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This article sheds new light on the problem of cosmological reduction in loop quantum gravity. We
critically analyze quantum reduced loop gravity—an attempt to extract the cosmological sector of the full
theory. We reconsider the reduction procedure applied to the states of the kinematical Hilbert space,
developing a comparative analysis with previous efforts in the literature. We show that the constraints of the
model were formerly instantiated in an inconsistent fashion, leading to an overconstrained dynamics and an
ill-defined Hilbert space. We then scrutinize alternative implementations of symmetry reduction. While
remaining unaffected by the shortcomings encountered in quantum reduced loop gravity, these latter
procedures bridge the gap between the full theory and former endeavors in loop quantum cosmology.

DOI: 10.1103/PhysRevD.101.066026

I. INTRODUCTION

Despite over the last three decades optimistic acclama-
tion often being bestowed upon loop quantum gravity
(LQG) [1], no clear resolution of the quantization of the
Hamiltonian constraint problem was sorted out. We there-
fore still ignore the physical Hilbert space of the theory and
consequently its ground state. The very same structure of
the vacuum, which unfortunately is still very far from being
tackled within the theory, is suggested to be nontrivial by
considerations based on non-Abelian gauge theories.1

Already two decades ago, the overall situation of incom-
pleteness eventually urged researchers to grasp more
insights by a development of a parallel simpler theory,
loop quantum cosmology (LQC) [3–5], established to deal
with the quantization of the symmetry-reduced phase space
of the full theory, LQG. However, the link between LQG
and LQC is neither obvious nor obviously able to shed light
on the quantization issues, as the long-standing lack of
solutions to the former, despite the development of LQC,
proves. Other approaches then naturally followed, often
motivated by the purpose of linking LQC to the full theory
of LQG, since quantization and symmetry reduction need
not, a priori, to commute. Several possibilities were
investigated within the literature [6–9], trying to unravel
how the quantum configuration spaces of LQC can be

embedded into the full theory. Light on the use of spin
foam techniques was sought in [10], while coherent state
techniques were proposed within the group field theory
approach in [11,12].
Quantum reduced loop gravity (QRLG) is chronologi-

cally one of the latest attempts, developed in [13–16]—for
a review see [17]. It relies on imposing weak gauge-fixing
conditions to the states of the kinematical Hilbert space of
the full theory, LQG. This peculiarity was argued to allow
recovering the cosmological sector directly from LQG.
Classically, the gravitational systems considered are those
ones described by dreibein fields gauge fixed to a diagonal
form. The gauge-fixing conditions are then applied weakly
on the kinematical Hilbert space of the full theory. As a
result, Bianchi I models were thought to be successfully
recovered within the framework—see [18] for a description
of the Bianchi I extension to LQC. Furthermore, there are
studies seeking to show that within the semiclassical limit,
QRLG reproduces the effective Hamiltonian of LQC
[15,19], in the μ0 regularization scheme. It has been also
claimed that the effective improved dynamics proposed in
[20] can be inferred in this framework by averaging over
the ensemble of the classically equivalent states [21].
For the aforementioned reasons, QRLG was conjectured

to provide a novel derivation of earlier results of LQC,
including the realization of the singularity-resolution sce-
nario. But disregarding the emanation of LQG, the full
theory will remain unsolved until the Hamiltonian con-
straint problem is solved, and matter fields are taken into
account. Within the framework of QRLG, since this
introduces a graph structure underlying the description
of the continuous universe at the classical level, and since

*bilski@zjut.edu.cn
†marciano@fudan.edu.cn
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emphasized for gauge theories, providing a possible framework
to account for quantum theories of gravity, by inspections of their
instantonic solutions, as argued in Ref. [2].
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the origin of the discretization must be recovered at the
quantum level, the quantization of the matter fields shall be
achieved via the same tools of LQG [22,23]. This was
providing encouragement that QRLG might have offered a
framework to test the implications of the loop quantization
of matter fields, as first suggested by the analysis of a scalar
matter field in [24] and then by the implementation of
gauge vector fields in [25,26] and related applications.
QRLG initially appeared as a promising way to reconcile

a cosmological toy model, LQC, while a full theory
remained under construction. But this did not come without
its flaws. Actually, as we will question throughout the
paper, the shortcomings of the model are enough to state its
internal inconsistency. Specifically, we will argue about the
fate of the theory, reexamining the reduction procedure
applied to the states of the kinematical Hilbert space of
LQG and developing a comparative analysis with previous
attempts formulated in the literature of QRLG, while
seeking to unravel the cosmological sector of the full
theory. We show that constraints are inconsistently imple-
mented within this framework, leading to an overcon-
strained dynamics.
We will elaborate on the methods to attain a proper

definition of quantum states of the kinematical Hilbert
space, spelling arguments hinging toward an alternative
implementation of the symmetry-reduction procedure.
While remaining unaffected by the flaws of QRLG,
this new procedure appears to be the first—up to our
knowledge—consistent example of a bridge between the
full theory and the other attempts belonging to the LQC
scenario. Following the standard procedures of the reduced
phase space quantization, we then demonstrate how the
canonical variables of LQG are simplified exactly to the
form of the anisotropic extension of LQC. Following then
the main idea of QRLG, we try to repeat this procedure at
the quantum level. As a result, we formulate a cosmological
simplification of the LQG, without the spatial diffeomor-
phism and SU(2) symmetries. This analog of the aniso-
tropic extension of LQC will be tested in forthcoming
articles, verifying the quantum connection between this
model and LQG.
In particular, the paper is organized as follows. In Sec. II,

we introduce lattice regularization in LQG and provide a
regularized expression for the geometric operators of the
theory. Section III contains a general introduction to the
reduction of canonical gravity. In Sec. IV, we reconsider the
quantum reduction map derived in QRLG and shed light on
its inconsistencies and miscalculations. We also propose
alternative reduction patterns, to avoid shortcomings,
which are presented in Sec. V, demonstrating how LQC
is linked with LQG. In Sec. VI, we comment on the
kinematical properties of a suitable quantum reduction
of the general theory. Finally, in Sec. VII, we present
conclusions and outlooks on future investigations to be
carried out.

Through the paper, the metric signature is specified by
ð−;þ;þ;þÞ. The fundamental constant of LQG (repre-
senting the quantum of action analogously to ℏ in quantum
mechanics) reads k ¼ 1

2
γℏκ ¼ 8πγl2P, where γ and lP are

the Immirzi parameter and the Planck length, respectively,
and for simplicity we set the speed of light to c ¼ 1. The
metric tensor gμν ¼ eαμeανηαβ can be cast in terms of eαμ, the
co-vierbein fields, and the flat Minkowski metric reads ηαβ.

The spatial metric tensor is denoted with qab ¼ eiae
j
bδij,

where eia and eai ¼ ejbq
abδij denote co-dreibeins and

dreibeins, respectively. A regularization via a cuboidal
graph structure with the three directions of the orientation
of links can be chosen and adapted to the fiducial metric
0qab. Analogously, the constant orthonormal triad 0eai and
cotriad 0eia are defined.2 Lowercase Latin indices
a; b;… ¼ 1; 2; 3 label coordinate on each Cauchy hyper-
surface constructed by Arnowitt-Deser-Misner (ADM)
decomposition [27], while i; j;… ¼ 1; 2; 3 are suð2Þ
internal indices and δij stands for the Kronecker delta.
Generators of suð2Þ are defined as τi ¼ − i

2
σi, where σi are

Pauli matrices (see Appendix A). Indices written in the
bracket () are not summed, while for every other repeated
pair the Einstein convention is applied.

II. REGULARIZATION AND OPERATORS

In this section we introduce lattice regularization in LQG
and provide a regularized expression for the geometric
operators of the theory. We start from classical general
relativity, minimally coupled to the Standard Model of
particle physics, and cast the theory within the Hamiltonian
ADM formalism [27], in terms of the real Ashtekar-
Barbero gravitational variables [28]. Thus we consider
the decomposition of the line element

ds2 ≔ gμνdxμdxν

¼ ðNaNa − N2Þdt2 þ 2Nadtdxa þ qabdxadxb; ð1Þ

where N is the lapse function and Na the shift vector. We
then look into the kinematical state space of the theory,
discussing some subtleties of the reduction procedure.

A. Classical theory

We define the Einstein-Hilbert action with the cosmo-
logical constant term, minimally coupled to the free fields
of the Standard Model,

2The meaning of this structure should be clear. When we
define the link between the volume of the fiducial cell V0 ≔
l10l

2
0l

3
0 and the physical volume V via the scale factor, we find that

a3 ¼ V=V0. It is worth mentioning that considering the Bianchi I
universe, the scale factor is defined as a ≔ ða1a2a3Þ1=3.
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S ≔ SðgÞ þ SðΛÞ þ
Z
M
d4x

ffiffiffiffiffiffi
−g

p
LðmatterÞ; ð2Þ

where LðmatterÞ encodes the Yang-Mills field, the scalar
field, and the Dirac field.
In this section, we focus on the first two terms of S.

The starting point in the construction of the Hamiltonian
constraint operator (HCO) in LQG would be the Einstein-
Hilbert action, which reproduces the classical equation of
motion,

SðgÞ þ SðΛÞ ≔
1

κ

Z
M
d4x

ffiffiffiffiffiffi
−g

p
R −

2Λ
κ

Z
M
d4x

ffiffiffiffiffiffi
−g

p
; ð3Þ

where R is the Ricci scalar. For completeness, we kept the
cosmological constant Λ in the action. Here g stands for the
determinant of the metric tensor gμν, and the gravitational
coupling constant reads κ ¼ 16πG.
The canonical quantization procedure in LQG is applied

to the Hamiltonian obtained from action SðgÞ, which is
derived in the ADM formalism while using the Ashtekar
variables. The latter are the Ashtekar-Barbero connection
Ai
a ¼ Γi

a þ γKi
a and the densitized dreibein Ea

i ¼
ffiffiffi
q

p
eai .

Here, Γi
a≔ 1

2
ϵijkΓjka¼−1

2
ϵijkebkð∂ae

j
b−Γc

abe
j
cÞ is the spin

connection and γKi
a ¼ Γi

0a is the extrinsic curvature. The
Ashtekar variables form a canonically conjugate pair, with
a Poisson structure given by

fAi
aðt;xÞ; Eb

j ðt; yÞg ¼ γκ

2
δbaδ

i
jδ

ð3Þðx − yÞ: ð4Þ

An important remark is that these variables are introduced
by a canonical point transformation on the gravitational
phase space from the ADM canonical variables when the
latter are written in the first-order form as ðKi

a; Ea
i Þ. From

now on, for consistency of notation, we will use superscript
(A) rather than (g), in order to denote objects describing
gravitational degrees of freedom. Since we foliate space-
time and restrict our analysis to three-dimensional spatial
hypersurfaces with metric tensor qab on it, we reserve the
term “metric” only to this object.
The Hamiltonian, which is obtained by the Legendre

transform of (3), reads

HðAÞ
T þHðΛÞ

T ¼
Z
Σt

d3xðAi
tG

ðAÞ
i þNaVðAÞ

a þNðHðAÞ þHðΛÞÞÞ;

ð5Þ

where the three elements

GðAÞ ≔
1

γκ

Z
Σt

d3xAi
tDaEa

i ; ð6Þ

VðAÞ ≔
1

γκ

Z
Σt

d3xNaFi
abE

b
i ; ð7Þ

and

HðAÞ þHðΛÞ ≔
1

κ

Z
Σt

d3xN

�
1ffiffiffi
q

p ðFi
ab − ðγ2 þ 1ÞϵilmKl

aKm
b ÞϵijkEa

jE
b
k þ 2Λ

ffiffiffi
q

p �
ð8Þ

are called, respectively, the Gauss, the diffeomorphism (or
vector) and the Hamiltonian (or scalar) constraints. These
constraints impose, respectively, an internal SU(2), a spatial
diffeomorphism and a time reparametrization invariance.
Hence the Hamiltonian constraint describes dynamics on
the SU(2) and spatial diffeomorphisms (or, in short, diffeo-
morphisms) invariant subspace. Objects Ai

t, Na and N are
Lagrange multipliers. The quantity Fi

ab denotes the curva-
ture of the Ashtekar connection, while Da is a metric and
dreibein compatible covariant derivative.

B. Lattice regularization

Lattice regularization in LQG is performed in two
steps. In the first step, we begin from the imposition of
the so-called “Thiemann trick,” which goes as

1

Ea
i
ð

ffiffiffiffiffiffi
jEj

p
Þn ¼ 2

n
δVn

δEa
i
¼ 4

nγκ
fAi

a;Vng; ð9Þ

Ki
a ¼

δK
δEa

i
¼ 2

γκ
fAi

a;Kg; ð10Þ

where jEj ¼ q is the absolute value of the determinant of
Ea
i and K ¼ R

d3xKi
aEa

i .
The second step is to regularize the spatial hypersurfaces

via a virtual granulation. It is realized by a construction of
small solid objects—grains, which fill all of the spacelike
Cauchy hypersurface and intersect each other only in
lower-dimensional submanifolds. This granulation of space
is controlled by the parameter ε, where the limit ε → 0
corresponds to the granulating object of a trivial volume or,
in other words, corresponds to taking the regulator to zero.
This is done in a way similar to taking the decoupling limit
in effective field theories—decreasing the volume of the
grains while at the same time increasing their number, in a
way such that they always fill out the entire space. The
standard choice for the shape of the solids is a tetrahedron.
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Consequently, the procedure is called a triangulation. The
detailed description of this method can be found in [1,29].
An alternative, much simpler choice for the shape of the
solids is a cuboid—albeit resulting in fixing some of
the gauge freedom of the theory. This is the case of the
“cubulation” procedure used in QRLG [13].
As a consequence of the granulation of the space, a

regularization of the dynamical variables is introduced.
After quantization, the effect of the regularization is to
remove both the gravitational singularities (the initial
singularity in a classical cosmology and the black hole
singularity) and the UV singularities of quantum matter
fields [1]. Finally, there is an identification between the
space and a graph Γ that is created as a consequence of the
granulation. This identification is realized by a duality:
Γ consists of links and nodes; hence, in the dual graph we
get, respectively, faces and volumes of the grains of Γ�.
At the level of the canonical variables, the regularization

is realized as follows. The Ashtekar connection Ai
a is

recovered from the holonomy haðvÞ ≔ hlaðvÞ (being a
solution to the equation of a parallel transport of the
connection) along the laðvÞ link emanated from the v node:

haðvÞ ≔ P exp

�Z
la
dsAj

bðlðsÞÞτj_lbðsÞ
�
: ð11Þ

Consequently, the curvature of the connection Fi
abðvÞ is

turned into the holonomy around the loop a↺b that starts
from the initial point of link la, goes along this link and
through the shortest polygon chain; it returns along link lb

to the initial point. It is worth noting that the a↺b loop is
constructed, connecting paths along links la and ðlbÞ−1
intersected at the node v, with a path set by the arch αab.
Moreover, we assume to fix the orientation of this path
according to the orientation of the given loop of links.
This regularization is realized via the relations

h−1p fhp;Vg ¼ εfAa;VgPap þOðε2Þ; ð12Þ
2ϵpqrhq↺r ¼ ϵpqrðhq↺r − h−1q↺rÞ

¼ ϵabðcÞε2FabP
p
c þOðε4Þ; ð13Þ

whereFab ¼ Fj
abτj,Aa ¼ Ai

aτi andp; q; r… label directions
of links of Γ, while Pap is the projector onto these directions.
As a result,we obtain all thegravitational dynamical variables
written in terms of hp, hq↺r, V and (in the case of the
gravitational contribution to the Hamiltonian constraint) K.
Namely, the scalar constraint density reads

HðAÞ ¼ 1

κ
lim
ε→0

1

ε3

Z
d3xNϵpqr

�
23

γκ
trðhp↺qh−1r fV;hrgÞ

−
25ðγ2þ1Þ

γ3κ3
trðh−1p fK;hpgh−1q fK;hqgh−1r fV;hrgÞ

�
:

ð14Þ

Having derived the lattice-regulated scalar constraint, the
quantization method is straightforward and can be imple-
mented via the Dirac procedure [30]. We turn Poisson
brackets into commutators multiplied by 1=iℏ and change
the dynamical variables into operators. The latter ones are the
holonomyand flux of the densitized dreibein operator, aswell
as the geometrical operators, i.e., the volume, the area and the
length operators. It is worth mentioning that the holonomy
and flux are the canonical pair, while all the geometrical
operators are constructed as smeared appropriate combina-
tions of the densitized dreibein operators.
The kinematical Hilbert space of LQG (and also in

QRLG) is a direct sum of cylindrical functions of (possibly
reduced, i.e., diagonal) connections along the links of the
graph Γ (the general graph or cuboidal one RΓ in the
reduced case). In the case of LQG, the kinematical Hilbert
space is equipped with an inner product defined as an
integral over cylindrical functions with an SU(2)-invariant
Haar measure.

C. DeWitt coordinate representation

The Alesci-Cianfrani model is based on an appropriate
projection of the SU(2) group elements to the three Uð1Þp
subgroups defined along the directions of the tp ≔ ρ⃗p · ⃗t
basis vectors, constructed as rotations of t3 ¼ u3 (being one
of the Lie algebra generators) into the unit vector ρ⃗p that
projects ti onto t3 and τi onto τ3, respectively—see
Appendixes A and B. This projection is based on the
Livine-Speziale SU(2) coherent states [31], which are
defined along tp ¼ Ppi t

i and minimize uncertainty of the
gravitational momentum operator [defined in (17)].
QRLG has been constructed as a cosmological model

with the general relativistic diffeomorphism invariance
broken down to the Bianchi I symmetry, supposedly in a
more rigorously defined way than in the case of LQC. The
latter one, already before the quantization, replaces the
Ashtekar connection in the definition of holonomy (11)

with a diagonal variable defined as AðiÞ
a jLQC ≔ c̄ðiÞ0e

ðiÞ
a =lðiÞ0

[3], with εlðiÞ0 being the length of the 0eaðiÞ side of the fiducial
elementary cell, while c̄ðiÞ is a constant. As a result, the real
SU(2) holonomy becomes replaced with a complex one,
invariant under U(1) transformations. Considering a link

lðiÞ of the length εlðiÞ0 , one finds the explicit form of the LQC
holonomy,

hðiÞjLQC ¼
�
1

2
− iτðiÞ

�
exp

�
i
2
εc̄ðiÞ

�

þ
�
1

2
þ iτðiÞ

�
exp

�
−
i
2
εc̄ðiÞ

�
¼ expðεc̄ðiÞτðiÞÞ; ð15Þ

where the object expð� i
2
εc̄ðiÞÞ is the complex U(1)

holonomy. It is worth mentioning that an explicit form
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of the factor ε distinguishes between so-called μ0 scheme
[3,4] or μ̄ scheme [20,32].
Notice that to recover a similar appearance of the

holonomy as in LQC, Alesci and Cianfrani redefined the
real LQG holonomy (11) to be the imaginary one
hl ¼ expð�i

R
l A

j
asj_laÞ. Then to preserve the structure of

the theory, i.e., hl ∈ SUð2Þ, they replaced the generators of
the suð2Þ representation with the self-adjoint operators
si ≔ σi=2 c (see Appendix A). To avoid confusion, we are
going to keep the standard notation and show that there is
no difference between expð� i

2
εc̄ðiÞÞ and the reduced real

LQG holonomy in (11). In both cases, the action of the
densitized dreibein operator leads to a real eigenvalue.
In LQG, QRLG and LQC we use the DeWitt-like

representation [33] of the Ashtekar variables,

Ai
a → Âi

aj…i ¼ Ai
aj…i; ð16Þ

Ea
i → Êa

i j…i ¼ −ik
δ

δAi
a
j…i: ð17Þ

Here, j…i denotes a standard basis vector in LQG or
QRLG, which is defined in Sec. II D. Notice that the
operators in (16) and (17) do not correspond geometrically
to their classical equivalents, since the Ashtekar connection
has dimension of a length−1, while the eigenvalue of the
densitized dreibein operator has dimension of a k × length,
and thus length3.
The proper rescaling has been suggested by LQC [3] and

later adapted to QRLG extending Bianchi I metric to an
inhomogeneous model [13]. It defines a pair of canonical
variables ðcðiÞ; pðjÞÞ, which in the case of LQC are spatially
constant,cðiÞ → c̄ðiÞ,pðjÞ → p̄ðjÞ. Themap from theAshtekar
variables to the reduced ones, ðAi

a → RAi
a; Ea

i →
REa

i Þ, is
defined as follows:

RAi
aðt;xÞ ≔

1

lðiÞ0
cðiÞðt;xÞ0eia; ð18Þ

REa
i ðt;xÞ ≔

lðiÞ0
V0

pðiÞðt;xÞ
ffiffiffiffiffi
0q

q
0eai ; ð19Þ

where V0 ≔ l10l
2
0l

3
0. The canonical Poisson relation for the

reduced variables is summarized in Appendix C. It is worth
mentioning that in QRLG, the inhomogeneous extension of
Bianchi I appears to be controllable imposing the diffeo-
morphism constraint on the partially gauge-fixed and parti-
ally reduced states space (see Sec. IV). This leads to the
reduced and constrained variables

R−CAi
aðt;xÞ ≔

1

lðiÞ0
cðiÞðt; xðiÞÞ0eia; ð20Þ

R−CEa
i ðt;xÞ ≔

lðiÞ0
V0

pðiÞðt; xðiÞÞ
ffiffiffiffiffi
0q

q
0eai : ð21Þ

However, as pointed out in Sec. IV, the inhomogeneous
extension is a source of overconstraining for the theory.
Now we are ready to prove that the eigenvalue of the p̂i

operator acting on the state based on a reduced holonomy is
real. For simplicity, we assume that the holonomy is
oriented along the third internal direction, i.e., along the
link l3. Following Alesci and Cianfrani [13–17], we impose
the DeWitt representation (17)—this is not completely
rigorous (see Secs. IV–VI) but is sufficient for our
purposes—getting

p̂ijeεc3τ3iR ¼ −ik
δ

δci

���eεc3τ3iR ¼ −ikεδi3hτ3jeεc3τ
3iR

¼ −mkεδi3jeεc3τ
3iR: ð22Þ

Notice also that in the last step we used the −im eigenvalue
of the τ3 generator in the spherical basis [see (A4)]. The
result in (22) coincides (up to the sign, being dependent on
the orientation of links, and a result of a convention in a
definition of the Lie algebra generators) with all the articles
considering QRLG.

D. State space: SU(2)-coherent spin network

Another feature of the Alesci-Cianfrani construction,
apart from the rotation onto the tp directions, is the
modification of intertwiners. They are the components of
the kinematical Gauss-invariant Hilbert space of LQG,
introduced as a result of the implementation of the Gauss
constraint (6) at the quantum level. The intertwiners, in the
definition of spin-network states (the basis states of the
theory), connect SU(2) irreducible representations attached
to the links of the Γ graph. Consequently, intertwiners are
thought to be attached to the nodes of Γ and act as
projectors enforcing the SU(2) gauge invariance via the
group averaging. Within the case of the spin-network states
rotated onto three orthogonal directions, unique inter-
twiners are represented by the Clebsch-Gordan coefficients,
or equivalently by the Wigner 3 − j symbols. It is worth
noting that intertwiners do not appear in LQC. Therefore
QRLG, as long as it is formulated by the projection on the
Gauss-invariant Hilbert space of LQG, appears to retain a
more adherent structure to the original theory than LQC.
The spin-network states, defined as hhjΓ; jl; ivi, are

supported on the graphs Γ, labeled by the spins jl [encoding
suð2Þ irreducible representations of the holonomies
attached to each links l of Γ] and the intertwiners iv
[implementing SU(2) invariance at each node v of Γ]. In
QRLG the basislike states are Rhh̄jΓ; jp; iviR and involve
Wigner matrices, which are rotated to the tp directions and
projected on the coherent Livine-Speziale states [31], with
maximal spin number

jp → j̄p ≔ jpmax: ð23Þ

CRITICAL INSIGHT INTO THE COSMOLOGICAL SECTOR OF … PHYS. REV. D 101, 066026 (2020)

066026-5



Moreover, the secondary spin quantum number (called
also the magnetic number), taking values mp ¼ −jp;
−jp þ 1;…; jp and being the eigenvalue of the s3 internal
angular momentum generator (as in particle physics) in the
spherical basis (this notation is explained in Appendix A),
is fixed to

mp → m̄p ≔ �j̄p: ð24Þ

The reduced spin-network space is constructed as a
modified space of solutions of the constraints (6) and (7)
and will be denoted as RHðgrÞ

Γ;v . In the case of the Alesci-
Cianfrani model, the SU(2) invariance is replaced with the
three U(1) symmetries along the directions of the links of
RΓ, while the diffeomorphism constraint is restricted to the
implementation of an invariance under spatial diffeomor-
phisms, which do not generate any off-diagonal compo-
nents. The former restriction is an internal gauge fixing
realized by the projection on the coherent states. The latter
one can be interpreted as an external gauge fixing of the
geometry, which restricts a generic Γ graph to the cuboidal
one, RΓ. A precise construction of the Hilbert space of the

full theory, LQG,HðgrÞ
kin , can be found, e.g., in [1], while that

for QRLG is given in [13,14]. Details of the mechanism and
consequences of rotational transformations imposed on the
LQG spin network are discussed in Sec. IVA.
Finally, the problem of solving the Hamiltonian con-

straint at the quantum level recasts as the problem of
finding solutions of the action ĤjΓ; J; Ii—in the reduced
case, the action RĤjΓ; J; IiR. Here, J ∋ ml and I ∋ iv are
the set of spin numbers and the set of intertwiners, attached,
respectively, to all links and all nodes of a given graph. For
simplicity, we omitted labeling with R the quantities Γ, J
and I inside the j…iR “kets” describing reduced states.
As we already mentioned, the projection of the Wigner

matrices on the coherent states simultaneously projects
SU(2) intertwiners. As a consequence, states become
decomposed as follows:

Rhh̄jΓ; J; IiR ≔
Y
v∈Γ

hjl; ivjm̄p; tpi
Yp
lp∈Γ

Djm̄jp
m̄pm̄pðh̄pÞ; ð25Þ

where hjl; ivjm̄p; tpi are the reduced U(1) intertwiners,

while pDjm̄jp
m̄pm̄pðh̄pÞ is the Wigner D matrix, with a fixed

irreducible representation jp → j̄p ¼ jm̄jp attached to the
li link.
It is important to notice that the basislike states are

not orthonormal within the scalar product given by the
expression

RhΓ;mlp;ivjΓ0;ml0q ; i0viR
¼ δΓ;Γ0

Y
v∈Γ

Y
l∈Γ

δjlp ;jl0q hm̄lp ; tpjjlp ; ivihjl0q ; i0vjml0q ; tqi: ð26Þ

The term hm̄lp ; tpjjlp ; ivihjl0q ; i0vjml0q ; tqi represents a prod-
uct of U(1) phases. It is also worth mentioning that by
definition any Hilbert space is complete; i.e., it has an
orthonormal basis. Therefore we suggest to impose by hand
the following normalization:

jΓ; JiR ≔
Y
v∈Γ

Y
l∈Γ

ðhjl; ivjm̄p; tpiÞ−1jΓ; J; IiR; ð27Þ

to drop the phase dependence from the nonorthonormal
states obtained by the reduction procedure. As a result, the

normalized state space of QRLG, namely RHðgrÞ
Γ;v , gets rid of

its dependence on intertwiners placed at the nodes v.
Therefore this can be understood as a Hilbert space,

becoming RHðgrÞ
Γ ¼ ⊗lp∈ΓHp, with Hp denoting the

Uð1Þp Hilbert space associated to each orthogonal direc-
tion. In other words, we simplify the structure of the sum
over intertwiners into a contraction of Kronecker delta
functions oriented along the link directions.
Let us present one more argument why the state provided

by expression (27) can be considered as the spin network of
QRLG. From the point of view of the Dirac program of
canonical quantization of constrained systems [30], one
should impose constraints one by one, to recover the
physical phase space. Notice that for the U3ð1Þ symmetry,
the vector constraint vanishes identically.3 The Gauss
constraint becomes reduced to Abelian transformations
of Lie group along three orthogonal directions, h̄i → h̄i0 ¼
gðiÞh̄ig−1ðiÞ ¼ h̄i, where h̄i; gðiÞ ∈ Uð1Þ. Hence there is no

reason to introduce the construction of intertwiners [which
is necessary in LQG formulated in terms of SU(2) group
elements]. Then from the geometrical perspective of the
SU(2) to U(1) reduced theory, these transformations are
simply the phase transformations, with generators being C
numbers. This allows us to perform the normalization as
defined in (27). Another way to reproduce this result is
moving the reduced intertwiner hjl; ivjm̄p; tpi in (25) to the
right-hand side of the expression and then rescaling the
U(1) holonomy. For consistency, let us assume to move all
the intertwiners in the unnormalized space into holonomies
attached to the links emanated toward positive orientation.
Then, since for a given node-link pair, the intertwiners
are fixed spin m̄i-dependent functions, we simply rescale
appropriately ε in jeεc̃iτðiÞ iR.
Finally, let us discuss why the reduced intertwiners,

which appear to be only a redundant complication, are still
present after the SU(2) to U(1) reduction in the original

3Precisely speaking, reduced diffeomorphisms map directions
of links into themselves. Hence for a diagonal form of the
dreibein, the directions restrict the lattice to be cuboidal. There-
fore fixing holonomies to the ones of the diagonal connections,
which are attached to the cuboidal lattice, we neglect the vector
constraint.
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formulation of QRLG [13–17]. These are a consequence of
the reduction of a partially constrained kinematical Hilbert
space of LQG. Notice that all the constraints, including the
Gauss (6), the diffeomorphism (7) and the Hamiltonian one
(8), are first-class secondary constraints. They are inde-
pendent; therefore, after the quantization they should be
imposed on the spin network in any order, but necessarily
during the same step, without any manipulations on the
structure of the Hilbert space after implementation of only
one of the constraints. As a result we would obtain a
physical Hilbert space. Only by convenience—to simplify
calculations—we first impose the Gauss constraint, then
the diffeomorphism one and finally the Hamiltonian con-
straint. Hence for consistency, the reduction procedure
should be performed either on the kinematical or on the
physical Hilbert space and not on the gauge-invariant
kinematical Hilbert space (after imposition of only the
Gauss constraint). The former choice does not generate the
reduced intertwiners, because the kinematical Hilbert
space is the space of cylindrical functions over the Γ
graph, equipped with the Ashtekar-Lewandowski measure
[34,35], without yet introduced the SU(2) intertwiners.
The latter choice, i.e., the reduction of the physical Hilbert
space—up to the present stage of the development of
LQG—is impossible to achieve. The Hamiltonian of LQG
is so complicated that the full structure of the physical
Hilbert space remains unknown. This argumentation is
developed in further analyses, contained in Sec. IV, while in
Sec. V we present the proper order of implementation of the
constraints leading to a well-defined and simplified theory.

E. Gravitational field operators in LQG

Let us now discuss the generic model of LQG. While
taking into account the cosmological constant’s sector, the
whole difficulty in finding a solution to the equation
HðΛÞjΓ; jl; ivi becomes the derivation of the action of the
volume operator,

V̂jΓ; J; Ii: ð28Þ

The gravitational HamiltonianHðAÞ produces two classes of
equations for the eigenvalues of the suð2Þ traces of the
operators in (14). As usual in the standard literature, we are
going to call the first one the Euclidean term,

trðĥp↺qĥ
−1
r ½V̂v; ĥr�ÞjΓ; J; Ii: ð29Þ

The second, being the most complicated object, has been
named the Lorentzian term and it is given by the formula

trðĥ−1p ½K̂v; ĥp�ĥ−1q ½K̂v; ĥq�ĥ−1r ½V̂v; ĥr�ÞjΓ; J; Ii: ð30Þ

It is worth noting that Eq. (28) is solvable for simple
configurations of states. However, a problem which arises
is the fact that there is an ambiguity in the choice of the

definition of the volume operator [36,37]. Besides that, in
order to derive actions of the complete set of all the
Standard Model matter fields, we need rather some powers
of V̂v [23]. Hence, instead of focusing only on the
cosmological constant sector described by formula (28),
we need to solve the following action:

ðV̂vÞnjΓ; J; Ii; ð31Þ

n being a positive rational number.
In the case ofEq. (29), the solutions for standardLQGhave

been foundonly for single-node states of a particular valency4

and for coherent complexifier states.5 However, in the case of
the reduced graph, a general solution exists [15]. This latter
takes a simpler form upon inclusion of the corrections from
the reduction procedure discussed in Sec. IV.
Derivation of the Lorentzian term in Eq. (30) is even

more demanding. As in the case of the Euclidean con-
tribution to the Hamiltonian constraint, the result for a
general case with a big number of nodes of different
valency is rather impossible to be achieved. In the reduced
model at the classical level this term does not appear any
more. This is a consequence of the diagonalization of the
spatial metric tensor (which is a correct assumption if one
considers only a leading-order term in the semiclassical
analysis of QRLG). However, a precise approach to
quantization of the Hamiltonian constraint has to be applied
to the Lorentzian term as well. We expect that the next-to-
the-leading-order corrections to the matrix element,
expanded around the classical configuration, are of the
same order of significance as the corrections from the
expansion of the Euclidean term. Moreover, the corrections
from the expansion of the Lorentzian term in the framework
of QRLG could be different with respect to the ones
obtained by Alesci and Cianfrani in [15], as it happens
in the case of different approaches to LQC.6

III. COSMOLOGICAL REDUCTION OF
CANONICAL GRAVITY

Before discussing the cosmological reduction of LQG,
let us analyze from a general perspective what are the
possible approaches to this issue. The problem is clear and
already solved at the classical level. The cosmological

4See, e.g., [38] (for trivalent nodes) or [39] (for tetravalent
nodes).

5The Dapor-Liegener model called cosmological complexifier-
coherent loop quantum gravity has been first proposed in [40]. Its
initial construction has been explained in detail in [41]. None-
theless, further investigations are required in order to show how
the formalism of LQC is recovered.

6The next-to-the-leading-order corrections arising from the
Euclidean and Lorentzian terms differ among each other. Up to
our knowledge, there exist at least three paths to recover the
original formulation of LQC (considering only the Euclidean
term), including the frameworks proposed in [40,42].
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reduction imposes the vanishing of the Gauss and diffeo-
morphism constraints; thus, it leads to the quantization of
the classically gauge-invariant functions already restricted
to the equivalence classes of systems linked by gauge
transformations. Its most complete description in the
homogeneous and isotropic case is the formulation of
LQC presented in [5]. The anisotropic extension of this
theory is given in [18]. In these models, the only remaining
operator equation is the scalar constraint that acts on states,
which must be selected to satisfy the time reparametrization
invariance. However, this model has not been verified from
the perspective of the formal reduction of the phase space,
imposing canonical gauge conditions. We fill this gap,
describing an appropriate procedure in Sec. VA.
It should be also clear that the most complete approach at

the quantum level would be to impose cosmological
symmetry on the general solution of LQG. However, since
this solution does not exist, we should try to reduce—by a
well-defined and controlled method—the system of not
(totally) solved quantum constraints. When discussing the
general procedure we follow the Henneaux-Teitelboim
recipe [43].
Before classifying the possible approaches, let us for-

mulate few universal statements. Any first-class constraint
(there are three of them in the case of the canonical gravity)
“hits twice.” Precisely speaking, given the Hamiltonian
formulation of any theory, each constraint must be solved
as an independent operator equation (gauge condition) and
each gauge symmetry must be realized by states and
operators (they both have to be transformation invariant).
In other words, an operator that modifies the states cannot
send these states outside the gauge-invariant Hilbert space.
The formal reduction of the phase space requires the
introduction of gauge conditions. These conditions are
constraints introduced ad hoc, constituting a second-class
system. It is worth mentioning that the number of the gauge
conditions must be equal to or greater than the number of
the original first-class constraints. Moreover, in order to
avoid the Gibov obstruction—see Appendix D 1—the
gauge conditions have to be implemented globally. One
should then replace Poisson brackets with Dirac brackets.
The procedure of quantization of the secondary constraints
and Dirac brackets is however not uniquely solved; thus,
we are going to discuss the methods to avoid this problem.
The easiest but not formal way to get around this issue is

to remove the symmetry and associated constraints “man-
ually” at the classical level—we discuss this method in
Appendix D 1. As a result, one considers a different,
simpler theory from the beginning and only this theory
is quantized, without a connection with the general model
that has been simplified. Good examples of this strategy are
LQC (when comparing with LQG) and time gauge in the
tetrad formalism of the 3þ 1 gravity (when compared with
the Palatini formulation). Notice that a formal way to get
around the problem is a redefinition of the canonical

quantization—described in Appendix D 2. We show how
this straightforwardly solves the difficulties of the gauge
conditions that are recalled in Sec. VA.
A more involving method is a reduced phase space

quantization, explained in Appendix D 3. In Sec. VA we
show how imposing appropriate gauge conditions, Gauss
and spatial diffeomorphism invariance are frozen, leading
to the anisotropic formulation of LQC. Up to our knowl-
edge this is the first proof that the gravitational sector of
LQC is a gauge-reduced equivalent version of LQG.
Finally, it is interesting to check whether imposing the

reduced phase space technique at the quantum level in
terms of operators, one would obtain the same result.7 In
Secs. V B and V C we demonstrate that solving gauge
conditions as operators, one finds isomorphic Hilbert space
to the one defined for the classically reduced phase space.
What remains unknown is if the original constraint oper-
ators and the corresponding states, not solved during
fixation of gauge symmetries, are quantum reduced to
the same eigenequations. For instance, while considering
the reduction of LQG at the quantum level, the question of
whether the eigenequation containing the Lorentzian con-
tribution to the scalar constraint operator is based on the
same reduced states as the ones contributing to the
Euclidean eigenequation remains open after our analysis.
From the structure of the reduced Hilbert space, we
anticipate that the states in both cases are indeed the same.
The corresponding matrix elements, however, may be
different and, until this issue will not be explicitly verified,
we are not able to formulate even a heuristic guess what
will be the answer.
Before starting our analysis, let us check whether some

of these issues are already solved. The earlier attempt to
investigate these problems was QRLG. However, we found
this model to be incorrectly formulated, which we dem-
onstrate in the next section.

IV. QUANTUM REDUCTION
OF SPIN NETWORK

QRLG has been constructed as an alternative to LQC. It
was thought to retain a definite advantage with respect to
the latter theory, since it was believed to provide a precisely
defined reduction procedure of LQG at the quantum level.
It comes together with significant simplifications with
respect to the full theory. As was already mentioned,
formulas (29)–(31), which altogether appear to be untract-
able in the general case of LQG, have analytical solutions
in QRLG.
Let us begin with the volume operator. The regularized

action of this operator (31) in full LQG has a complicated
structure [1,44]. Neglecting ineffectiveness (from the point
of view of applications) of a direct regularization of fluxes,

7We remark that there is no procedure that uniquely specifies
how to implement constraints at the quantum level.
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we can write the action of V̂v defined around a neighbor-
hood centered at the v node as

ðV̂vÞnjΓ; jl; iviR
¼

�Z
d3x

����� 13! ϵijkϵpqrÊiðSpÞÊjðSqÞÊkðSrÞ
����
�

1=2
�
n

× jΓ; jl; iviR; ð32Þ

where it has been assumed that the operator of a volume to
a given power equals that power of the volume operator.8

The irregularity and complication of a structure of the
general graph directly prevents one from getting a solution
to Eq. (32). Since the same operator appears in other
equations such as (29) and (30), and in the gravitational
contributions to the HCOs of matter fields, it follows that
these cannot be solved either. The situation is much simpler
in the Alesci-Cianfrani model with the regular cuboidal,
self-dual graph.
The self-duality of RΓ should be understood in a

geometrical way. The faces dual to the links of RΓ and
the polyhedra dual to the nodes of this graph are, respec-
tively, rectangles and cuboids. They are elements of the
dual space. Then, the dual graph RΓ� is constructed from the
edges and vertices of the cuboids. The result is the RΓ�

graph, congruent to RΓ. Moreover, identifying the edges
and vertices with some lattice’s links and nodes, respec-

tively, leads to an analogous structure to RHðgrÞ
Γ , where

RHðgrÞ
Γ is the normalized Hilbert space of QRLG. Then one

can choose some averaging procedure that translates jm̄ji
spin numbers attached to RΓ onto the ones along the links of
RΓ�, emanated from the nodes shifted by a half link
distance. As a result, one obtains a Hilbert space
RHðgrÞ

Γ� ≅ RHðgrÞ
Γ . It is worth noting that a similar identi-

fication for the state space of QRLG including intertwiners,
RHðgrÞ

Γ;v , is generally not true—except for the homogeneous
case, in which this identification is natural. This identi-
fication is not correct due to the presence of intertwiners
placed at nodes of RΓ�, which should not be related to the

ones in RΓ, but should provide a gauge invariance in RHðgrÞ
Γ�;v.

Another relevant feature of RΓ is that it is a fixed graph,
conversely to the graph structure, which supports LQG. The
latter one is the uncountable (almost direct) sum of disjoint
graphs; hence, it is nonseparable. Thus it can represent
continuous geometries, being embedded in a differential
manifold. The former one decomposes into a direct product
of three fixed graphs. Each one supports a family of
states, which corresponds to a fixed one-dimensional
geometry. Moreover, the reduction procedure restricts both

the canonical pair as well as all the geometrical operators to
the ones that preserve the structure of RΓ. Therefore each
space of cylindrical functions over a fixed one-dimensional
lattice is a superselection sector with corresponding graph-
preserving (also called non-graph-changing) operators.
Expectation values of these operators (if well constructed9)
areDirac observables. Each of these sectors is equippedwith
the U(1) Haar measure on the Bohr compactifications of the
real line [13]. It is also worth mentioning that in the
homogeneous limit, this polymerlike structure simplifies
into a collection of lines, equipped with the Lebesgue
measures.
Notice that the kinematical Hilbert space of LQC is not

separable by an analogous argument. The main difference
is that the action of HCO connects different superselection
sectors [32]. Then HCO is modified to preserve these
sectors, while the physical Hilbert space is constructed
from the states on which this HCO acts.10

A. Reduction procedure I: Projected space in QRLG

The first complete description of the reduction of LQG to
QRLG was shown in [13]. Here we review the procedure,
pointing out all the assumptions, which we can classify into
two categories: (i) an additional modification (put by
hands) not being a standard method of a field theory or
LQG; (ii) an internal gauge fixing introduced as an addi-
tional constraint at the quantum level. We also emphasize
which steps in this method we consider to be incorrect.
Finally, we distinct a reduction of states that we label by
subpoint (a) and a reduction of operators labeled by (b).

(I) The first assumption in this method is solving the
Gauss constraint in (6), quantized and imposed on

HðgrÞ
kin . As a result, we obtain the Gauss-invariant

Hilbert space of LQG, already discussed in Sec. II D.
This is a standard procedure in the theory, but we
placed it here, since it is a modification of the

8This assumption is better legitimated in QRLG, where the
volume operator is an eigenoperator of the reduced spin network
(see analogous comments in Sec. VI).

9Notice that although a certain set of operators may not satisfy
the definition of being the Dirac observables, their expectation
values are classical quantities and, thus, constitute the observ-
ables. It is worth mentioning that in many formulations of LQG
(see, e.g., [29]) and in the minisuperspace-based reduced variants
of the theory (see, e.g., [3]), the Hermiticity of operators
associated to classical quantities that are measurable is not an
a priori included constructional condition—see, e.g., the case of
the Hamiltonian operator. Notice, however, that the main in-
ventors of both LQG and LQC included the Hermiticity as a
constructional requirement for the canonical pair of operators and
all the geometrical operators—see [1,29,44] and [3,5], respec-
tively. Here, by the “well-constructed operator,” we understand
their self-adjoint versions, easy obtainable by adding the adjoint
operator to any non-Hermitian operator, for which exists its
classical equivalent.

10Another possible solution that tames this problem is called the
integral Hilbert space method. In this model a separable Hilbert
space for LQC is constructed in terms of an integral of super-
selection sectors equipped with a Lebesgue measure (see [45]).

CRITICAL INSIGHT INTO THE COSMOLOGICAL SECTOR OF … PHYS. REV. D 101, 066026 (2020)

066026-9



unconstrained Hilbert space before the next steps of
reduction take place—these have to be done before
solving HCO. It is worth mentioning that the order
of resolution of the vector constraint operator would
be also influential into this analysis. However, it is
not explicitly written in [13] whether this operator is
solved after or before the reduction steps listed
below. Anyhow, all three first-class constraints as
the elements of the standard Dirac’s method of
quantization [30] should be solved one by one
without any intermediate modification. Alterna-
tively, one can use one of the gauge-fixing methods
listed in Appendix D, introducing canonical gauge
conditions, constituting a second-class constraint
system with one or few of the original first-class
constraints. Therefore we already found this first
step to be extremely problematic. One cannot first
solve the constraint and later impose gauge con-
ditions, since these do not Poisson commute with the
original constraints, as shown in Appendix E. The
imposed constraint is (by definition of the second-
class system) not invariant under the symmetry
introduced by the gauge conditions. This is exactly
the problem that appears in this reduction procedure,
leading to an ill-defined Hilbert space.

(II) The next additional modification of LQG is a
restriction on Γ to be cuboidal,

Γ → RΓ: ð33Þ

This is a cosmologically motivated simplification,
which does not commute with the diffeomorphism
constraint. It is however not clear whether it reduces
any gauge transformation completely or not—three
rigid diffeomorphism transformations are still
present. Thus, some restriction on the Hilbert space
is introduced, however not in a controllable way.
Therefore after this step, one will not be able to
detect whether the final result is correct or not. It is
also worth mentioning that this restriction has no
influence on the canonical operators, but it restricts
loop holonomies and densitized dreibeins to act
along rigid directions. Hence, only the variables
in (18) and (19) contribute in the definition of the
operators. Once the cuboidal symmetry has been
assumed, this must be preserved. This prevents from
acting with holonomy operators along directions that
do not coincide with the edges of the cuboidal graph.
Such an action, if considered, would indeed lead us
out of the Hilbert space of the reduced theory.

(III) The third externally introduced assumption is a
freezing of the internal symmetry. The suð2Þ gen-
erators become fixed along the directions of the RΓ
lattice, namely τp ¼ Ppi τ

i. Notice that the internal
rotation operator Ppi has to be fixed with respect to

the orthogonal Cartesian frame spanned by ti.
Therefore, the translational invariance of the Ashte-
kar variables in (18) and (19) with the fixed spatial
directions, xp, has to be fixed as well. A change in
the scaling of the spatial directions would affect the
structure of the Ppi operator (and the choice of the ρ⃗
vector—compare with Appendix B).
(a) The basis states of the reduced spin network are

then chosen to be the Uð1Þp-invariant, diagonal-
izing holonomies in (III)(b).

(b) The reduced holonomies take the following
general form: hp ¼ eαðpÞτ

p
. Acting on states in

(III)(a), they result in eigenvalue e−iαðpÞm
ðpÞ
,

where αðpÞ is a function of the Ashtekar con-
nection and of a link, while mðpÞ is the magnetic
quantum number corresponding to the spin
attached to the lp link—see Appendix A.

This step reduces the symmetry of the solutions at
the quantum level. However any degree of freedom
is removed, since the SU(2) symmetry has been
replaced with the ⊗3

p Uð1Þp one. This step, if
subsequent to (I), would be the only correct one.
But, if the order is reversed as here, restriction on the
graph in (33) cannot be consistently attained. To
clarify this argument, one cannot rotate gauge
generators without changing intertwiners that were
already affixed with respect to the generators along
the original directions.

(IV) Another modification of the theory is an introduction
of the SU(2) projected spin network by lifting up the
reduced Uð1Þp state space (for a general idea of
projected spin networks see [46]).
(a) The projected states are constructed by an exten-

sion of the Uð1Þp ones to the subsector of SU(2)
restricted to generators τp. This can be done by
convolutions of⊗3

p Uð1Þp and SU(2) characters.
(b) Notice that, according to the construction of the

projected spin networks in [46], “gluing” sub-
spaces in order to lift them into the ones associated
to a more general symmetry should not affect the
matrix elements of the operators. Therefore, at this
step, we keep unchanged the reduced form of
holonomies given in Appendix B.

Here, again the problem of the order of steps occurs.
One should first choose the cuboidal lattice, then
impose the Gauss constraint (on the already diagonal
directions), finally lifting up ⊗3

p Uð1Þp to the sub-
sector of SU(2). This “trick” however would not
then change anything, since generators of both
symmetries span the same space.

(V) (a) Finally, considering now the lifted SU(2) state
space, onecan solve the followinggaugecondition:

χiχi ¼ Ea
j
0ekaðEb

j
0ekb − Eb

k
0ejbÞ ¼ 0: ð34Þ
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Solving it at the quantum level, i.e., replacing
densitized dreibeins with flux operators

ÊiðSÞ ≔
Z
S
dxadxbϵabcÊ

c
i ; ð35Þ

and identifying the internal directions with the
lattice ones, we ensure that the SU(2)-fixing
constraint

χi ≔ ϵijk
0ejaEa

k ¼ 0 ð36Þ

is implemented weakly. Let us also specify that
(36) constitutes a second-class constraint system
with the Gauss constraint in (6)—see [47,48] for
details. Therefore, to omit the procedure involving
Dirac brackets, expression (34) has been intro-
duced as a “master constraint,” containing two
elements:Ea

jE
b
j
0qab andEa

jE
b
k
0eka0e

j
b, of which the

former one Poisson commutes with the Gauss
constraint and the latter one generates with it the
same algebra as (36). Notice that in this way we
break the SU(2) group of rotations into U(1) in a
controlled way, introducing another constraint on
the full theory. Solutions to the equation χiχi ¼ 0
derived at the quantum level (see [13] for the
details) are realized by the states corresponding to
the quantum numbers satisfying the relations

jp → ∞ ð37Þ

and

mp ≃ m̄p: ð38Þ

Therefore, when defining the reduced spin net-
work, the limit in (37) is approximated by (23),
while the approximation in (38) becomes simpli-
fied by the sharp equality, as in (24). This means
that all the states along three orthogonal directions
are no longer different, which introduces homo-
geneity, preserving the anisotropy of the model.
It isworthnoting that although this reduction step is
implemented only with respect to the states, it was
introduced as a new constraint; thus, it should
impose a restriction on the states space, with no
influence on the operators. This interpretation
could prevent the argument of breaking a consis-
tency between states and operators while imple-
menting the modification. What is problematic
however is the question whether the homogeneity
of states should entail homogeneity of operators.

(b) In QRLG operators remain in the inhomogeneous
form. We consider this choice as inconsistent in
the implementation of the symmetry within the

theory. This is because inhomogeneous operator
acting on a homogeneous state creates a new,
inhomogeneous state, which should still preserve
the symmetry introduced by the gauge condition.

The problem that arises here is very serious.Condition
(34) develops the second-class set with all the con-
straints, (6)–(8)—see Appendix E. Thus it is no easy
to detect which degrees it annihilates. Moreover, it
coincides with the weakly implemented condition
(36). The latter one definitely annihilates three
degrees of freedom; thus, no dynamics will be left
out of the phase space spanned by the variables in (18)
and (19), while the scalar and (probably) the vector
constraints have not been implemented yet. Due to the
many flaws occurring during the previous steps, from
now on the theory has no propagating degrees of
freedom, while there are still some degrees to be
subtracted.

(VI) The vector constraint is probably implemented at
this moment. We deduced this, because the sym-
metry restricted by the vector constraint has been
derived in [13] after the Gauss constraint has been
completely implemented and reduced. Diffeomor-
phisms have been then restricted to the translations
along rigid Cartesian directions, xa → xp ¼ xa0epa .
This corresponds to the variables in (20) and (21),
instead of (18) and (19), respectively.

(VII) The last assumption is to replace the rotated holon-
omies obtained in (III)(b) with general ones, re-
stricted only by the rotation of generators into τp. In
this way the mechanism for lifting up the Uð1Þp
states into SU(2) ones in (IV)(a) is extended into the
operators. Notice that without any changes, this step
can be also implemented just after point (IV).
However, this additional modification is not a
consequence of the projected spin-network tech-
nique, and thus it results in a much wider spectrum
of operators than in the case we discussed in (IV)(a).
In other words, the problem in this step is rather
methodological than mathematical: reduction on the
state space would not entail reduction of the oper-
ators (namely restriction to the subset of operators
the image of which is inside the state space).

Summarizing, the procedure introduced in [13] appears
to be complicated, mixing gauge-fixing methods from
Appendix D with themselves and with nonstandard tech-
niques. Moreover, as we pointed out, few incorrect steps
were considered. However, in [14] a simpler method, which
we discuss in the next subsection, was proposed.

B. Reduction procedure II: Double gauge
conditions in QRLG

The reduction scheme described in the previous sub-
section can be simplified and performed in a more con-
trolled way. In the original construction, four additional
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modifications and one gauge condition are needed. Here,
referring to the method described in [14], we obtain the
same results using two constraints and two additional
modifications.
(1) We begin from the same problematic assumption as

in (I), first solving the Gauss constraint.
(2) (a) Next, we introduce a new gauge condition that

classically describes the vanishing of the off-
diagonal entries of the dreibein (and densitized
dreibein) matrices,

Ea
i E

b
i ja≠b ¼ 0: ð39Þ

Notice that this constraint is introduced as a
global condition, breaking the SO(3) invariance
of the qab spatial metric, and leads to Ashtekar
variables that in the most general form can be
represented by expressions (18) and (19). This
gauge condition Poisson commutes with the
Gauss constraint [see (E12)] and creates a
second-class set only with the vector and scalar
constraints—see Appendix E. Thus implement-
ing the first step (1) seems so far to be correct.
At the quantum level, this condition leads to

the large-j limit solution in (37) and the cuboidal
graph structure (33). Here, likewise in Sec. IVA,
it is not specified whether the implementation at
the quantum level of the new constraint in (39)
affects only the states, or it also entails a similar
reduction of the operators. Moreover, analo-
gously to the procedure in Sec. IVA, this step
becomes incorrect at the quantum level, since the
Gauss constraint has been already solved in
step (1). The intertwiners derived for nonorthog-
onal links are in contradiction to the restriction
in (33).

(3) Then, we fix the holonomies and the states, respec-
tively, to the ones with frozen generators τp and to
the ones carrying eigenvalues of the holonomies.
This is a similar step to the one discussed in (III). It is
worth mentioning that this procedure was introduced
by hand and unnecessarily, since instead this should
already be a consequence of a correct implementa-
tion of the Gauss constraint in (1).

(4) The fourth condition is again a gauge-fixing one, the
same as in (V). The only difference with respect to
the method in Sec. IVA concerns the implementa-
tion of the gauge fixing to U(1), not on the SU(2)-
invariant space, but on the ⊗3

p Uð1Þp state space.
(5) When the condition introduced above is solved,

the gauge condition in (39) restricts the vector
constraint to be a generator only of the reduced
diffeomorphisms—we discussed this in the previous
procedure, in (VI). Again, we put this step not
together with (2a), but after (4), since also the gauge

condition in (34) constitutes a second-class system
with the vector constraint. If the Gauss constraint
would be implemented correctly, we would be
able to implement all the first-class constraints in
any order.

(6) Finally, in this simplified construction of QRLG, the
additional modification, already described in (VII),
is introduced. Hence again holonomies are promoted
into general SU(2) operators, while states are not
changed in an analogous way.

Concluding the enhanced reduction procedure, the num-
ber of external modifications to the theory, as well as
incorrect implementations of constrains and gauge condi-
tions has been lowered. However, few problematic steps as in
Sec. IVA still appear in Sec. IV B. Especially, the theory
remains overconstrained—see discussion in Sec. IV C.

C. Discussion

We already pointed out the problematic steps in the
gauge-fixing procedure of QRLG. Let us analyze now
directly the two troublesome consequences of the incorrect
gauge reduction.
First, let us discuss the presence of the intertwiners in the

final result. As the authors wrote in the review of their
model, “the presence of intertwiners is the main technical
achievement of QRLG” [17]. In our opinion, the objects
removing the orthogonality of states, hence resulting in
an ill-defined Hilbert space, should be rather the main
reason to reinvestigate the procedure, in the attempt of
finding the solution of the problem. It is easy to see that, in
contradiction of the Henneaux and Teitelboim recipe for a
precise reduce phase space quantization—sketched in
Appendix D 3—the reduced state, containing intertwiners
linking nonorthogonally positioned gauge generators, does
not coincide with the orthogonality restriction imposed on
the gauge-invariant spin-network state (as we stated in the
previous sections). The proper state would be rather linking
the same generators along a (straight) line—thus with
trivial, negligible intertwiners.
Second, QRLG is presented as a model that after an

unclear gauge-fixing procedure results in a six-dimensional
phase space spanned by the variables in (18) and (19),
while all the original constraints of the full theory remains
present (although in a simplified form). Let us recall the
reduced form of the Gauss constraint,

RGðAÞ ¼ 1

γκ

Z
Σt

d3xAi
t∂a

REa
i ; ð40Þ

and the reduced diffeomorphism constraint

RVðAÞ ¼ 1

γκ

Z
Σt

d3xNað∂a
RAi

b − ∂b
RAi

aÞREb
i : ð41Þ

The former expression corresponds to∝ ∂ppðpÞðt; xðpÞÞ and
generates the Uð1Þp invariance. The constraint in (41)
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simplifies to ∝ ∂pcðpÞðt; xðpÞÞ—the terms ∝ ∂pcðqÞjp≠q
vanish. Imposing the Gauss constraint ∂ppðpÞ ¼ 0 and
neglecting the boundary term, the reduced diffeomorphism
constraint can be recast as an expression proportional to
∝ ∂pNðpÞ—see also an alternative explanation in [13]. This
leads to the conclusion that the shift vector, as a generator
of the reduced diffeomorphism, reveals a dependence only
on the fixed lattice directions NðpÞðt;xÞ ¼ NðpÞðt; xðpÞÞ.
Hence, diffeomorphism transformations are restricted to the
translations along the three directions of the links of RΓ.
These constraints are present in the earlier formulation of

the theory in [13]. Adding then the scalar constraint results
in ð3þ 3þ 1Þ · 2 ¼ 14 dimensions to be subtracted from
the six-dimensional phase space.
As we discussed in Sec. IV B, it is not clear how the

Gauss constraint is implemented in the enhanced formu-
lation of QRLG in [14]. From the analysis above, one may
guess that it still remains as a constraint equation; however,
we are not going to defend this statement. Hence, let us
assume that only the reduced diffeomorphism constraint
remains present. This anyhow keeps the theory overcon-
strained, since eight dimensions must be subtracted out of
six-dimensional phase space.

V. STANDARD REDUCTION OF
KINEMATICS OF LQG

We proved that the Alesci-Cianfrani model is incorrect.
Let us propose now the simplest correction to the reduction
procedure, using the gauge conditions introduced in QRLG.

A. Reduction procedure III: Reduced phase space

As it has been demonstrated in Appendix E, the six gauge
conditions proposed by Alesci, Cianfrani and Rovelli con-
stitute a second-class system, each with a higher number of
constraints. Thus they do not fix any symmetry completely.
To check the result of their implementation, let us follow the
procedure sketched in Appendix D 3.
The global solution to the three conditions,

χi ¼ ϵijk
0Ej

k ¼ 0; ð42Þ

is not as claimed by the inventors of QRLG—a diagonal
form of the dreibein density—but is rather provided by the
relation

0Ei
j ¼ 0Ej

i : ð43Þ

Here we keep the notation introduced in Appendix E,
defining 0Ei

j ≔ 0eiaEa
j . This correctly reduces exactly the

same number of degrees of freedom as the number of gauge
conditions. We can then specify the form of χ-reduced
symmetric dreibein density as follows:

0Ei
jðt;xÞ → 0

χEi
jðtÞ ¼

0
B@

0E1
1

0E1
2

0E1
3

0E1
2

0E2
2

0E2
3

0E1
3

0E2
3

0E3
3

1
CA: ð44Þ

The homogeneity of 0χEi
jðtÞ guarantees that its form remains

preserved globally and thus that the gauge condition in (42)
is free from the Gribov obstruction—see Appendix D 3.
Solving next the three conditions

ηab ¼ Ea
i E

b
i ja≠b ¼ 0; ð45Þ

one needs to derive the set of three equations,

0E1
1
0E1

2 þ 0E1
2
0E2

2 þ 0E1
3
0E2

3 ¼ 0;
0E1

1
0E1

3 þ 0E1
2
0E2

3 þ 0E1
3
0E3

3 ¼ 0;
0E1

2
0E1

3 þ 0E2
2
0E2

3 þ 0E2
3
0E3

3 ¼ 0: ð46Þ
We are looking for the solution, keeping any three
components of 0

χEi
j unconstrained. The unique solution

fulfilling this requirement reads

0E1
2 ¼ 0E1

3 ¼ 0E2
3 ¼ 0; ð47Þ

with diagonal elements of 0Ei
j being the only nonvanishing

degrees of freedom.11

The reduced densitized dreibein can be then written in
the form analogous to the one introduced by LQC [3,18],

Ēa
i ðtÞ ≔

lðiÞ0
V0

p̄ðiÞðtÞ
ffiffiffiffiffi
0q

q
0eai : ð48Þ

Notice that due to the fact that the gauge conditions Poisson
commute [see (E5)], reversing the order of their imple-
mentation, the final result remains unchanged.
Implementing then the diagonal dreibein solution to the

constraint equations in (6)–(8), we realize that none of them
is vanishing. This verifies that the gauge conditions have
been chosen correctly: symmetries have been globally
fixed, while the number of constraint equations remains
unchanged. In other words, we traded the six degrees of
freedom, encoded in the orbits of SU(2) and in the spatial
diffeomorphisms symmetries, to reduce the dimensions of
the phase space by six.
There is, however, a problem that we must solve in order

to restore the correct rules of canonical quantization. So far,
the standard correspondence principle, leading to the
commutation relation

11Notice that conversely to the methodology of QRLG, we do
not claim that diagonalization of the densitized dreibein entails
diagonalization of the Ashtekar connection. Moreover, as we
specified in Appendix D, fixation of any gauge condition has to
be done globally; hence, the results of QRLG in (19) or (21)
could not be the solution of the gauge conditions.
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½Âi
aðt;xÞ; ˆ̄Ea

i ðtÞ� ¼ ikδbaδijδ
ð3ÞðxÞ ðinconsistentÞ; ð49Þ

where k ≔ γℏκ=2, would be in contradiction to the Poisson
bracket in (4) for any nondiagonal pair of the canonical
variables. Locality of the operator Âi

a creates another
difficulty.
The easiest way to overcome this problem is to follow

the reversed method to the one sketched in Appendix D.2.
We can simply redefine the correspondence rules of
quantization as follows:

Ai
aðt;xÞ→

( ˆ̄A
i
aðtÞ≔ 1

lðiÞ
0

ˆ̄cðiÞðtÞ0eia for 0Aj
i ∝ δji ;

0 for 0Aj
i ji≠j ¼ 0;

ð50Þ

where analogously to (E3), we introduced the Ashtekar
connection projected along fiducial directions:

0Aj
i ≔ 0eai A

j
a: ð51Þ

Then, since the image of the correspondence rules is
isomorphic to the quotient of the space, spanned by the
variable Ai

a, by the kernel of these rules, we can simply
restrict the classical space to this quotient. To keep the
notation specified in (48), we define

Āi
aðtÞ ≔

1

lðiÞ0
c̄ðiÞðtÞ0eia: ð52Þ

To ensure that we reduced the phase space correctly, we
verify that the restriction to the homogeneous, anisotropic
variables in (48) and (52) entails the vanishing of each one
of the three Gauss equations and of the three vector
constraints. Let us remind that this happened after removal
of the six components of the Ashtekar connection,
0Aj

i ji≠j ¼ 0, preserving the initial number of propagating
degrees of freedom of LQG.
The method above appears to be correct. To be certain,

however, we should rather directly solve the Gauss and
vector constraints expressed in terms of the reduced
densitized dreibein in (48). The former constraint equation
seems to be simpler, leading to the following global
condition:

ϵijkA
j
aĒa

i ¼ 0: ð53Þ

This is an analogous equation to the gauge condition in
(42), thus providing a solution analogous to (44). Solving
globally the vector constraint equation, we use the diag-
onality of RĒa

i and the spatial homogeneity of 0Ai
j ¼ 0Aj

i ,
which lead to the set of three relations,

ϵjkl
0Aj

i
0Ak

l ¼ 0: ð54Þ

These equations are identically fulfilled for diagonal
connections, while for the nondiagonal ones we get

0Aj
i ji≠j ¼ 0: ð55Þ

This verifies the result in (52).

B. Reduction procedure IV:
Quantum gauge conditions

Let us repeat now the reduced phase space procedure at
the quantum level. Conversely to the incorrect methods of
QRLG, we solve both operator equations in the same
manner. In this procedure, we solve them directly.
(a) First, we introduce the gauge fixing equation, analo-

gous to the condition (39) or (45),

ÊiðSðpÞÞÊiðSðqÞÞjp≠qjΓ; J; Ii ¼ 0

⇔ ∀ v;jl ÊiðSðpÞÞÊiðSðqÞÞjp≠qjv; jli ¼ 0: ð56Þ

As presented in [14], global solution of this operator
equation selects the states of the cuboidal graphs—we
discussed this in Sec. IV B. An important remark here
is that the related directions of the eigenvalues of the
operators ÊiðSðpÞÞ are distinguishable in the large-j
spin numbers limit [49].

(b) Let us consider the cuboidal graphs, being a solution
of the previous step. We restrict then the second gauge-
fixing equation only to the orthogonal directions
(which is however not necessary to obtain the results
below). The action of the flux operator leads to the
following eigenvalue:

ÊkðSðqÞÞhlp ¼ �ikhlpinτ
khlpfinδ

ðqÞ
ðkÞ ; ð57Þ

where hlpinhl
p
fin
¼ hlp . Then the quantized condition

(36) or (42) acting along any link l ∈ RΓ reads

ϵijk
0ejðqÞÊkðSðqÞÞhlp ¼ 0: ð58Þ

This equation is always satisfied for j ¼ q ¼ k.
Notice that the order of implementation of the conditions
above is exchangeable: independently of link directions,
condition (58) is identically satisfied for j ¼ q ¼ k, while
(56) can be solved for operators ÊiðSðiÞÞ.

C. Reduction procedure V: Squared
quantum conditions

Let us follow now the method proposed in QRLG and
define—as it is suggested there—the master constraints, as
squares of the operators in (56) and (58). Conversely to the
procedure in the Alesci-Cianfrani theory, for consistency
we consider to do it for both quantum conditions.
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(A) The quantum realization of the condition ηacqcdηdb ¼
qηab reads

V̂2ÊiðSðpÞÞÊiðSðqÞÞjp≠qjΓ; J; Ii ¼ 0: ð59Þ

Independently on the structure of the node on which
the operators act, this equation must be satisfied
globally. Therefore, this condition reduces to the
one in paragraph (a) in the previous subsection, and
it is unrelated to the eigenvalue of thevolumeoperator.

(B) The square master equivalent of (58) has been
already discussed in the previous section, (Va).
The operator equation

0ejðqÞÊkðSðqÞÞ½0ejðrÞÊkðSðrÞÞ− 0ekðrÞÊjðSðrÞÞ�hlp
¼−k20ejðkÞ½τkτkhlp0ejðkÞ−hlpinτ

kτjhlpfin
0ekðjÞ�¼0 ð60Þ

vanishes for any link direction if j ¼ q ¼ k, in the
same manner as in paragraph (b) in the previous
subsection.

We demonstrated that the squared quantum conditions
did not change the structure of the reduced Hilbert space.
Since the reduction must be implemented globally on every
state, it must be implemented also on the states modified by
an action of a holonomy operator. Therefore, the holonomy
operators have to be restricted to orthogonal directions of
RΓ, with suð2Þ generators affixed along these directions.
One may ask whether the space of the reduced states is a

subspace of the kinematical Hilbert space of LQG. The
answer is positive, and the map to the reduced subspace has
been already explained in (III) and (3)—generators are
rotated, simplifying the structure of the Wigner D-matrices
(see Appendix B).
Finally notice that reducing the theory both at the

classical and at the quantum level leads to the same
structure of the Hilbert space and to the same canonical
operators. It is however unclear whether the remaining
constraint operator—the Hamiltonian constraint—has an
identical spectrum. The action of the Lorentzian term,
proportional to the expression in (30), has not been derived
yet in the anisotropic cosmological framework.12 We leave
this issue as an open problem.

VI. SKETCH OF KINEMATICS
OF REDUCED LQG

Introducing the corrected formulation of the reduction
procedure, LQG has become a simple symmetry-frozen
theory. Let us present here only the sketch of the quantum

reduction of canonical gravity, while all the details will be
explained in a shortly coming article [50].
The states realizing the results of the quantum reduction

LQG presented in Secs. V B and V C are defined as
follows:

hh̄jΓ; Ji ≔
Yp
lp∈Γ

Djm̄jp
m̄pm̄pðh̄pÞ; ð61Þ

where pDjm̄jp
m̄pm̄pðh̄pÞ are the same Wigner D matrices as in

the definition in (25). These states span a well-defined
Hilbert space, with an orthogonality condition given by the
scalar product

hΓ; m̄lp jΓ0; m̄l0qi ¼ δΓ;Γ0
Y
l∈Γ

δjlp ;jl0q : ð62Þ

Rewriting the total Hamiltonian in (5) in terms
of the homogeneous variables defined in (52) and (48)
considerably simplifies the dynamics. Indeed, this takes the
form

HðĀÞ
T þHðΛÞ

T ¼ HðAÞ þHðΛÞ; ð63Þ

while the constraints in (6) and (7) vanish identically.
All the results of the original QRLG concerning flux-

dependent operators remain unchanged. For instance the
eigenequation of the reduced flux operator acting at a
uniquely defined point lðqÞ ∩ S reads

ˆ̄EpðSÞjlðqÞ; m̄ðqÞi

¼ −ik
Z
S
dxsdxtϵrst

δ

δĀp
r ðxðrÞÞ

jlðqÞðyðqÞÞ; m̄ðqÞi

¼ −ikδðqÞp hτ3jlðqÞ; m̄ðqÞi ¼ −km̄ðqÞδðqÞp jlðqÞ; m̄ðqÞi: ð64Þ

It is worth mentioning that the difference in sign with
respect to the Alesci-Cianfrani formulation in [13–17]
comes from the initial choice of the τi generators and
the real holonomies—we already discussed that in
Sec. II C.
Notice also that since a holonomy operator acts on states

as a multiplication, the aforementioned eigenequation is the
only expression that imposes significant constraints on the
structure of the states. Moreover, it is easy to see that
formula (64) has the form of a simple differential equation,
with the solution

jlðqÞ; m̄ðqÞi ¼ exp

�
−im̄ðqÞ

Z
dxuĀðqÞ

u

�
: ð65Þ

Thus, without any loss of generality, we may consider this
expression as a definition of a state. As demonstrated in
Appendix B, the space of states constructed from the basis

12Notice that this problem has been totally neglected in QRLG.
Ignoring these flaws of the model leads to a significantly different
quantum theory than the anisotropic extension of LQC. The
derivation of the Lorentzian operator would be then necessary in
order to discuss any phenomenological aspects of the theory.
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states above is a subspace of the kinematical Hilbert space
of LQG.13

Let us now derive the action of a square of the volume
operator defined on an open neighborhood Bl0ðvÞ,

ðV̂v;l0Þ2jΓ;Ji¼k3
Y3
p

jm̄ðpÞðvÞþm̄ðpÞðv− lðpÞ0 ÞjjΓ;Ji: ð66Þ

Here, v ∈ Γ is a hexavalent node; i.e., there are six links

emanated from v, while v − lðpÞ0 denotes a nearest-neighbor

node in a negatively oriented p direction at a distance lðpÞ0 .
Operators ÊiðSpÞji¼p from expression (32) act at

lðpÞðv − lðpÞ0 Þ ∩ S− and at lðpÞðvÞ ∩ Sþ—the vertices in
the brackets represent initial points of the positively
oriented collinear links connected at v. Notice also that
to derive the eigenvalue of V̂v;l0 , we used the eigenvalue of
the flux operator in (64), assuming an unidirectional
orientation of a collinear link frame yðqÞ and a coordinate
frame xðrÞ.
It is worth mentioning that the derivation of the square

root of the result in (66) would be problematic. However,
the root of an analogous quartic matrix element is well
defined:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjΓ; JjðV̂v;l0Þ4jΓ; Ji

4

q
: ð67Þ

We use this expression to expand the radical of the
expectation value of the volume operator [the square root
of the operator in (66)]—this is a standard procedure in
LQG [1]. The result is the square root of the eigenvalue
in (66), which also coincides with the analogous expression
in QRLG [13].
Finally, we can find the eigenequation of the U(1)

holonomy operators, derived on the basis states in (65):

ĥðpÞjlðpÞ; m̄ðpÞi ¼ exp

�
τðpÞεc̄ðpÞ− im̄ðpÞ

Z
dxqĀðpÞ

q

�
: ð68Þ

Notice that the reduction defined in Secs. V B and V C is
performed at the quantum level; hence, we cannot a priori

replace the ĥðjÞðpÞ operator with its eigenvalue hðjÞðpÞ in the

Hamiltonian constraint. This operation can be done after
we act with HCO on (65).
Then, in order to derive the action of HCO in our

simplified approach, we find that the eigenvector of
expression (29) reads

X
v∈Γ

trðĥp↺qĥ
−1
r ½V̂v;l0 ; ĥr�ÞjΓ;Ji

¼ −
iε
2
ϵpqr

X
v∈Γ

sinðεc̄ðpÞÞ sinðεc̄ðqÞÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3

Q
3
s jm̄sðvÞ þ m̄sðv− ls0Þj

p
m̄rðvÞ þ m̄rðv− lr0Þ

IðrÞv jΓ;Ji; ð69Þ

with the inverse volume corrections in the form of

IðrÞv ¼1þ 1

8ðm̄ðrÞðvÞþm̄ðrÞðv−lðrÞ0 ÞÞ2
þO

�
1

ðm̄ðrÞÞ4
�
: ð70Þ

Here, by analogy with (67), we assumed that the eigenvalue
of the square root of the volume operator square equals the
square root of the eigenvalue of ðV̂v;l0Þ2. Expanding the

result in (69) arbitrarily around m̄ðvÞ ≈ m̄ðv − lðsÞ0 Þ ≈∞
leads to the well-known eigenvalue of the Euclidean
contribution to HCO in LQC [3,4]. In order to derive
the action of the operator in (30), and then the full
Lorentzian term, one should use the quantum relation
introduced in [29], namely

K̂v ¼ −
4

k2
ϵpqr½trðĥp↺qĥ

−1
r ½V̂v;l0 ; ĥr�Þ; V̂v;l0 �: ð71Þ

Details of the derivation of HCO for the cosmologically
reduced LQG are in preparation.

VII. CONCLUSIONS

We have argued that shortcomings arise within the initial
model of quantum reduced loop gravity proposed by Alesci
and Cianfrani. We arrived to these conclusions reexamining
the reduction procedure applied to the states of the
kinematical Hilbert space of loop quantum gravity and
developing a comparative analysis with previous attempts
formulated in the literature of QRLG. Constraints were
formerly inconsistently implemented within the framework
of the reduced model, which was leading to an overcon-
strained dynamics, ill-defined Hilbert space and a Gribov
obstruction.
This analysis motivated us to develop alternative imple-

mentations of the symmetry-reduction procedure, which
we have discussed here in detail. Our findings are remi-
niscent of previous results in LQC. Nevertheless, our
derivation, which aims at approaching the cosmological
limit of LQG, reveals a novel attempt towards the minis-
uperspace quantization. We have been then shifting away
from the paradigm of quantizing a symmetry-reduced
space, a procedure that so far (when considering the
methodology of QRLG) could not help in solving the
Hamiltonian constraint in the full theory. Instead, our
proposal, following the standard gauge-fixing methods,

13Precisely, the Fock space is defined as the sum over
all the nodes of the states ⊗q

P
m̄ðqÞ αm̄ðqÞ jlðqÞ; m̄ðqÞi, where

∀ m̄ðqÞαm̄ðqÞ ∈ C. It is also worth mentioning that it has been
demonstrated that this state space can be embedded in the Fock
space of LQG [6–9].
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reckons on the program of bridging the gap between the full
theory and former endeavors in LQC. However, the most
important problem of any of the reduced variants of LQG,
which is the question of whether the dynamics predictable
by these modes is the same as the reduced dynamics of the
full theory (not derivable due to its highly complicated
formulation), remains open.
Finally, we leave as an open issue the question whether

the reduction of the full quantum theory would lead to the
same dynamics as the quantization of the classically
reduced phase space. This has been however restricted
to the single problem of the derivation of the Lorentzian
sector of HCO.
The second open problem, not discussed in this article,

refers to the idea to keep some symmetries of LQG
unconstrained. This can be done, imposing gauge con-
ditions that fix only the SU(2) symmetry or the spatial
diffeomorphisms. The latter issue can be investigated using
the same gauge condition that we used here and that was
originally proposed by Alesci, Cianfrani and Rovelli. As
we demonstrated in Appendix E, this condition Poisson
commutes with the Gauss constraint. In order to, con-
versely, freeze the Gauss constraint, leaving the spatial
diffeomorphisms unmodified, one needs to construct
another condition, which will commute with the vector
constraint.

ACKNOWLEDGMENTS

A.M. acknowledges support by the National
Science Foundation of China (NSFC), through Grant
No. 11875113, the Shanghai Municipality, through
Grant No. KBH1512299, and by Fudan University, through
Grant No. JJH1512105. J. B. is supported in part by the
NSFC, through Grants No. 11375153 and No. 11675145.

APPENDIX A: suð2Þ REPRESENTATIONS
AND SPIN REPRESENTATIONS

The Pauli matrices σi are a set of three 2 × 2 complex
matrices. They are Hermitian (self-adjoint); thus, they
represent observables in quantum theories. They are also
unitary; hence, they preserve norm and thereby probability
amplitude. They satisfy normal commutation relations

½σi; σj� ¼ 2iϵijkσk: ðA1Þ

The suð2Þ Lie algebra generators ti ≔ −iσi of the SU(2)
group are anti-Hermitian (skew-Hermitian) and unitary.
They form the suð2Þ basis and satisfy the following
commutation relations:

½ti; tj� ¼ 2ϵijktk: ðA2Þ

The soð3Þ ≅ suð2Þ Lie algebra generators fu1≔
iffiffi
2

p ðσ1þiσ2Þ;u2≔− iffiffi
2

p ðσ1−iσ2Þ;u3≔−iσ3g of the rotation

group are anti-Hermitian and unitary. They form the
spherical basis and satisfy the following commutation
relations:

½u1;u2�¼2iu3; ½u1;u3�¼2iu1; ½u2;u3�¼−2iu2: ðA3Þ

The Hermitian generators of the spin representation in
particle physics are defined as si ≔ 1

2
σi.

The anti-Hermitian generators of suð2Þ that form the
spin representation in LQG are defined as τi ≔ 1

2
ti. They

are the preferable choice for keeping both holonomies and
Ashtekar connections real.
Finally, we should define the anti-Hermitian generators

of the soð3Þ spherical representation of spin in LQG,
υi ¼ 1

2
ui. Knowing the standard spin basis (equivalently the

angular momentum basis) defined by the iυi operators
(commonly used in the particle physics), we find

υ1jj; mi ¼ −i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ −mðmþ 1Þ

p
jj; mþ 1i;

υ2jj; mi ¼ −i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ −mðm − 1Þ

p
jj; m − 1i;

υ3jj; mi ¼ −imjj; mi; ðA4Þ

υiυijj; mi ¼ −jðjþ 1Þjj; mi; ðA5Þ

where j ¼ 0; 1=2; 1;… and m ¼ −j;−jþ 1;…; j.
It is worth noting that all the representations discussed

above are proper. Furthermore, the sign in front of each
triple of generators is conventional. Reversing the sign, we
impose anomalous commutation relations instead of the
normal ones in (A1) and (A2).

APPENDIX B: WIGNER D MATRICES OF
DIAGONAL HOLONOMIES

Let us define a unitary rotation matrix ρ⃗ as follows:

ρ1¼ 1ffiffiffi
2

p
�
1 −1
1 1

�
; ρ2¼ 1ffiffiffi

2
p

�
1 i

i 1

�
; ρ3¼

�
1 0

0 1

�
: ðB1Þ

Applying SU(2) covariance of generators τi, we can
consider the rotation of a basis frame as a matrix operation,

eρ⃗·τ⃗εc̄ ¼ ρ†eτ
3εc̄ρ: ðB2Þ

Then the following relation holds:

DðjÞ
mnðeρ⃗·τ⃗εc̄Þ ¼ DðjÞ

mm0 ðρ†ÞDðjÞ
m0n0 ðeτ

3cÞDðjÞ
n0nðρÞ ¼ e−imc; ðB3Þ

where we used the fact that for a diagonal SU(2) element,
the Wigner D matrix [51] takes a particularly simple form:

DðjÞ
mnðeτ3cÞ ¼ e−imcδmn: ðB4Þ
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APPENDIX C: SYMPLECTIC STRUCTURE
AND POISSON BRACKETS

The symplectic structure of LQG, ΩLQGðδ1; δ2Þ, corre-
sponding to (4) reads

ΩLQG ¼ 2

γκ

Z
d3xðδ1Ai

aðxÞδ2Ea
i ðxÞ − δ2Ai

aðxÞδ1Ea
i ðxÞÞ:

ðC1Þ

Thus the analogous structure for QRLG becomes

ΩQRLG ¼ 2

γκ

X3
i

Z
d3x
V0

ðδ1cðiÞðt; xðiÞÞδ2pðiÞðt; xðiÞÞ

− δ2cðiÞðt; xðiÞÞδ1pðiÞðt; xðiÞÞÞ; ðC2Þ

while considering the LQC limit, one finds

ΩLQC ¼ 2

γκ

X3
i

dc̄ðiÞðtÞ ∧ dp̄ðiÞðtÞ

¼ 2

γκ
dc̄iðtÞ ∧ dp̄iðtÞ: ðC3Þ

Therefore the Poisson bracket (4) for the reduced variables
in (20) and (21) reads

fciðt; xðiÞÞ; pjðt; yðjÞÞg ¼ κγ

2
δjiδðxðiÞ − yðjÞÞ

¼ k
ℏ
δjiδðxðiÞ − yðiÞÞ: ðC4Þ

Analogously, in the homogeneous limit one finds

fc̄iðtÞ; p̄jðtÞg ¼ κγ

2
δji ¼

k
ℏ
δji : ðC5Þ

APPENDIX D: STANDARD
GAUGE-FIXING METHODS

In this Appendix we recall the essence of the standard
operator methods of quantization described in detail in
[43]. For the sake of simplicity, which is nonetheless
sufficient for our purposes, we assume a system of only
bosonic fields. All the statements written below without a
proof are verified in the cited textbook.

1. Classical fixation

Before analyzing quantum methods applied to simplified
gauge systems, let us sketch briefly how a simplified
procedure can be achieved already at the classical level.
Formally, one should define ad hoc restrictions, called
canonical gauge conditions, in the form of a set of equations.
For simplicity, we discuss only the set of independent
equations, while the generalization is straightforward.

Let us recall two facts. The number of gauge conditions
must be equal to the number of (also independent) first-
class constraints that are fixed. The gauge conditions and
corresponding first-class constraints form a second-class
set. Therefore after fixing the gauge, the theory becomes
restricted to a constrained surface of the phase space, and
one should then use Dirac brackets instead of Poisson
brackets.
There is, however, a possible problem that could arise

while the gauge conditions are imposed. These are solved
locally and may not necessarily intersect the gauge orbits
only once. This issue is called a Gribov obstruction and its
absence should be considered as another condition for a
globally well-defined form of a set of the gauge conditions.
Another problem is the quantization of the second-class

constraints; we will discuss that in the next subsections. In
many cases, however the set of second-class constraints can
be graded down to a first-class system, either introducing
gauge conditions or enlarging the set of canonical variables,
thus introducing other degrees of freedom and the corre-
sponding symmetries. This method is not unique, but it
controls the number of the overall propagating degrees of
freedom. Thus, starting with a system of few first-class
constraints, and then introducing gauge conditions, one
arrives to a set of second-class constraints. Nonetheless,
one may return either to another system having a higher
number of first-class constraints or to a different set of first-
class constraints, endowed with different canonical gauge
conditions. This classical variety could lead, however, to
different quantum systems, thus later to different physics—
for instance different corrections in a perturbative semi-
classical analysis.
A method to get around these troubles, rather than

solving them, is to modify the classical action (or the total
Hamiltonian). In physics, one is often interested only in
some aspects of the whole theory, which can be identified
as a new model obtained by restricting the general theory to
a simpler one, while preserving higher symmetry by
construction (not as a gauge symmetry). After this change
of the model, even if this still describes the same number of
degrees of freedom as the gauge-fixed general theory, one
cannot be sure that the dynamics of the “smaller” model
coincides with the “bigger” one on the constrained surface.
These theories are not connected; hence, to prove that the
smaller theory with a higher symmetry corresponds to the
bigger with solved constraints requires one anyhow to
quantize the system of constraints.

2. Correspondence rules of quantization

The easiest method of quantization of the second-class
constraints is to redefine the rules of canonical quantiza-
tion, setting these constraints to zero operators. This way,
one obtains a quantum theory from a lower-dimensional
phase space. If the result corresponds to the classical
symmetry that is enough to describe a phenomenon one
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wants to investigate, one obtains a quantum reduced system
similar to the classical fixation, described in Appendix D 1.
The advantage with respect to the quantization of the
classically reduced system stands in the presence of
the original constraint operator equations, restricted now
to the lower-dimensional operators. As long as the con-
straints are not equal (up to a constant) to the canonical
variables, the quantum reduction, which preserves the
original structure of the operator equations, is a signifi-
cantly more general method. The actions of quantum-
reduced operators become restricted to coincide with the
states without the removed symmetry. The classical fixation
conversely does not restrict canonical quantization rules to
set some variables to zero operators, but it directly removes
these variables. This way, the classical fixation changes the
theory into another one, while the more general method of
the correspondence rules of quantization selects the sectors
of operators, which would be nonvanishing while solving
the second-class constraints.
To complete the description of this procedure, we should

remind that quantization is now defined by replacing Dirac
brackets by commutators times 1=iℏ. The problem may
occur in finding a quantum representation for different
solutions of the second-class constraints—only in this case
Dirac brackets are not (weakly) equal to the Poisson
brackets. If these solutions either do not form any algebra
or are not simply numbers, one may not be able to solve
this issue.
A better option could be then to introduce extra degrees

of freedom in terms of new canonical variables. This then
turns to be a problem of first-class constraint quantization,
just for a different, but larger, number of constraints, which
can be quantized as any other first-class system.

3. Reduced phase space quantization

The reduced phase space quantization is a method of
quantization of gauge-invariant functions restricted to the
equivalence classes of gauge orbits. This method appears to
be the most natural one, since after the reduction, one uses
only the regular Poisson brackets. The problem here is to
find a priori a complete set of gauge-invariant functions,
which will be quantized. This can be a achieved easily, as
long as the Gribov obstruction is not present. In that case,
one simply imposes globally gauge-fixing conditions. In
other words, any reduced functional of the canonical
variables must coincide with an appropriate restriction
on the corresponding gauge-invariant functional. Gauge-
invariant functions are transformed then into operators,
while Dirac brackets, restricted by the gauge conditions to
the reduced phase space, turn into Poisson brackets. The
canonical quantization is then straightforward.
The problem of this method is that removing gauge

invariance may spoil a crucial symmetry. For instance, a
classically reduced theory could be still perturbatively
expanded around the reduced symmetry, in terms of the

reduced variables. The quantum-reduced theory does not
contain states allowing on this expansion; hence, it has to
remain permanently symmetry fixed both at the purely
quantum level as well as while deriving the semiclassical
solutions. Another difficulty is that this method destroys
locality of the phase space.

APPENDIX E: ALGEBRA
OF GAUGE CONDITIONS

We analyzed in this paper the reduced phase space
quantization obtained by fixing the canonical gauge con-
ditions, χi ≈ 0 and ηab ≈ 0, which are defined as

χi ≔ ϵijk
0Ej

k ðE1Þ

and

ηab ≔ Ea
i E

b
i ja≠b; ðE2Þ

respectively. The densitized dreibein projected along fidu-
cial directions, introduced above, reads

0Ei
j ≔ 0eiaEa

j : ðE3Þ

Notice that the formula for the reverse fiducial densitized
dreibein is not denoted as usual in the literature [1];
thus, ðEi

jÞ−1 ≠ Ej
i .

In this Appendix we present the algebra between gauge
conditions and all the constraints, being elements of the
Hamiltonian in (5). In what follows, we need to derive the
following functional derivatives:

δχi
δEc

j
¼ −ϵijk0ekc;

δηab

δEc
j
¼ ðEa

jδ
b
c þ Eb

jδ
a
cÞja≠b;

δχi
δAj

c
¼ δηab

δAj
c
¼ 0: ðE4Þ

It is worth mentioning that, for the purpose of the analysis
in Sec. IV, we should consider the square of the χi
condition. This, however, is not going to significantly
change any result below, since the equation δχ2=δEc

j ¼
−2χiϵijk0ekc is proportional to (E1).
Let us first verify that the gauge conditions are inde-

pendent, indeed finding

fχi; ηabg ¼ 0: ðE5Þ

As a next step, we should derive Poisson brackets between
both gauge conditions and all the constraints. For simplic-
ity, we neglect the integrals and the Lagrange multipliers in
the constraints. These latter would vanish anyway integrat-
ing out the Dirac deltas, and not influence the results,
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carrying no additional degrees of freedom. We restrict then
the Poisson bracket equations below to constraint densities.
Let us first solve the auxiliary equations, containing all

the nonvanishing functional derivatives, finding

δGðAÞ
i

δAj
c
¼ 1

γκ
ϵijkEc

k; ðE6Þ

δVðAÞ
a

δAj
c

¼ 1

γκ
ðδcaδbd − δbaδ

c
dÞDbEd

j ; ðE7Þ

δðHðAÞ þHðΛÞÞ
δAj

c
¼ 2

κ
ffiffiffi
q

p ðδcaδbd − δbaδ
c
dÞ

× Ea
k

�
1

γ2
Ak
bE

d
j þ ϵjkl∂bEd

l

�
: ðE8Þ

It is easy then to derive the Poisson algebra between all the
constraints and the gauge conditions χi and ηab, getting

fGðAÞ
i ; χjg ¼ 1

γκ
ð0Ei

j − 0Ek
kδ

i
jÞ; ðE9Þ

fVðAÞ
a ; χig ¼ 1

γκ
ϵijkð0ekaDbEb

j −Da
0Ek

jÞ; ðE10Þ

fHðAÞ þHðΛÞ; χig ¼ 2

κ
ffiffiffi
q

p
�
1

γ2
ϵijkð0Ej

lE
a
k − 0Ej

kE
a
l ÞAl

a

þ ∂að0Ej
iE

a
j − 0Ej

jE
a
i Þ
�
; ðE11Þ

and

fGðAÞ
i ; ηabg ¼ 0; ðE12Þ

fVðAÞ
a ; ηbcg ¼ 1

γκ
½Eb

j ðDdEd
jδ

c
a −DaEc

jÞ

þ Ec
jðDdEd

jδ
b
a −DaEb

j Þ�jb≠c; ðE13Þ

fHðAÞ þHðΛÞ;ηabg¼2

κ

� ffiffiffi
q

p
γ2

Ai
cðqacEb

i þqbcEa
i −2qabEc

i Þ

þ 1ffiffiffi
q

p ϵijkEc
i ðEa

j∂cEb
k−Eb

k∂cEa
j Þ
�����

a≠b
:

ðE14Þ
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