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Recently, a coherent picture of the quantum mechanics of an evaporating black hole has been presented
which reconciles unitarity with the predictions of the equivalence principle. The thermal nature of a black
hole as viewed in a distant reference frame arises from entanglement between the hard and soft modes
generated by the chaotic dynamics at the string scale. In this paper, we elaborate on this picture, particularly
emphasizing the importance of the chaotic nature of the string (UV) dynamics across all low-energy species
in generating large (IR) spacetime behind the horizon. Implications of this UV/IR relation include Oð1Þ
breaking of global symmetries at the string scale and a self-repair mechanism of black holes restoring the
smoothness of their horizons. We also generalize the framework to other systems, including Rindler,
de Sitter, and asymptotically flat spacetimes, and find a consistent picture in each case. Finally, we discuss
the origin of the particular construction adopted in describing the black hole interior as well as the outside
of a de Sitter horizon. We argue that the construction is selected by the quantum-to-classical transition, in
particular, the applicability of the Born rule in a quantum mechanical world.
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I. INTRODUCTION

Ever since the thermodynamics of a black hole was
discovered [1,2], it has been a key element in advancing our
understanding of quantum gravity. On one hand, the fact
that the entropy of a black hole is proportional to its horizon
area has led to the idea of holography [3–5], which is
elegantly realized in the AdS=CFT correspondence [6]. On
the other hand, the fact that a black hole has a nonzero
temperature has led to confusion about the consistency
between quantum mechanics and general relativity [7–9]. It
is widely believed that a solution to this problem would
give us major insight into how quantum gravity works at
the fundamental level.
In recentwork, we have presented a coherent picture of the

quantum mechanics of an evaporating black hole [10],
building on the tools and ideas developed earlier [11–13]
(for more complete references, see Ref. [10]). From the point
of view of a distant observer, the thermality of a black hole
arises because a vast majority of degrees of freedom—which
we call soft modes—become temporarily unobservable

because of the large redshift. In an ordinary statistical
mechanical system, an equilibrated state is described by a
thermal density matrix if we focus only on a small subset,
even if the entire state is pure. The same occurs for a black
hole. Since the degrees of freedomdescribedby semiclassical
theory—which are the complement of the soft modes and
called hard modes—are only a small subset of the whole,
their state is given by a thermal density matrix if the black
hole is in its ground state. Unlike many other applications in
statistical mechanics, however, a useful separation between
the relevant subsystem and the rest in the black hole case is
given in momentum space, rather than in position space. The
thermality of the hard modes then arises from the entangle-
ment in momentum space, i.e., between the hard and soft
modes, resulting from the energy constraint.
The purpose of this paper is threefold. First, we elucidate

the picture of Ref. [10], particularly emphasizing the role
played by the chaotic dynamics at the string scale. We find
an intriguing relation between the chaotic dynamics in the
ultraviolet (UV) and the emergence of smooth spacetime in
the infrared (IR). This relation suggests that the string scale
dynamics is chaotic across all low-energy species and
breaks all (linearly realized) global symmetries with Oð1Þ
strength at the string scale. We also discuss why the present
framework does not suffer from the “Born rule problem” of
Ref. [14] and describe a mechanism with which a black
hole “self-repairs” itself to restore the smooth horizon.
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We then generalize the framework to other spacetimes,
including Rindler, de Sitter, and asymptotically flat space-
times. We obtain a consistent picture in each case. In par-
ticular, in de Sitter spacetime, a construction similar to the
black hole interior allows for describing the situation inwhich
semiclassical information going outside the de Sitter horizon
is retrieved later when the system tunnels out of the original
de Sitter vacuum. Soft modes play an important role in this
description. In the flat space limit, thesemodes decouple from
the dynamics occurring in a finite spacetime region. They,
however, seem to be related to the existence of an infinite-
dimensional asymptotic symmetry group, including the
(diagonal) Bondi-Metzner-Sachs (BMS) group [15–17].
Finally, we discuss the origin of the particular construc-

tion adopted in describing the black hole interior and the
outside of a de Sitter horizon.We argue that this construction
is selected by the quantum-to-classical transition, specifi-
cally by the requirement of making most manifest the
observables to which the Born rule can be applied. While
this issue is irrelevant for asymptotically flat or AdS
spacetime, it can become very important when describing
a system that is (effectively) finite dimensional, such as the
black hole interior and cosmological spacetimes.
The organization of this paper is as follows. In Sec. II, we

describe the framework of Ref. [10], emphasizing its salient
feature of theUV/IR relation. This section forms the basis for
the rest of the paper. In Sec. III, we generalize the framework
to other spacetimes, including Rindler, de Sitter, and asymp-
totically flat spacetimes. In Sec. IV, we discuss the issue of
observables in a quantum theory, where the emergence of the
construction relevant for the black hole interior is elucidated
from the viewpoint of the applicability of the Born rule.
The framework discussed in this paper is consistent

with and, in fact, complementary to recent analyses of an
evaporating black hole in the AdS=CFT correspondence
[18,19].1 Our analysis elucidates the very appearance of the
interior region—in particular, how the effective second
exterior degrees of freedom emerge—from a microscopic
point of view. It illuminates what each element in the
AdS=CFT-based models, involving a large AdS black hole
coupled to an external auxiliary system, corresponds to in a
more realistic black hole. The general analysis presented
here also sheds light on aspects of spacetime in quantum
gravity in broader contexts.
Throughout the paper, lP denotes the Planck length. We

adopt natural units c ¼ ℏ ¼ 1.

II. BLACK HOLE INTERIOR AND
UNIVERSAL SOFT MODES

In this section, we describe the framework of Ref. [10],
elucidating several points that play central roles in our

discussion. We particularly emphasize the importance of the
chaotic nature of string dynamics across all low-energy
species and the intriguing relation between the dynamics in
the UV (string scale) and the emergence of smooth spacetime
in the IR. We also explain why the Born rule problem of
Ref. [14] does not apply to the current framework.
We will focus on Schwarzschild black holes in four-

dimensional asymptotically flat spacetime (or small black
holes in four-dimensional asymptotically AdS spacetime),
though the restriction on specific spacetime dimensions or
on nonrotating, noncharged black holes is not essential.

A. Evaporating black hole and its interior

We begin our discussion with the description of a black
hole as viewed from a distant reference frame. This
corresponds to a semiclassical description that uses a
metric covering the exterior of the black hole, i.e., the
one using the Schwarzschild time (or time analogous to it).
This description arises naturally in holography—it is the
description obtained from the boundary picture through
simple bulk reconstruction of renormalization-group/
tensor-network type [21] and, as such, is unitary. On the
other hand, the description suitable for an infalling observer
corresponding to the Kruskal extension is obtained only
effectively, as we will see later.
A key observation of Ref. [10] is that the thermal nature

of a black hole in a distant description arises from
entanglement between hard and soft modes of low-energy
quantum fields.2 A mode of a low-energy quantum field in
the zone region (also called the thermal atmosphere)

rs ≤ r ≤ rz ð1Þ
is classified as a hard or soft mode, depending on whether
its frequency ω, as measured in the asymptotic region, is
larger or smaller than

Δ ≈O

�
1

Ml2P

�
: ð2Þ

Here, rz ≈ 3Ml2P, and rs is the location of the stretched
horizon [22] given by3

rs − 2Ml2P ∼
l2s
Ml2P

: ð3Þ

In a distant description, the classical spacetime picture is
applicable only outside the stretched horizon, and its
location is determined by the condition that the proper
distance from the mathematical horizon r ¼ 2Ml2P is of
order the string length, ls.

1For important differences between the case of a flat space
black hole discussed in this paper and the case of Refs. [18,19]
corresponding to a large AdS black hole, see Ref. [20].

2Here and below, low-energy fields mean quantum fields
existing below the string scale, 1=ls.3In this paper, we use the ∼ symbol to mean equality up to
numerical coefficients.
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The quantity Δ in Eq. (2) is taken to be somewhat, e.g.,
by a factor of Oð10Þ, larger than the Hawking temperature

TH ¼ 1

8πMl2P
: ð4Þ

The separation of the modes described above is motivated
by the fact that the configuration of soft modes cannot be
determined operationally by a physical probe within the
characteristic timescale with which the internal state of the
system varies. Note thatΔ is the inverse of the timescale for
single Hawking emission, so that the uncertainty principle
prevents us from specifying the energy of the black hole
state better than that. Below, we will assume that the energy
(mass) of a black hole is specified with this maximal
precision.
A state of a black hole—representing the state of the

system in the black hole zone region—is given in its
semiclassical vacuum by a generic state consistent with the
energy constraint imposed on the region. In particular, in an
idealized limit in which the black hole is isolated from the
environment, a state of a black hole of mass M is given by

jΨðMÞi ¼
X
n

XN ðM−EnÞ

in¼1

cnin jfnαgijψ inðM − EnÞi; ð5Þ

where jfnαgi are orthonormal states of the hard modes with
n≡ fnαg representing the set of all occupation numbers; α
collectively denotes the species, frequency, and angular-
momentum quantum numbers of a mode, and En is the
energy of the state jfnαgi as measured in the asymptotic
region (with precision Δ). jψ inðM − EnÞi are orthonormal
states of the soft modes which have energy M − En, with
the index in running from 1 to N ðM − EnÞ, where

N ðMÞ ¼ eSBHðMÞ Δ
M

¼ e4πM
2l2P

Δ
M

: ð6Þ

Below, we ignore the logarithmic correction of order
lnðΔ=MÞ to the entropy, identifying N ðMÞ as the density
of states eSBHðMÞ. We also assume that all the states are

normalized; for example,we assume
P

n

PN ðM−EnÞ
in¼1 jcnin j2¼1

in Eq. (5). Note that the total entropy of the state of the form in
Eq. (5) is

ln

�X
n

eSBHðM−EnÞ
�
≈ SBHðMÞ; ð7Þ

so that the logarithm of the number of independent black hole
microstates is given by the standard Bekenstein-Hawking
entropy.
In a realistic setup, a black hole state is entangled with

the environment which generally involves Hawking radi-
ation emitted earlier. The state of the total system is then
given by

jΨðMÞi ¼
X
n

XN ðM−EnÞ

in¼1

X
a

cninajfnαgijψ inðM − EnÞijϕai;

ð8Þ

where jϕai represents the state of the system in the far
region r > rz. Note that states of this form appear in a
distant description of the system, which corresponds to the
boundary description in a holographic theory, so that their
evolution is unitary. The thermal nature of a black hole
arises because, within the zone, semiclassical theory
describes microscopic dynamics of only the hard modes.
Indeed, tracing out soft modes in Eq. (8) yields

TrsoftjΨðMÞihΨðMÞj

¼ 1P
ne

−En
TH

X
n

e−
En
TH jfnαgihfnαgj ⊗ ρϕ;n; ð9Þ

where we have assumed that the coefficients cnina take
generic values in the spaces of the hard and soft modes;
i.e., black hole states are generic. ρϕ;n are (n-dependent)
reduced density matrices for the far modes.
A small object in the zone region, with the characteristic

size d in the angular directions much smaller than the
horizon d ≪ Ml2P, can be described by annihilation and
creation operators acting only on the hard modes [10]

bγ ¼
X
n

ffiffiffiffiffi
nγ

p jfnα − δαγgihfnαgj; ð10Þ

b†γ ¼
X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nγ þ 1

p jfnα þ δαγgihfnαgj: ð11Þ

What is the fate of such an object falling toward the
black hole?
In a distant/boundary description, in which the evolution

of a state can be unitary for arbitrarily long time, a small
object falling into the black hole first becomes excitations
of the stretched horizon, whose information will then be
dissipated into the state of the soft modes and eventually
sent back to ambient space by Hawking emission. This
description, however, is not suitable for finding what the
object falling into the black hole will actually see. Because
of a large relative boost between the object and the distant
frame, which formally becomes infinite as the object
approaches the horizon, macroscopic time experienced
by the object is mapped to an extremely short time when
measured by a stationary observer at the location of the
object. This implies that the experience of the object occurs
“instantaneously” in a distant description (of order the
cutoff time for an observer at r ¼ rs). Understanding it,
therefore, requires time evolution different from the boun-
dary one, specifically an evolution associated with the
proper time of the object.
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Such a picture—an infalling description—is obtained
after coarse-graining the soft (and associated far) mode
degrees of freedom [10–12], which cannot be discriminated
by a fallen object in a timescale available to it. Suppose that
at a boundary time t�, the state of the system is given by
Eq. (8) with cnina taking generic values in the n and in
spaces.4 We can then erect an effective theory based on this
state by coarse-graining the soft and far modes

XN ðM−EnÞ

in¼1

X
a

cninajψ inðM − EnÞijϕai →
e−

En
2THffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ne

−En
TH

q kfnαg⟫;

ð12Þ

where we have used the same label as the corresponding
hard-mode state to specify the coarse-grained state, which
we denote by the double ket symbol, and the coefficient in
the right-hand side arises from the normalization condition
for kfnαg⟫. The state in Eq. (8) in this effective theory is
then given by

kΨðMÞ⟫ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ne

−En
TH

q X
n

e−
En
2TH jfnαgikfnαg⟫; ð13Þ

which takes the form of the standard thermofield double
state in the two-sided black hole picture [25,26], although
jfnαgi here represent the states only of the hard modes.
We emphasize that in order to obtain the correct

Boltzmann-weight coefficients in Eqs. (12) and (13)
∝ e−En=2TH , it is important that the black hole has soft
modes with the density of states given by eSBHðEsoftÞ, and that
the hard and soft modes are well scrambled, giving cnina
that take values statistically independent of n.5 We also
stress that the operation of coarse-graining, i.e., ignoring
the detailed structure of cnina ’s, is different from tracing out
degrees of freedom. It is this coarse-graining that leads to
the apparent uniqueness of the infalling vacuum, despite
the existence of exponentially many black hole microstates.
We can now define the “mirror operators” acting on the

coarse-grained states

b̃γ ¼
X
n

ffiffiffiffiffi
nγ

p kfnα − δαγg⟫⟪fnαgk; ð14Þ

b̃†γ ¼
X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nγ þ 1

p kfnα þ δαγg⟫⟪fnαgk: ð15Þ

This implies that modes in the second exterior of the
effective theory arise as (hard) quasiparticles generated by
collective excitations of the soft modes as well as the far
mode degrees of freedom entangling with them, including
early Hawking radiation. Note that at the microscopic level,
these operators act on both soft and far degrees of freedom.
Indeed, tracing out the soft/far modes in Eq. (8), the
remaining correlation between the hard and far/soft modes
is essentially classical.
The mirror operators in Eqs. (14) and (15) allow us,

together with the operators in Eqs. (10) and (11), to form
the annihilation and creation operators for infalling modes

aξ ¼
X
γ

ðαξγbγ þ βξγb
†
γ þ ζξγb̃γ þ ηξγb̃

†
γÞ; ð16Þ

a†ξ ¼
X
γ

ðβ�ξγbγ þ α�ξγb
†
γ þ η�ξγb̃γ þ ζ�ξγb̃

†
γÞ; ð17Þ

where ξ is the label in which the frequency ω with respect
to t is traded with the frequency Ω associated with the
infalling time, and αξγ , βξγ, ζξγ , and ηξγ are the Bogoliubov
coefficients calculable using the standard field theory
method. The generator of time evolution in this description
is then given by

H ¼
X
ξ

Ωa†ξaξ þHintðaξ; a†ξÞ: ð18Þ

This leads to the physics of a smooth horizon. The
existence of these operators implies that there is a subsector
in the original microscopic theory encoding the experience
of an object after it crosses the horizon. (For further
discussion, see Sec. IV.)
The effective theory erected as above is applicable only

for a limited spacetime region [10]. Since the far modes are
coarse-grained, the theory describes only physics within the
causal domain of the union of the zone and its mirror
regions on the t ¼ t� hypersurface (the time at which the
effective theory is erected). Furthermore, the fact that the
soft modes are coarse-grained implies that the description is
intrinsically semiclassical; i.e., it is valid only down to the
length scale ls. This suggests that the singularity of a black
hole may not be resolved; it may simply represent an
intrinsic limitation coming from the fact that the theory of
the interior is obtained by coarse-graining and hence
describes a finite-dimensional, nonunitary system. The fact
that an effective theory describes only a limited spacetime
region also implies that the picture of the whole interior, as
indicated by general relativity, can be obtained only by
using multiple effective theories erected at different times
(which are generally not independent). This is the sense in
which the concept of the black hole interior emerges from
the microscopic description of the black hole.

4In an asymptotically flat spacetime, the boundary time t can
be taken as the Schwarzschild time. In more general cases, t can
be a time parameter on the holographic screen [23,24].

5Note that even after the Page time [27], when the coarse-
grained entropy of the emitted radiation is greater than the black
hole entropy, the number of independent microstates that couple
to the hard-mode state jfnαgi is still controlled by the density of
soft-mode states, eSBHðM−EnÞ.
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B. “Spacetime” and matter within low-energy fields

A salient feature of the framework described above is
that low-energy quantum fields contain both degrees of
freedom associated with the Bekenstein-Hawking entropy
(spacetime) and matter (excitations). One might be skep-
tical about this, but there are many arguments suggesting
that it indeed gives a valid picture.

1. The number of low-energy species

Let us estimate the number of soft modes contained in a
single low-energy field. This is done by integrating the
entropy density

s0ðrÞ ¼ cT locðrÞ3 ð19Þ

over the zone region Eq. (1), where c is a constant of Oð1Þ,
and

T locðrÞ ¼
THffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Ml2P

r

q ð20Þ

is the local temperature measured at r. This gives

Ssoft;0 ¼
Z

rz

rs

s0ðrÞ
r2drdΩffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Ml2P

r

q ∼
M2l4P
l2s

: ð21Þ

Alternatively, one could directly count the number of
modes excited. Specifically, a particle with angular momen-
tum L2 ¼ lðlþ 1Þ costs the energy, as measured in the
asymptotic region of

Δω ∼
l
r
; ð22Þ

so that

Δω
T locðrÞ

∼
l

THr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2Ml2P
r

r
∼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2Ml2P
r

r
: ð23Þ

Therefore, modes up to lmax ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=ðr − 2Ml2PÞ

p
are effec-

tively populated, giving the same result as Eq. (21),

Ssoft;0 ∼
Xlmax

l¼0

ð2lþ 1Þjr¼rs ∼
Ml2P

rs − 2Ml2P
∼
M2l4P
l2s

: ð24Þ

By going from the angular momentum to angular position
bases, we find that most of the soft-mode degrees of freedom
are located on the stretched horizon, with Oð1Þ degrees of
freedom per string area ∼l2s for each low-energy field.
The total entropy of the soft modes is given by

multiplying the number of low-energy fields N to Ssoft;0,

Ssoft ∼ NSsoft;0 ∼ N
M2l4P
l2s

: ð25Þ

Using the relation expected in any theory of quantum
gravity (see, e.g., Ref. [28])

l2P ∼
l2s
N
; ð26Þ

we find that this indeed reproduces the Bekenstein-
Hawking entropy, up to an incalculable Oð1Þ factor

Ssoft ∼M2l2P ∼ SBH: ð27Þ

This is consistent with the view that the Bekenstein-
Hawking entropy is mostly on the stretched horizon with
the surface entropy density of 1=4l2P ∼ N=l2s .
The fact that the distribution of the soft modes strongly

peaks toward the stretched horizon implies the existence of
an arbitrariness in splitting them into parts in “high-energy”
(i.e., horizon) and low-energy degrees of freedom. In this
paper, we adopt a scheme in which the entire Bekenstein-
Hawking entropy is associated with the soft modes of the
low-energy fields, which was already implied when we
took the density of soft-mode states to be eSBHðEsoftÞ. This is
consistent because we do not describe the internal dynam-
ics among soft modes. In fact, we know that the dynamics
of the majority of the soft modes cannot be described by the
low-energy theory because they are localized near/at
the stretched horizon, where the local intrinsic scale for
the dynamics is of order the string scale 1=ls. The internal
dynamics of these modes is indeed expected to be nonlocal
in the directions along the horizon [29,30].6

Note the crucial role played by the fact that the
Bekenstein-Hawking entropy is distributed universally over
all the low-energy fields. It is this feature that reconciles the
fact that the spacetime picture breaks down at the string
scale (at r ∼ rs where T loc ∼ 1=ls) with the fact that SBH can
be written in terms of the Planck length lP without
involving ls.

2. Bekenstein bound

An object in field theory in the near horizon region obeys
the bound first envisioned by Bekenstein [32] and proved in
Ref. [33]

S ≲ 2πElocρ; ð28Þ

where S and Eloc are the entropy and energy of the object
(with Eloc being measured locally at the location of the
object), and ρ is the proper distance between the object and

6This feature may be used to discriminate the hard modes from
soft modes near the stretched horizon in a holographic theory at a
boundary. A similar separation of modes has been discussed in
Ref. [31] for a half-BPS “superstar” geometry in AdS=CFT.

SPACETIME AND UNIVERSAL SOFT MODES: BLACK HOLES … PHYS. REV. D 101, 066024 (2020)

066024-5



the horizon. We expect that an excitation above the field
theory vacuum has

S≳ c; ð29Þ
where c is a number of order a few,7 and thus,

c≲ S≲ 2πElocρ ≈
Eloc

T loc
: ð30Þ

Here, T loc is the local Hawking temperature at the location
of the object, and we have used the fact that ρ ≈ 1=2πT loc.
We find that an excitation in field theory must have energy

E≳ cTH ≈O

�
1

Ml2P

�
; ð31Þ

as measured in the asymptotic region. This is exactly the
condition of being a hard mode.
An alternative way of viewing this is that Eq. (28) says

that there are no multiple independent states at the field
theory level which correspond to the exponentially many
states obtained by exciting soft modes with E ≪ 1=Ml2P.
This implies that the microstates corresponding to different
soft-mode excitations must all be viewed as the same
vacuum state at the level of (semiclassical) field theory.

3. Horizon duality: Chaotic UV dynamics leads to
smooth IR spacetime

The appearance of interior spacetime through Eq. (12)
requires a generic black hole state; i.e., the coefficients cnina
in Eq. (8) take generic values in the n and in spaces. This
implies that the dynamics of the black hole must be chaotic
across all low-energy species. Since the intrinsic dynamics
of a black hole occurs mostly at the stretched horizon,
where the local temperature becomes the string scale, this is
translated into the statement about the string dynamics. In
particular, the dynamics at the string scale must not have a
structure which prevents the universal redistribution of the
initial state energy and information over all low-energy
species, such as an exact global symmetry. In fact, the
breaking of a global symmetry must be strong, parametri-
cally of Oð1Þ, at the string scale, in order for the interior
spacetime to develop within a reasonable time after the
black hole formation (or for the black hole to self-repair
sufficiently quickly; see Sec. II D).8 This is consistent with
earlier observations, e.g., in Refs. [34,35], though it makes
a stronger statement about the dynamics at the string scale.

Incidentally, a global symmetry that is nonlinearly
realized at the string scale is not constrained by the
argument given above. In other words, the required global
symmetry breaking at ls need not be explicit and can be
“spontaneous.” This suggests that the QCD axion needed to
solve the strong CP problem is a string axion (see, e.g.,
Ref. [36]), since the required quality of the Peccei-Quinn
symmetry is very high. If the Peccei-Quinn symmetry were
linearly realized at ls, then the above argument would say
that it must be explicitly broken with Oð1Þ strength (unless
it arises as an approximate accidental symmetry at low
energies, resulting from a judicious choice of matter
representations under gauge symmetry), which would
invalidate the Peccei-Quinn mechanism [37–39].
It is important that the universal dynamics discussed

above, leading to generic entanglement between the hard
and soft modes, emerges only if the surface of the material
composing an object recedes behind the surface at which
T loc ∼ 1=ls, i.e., the stretched horizon. This condition, there-
fore, can be used as a criterion for differentiating a black hole
from normal matter, such as a piece of coal and a regular star.
For the latter, the structure of the state does not take the
universal form, even though some radiation may be emitted
from its surface. The construction of Eq. (12), therefore, does
not apply, and hence, no near-empty interior spacetime.
The analysis here reveals an intriguing relation between

IR and UV physics: In order to have large—IR—spacetime
behind a horizon, its dynamics as viewed from a distance—
the UV dynamics—must be chaotic across all low-energy
species. For a quasistatic system, this can be stated more
quantitatively. Suppose that a spacetime is given with a
quasistatic time foliation. For an evolving black hole, this
could be done by pulling in “leaves” (equal time hyper-
surfaces on the boundary) along holographic slices [21].
This pulling-in procedure must halt when gravity/accel-
eration becomes large, specifically at a surface on which

a≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνaμaν

p
∼
1

ls
; ð32Þ

where

aμ ¼ nν∇νnμ; ð33Þ
and nμ is the timelike unit normal to the holographic—or
bulk equal time—slice. Because of large acceleration in
Eq. (32), physics on this surface is described by the string
scale dynamics. It is this dynamics that leads to a well-
scrambled state in Eq. (5), or Eq. (8), allowing for the
construction of spacetime behind it through Eq. (12).

C. The paradox of low-energy excitations
and its resolution

In Ref. [14], an important problem was pointed out
which was claimed to plague any “state-dependent” con-
struction (see also Ref. [40]). The basic argument is as

7Precisely speaking, S in Eq. (28) represents the difference of
the von Neumann entropy between the excited and vacuum states.
In the analysis below, we coarse-grain the excitation sufficiently
so that the resulting mixed state has S sufficiently larger than 1.

8I have recently learned that a similar claim about the strength of
global symmetry breaking is being pursued by Cordova, Ohmori,
and Rudelius using a different, swampland-related argument.
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follows: Let us denote the space of pure states with energy
E < E0 as HE0

. For sufficiently large E0, we assume that a
typical state in HE0

is a black hole with a smooth horizon
(which is what the state dependence is supposed to
achieve).9 Let us now consider unitaries UI of the form

ei
P

k
ϕkðb†ωbωÞk using appropriately smoothed mode opera-

tors whose frequencies (as measured in the asymptotic
region) are ω ≪ Δ. These operators, because of the
smoothing, change the energy of the state by δE, where
jδEj ≪ Δ.
One can then show that a typical state inHE0þδE is nearly

parallel to a state in UIHE0
. Reference [14] argues that this

is a contradiction. The claim is that almost all states in
UIHE0

must be excited states (stating that otherwise the
frozen vacuum argument of Ref. [41] applies), while almost
all states in HE0þδE are vacuum states (as those in HE0

).
However, since a state in the latter class is nearly parallel to
a state in the former class, this leads to a massive violation
of the Born rule.
Our framework addresses this issue in a simple (trivial)

manner10:A typical state inUIHE0
is not an excited state, but

it is a microstate of the black hole vacuumwhich is different
from those inHE0

. Note that given jδEj ≪ Δ, operating UI

on a black hole vacuum state of the form in Eq. (8)
corresponds to changing the coefficients cnina. This simply
leads to another black hole vacuum microstate having
different coefficients c0nina. In other words, one can repeat
the whole construction of Sec. II Awith cnina replaced with

c0nina to find infalling operators a0ξ, a
0†
ξ , and H0, in terms of

which the description of a smooth horizon is obtained.
Operations involving structures finer than Δ are not repre-
sented by quantum operators in semiclassical theory. (We
might say that they correspond to changing the background
geometry by minuscule amounts, e.g., jδMj≲ Δ.) In the
context of holography, soft modes are not represented as
degrees of freedom specifying states within a code subspace
[43] in a way that subsystem recovery is possible.
It is important that exciting a mode with ω≳ Δ on

a black hole vacuum state does not lead to another
black hole vacuum state; it leads to an excited state. For
example, one can consider a state in which there are N
particles in the zone

jΨNi ∝
YN
i¼1

�X
γ

fi;γb
†
γ

�
jΨðMÞi; ð34Þ

where fi;γ are the weights for producing particle i by
superposing creation operators b†γ that have frequencies
larger than Δ. (Note that for hard particles in the zone,
a†γ ≈ b†γ .) States like Eq. (34) cannot be written in the form
of Eq. (8) with the coefficients cnina taking generic values in
the n and in spaces.
In fact, unlike the black hole vacuum states obtained by

changing the configuration of soft modes, states obtained
by exciting hard modes are not typical in the Hilbert space.
Consider the space of all states that are obtained by acting
appropriately smoothed hard-mode operators on an element
of HE0

and have energies smaller than E0 þ ω, where
ω≳ Δ. We denote this space by BωHE0

. One can then show
that a typical state jψi in HE0þω can be written as

jψi ¼ sin θjψ exci þ cos θjψvaci; ð35Þ

where jψ exci and jψvaci are elements of BωHE0
and its

complement HE0þω=BωHE0
, respectively, and

sin2 θ ∼ e−
ω
TH : ð36Þ

We find that a typical state in HE0þω has only negligible
overlap with the excited states; i.e., a state obtained by
exciting hard modes is atypical in the microscopic Hilbert
space. What the semiclassical theory describes is the
dynamics of these atypical states.
Another way to phrase the conclusion here is that the

Hilbert space Hinf for the infalling modes, Eqs. (16) and
(17), built on each of the black hole and radiation micro-
states need not overlap with each other. As states excited by
b†γ ’s are atypical and can be discriminated from typical
states, states excited by a†ξ’s are also atypical in the Hilbert
space of the black hole and radiation (of which states with
thermal Hawking radiation are typical) and can be dis-
criminated from typical states by energetic consideration.
In particular, as long as we are focusing on small excita-
tions, with ln dimHinf ∼ ðAðMÞ=l2PÞq (q < 1) whereAðMÞ
is the area of the black hole horizon, the existence ofHinf is
entropically negligible, so that it can be attached to each of
the black hole vacuum microstates without affecting the
entropic consideration of black hole evaporation at the
leading order in l2P=AðMÞ. In short, our framework does not
employ a type of state dependence considered in Ref. [14].

D. Flow of information and energy: Recapitulation

The picture emerging from the analyses described above
is the following: Gravitational collapse makes a material
surface recede until it reaches the point at which the local
acceleration of a stationary observer becomes the string

9Originally, this statement was considered in the context of
AdS=CFT duality, where the relevant black hole was a large AdS
black hole. On the other hand, here we are interested in a black
hole in asymptotically flat spacetime (or a small AdS black hole).
The analysis below, however, still applies if, instead of CFT
Hilbert space, one considers effective Hilbert space HΓ on the
boundary Γ that is pulled in [21] to become a surface near the
black hole, e.g., the r ¼ cMl2P surface with c≳ 3. Possible
entanglement between the degrees of freedom inside Γ and those
outside does not play an important role in the discussion here.

10For an attempt to address the issue using causality of AdS
spacetime, see Ref. [42].
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scale, a ∼ 1=ls. When this happens, chaotic dynamics at the
string scale distributes the energy of the material into all
low-energy species. Indeed, following the earlier analysis
of the entropy, we can integrate the energy density of the
soft modes of a single species

ρ0ðrÞ ∼ T locðrÞ4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2Ml2P
r

r
ð37Þ

over the zone region rs ≤ r ≤ rz (where the second factor
on the right-hand side is the redshift factor), obtaining

Esoft;0 ∼
Ml2P
l2s

: ð38Þ

We can therefore reproduce the black hole mass (parametri-
cally) aftermultiplying the number of low-energy speciesN.
Furthermore, due to the energy constraint, the chaotic
dynamics generates generic entanglement between the hard
and soft modes as in Eqs. (5) and (8). It is this generic
entanglement that allows for reconstructing spacetime
behind the horizon through the coarse-graining in Eq. (12).
Hawking emission, in the sense of emitting quanta that

can be viewed as excitations in semiclassical theory, occurs
around the edge of the zone jr�j≲OðMl2PÞ [13], where

r� ¼ rþ 2Ml2P ln
r − 2Ml2P
2Ml2P

ð39Þ

is the tortoise coordinate. An important point is that while
the distribution of the soft modes is strongly peaked toward
the stretched horizon, there are Oð1Þ degrees of freedom—
which are tiny and fractionally only of Oð1=M2l2PÞ—
located around the edge of the zone. The information
stored in these degrees of freedom is transferred to far
modes (a Hawking quantum) in this region in each time-
scale ofOðMl2PÞ. The backreaction creates an ingoing flux of
negative energy and negative entropy with respect to the
static (Hartle-Hawking [44]) vacuum. Note that the only
relevant low-energy fields in this process are those with
masses smaller than TH, since T loc ∼ TH around the edge of
the zone. The evaporation of the black hole completes after
OðM2l2PÞ steps of this elementary emission process. The
entanglement entropy between the black hole and the
radiation emitted, SvNhardþsoft ¼ SvNrad, follows the Page curve
[27], where SvNA represents the von Neumann entropy of
subsystem A.
During the evaporation, the structure of entanglement

between the hard-mode, soft-mode, and radiation compo-
nents can be written as [10]

jΨðMÞi ¼
X
n

XN n

in¼1

cnin jHnijSn;inijRn;ini; ð40Þ

where jHni, jSn;ini, and jRn;ini are states of the hard modes,
soft modes, and radiation, respectively, and

N n ¼ minfeSBHðM−EnÞ; eSradg; ð41Þ

with Srad the coarse-grained (thermal) entropy of the
radiation.11 Here, we have performed the Schmidt decom-
position in the space of soft-mode and radiation states
for each n. This expression makes it clear why the entan-
glement argument of Ref. [9] does not apply here. The
entanglement responsible for unitarity has to do with the
summation of the index in shared between the soft-mode and
radiation states (in fact, dominantly the vacuum index i0),
while the entanglement necessary for interior spacetime has
to do with the index n, and these two can coexist.
The fact that Hawking emission occurs around the edge of

the zone has an interesting implication for the nature of the
horizon experienced by an infalling observer [10]. Imagine
that early Hawking radiation interacts with a detector,
leading to different pointer states jdIi. By separating these
states from jϕai, the state in Eq. (8) can be written as

jΨðMÞi ¼
X
n

XN ðM−EnÞ

in¼1

X
I

X
aI

cninIaI jfnαgi

× jψ inðM − EnÞijϕaIijdIi: ð42Þ

To discuss what the detector finding a particular outcome I
will experience later, we focus on the particular branch of the
wave function

jΨIðMÞi ¼ 1ffiffiffiffi
zI

p
X
n

XN ðM−EnÞ

in¼1

X
aI

cninIaI jfnαgi

× jψ inðM − EnÞijϕaIijdIi; ð43Þ

where zI ¼
P

n

PN ðM−EnÞ
in¼1

P
aI jcninIaI j2 is the normaliza-

tion factor. Generically, this does not affect the physics of the
black hole, since the structure of Eq. (43) is the same as that
of Eq. (8). However, if the detector is carefully set up, it may
be fully correlatedwith a particular configuration fn0αgof the
hard modes after the measurement, i.e. cninIaI ≈ 0 for
n ≠ fn0αg. This seems to mean that when the detector enters
the horizon, it would hit a “firewall” because the hardmodes
lack the necessary entanglement.
However, since the detector can interact with semi-

classical Hawking quanta only outside the zone, it can
reach the stretched horizon only after time of order
4Ml2P lnðMlPÞ. Therefore, if the equilibrium timescale
between the hard and soft modes is of order

teq ¼ 4Ml2P lnðMlPÞ ð44Þ

11We assume that the coarse-grained entropies of the three
components satisfy Shard ≪ Ssoft ≈ SBH, Srad, which is expected to
be valid throughout the (essentially) whole history of black hole
evolution.
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or shorter, then the state of the system (without the detector
included) takes the form of Eq. (8) with generic cnina ¼
cninIaI in the n and in spaces when the detector enters the
stretched horizon. This would imply that an operation
acting only on early Hawking radiation—however com-
plicated—cannot destroy the smoothness of the horizon
one will see; a black hole self-repairs itself by the time an
infaller reaches the horizon.

III. BEYOND BLACK HOLES

In this section, we generalize the results of the previous
section obtained for an evaporating black hole to other
systems. We first discuss how the physics of Rindler
spacetime is obtained as a smooth limit of the black hole
physics. We then see that essentially all the ideas developed
in the previous section can be applied consistently to
de Sitter spacetime. We finally consider asymptotically
flat spacetime and discuss how some of the ideas developed
here may be related to the semiclassical analysis of the
asymptotic symmetry structure.

A. Rindler limit

Rindler spacetime is obtained as a limit of Schwarzschild
spacetime

M → ∞ and lP; ls∶fixed ð45Þ
by focusing on the near horizon region r → 2Ml2P, such that
the combinations

ρ≡ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ml2Pðr − 2Ml2PÞ

q
and τ≡ R

4Ml2P
t ð46Þ

are kept finite, where R is a finite parameter with the
dimension of length. The resulting metric is

ds2 ¼ −
ρ2

R2
dτ2 þ dρ2 þ

X
i

dXidXi; ð47Þ

where Xi (i ¼ 2, 3) parametrize the direction parallel to the
horizon. Since the Rindler spacetime is obtained by taking
theMlP → ∞ limit of Schwarzschild spacetime, its entropy
is infinite

SRindler ¼ ∞; ð48Þ

though the surface entropy density on the stretched horizon
is still given by 1=4l2P.
There is no direct analog of Hawking emission in the

Rindler limit, since the edge of the zone in the original
Schwarzschild spacetime is at spatial infinity.12 There is,
however, an analog of black hole mining [45,46] by which a

physical probe at constant r in the zone observes a thermal
bath with temperature T locðrÞ, which in the Rindler limit
gives

T locðρÞ ¼ lim
M→∞

THffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Ml2P

r

q ¼ 1

2πρ
: ð49Þ

This is the well-known Unruh effect [25,47,48]. While
mining allows us to extract information about a black hole
vacuum, the Unruh effect is expected not to give any
information about a microstate of the Rindler/Minkowski
vacuum. This is ensured by Eq. (48); since extracting
information about a scrambled system requires accessibility
to more than half of its entropy [27,29], no finite size detector
can extract such information.
As in the case of a black hole, semiclassical theory in a

Rindler wedge describes microscopic dynamics of only the
hard modes, whose locally measured energies are suffi-
ciently larger than T locðρÞ. The other degrees of freedom,
the soft modes, are described only statistically. Denoting
the states of the hard modes by jfnαgi, microstates
of the vacuum can be written in the form of Eq. (5).
The construction of mirror operators and “interior space-
time,” i.e., the other side of the Rindler horizon, goes as in
the black hole case (by first taking M finite and then
sending it to infinity). An important difference, however, is
that since there is no far mode; the mirror space is
constructed purely out of the soft modes.
Another consequence of Eq. (48) is that the scrambling

time [29,30] of Rindler spacetime is infinite

τscr ≈Oðρ ln SRindlerÞ → ∞: ð50Þ

This has an operational meaning. It implies that negative
energy-entropy excitations generated by backreaction of
theUnruh effect and entangledwith the detector, do not relax
in any finite time. If we reduce the acceleration character-
izing the Rindler description, then this entanglement—
information about the other side of the horizon—can be
retrieved in the Rindler wedge. While this can be viewed as
an analog of information retrieval from a black hole, Eq. (48)
implies that the retrieved information is not scrambled. This
is consistent with the inertial frame description, which
implies that the negative energy-entropy excitations, which
can be viewed as particles emitted from the detector in an
inertial frame [49], are not thermalized when they reappear
from the receding Rindler horizon.

B. de Sitter spacetime

A consistent microscopic description of de Sitter space-
time is not yet known. There are, however, several
proposals aiming toward it. In particular, a description
based on a holographic screen seems promising for
describing cosmological de Sitter spacetime [21,50], at
least when the spacetime deviates—even slightly—from

12We implicitly imagine an IR cutoff ρIR → ∞ so that
ρIR=Ml2P < ∞.
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the pure de Sitter vacuum (e.g., by the existence of another
energy component beyond the cosmological constant). Here
instead of committing to a particular proposal, we assume
the existence of a consistent description of (approximate)
de Sitter spacetime and study what the most straightforward
extension of the black hole picture would imply for such a
description. For related descriptions of de Sitter spacetime
based on the static picture, see Refs. [51,52].
The picture of a black hole in a distant frame is

analogous to the static description of de Sitter spacetime
(with the radius inside out), whose metric is given by

ds2 ¼ −ð1 −H2r2Þdt2 þ 1

1 −H2r2
dr2 þ r2dΩ2; ð51Þ

whereH is the Hubble parameter. The entropy and the local
temperature are given by [53]

SGHðHÞ ¼ π

H2l2P
; T locðrÞ ¼

H
2π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2r2

p : ð52Þ

Analogous to the black hole case, we separate modes of
low-energy quantum fields into hard ω≳ Δ and soft ω≲ Δ
modes, where

Δ ≈OðHÞ ð53Þ
is taken to be sufficiently, e.g., Oð10Þ, larger than
T locð0Þ ¼ H=2π, and the frequency ω and Δ are both
measured at r ¼ 0.
The energy of the vacuum obtained by integrating the

energy density [see Eqs. (37) and (38)] is

E∼N
Z

rs

0

T locðrÞ4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−H2r2

p 4πr2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−H2r2

p dr∼
1

Hl2P
; ð54Þ

where rs is the location of the stretched horizon (the string
length away from the mathematical horizon r ¼ 1=H)

1

H
− rs ∼Hl2s : ð55Þ

Requiring that ∂SGHðHÞ=∂E ¼ 1=T locð0Þ, the proportion-
ality factor in Eq. (54) is determined to be unity

E ¼ 1

Hl2P
: ð56Þ

While the relation of this energy—defined at r ¼ 0 rather
than asymptotic infinity—to more conventionally defined
energies is not clear, it can be used to obtain a consistent
semiclassical description of the system as we see below.
As in the case of a black hole, we regard the entropy

SGHðHÞ to represent the density of de Sitter microstates,
which correspond to different configurations of the soft
modes. A microstate representing the de Sitter vacuum is
then given by

jΨðHÞi ¼
X
n

XN ðnÞ

in¼1

cnin jfnαgijψ inðnÞi; ð57Þ

where jfnαgi are orthonormal states of the hard modes with
α collectively denoting the species, frequency, and angular-
momentum quantum numbers of a mode, En is the energy
of the state jfnαgi as measured at r ¼ 0, and jψ inðnÞi are
orthonormal states of soft modes which have energy
E − En ¼ 1=Hl2P − En. Since E → E − En can be inter-
preted as H → H þ EnH2l2P,

N ðnÞ ¼ eSGHðHþEnH2l2PÞ ≈ exp

�
π

H2l2P
−
2πEn

H

�
: ð58Þ

Assuming generic coefficients cnin , we can trace out soft
modes, which yields

TrsoftjΨðHÞihΨðHÞj ¼ 1P
ne

− En
TGH

X
n

e−
En
TGH jfnαgihfnαgj:

ð59Þ
This is the thermal density matrix with the temperature

TGH ¼ T locð0Þ ¼
H
2π

: ð60Þ

It is remarkable that the understanding of the entropy and
temperature in terms of soft modes is carried over without
any modification from a black hole to de Sitter spacetime.
States in which hard modes are excited are obtained by

acting corresponding creation operators to a de Sitter
vacuum microstate. The annihilation and creation operators
for hard modes take the form in Eqs. (10) and (11)

bγ ¼
X
n

ffiffiffiffiffi
nγ

p jfnα − δαγgihfnαgj; ð61Þ

b†γ ¼
X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nγ þ 1

p jfnα þ δαγgihfnαgj: ð62Þ

It is these excitations of hard modes that we perceive as
excitations over the de Sitter vacuum at the semiclassical
level. The analysis in Sec. II C for atypicality of excited
states goes through in the de Sitter case as well.

1. Outside the de Sitter horizon

In a realistic cosmological setup, de Sitter spacetime
appears approximately, and it is often the case that, in the
standard general relativistic description, the region outside
the horizon has much richer structure than the simple, plain
de Sitter space. For example, if our Universe began by a
bubble nucleation in a parent universe, e.g., as one of
infinitely many universes created in eternal inflation, then
the Penrose diagram takes the form as in Fig. 1. The
spacetime outside the de Sitter horizon, or the holographic
screen, has a complicated structure involving many other
bubble universes, etc. (Note that because our Universe is
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not purely de Sitter, e.g., by the existence of a small matter
component or an early curvature-dominated phase, the
holographic screen at late times lies inside our bubble.) On
the other hand, if de Sitter space with a fixed H (specified
within the precision allowed by the uncertainty principle) is
described as a system with a finite number of degrees of
freedom, then how can such a description be consistent
with the possible existence of an innumerable variety of
complicated spacetimes outside the horizon?
This problem was addressed in Ref. [54], in which it was

argued that the general relativistic, global spacetime as in
Fig. 1 should (only) be interpreted as a pictorial depiction
obtained by “patching” possible different semiclassical
spacetime histories one can obtain in a quantummechanical
world, and that each of these histories describes only the
spacetime region a single “observer” (timelike curve) can
access. This leads to the following picture for the evolution
of a quantum state. As a standard scattering experiment
converts an initial state with a specific particle configura-
tion into a superposition of terms/branches with different
particle configurations, a bubble nucleation—which is a
quantum process—makes the state a superposition of
branches having different spacetimes, e.g., with different
bubbles created at different spacetime locations. Note that
the state representing each branch may still have a finite
coarse-grained entropy; in particular, for a branch in an
approximate de Sitter phase it is given by SGHðHÞ. This
therefore reconciles the finiteness of de Sitter entropy with
the “existence” of (infinitely) large spacetime outside the
horizon in the general relativistic description.
The framework presented in this paper offers the pos-

sibility of making this picture more solid. A specific
question addressed is the following: While infinite space-
time outside the (approximate) de Sitter horizon in a single

branch may be an illusion, is it not possible to access some
part of it, e.g., when the system tunnels into a Minkowski
vacuum or if slow-roll inflation ends with its potential
energy converted into a different energy component by
reheating? How can a framework based on the static picture
of Eq. (51) describe such an “information retrieval” process?
Suppose that a state takes the form in Eq. (57) at t ¼ t�,

possibly with hard modes excited by Eq. (62). As in the
case of a black hole, we can erect an effective theory based
on the state at t ¼ t� by coarse-graining soft modes

XN ðnÞ

in¼1

cnin jψ inðnÞi →
e−

En
2TGHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ne

− En
TGH

q kfnαg⟫ ð63Þ

and introducing mirror operators

b̃γ ¼
X
n

ffiffiffiffiffi
nγ

p kfnα − δαγg⟫⟪fnαgk; ð64Þ

b̃†γ ¼
X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nγ þ 1

p kfnα þ δαγg⟫⟪fnαgk: ð65Þ

The vacuum state then becomes

kΨðHÞ⟫ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ne

− En
TGH

q X
n

e−
En

2TGH jfnαgikfnαg⟫: ð66Þ

This allows us to interpret the mirror operators as repre-
senting semiclassical modes in the other hemisphere of
spherical de Sitter spacetime, with b̃†γ (b̃γ) creating (anni-
hilating) the mode that is the mirror image of the mode γ in
the original hemisphere with respect to the bifurcation
surface. The correspondence between the black hole and
de Sitter cases is as in Table I. Note that for de Sitter

FIG. 1. A schematic depiction illustrating the idea that a single branch of a quantum state describes only the spacetime region
accessible by a single observer. The global spacetime of general relativity (the entire region including those represented by lighter
colors) arises only as a “pictorial depiction” obtained by patching possible spacetime histories represented by various branches.
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spacetime, there is no region corresponding to the region
outside the zone of an evaporating black hole.
As in the black hole case, the effective theory makes

manifest the information about semiclassical physics
encoded in collective excitations of the soft modes.
While the emergent spacetime region outside the horizon
is finite, this is sufficient to describe any future develop-
ment of the branch the system is in. Suppose that at t ¼ t�
the coarse-grained state of the system is given by Eq. (66)
with excitations on it. This gives the state only on the t ¼ t�
hypersurface of the emergent de Sitter space depicted by
the solid red line in the Penrose diagram in Fig. 2. Now, the
observer associated with the branch (timelike curve at
r ¼ 0) can obtain the maximal amount of information about
physics occurring outside the de Sitter horizon (the dashed
green line) if the system tunnels into a Minkowski vacuum

right after t ¼ t� as depicted in Fig. 2. We find that, even in
this case, the knowledge about the state on the t ¼ t�
hypersurface is sufficient to fully describe the future signals
the observer can receive. In fact, since the argument
relies only on causality, this implies that the effective
theory can describe the future of the branch (as viewed
from the observer) completely, even if its future history is
more complicated, e.g., if the system evolves into a
superposition of Minkowski bubbles created at different
spacetime locations.
As the effective theory of the interior for an evaporating

black hole, the effective theory discussed here is not
unitary; for example, the future history of a particle that
goes outside the causal domain of the t ¼ t� hypersurface
cannot be described. As discussed above, however, com-
plete physics the observer at r ¼ 0 can access is described
within the theory. This can be done, for example, by
relating the operators in Eqs. (61), (62), (64), and (65) to the
annihilation and creation operators for the flat slicing that
describes the region inside the de Sitter bubble

aξ ¼
X
γ

ðαξγbγ þ βξγb
†
γ þ ζξγb̃γ þ ηξγb̃

†
γÞ; ð67Þ

a†ξ ¼
X
γ

ðβ�ξγbγ þ α�ξγb
†
γ þ η�ξγb̃γ þ ζ�ξγb̃

†
γÞ: ð68Þ

Here, ξ is the label appropriate for the flat slicing, and αξγ ,
βξγ , ζξγ , and ηξγ are the Bogoliubov coefficients calculable
using the field theory method.

C. Asymptotically flat spacetime: Relation to BMS

The analysis of Rindler and de Sitter spacetimes
described above has implications for the asymptotic struc-
ture of flat spacetime. Let us take the flat space limit of
de Sitter spacetime

H → 0 and lP; ls∶fixed ð69Þ

with t and r kept finite. In this limit, the horizon is formally
sent to infinity, which we may identify as spatial and null
infinities of asymptotically flat spacetime. The surface
number density of the soft modes there is 1=4l2P. In fact,
the horizon appears locally as a Rindler horizon.
In the limit of Eq. (69), the soft modes decouple from

any experiment performed in a finite spacetime region, as

TABLE I. Correspondence between an evaporating black hole and cosmological de Sitter space.

Evaporating black hole Cosmological de Sitter space

Microscopic level

�
Zone region Inside the horizon
Far region � � �

Effective theory

�
Two-sided black hole Spherical de Sitter space
The second exterior The other hemisphere

FIG. 2. For a branch having spacetime that appears approx-
imately as a static patch of a de Sitter spacetime, an effective
theory can be erected by coarse-graining the soft modes at time
t ¼ t�. The resulting theory contains a spatial section of an
emergent full de Sitter spacetime, including the other side of the
horizon. This theory allows for describing any future develop-
ment of the branch.
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indicated by the fact that the local temperature in Eq. (52)
goes to zero for finite r,

T locðrÞ → 0: ð70Þ

This implies that the infinite degeneracy of Minkowski
vacuum represented by different configurations of the soft
modes cannot be observed in any such experiment. Note
that the “moduli space” of this degeneracy is huge; it is
formally given by the space of a unitary group

M ≈
����U

�
A
4l2P

�����; ð71Þ

where A ¼ 4π=H2 → ∞ is the area of the IR cutoff
surface. Given that each soft-mode degrees of freedom
can be arranged to lie at each Planck-sized region on the
cutoff surface, we expect that these modes are related to the
existence of the BMS group [15–17] and its possible
generalization [55] in perturbative quantum gravity. This
is consistent with the analysis in Refs. [56,57] and our
expectation that a physical process occurring in a finite
spacetime region cannot determine the Minkowski vacuum
microstate (otherwise, we would have to know a vast
amount of information about the initial vacuum microstate
to make predictions).
Note that this situation is different from that of a

black hole in which the microscopic information stored
in the soft modes can be extracted through a Hawking
emission or mining process within a finite time.13 The
difference comes from the fact that a black hole is a
finite system interacting with a much larger system.
While holography entails that (a vast majority of) the
information about a system is stored in its boundary
region, the boundary of a black hole is located in the
bulk of ambient space reflecting interactions between
the two systems. This allows for converting soft, micro-
scopic information of the black hole into different
configurations of the hard modes in the ambient space
(or in the zone for a mining process), as was discussed
in Sec. II.

IV. DISCUSSION: OBSERVABLES
IN A QUANTUM WORLD

We have seen that the formation of a horizon in quantum
gravity is accompanied by the emergence of the soft modes
arising from the large redshift. While these modes cannot

be discriminated temporarily by a semiclassical probe in
the original reference frame, they play an essential role in
describing the “other side” of the horizon, for example, the
interior of an evaporating black hole and the outside of a
de Sitter horizon. These regions are described by effective
theories in which specific operators involving soft modes,
e.g., those in Eqs. (14), (15), (64), and (65), play the role of
annihilation and creation operators in the effective theories.
The construction in Secs. II A and III B guarantees that
these operators always exist. One might, however, still ask
what selects them as “good operators” to describe the
system, in particular, the fate of an object entering the
region behind a horizon. This has to do with the issue of
the quantum-to-classical transition.

A. Quantum-to-classical transition: Emergence
of the Born rule

Quantum mechanics is formulated to give probabilistic
predictions for a measurement of a quantum system
performed by a classical observer, whose existence is
implicit in the Born rule. Since the division between the
quantum system and the surrounding classical world is
arbitrary, we expect that the latter arises from more
fundamental, intrinsically quantum mechanical substances.
While the precise mechanism for how a classical world
emerges in quantum mechanics is unknown, it seems
reasonable to expect that it has to do with amplification
of information [59–61], given that one of the most
characteristic features of a classical system is the robustness
of information.
A fundamental question about the emergence of a

classical world is if it requires an infinitely large envi-
ronment leading to truly irreversible decoherence, or if a
sufficiently large environment holding (enormously) pro-
liferated information is enough.14 If the former is true,
then we might be able to declare that the only meaningful
description of a system is the boundary one. On the other
hand, in the latter case, we expect that a description of the
black hole interior must make sense, at least for a large
enough black hole. In the rest of the paper, we assume (as
we have done so far) that the interior of a black hole can be
consistently described in quantum mechanics.
In the standard treatment of quantum mechanics, it is

customary to postulate that any Hermitian operator acting
on the Hilbert space of the observed system is measurable.
This is reasonable if the surrounding system making
observations has large resources, e.g., enough energy
and controllability, so that the outcome of an observation
associated with any such operator can be amplified and
classicalized. However, if the Hilbert space contains space-
time degrees of freedom, i.e., soft modes, then a process
whose effects are fully contained in the corresponding

13A proposal relating black hole information to BMS soft hair
has been made in Ref. [58]. Our framework is different from this.
The black hole soft modes here contain a structure analogous to
but are not associated with the soft BMS charges at infinity. In
particular, the BMS symmetry or its extension at infinity does not
constrain the product of black hole evaporation. See also
Refs. [56,57] for a relevant discussion.

14In cosmology, the former situation is realized in the scenarios
in Refs. [54,62], while the scenario in Ref. [63] requires the latter.
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spacetime region cannot measure everything about them,
since there are not enough degrees of freedom within which
outcomes are amplified. For example, to measure all
Hermitian operators acting on the soft modes of a black
hole, we need to couple the black hole to a large external
system, e.g., spacetime outside the zone, and use a process,
e.g., Hawking emission, that allows for the amplification—
and hence, classicalization—of all possible outcomes.
The interior picture does not have such an external

system,15 and thus, only a small portion of the operators are
observable in the sense that they can be used in the Born
rule by a classical observer who is a part of the system.
Suppose that the vacuum state at the coarse-grained level is
given by

kΨ⟫ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ne

−En
T

q X
n

e−
En
2Tþiφn jfnαgikfnαg⟫; ð72Þ

where φn ¼ φfnαg are phases. The construction in Secs. II A
and III B suggests that the observables correspond to
Hermitian operators constructed out of the original creation
and annihilation operators bγ and b†γ as well as the mirror
operators

b̃γ ¼
X
n

ffiffiffiffiffi
nγ

p
eiðφ0

n−−φ
0
nÞkfnα − δαγg⟫⟪fnαgk; ð73Þ

b̃†γ ¼
X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nγ þ 1

p
eiðφ

0
nþ−φ

0
nÞkfnα þ δαγg⟫⟪fnαgk; ð74Þ

where n� ≡ fnα � δαγg and

φ0
n ¼ φn ∀ n ð75Þ

(because the phases φn can be absorbed by the redefinition
of the coarse-grained states kfnαg⟫ → e−iφnkfnαg⟫). In
fact, we can construct appropriately localized field oper-
ators out of these operators, and the generator of time
evolution relating them can be given by Eq. (18). The state
in Eq. (72) is then the ground state of this generator.
The fact that the operators in Eqs. (73) and (74) provide

the right building blocks is intuitive to understand. As
viewed from these operators—more precisely, operators
related to them by a Bogoliubov transformation—the state
in Eq. (72) represents a smooth spacetime, and we
empirically know that information about the outcome of
a measurement performed in the vicinity of such a state is
appropriately classicalized when evolved by the generator
of which Eq. (72) is the ground state. On the other hand, if
we choose the “annihilation and creation operators” of the
form of Eqs. (73) and (74) but violating Eq. (75) in a
generic manner, then the state in Eq. (72) appears as a
“firewall state” with cutoff scale excitations, and Hermitian
operators constructed out of them would not represent
observables that can be used by a classical observer in the
Born rule.
Given the role locality plays in the process of information

amplification [59–61], it seems reasonable to conjecture that
the emergence of a classical world—in particular, a classical
observer who can use the Born rule to predict the outcome of
a measurement—requires that there exists a Hilbert space
basis in which the Hamiltonian takes a local (nearest
neighbor) form and the relevant states are sufficiently near
the ground state so that the smooth spacetime picture is
available. This implies, for example, that for a state of the
form in Eq. (8), the annihilation and creation operators
appearing in observables must be taken to be

b̃γ ¼
�X

n0
e−

En0
TH

�X
n

ffiffiffiffiffi
nγ

p
e−

En−þEn
2TH

×
XN ðM−En− Þ

in−¼1

XN ðM−EnÞ

in¼1

X
a

X
b

cn−in−ac
�
ninb

jψ in−
ðM − En−Þijϕaihψ inðM − EnÞjhϕbj; ð76Þ

b̃†γ ¼
�X

n0
e−

En0
TH

�X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nγ þ 1

p
e−

EnþþEn
2TH

×
XN ðM−EnþÞ

inþ¼1

XN ðM−EnÞ

in¼1

X
a

X
b

cnþinþac
�
ninb

jψ inþ
ðM − EnþÞijϕaihψ inðM − EnÞjhϕbj; ð77Þ

or those related in a simple way with these operators (e.g.,
by a Bogoliubov transformation or time evolution). While
we have not proven it, the conjecture seems plausible and
would explain why the construction in Secs. II A and III B

15The picture involves early Hawking radiation in the ambient
space, but this does not provide independent degrees of freedom
that can be used for amplification, as can be seen from the
entanglement structure in Eq. (40).

YASUNORI NOMURA PHYS. REV. D 101, 066024 (2020)

066024-14



is adopted when describing the physics perceived by an
object crossing the horizon. It is the construction that makes
manifest the observables to which the object can apply the
Born rule.
The issue discussed here of selecting appropriate

observables is irrelevant in asymptotically flat or AdS
spacetimes because of the existence of an infinite amount
of degrees of freedom at asymptotic infinity, to which the
information can be amplified. (In fact, one can view an
asymptotically flat spacetime as a proxy of a sufficiently
isolated system, with a physical observer “modeled” by
the soft modes at infinity.) In particular, the standard S-
matrix paradigm does not—because it need not—address
the issue. However, cosmological spacetimes generally
do not have such “infinitely powerful observers,” reflect-
ing the fact that the system is effectively finite. There-
fore, unless we resort to some infinite degrees of
freedom somewhere, discussion about the quantum-to-
classical transition—and hence, the emergence of the

Born rule—cannot be avoided. This indeed seems to be
one of the most fundamental problems in understanding
the world we live in.
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