and taking fermion and color traces [17],
we are left with scalar Feynman integrals, which we reduce
to a set of two one-loop, eight two-loop, and 51 three-loop
master integrals by means of REDUZE2 [18] and FIRE6 [19].
The main challenge is calculating the full set of three-

loop three-point integrals in SMOM kinematics, which is
not available in the literature. To compute master integrals,
we rely on the linear reducibility of massless vertex-type
integrals with arbitrary off-shell momenta, which is proven
to take place up to three-loop order [20,21]. Due to the
latter property, for our integrals in more restricted kin-
ematics we choose two strategies of evaluation. First of all,
we derive a new basis of finite master integrals [22] and try
to compute them directly by means of the HyperInt package
[23] in terms of generalized polylogarithms (GPLs).
Unfortunately, we are unable to calculate the most com-
plicated integrals and instead use another strategy based on
the solution of the system of differential equations (DEs).
The method of DEs cannot be applied directly to the
calculation of single scale integrals we are interested in, and
we construct a set of auxiliary integrals with arbitrary
external q2 ¼ xp2

1 (Fig. 1). After switching to a new
variable z, x ¼ 2 − z − 1=z, we reduce the original DE
system to the so called ε-form [24]. Due to the presence of
singularities at complex points, we make use of the EPSILON

package [25], which is capable of dealing with the latter.
The obtained system in the ε-form is easily solved order by

order in the ε expansion. The solution is given by linear
combinations of GPLs Gða1;…; an; zÞ, where ai corre-
spond to different sixth roots of unity, with a number of
unknown constants to be fixed from boundary conditions.
The latter can be obtained by matching the expansion in the
limit q2 → 0, corresponding to z → 1, with the explicit
result of large-momentum asymptotic expansion. Since
z ¼ 1 is a singular point of the DEs, naive Taylor expansion
is not sufficient to fix all of the constants and we exploit the
EXP package [26,27] to generate the series in terms of
massless propagators. We compute the latter by the
MINCER package [28,29] keeping exact dependence1 on
the space-time dimension variable.
In this way, we obtain the analytic results for auxiliary

integrals depending on z. Taking the limit z → eiπ=3, which
is regular and corresponds to SMOM kinematics, we
compute the required single-scale master integrals. The
correctness of the analytic calculation is verified numeri-
cally using pySecDec [30]. Substituting the integrals in the
expressions for the three-loop ΓV

bare and expanding in ε up
to the necessary order, we see that the maximal transcen-
dental weight in the final result is, as expected, 2L ¼ 6,
with L being the loop order. Using the basis and the
reduction rules from Ref. [31], we are able to simplify the
expressions for ΓV

bare significantly. As a consequence, we
obtain the SMOM renormalization constants, conversion
factors (7), and the beta functions (8) in a rather com-
pact form.

III. RESULTS AND CONCLUSION

All of the necessary renormalization constants up to
three-loop order were calculated iteratively via Eq. (3). We
also reproduced the well-known three-loop MS expres-
sions, required to derive the relations (7) between the
SMOM couplings and aMS evaluated at the same scale
Q2 ¼ μ2. To save space, we present the results in numerical
form with all QCD color factors substituted explicitly:

Xccg ¼ 1þ aMSð18.54827536 − 1.111111111nfÞ þ a2
MS

ð641.9400677 − 85.55595017nf þ 1.234567901n2fÞ
þ a3

MS
ð26810.13185 − 5350.674817nf þ 240.8472277n2f − 1.371742112n3fÞ; ð9Þ

Xqqg ¼ 1þ aMSð16.71577458 − 1.111111111nfÞ þ a2
MS

ð472.1590958 − 83.11121681nf þ 1.234567901n2fÞ
þ a3

MS
ð16997.21982 − 4340.986026nf þ 228.6939963n2f − 1.371742112n3fÞ; ð10Þ

Xggg ¼ 1þ aMSð26.49248887 − 3.416806434nfÞ þ a2
MS

ð960.4627178 − 202.0850109nf þ 7.687393017n2fÞ
þ a3

MS
ð42285.00716 − 12133.42891nf þ 902.7134506n2f − 14.34154686n3fÞ: ð11Þ

1Available at https://www.nikhef.nl/∼form/maindir/packages/mincer/mincerex.tgz.
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The analytic results for the general gauge group are
available as Supplemental Material [32] and have several
remarkable properties. We managed to simplify the two-
loop part [15] and expressed it solely in terms of powers of
π, odd ζ values, and two polygamma functions ψ ð1Þð1=3Þ
and ψ ð3Þð1=3Þ. It turns out that to write down the three-loop
contribution we only need to introduce three additional
constants: ψ ð5Þð1=3Þ, and two combinations H5 and H6 of
GPLs with uniform transcendental weights five and six,

respectively. Evaluating H5;6 numerically [33] with high
precision and using the PSLQ algorithm [34], we recon-
structed the new constants2 through a more restricted basis
[36] of real parts of harmonic polylogarithms of the
argument eiπ=3.
As a first application of Eqs. (9), (10), and (11) we obtain

a set of SMOM beta functions via Eq. (8), thus extending
the results of Ref. [15] to four-loop order:

βccg ¼ βuniðaccgÞ − a4ccgð2813.492952 − 617.6471546nf þ 21.50281811n2fÞ
− a5ccgð96089.34786 − 23459.32128nf þ 1735.992218n2f − 33.24145137n3fÞ; ð12Þ

βqqg ¼ βuniðaqqgÞ − a4qqgð1843.652731 − 588.6548459nf þ 22.58781183n2fÞ
− a5qqgð68529.68547 − 15466.43194nf þ 1093.568841n2f − 18.85323795n3fÞ; ð13Þ

βggg ¼ βuniðagggÞ − a4gggð1570.9844þ 0.56592607nf − 67.089536n2f þ 2.6581155n3fÞ
− a5gggð94167.261 − 27452.645nf þ 4152.5388n2f − 543.68484n3f þ 20.429348n4fÞ; ð14Þ

with βuniðaÞ¼−a2ð11−2=3nfÞ−a3ð102−38=3nfÞ being
the universal two-loop scheme-independent contribution.
The obtained formulas can be used in a number of ways.

For example, one can improve the precision of matching
between the lattice and pQCD results. In addition, the
possibility to switch from one RS to another in truncated
PT series for observables, or more generally RG-invariant
quantities (see, e.g., Refs. [37,38]), provides us with an
additional handle on theoretical uncertainties beyond

simple scale variation. Moreover, the computed integrals
can also be used in SMOMcalculations ofmore complicated
three-point Green functions with operator insertions, e.g.,
for studies of the light-quark masses as in Refs. [39,40].
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