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Thermal states in some quantum field theories (QFTs) correspond to black holes in asymptotically AdS
spacetime in the AdS=CFT correspondence. We propose a direct procedure to construct holographic
images of the black hole in the bulk from a given response function of the QFT on the boundary. The
response function with respect to an external source corresponds to the asymptotic data of the bulk field
generated by the source on the AdS boundary. According to the wave optics, we can obtain the images from
the bulk field propagating in the bulk spacetime. For a thermal state on two-dimensional sphere dual to
Schwarzschild-AdS4 black hole, we demonstrate that the holographic images gravitationally lensed by the
black hole can be constructed from the response function. In particular, the Einstein rings on the image can
be clearly observed and their radius depends on the total energy of the QFT thermal state. These results are
consistent with the size of the photon sphere of the black hole calculated in geometrical optics. This implies
that, if there exists a dual gravitational picture for a given quantum system, we would be able to probe
existence of the dual black hole by the Einstein rings constructed from observables of the quantum system.
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I. INTRODUCTION

Oneof the definite goals of the research of the holographic
principle, or the AdS=CFT correspondence [1–3], is to find
what class of quantum field theories (QFTs) or quantum
materials possesses their gravity dual. Is there any direct test
for the existence of a gravity dual for a given material?
Among various gravitational physics, one of the

most peculiar astrophysical objects is the black hole.
Gravitational lensing is one of the fundamental phenomena
by strong gravity. Let us consider that there is a light source
behind a gravitational body. When the light source, the
gravitational body, and observers are in alignment, the
observers will see a ring-like image of the light source,
i.e., the so-called Einstein ring. If the gravitational body is a
black hole, some light rays are so strongly bent that they can
go around the black hole many times, and especially infinite
times on the photon sphere. As a result, multiple Einstein
rings corresponding to winding numbers of the light ray
orbits emerge and infinitely concentrate on the photon
sphere. Recently, the Event Horizon Telescope (EHT) [4],
which is an observational project for imaging black holes,
has captured the first image of the supermassive black hole in

M87. (See the left panel of Fig. 1.) The dark area inside the
photon sphere, inwhich light rays have been absorbed by the
black hole, is called black hole shadow [5]. In this paper, we
propose a direct method to check the existence of a gravity
dual from measurements in a given thermal QFT—imaging
the dual black hole as an “Einstein ring.”
We demonstrate explicitly construction of holographic

“images” of the dual black hole from the response function
of the boundary QFT with external sources, as follows. As
the simplest example, we consider a (2þ 1)-dimensional
boundary conformal field theory on a 2-sphere S2 at a finite
temperature, and study a one-point function of a scalar
operator O with its conformal dimension ΔO ¼ 3, under a
time-dependent localized source JO. The gravity dual is a
black hole in the global AdS4 and a probe massless bulk
scalar field in the spacetime. The schematic picture of our
setup is shown in Fig. 2. The source JO, for which we
employ a time-periodic localized Gaussian source with the
frequency ω, amounts to an AdS boundary condition for the
scalar field. Due to the time periodic boundary condition, a
bulk scalar wave is injected into the bulk from the AdS
boundary. The scalar wave propagates inside the black hole
spacetime and reaches other points on the S2 of the AdS
boundary. We measure the local response function
e−iωthOðx⃗Þi which has the information about the bulk
geometry of the black hole spacetime.
Using a wave-optical method, we find a formula which

converts the response function hOðx⃗Þi to the image of the
dual black hole jΨSðx⃗SÞj2 on a virtual screen:
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ΨSðx⃗SÞ ¼
Z
jx⃗j<d

d2xhOðx⃗Þie−iω
f x⃗·x⃗S ; ð1:1Þ

where x⃗ ¼ ðx; yÞ and x⃗S ¼ ðxS; ySÞ are Cartesian-like
coordinates on boundary S2 and the virtual screen, respec-
tively, and we have set the origin of the coordinates to an
observation point. This operation is mathematically a
Fourier transformation of the response function on a small
patch with the radius d around the observation point. Note
that f describes magnification of the image on the screen.
In wave optics, we have virtually used a lens with the focal
length f and the radius d to form the image. The right panel
of Fig. 1 shows a typical image of the AdS black hole
computed from the response function through our method.
The AdS=CFT calculation clearly gives a ring similar to the
observed Einstein ring. Equation (1.1) can be regarded as
the dual quantity of Einstein ring caused by the black hole
in a thermal QFT.
Several criteria for QFTs to have a gravity dual have

been proposed in some previous works. For example, in a
conformal field theory, the existence of a planer expansion

and a large gap in the spectrum of anomalous dimensions
has been conjectured to be the criterion for the existence of
a gravity dual [6]. There is also recent progress on emergent
gravity based on quantum entanglement [7], although the
entanglement entropy itself is not a physical observable.
The strong redshift of the black hole has been also used as
the condition for the existence of gravity dual [8–10]. Our
approach, checking the dual black hole by its image, gives
an alternative. The method is simple and can be applied to
any QFT on a sphere, thus probing efficiently a black hole
of its possible gravity dual. Once we have a strongly
correlated material on S2, we can apply a localized external
source such as electromagnetic waves and measure its
response in principle. Then, from Eq. (1.1), we would be
able to construct the image of the dual black hole if it exists.
The holographic image of black holes in a material, if
observed by a tabletop experiment, may serve as a novel
entrance to the world of quantum gravity.
The organization of this paper is as follows. In Sec. II,

we review how to obtain the response function under a
source in AdS=CFT, from a scalar field dynamics in
Schwarzschild-AdS geometry, and describe our time-oscil-
latory source in the boundary QFT. In Sec. III, we review
image formation in wave optics. This leads us to our main
formula for the dual quantity of the Einstein ring (1.1). In
Sec. IV, we discuss null geodesics in the Schwarzschild-
AdS on the basis of geometrical optics so that we will gain
intuitive insight into our holographic images. Then in
Sec. V, we provide our concrete images for the AdS black
holes seen from the QFTwith the formula (1.1). They show
clear holographic images of black holes as well as the
Einstein rings. In Sec. VI, we evaluate the Einstein radius
(the size of the rings) in the images, and provide its
consistent understanding by geodesics. Then in Sec. VII,
we provide analytic examples of the pure AdS4 and the
BTZ black hole, for a comparison. In Sec. VIII, we describe
the image of the Einstein ring from holography in terms of
the retarded Green function. We see that quasinormal mode

FIG. 1. (Left) Image of the black hole in M87 (This figure is taken from Ref. [4].) (Right) Image of the AdS black hole constructed
from the response function.

FIG. 2. Our setup for imaging a dual black hole, the Schwarzs-
child-AdS4 spacetime. An oscillating Gaussian source JO is
applied at a point on the AdS boundary. Its response hOðxÞi is
observed at another point on the boundary.
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frequencies in the gravity side give major contribution for the
formation of the Einstein ring. Finally, Sec. IX is for our
conclusion and discussions. Appendix A describes detailed
numerical evaluation of solutions of the scalar field in the
bulk. Appendix B is for the validity of the approximation of
the geometric optics used in Sec. IV.
This article is an expanded version of our paper “Einstein

Ring in Holography” [11]. Some of the figures are reused
from this paper.

II. SCALAR FIELD IN SCHWARZSCHILD-ADS4
SPACETIME

We consider Schwarzschild-AdS4 (Sch-AdS4) with the
spherical horizon:

ds2 ¼ −FðrÞdt2 þ dr2

FðrÞ þ r2ðdθ2 þ sin2θdφ2Þ;

FðrÞ ¼ r2

R2
þ 1 −

2GM
r

; ð2:1Þ

where R is the AdS curvature radius (i.e., a negative
cosmological constant Λ ¼ −3=R2) and G is the Newton
constant. Since this is a black hole solution in the global
AdS4, we consider a CFTonRt × S2 as the dual field theory.
The event horizon is located at r ¼ rh defined byFðrhÞ ¼ 0.1

Using the horizon radius, the mass M is written as

M ¼ rhðr2h þ R2Þ
GR2

: ð2:2Þ

This corresponds to the total energy of the dual CFT. In
what follows, for simplicity and without loss of generality
we take the unit of R ¼ 1.
We focus on dynamics of a massless scalar field in the

Sch-AdS4. The Klein-Gordon equation for the massless
scalar field, □Φðt; r; θ;φÞ ¼ 0, is written as

−
1

F
∂2
tΦþ F∂2

rΦþ ðr2FÞ0
r2

∂rΦþ 1

r2
D2Φ ¼ 0; ð2:3Þ

where the prime denotes r-derivative and D2 is the scalar
Laplacian on unit S2.
Near the AdS boundary (r ¼ ∞), the asymptotic sol-

ution of the scalar field becomes

Φðt; r; θ;φÞ ¼ JOðt; θ;φÞ −
1

2r2
ð∂2

t −D2ÞJOðt; θ;φÞ

þ hOðt; θ;φÞi
r3

þ � � � : ð2:4Þ

In the asymptotic expansion, we have two independent
functions, JO and hOi, which depend on boundary coor-
dinates ðt; θ;φÞ. According to the AdS=CFT dictionary, the
leading term JO and the subleading term hOi correspond to
the external scalar source and its response function in the
dual CFT, respectively [13].
We consider that an axisymmetric and monochromati-

cally oscillating Gaussian source is localized at the south
pole (θ ¼ π) of the boundary S2:

JOðt; θ;φÞ ¼ e−iωtgðθÞ;

gðθÞ ¼ 1

2πσ2
exp

�
−
ðπ − θÞ2
2σ2

�
: ð2:5Þ

Note that we will ignore a tiny value of the Gaussian tail at
the north pole because we suppose σ ≪ π. In the bulk point
of view, this source JO determines the boundary condition of
the scalar field at the AdS boundary. We also impose the
ingoing boundary condition on the horizon of the Sch-AdS4.
A schematic picture of our setup is shown in Fig. 2. The
scalar wave generated at the south pole of the AdS boundary
propagates inside the bulk black hole spacetime and reaches
the other points at the AdS boundary. Imposing these
boundary conditions, we solve Eq. (2.3) numerically and
determine the solution of the scalar field in the bulk. We
summarize the detailed method to solve the Klein-Gordon
equation in Appendix A. We read off the response from the
coefficient of 1=r3 in Eq. (2.4). Because of the properties of
the source (2.5), the response function does not depend on φ
and its time dependence is just given by e−iωt. Hence, we can
write the response function as

hOðt; θ;φÞi ¼ e−iωthOðθÞi: ð2:6Þ
As an example, Fig. 3 shows the absolute square of the
response function for rh ¼ 0.3, ω ¼ 20 and σ ¼ 0.2.

FIG. 3. Absolute square of the response for rh ¼ 0.3, ω ¼ 20
and σ ¼ 0.2.

1Although the Sch-AdS4 with rh ≲ R is unstable in the
canonical ensemble, it can be stable in the microcanonical
ensemble [12]. We will consider black holes with rh ≲ R as
well as those with rh ≳ R in this paper.
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From this response function itself, we cannot directly find
“black-holelike images” as we desired. We have observed
only the interference pattern resulting from the diffraction of
the scalar wave by the black hole. In order to obtain images,
we need to look at the response function through a certain
kind of optical systemwith a convex lens aswewill see in the
next section.

III. IMAGE FORMATION IN WAVE OPTICS

We introduce an optical system consisting of a convex
lens and a spherical screen so that we will construct images
of the black hole from the response function on the basis of
the wave optics [14]. (See also Refs. [15–17].) What role
the convex lens plays in the wave optics is as follows.
The lens is regarded as a “converter” between plane and
spherical waves as in Fig. 4(a). The lens with focal length f
is located at z ¼ 0 and its focus is at z ¼ �f. We assume
that the size of the lens is much smaller than the focal length
f and the lens is infinitely thin. Imagine that a plane wave is
irradiated to the lens from the left hand side as shown in the
figure. Such a plane wave is converted into (a part of)
spherical wave and it converges at the focus located at
z ¼ f. Inversely, if we consider a spherical wave emitted
from the focus, it should be converted into the plane wave
in z < 0. Let Ψ and ΨT denote the incident wave and the
transmitted wave, respectively. Then, mathematically, the
role of the convex lens for the wave functions with
frequency ω on the lens can be simply expressed as

ΨTðx⃗Þ ¼ e−iω
jx⃗j2
2f Ψðx⃗Þ; ð3:1Þ

where x⃗ ¼ ðx; yÞ are coordinates on the lens located at
z ¼ 0. For example, an incident plane wave propagating
along z-axis is written as Ψðx⃗Þ ¼ 1 on the lens, whose
phase does not depend on x⃗. Then, from Eq. (3.1), the
transmitted wave becomes ΨTðx⃗Þ ¼ expð−iωjx⃗j2=2fÞ≃
exp½−iω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 þ jx⃗j2

p
þ iωf�. This phase dependence

describes that of the spherical wave converging on the
focus at z ¼ f in the Fresnel approximation (jx⃗j ≪ f).
Let us consider a spherical screen located at ðx; y; zÞ ¼

ðxS; yS; zSÞ with x2S þ y2S þ z2S ¼ f2. The transmitted wave
converted by the lens is focusing and imaging on this
screen. When the transmitted wave on the lens isΨTðx⃗Þ, the
wave function on the screen is given by

ΨSðx⃗SÞ ¼
Z
jx⃗j≤d

d2xΨTðx⃗ÞeiωL: ð3:2Þ

where d is the radius of the lens and L is the distance
between ðx; y; 0Þ on the lens and ðxS; yS; zSÞ on the screen:

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxS − xÞ2 þ ðyS − yÞ2 þ z2S

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 − 2x⃗S · x⃗þ jx⃗j2

q
≃ f −

x⃗S · x⃗
f

þ jx⃗j2
2f

; ð3:3Þ

where x⃗S ¼ ðxS; ySÞ. Substituting Eqs. (3.1) and (3.3) into
Eq. (3.2), we obtain

ΨSðx⃗SÞ ∝
Z
jx⃗j<d

d2xΨðx⃗Þe−iω
f x⃗·x⃗S : ð3:4Þ

This implies that the image on the screen can be obtained
by the Fourier transformation of the incident wave within a
finite domain of the lens. Equation (3.4) motivates us to
regard the observable defined in (1.1) as the dual quantity
of the Einstein ring.

IV. NULL GEODESICS: GEOMETRICAL OPTICS

To help intuitive understanding of the image of the AdS
black hole which will be shown in the following sections,
we consider null geodesics in the Sch-AdS4 (that is,
geometrical optics) in this section. In Appendix B, we
derive the geodesic equation from the Klein-Gordon
equation and examine the validity of the eikonal approxi-
mation in asymptotically AdS spacetimes.

(a) (b)

FIG. 4. (a) The lens converts plane waves into spherical waves and vice versa. (b) The screen is located at
fðxS; yS; zSÞjx2S þ y2S þ z2S ¼ f2g.
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It is well known that in the spherically symmetric
spacetime an orbit of geodesics lies in a plane passing
through the center of the black hole. Therefore, we can
always rotate an orbital plane of the null geodesic to
coincide with the equatorial plane, without loss of general-
ity. In this section, for simplicity, we will study null
geodesics on the equatorial plane (θ ¼ π=2). Then, the
conserved energy and angular momentum are written as

ω ¼ FðrÞ_t; l ¼ r2 _φ; ð4:1Þ

where · ¼ d=dλ and λ is an affine parameter. From the null
condition, we have

_r2 ¼ ω2 − l2vðrÞ; vðrÞ≡ FðrÞ
r2

: ð4:2Þ

We note that, since affine parameters of null geodesics can
be rescaled by a constant factor, the null orbits depend only

on the ratio of the conserved quantities, l=ω. The effective
potential vðrÞ has a maximum value:

vmax ¼
ð3r2h þ 4Þð3r2h þ 1Þ2

27r2hðr2h þ 1Þ2 ; ð4:3Þ

at r ¼ rmax ≡ 3rhðr2h þ 1Þ=2. The maximum of the effec-
tive potential corresponds to the photon sphere, i.e., the
unstable circular orbit of null geodesics. The schematic
functional profile of the effective potential vðrÞ is shown in
Fig. 5. We are now interested in null orbits between two
points on the AdS boundary. An observer is located at one
point and a light source is at the other point. Then, we have
to tune the parameters so that 1 < ω2=l2 < vmax is sat-
isfied. When ω2=l2 is close to (but less than) vmax, the
geodesic goes through the vicinity of the photon sphere and
can wind around the black hole. Consequently, there exist
infinite geodesics labeled by the winding number, Nw,
which connect fixed two points on the AdS boundary, and
in the vicinity of the photon sphere infinitely many orbits
accumulate. Figure 6 shows some geodesics stretched
between antipodal points on the AdS boundary for
rh ¼ 0.3. In particular, for the geodesic with Nw ¼ ∞
(i.e., geodesic from the photon sphere), the angular
momentum per unit energy becomes

�
l
ω

�
photon sphere

¼ 1ffiffiffiffiffiffiffiffiffi
vmax

p ¼ rhðr2hþ1Þ
ðr2hþ1=3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2hþ4=3

p : ð4:4Þ

We can naturally define the angle of incidence of
the null geodesic to the AdS boundary by cosϑi ≡
gijuinj=ðjujjnjÞjr¼∞, where ui is the spatial component
of the 4-velocity of the geodesic, ni is the normal vector to
the AdS boundary and gij is the induced metric on the
t ¼ const surface. (juj and jnj are the norms of ui and ni

with respect to gij.) Using Eqs. (4.1) and (4.2), we can
explicitly calculate the angle of incidence as

FIG. 5. Typical profile of the effective potential. For
1 < ω2=l2 < vmax, the orbit of null geodesics can go between
two points on the AdS boundary (r ¼ ∞).

(a) (b) (c)

FIG. 6. Null geodesics between φ ¼ 0 and π for winding number Nw ¼ 0, 1, 2. The horizon radius of the Sch-AdS4 is fixed as
rh ¼ 0.3. ϑi denotes the angle of incidence to the AdS boundary.
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sinϑi ¼
l
ω
: ð4:5Þ

Combining Eqs. (4.4) and (4.5), we can determine the angle
of incidence of the null geodesic from the photon sphere as a
function of the horizon radius rh. In the geometrical optics,
this angle ϑi gives the angular distance of the image of the
incident ray from the zenith if an observer on the AdS
boundary looks up into theAdS bulk. If two endpoints of the
geodesic and the center of the black hole are in alignment,
the observer sees a ring imagewith a radius corresponding to
the incident angle ϑi because of axisymmetry.

V. IMAGING AdS BLACK HOLES

Figure 7 shows our procedure to obtain the image of AdS
black hole. The sphere of the AdS boundary is depicted at
the left side of the figure. We show the absolute square of
the response function hOðθÞi on the sphere as the color
map. The brightest point is the north pole, i.e., the antipodal
point of the Gaussian source. The response function has the
interference pattern caused by the diffraction of the wave by
the black hole. We now define an “observation point” at
ðθ;φÞ ¼ ðθobs; 0Þ on the AdS boundary, where an observer
looks up into the AdS bulk.
To make an optical system, we virtually consider the flat

3-dimensional space ðx; y; zÞ as shown in the right side of
Fig. 7. We set the convex lens on the ðx; yÞ-plane. The focal
length and radius of the lens will be denoted by f and d. We
also prepare the spherical screen at ðx; y; zÞ ¼ ðxS; yS; zSÞ
with x2S þ y2S þ z2S ¼ f2. We copy the response function
around the observation point as the wave function on the
lens and observe its image.
We map the response function defined on S2 onto the lens

as follows. We introduce new polar coordinates ðθ0;φ0Þ as

sin θ0 cosφ0 þ i cos θ0 ¼ eiθobsðsin θ cosφþ i cos θÞ; ð5:1Þ

such that the direction of the north pole is rotated to align
with the observation point: θ0 ¼ 0 ⇔ ðθ;φÞ ¼ ðθobs; 0Þ.

Then, we define Cartesian coordinates as ðx; yÞ ¼
ðθ0 cosφ0; θ0 sinφ0Þ on the AdS boundary S2. In this
coordinate system, we regard the response function around
the observation point as the wave function on the lens:
Ψðx⃗Þ ¼ hOðθÞi. The image on the screen can be obtained
by Eq. (1.1): We perform the Fourier transformation within
a finite domain on the lens, that is, applying an appropriate
window function.
We now summarize our results on image formations of

Sch-AdS black holes. Figure 8 shows images of the black
hole observed at various observation points: θobs ¼ 0°, 30°,
60°, 90°. The horizon radius is varied as rh ¼ 0.6, 0.3, 0.1.
We fix other parameters as ω ¼ 80, σ ¼ 0.01 and d ¼ 0.5.
For θobs ¼ 0°, a clear ring is observed. As we will see for
details in the next section, this ring corresponds to the light
rays from the vicinity of the photon sphere of the Sch-
AdS4. Not only the brightest ring, we can also see some
concentric striped patterns. They are caused by a diffraction
effect with imaging, which is not directly related to
properties of the black hole, because we find these patterns
change depending on the lens radius d and frequency ω. As
we change the angle of the observer, the ring is deformed.
We observed similar images as those for asymptotically flat
black hole [15–17]. In particular, at θobs ∼ 90°, we can
observe double image of the point source. They correspond
to light rays which are clockwise and anticlockwise wind-
ing around the black hole on the plane of φ ¼ 0, π. The size
of the ring becomes bigger as the horizon radius grows.
Figure 9 shows the image of the Sch-AdS black hole for

relatively small frequency, ω ¼ 10, 20, 30. Other param-
eters are fixed as rh ¼ 0.3, θobs ¼ 0, σ ¼ 0.01 and d ¼ 0.5.
For ω ¼ 20, 30, we can only see the blurred ring because
the wave effect is not negligible. For ω ¼ 10, the ring
disappears. In the geometric optics, we can only see the
outside of the photon sphere. In the wave optics, however,
we have a chance to probe the region between photon
sphere and event horizon due to some wave effects. Do
these images change if we modify the metric inside the
photon sphere? This is one of the interesting directions as a
future work.

FIG. 7. How to construct the image of the AdS black hole.

HASHIMOTO, KINOSHITA, and MURATA PHYS. REV. D 101, 066018 (2020)

066018-6



VI. EINSTEIN RADIUS

To study the property of the brightest ring, we set the
observation point at θobs ¼ 0 and search xS ¼ xring at which
jΨSðx⃗SÞj2 has maximum value. (Since the image has the

rotational symmetry in ðxS; ySÞ-plane for θobs ¼ 0, we only
focus on the xS-axis in this section.) We will refer to the
angle of the Einstein ring θring ¼ sin−1ðxring=fÞ as the
Einstein radius. Figure 10 shows the Einstein radius θring by

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIG. 8. Image of the Sch-AdS black hole for ω ¼ 80, σ ¼ 0.01, and d ¼ 0.5. The horizon radius and the observation point are varied
as rh ¼ 0.6, 0.3, 0.1 and θobs ¼ 0°, 30°, 60°, 90°.

(a) ω = 10 (b) ω = 20 (c) ω = 30

FIG. 9. Frequency dependence of the image of the Sch-AdS black hole for rh ¼ 0.3, θobs ¼ 0, σ ¼ 0.01, and d ¼ 0.5. The frequency is
varied as ω ¼ 10, 20, 30.
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the purple points varying the horizon radius rh. Note that
the horizon radius relates to the total energy of the system
by Eq. (2.2). Although the Einstein radius fluctuates as the
function of rh, it has an increasing trend as rh is enlarged.
As we have seen in the geodesic analysis, there is an

infinite number of geodesics connecting antipodal points
on the AdS boundary, which are labeled by the winding
number Nw. Which geodesic in the geometrical optics
corresponds to the ring found in the image in the wave
optics? From the analysis of null geodesics, the (specific)
angular momentum of the null geodesic provides the
angle of incidence ϑi to the AdS boundary as shown in
Eq. (4.5). In the wave optics, the null geodesic with angular
momentum l should be a wave packet realized by the
superposition of the spherical harmonics Yl00ðθÞ with l −
Δl ≤ l0 ≤ lþ Δl (Δl ≪ l). For a sufficiently large l,
the spherical harmonics behaves as Yl0 ∼ eilθ. Applying
the Fourier transformation (3.4) onto the spherical har-
monics, we have a peak in the image at xS=f ≃ l=ω. Thus,
the angular distance of the image on the screen,
sin−1ðxS=fÞ, coincides with the angle of incidence of the
null geodesic to the AdS boundary, ϑi ¼ sin−1ðl=ωÞ.
Since we found that the angular momentum of the null

geodesics from the photon sphere is given by Eq. (4.4), they
are expected to form the ring at θring ¼ sin−1ðl=ωÞ ¼
sin−1ð1= ffiffiffiffiffiffiffiffiffi

vmax
p Þ. The Einstein radius calculated from geo-

desic analysis is shown by the green curve in Fig. 10. The
curve seems to be consistent with the Einstein radius of the
image constructed from the response function in the wave
optics. This indicates that the major contribution to the
brightest ring in the image is originated by the “light rays“
from the vicinity of the photon sphere, which are infinitely
accumulated. Although there are expected to be multiple
Einstein rings corresponding to light lays with winding
numbers Nw ¼ 0; 1; 2;…, the contribution for the image

from smallNw may be so small that we cannot resolve them
within our numerical accuracy.
The deviation of the Einstein radius θringðrhÞ from the

geodesic prediction can be considered as some wave
effects. In the AdS cases, whether the geometrical optics
can adapt to imaging of black holes is not so trivial even for
a large value of ω. As studied in Appendix B, the eikonal
approximation, which supports the geometrical optics, will
inevitably break down near the AdS boundary, while we
have given the source JO and read the response hOi on the
AdS boundary. Our results based on the wave optics imply
that the geometrical optics is qualitatively valid but gives a
non-negligible deviation even for a large ω.

VII. ANALYTIC EXAMPLES OF THE IMAGES

To illustrate our methods, in this section we provide
examples in which images are obtained analytically. The
first example is a (2þ 1)-dimensional CFT on a sphere at
zero temperature, which is dual to the pure AdS4 geometry.
The second example is a (1þ 1)-dimensional CFT on a
circle at a finite temperature, which is dual to the BTZ
black hole.

A. Imaging AdS4

In the absence of the black hole horizon, there should not
be holographic images of the black hole. To demonstrate it,
here we study the case of pure AdS geometry. It is a gravity
dual of a CFT at zero temperature, and we have an analytic
expression for the response function.
For the pure AdS4 (rh ¼ 0), we can solve the scalar field

equation analytically as

ϕl ¼ 2Γðlþωþ3
2

ÞΓðl−ωþ3
2

Þffiffiffi
π

p
Γðlþ 3

2
Þ

�
r2

1þ r2

�
l=2

× F

�
lþ ω

2
;
l − ω

2
;lþ 3

2
;

r2

1þ r2

�
: ð7:1Þ

Its asymptotic behavior is

ϕl ¼ 1þ ω2 − lðlþ 1Þ
2r2

þ 8Γðlþωþ3
2

ÞΓðl−ωþ3
2

Þ
3Γðlþω

2
ÞΓðl−ω

2
Þ

1

r3
þ � � � : ð7:2Þ

Therefore, the response function is given by

hOðθÞi ¼
X
l

8Γðlþωþ3
2

ÞΓðl−ωþ3
2

Þ
3Γðlþω

2
ÞΓðl−ω

2
Þ clYl0ðθÞ; ð7:3Þ

where cl ¼ R
dθdφ sin θgðθÞYl0ðθÞ whose explicit expres-

sion is in Eq. (A12). The response diverges for ω ¼
lþ 2nþ 3 (n ¼ 0; 1; 2;…). This corresponds to the
normal modes of the pure AdS4. Applying the Fourier

FIG. 10. The Einstein radius θring as a function of the horizon
radius rh. The green curve expresses the Einstein radius of the
photon sphere, which is obtained by the geodesic approximation.
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transformation (1.1) onto Eq. (7.3), we obtain the image of
the pure AdS4 as in Fig. 11. For θobs ¼ 0°, we can observe
the bright spot at the center. This corresponds to the
“straight” null geodesic from the south pole θ ¼ π to the
north pole θ ¼ 0. This indicates that there is no black hole
shadow in pure AdS4 as expected.
Note that there exists a ring in addition to the bright

center. The angle seems θring ¼ π=2. What is the origin of
the ring in the pure AdS? For rh ¼ 0, the effective potential
for null geodesics is simply given by vðrÞ ¼ 1þ 1=r2.
This effective potential has the “maximum” at r ¼ ∞.
Therefore, if we tune the angular momentum per unit
energy as l=ω ¼ 1, we can realize the null geodesic
propagating along the AdS boundary (r ¼ ∞). As shown
in (4.5) in Sec. VI, the incident angle ϑi ¼ π=2 given by
l=ω ¼ 1 corresponds to θring ¼ π=2. The ring found in
Fig. 11 would be originate from the null lay along the AdS
boundary. Even for the Sch-AdS4 spacetime, there should
be null geodesics along the AdS boundary. However, the
ring formed by such geodesics is much weaker than the ring
by the photon sphere.

B. Imaging BTZ black holes

Another analytic example of the image is the (1þ 1)-
dimensional CFTat a finite temperature. As its gravity dual,
we consider the BTZ black hole:

ds2 ¼ −ðr2 − r2hÞdt2 þ
dr2

r2 − r2h
þ r2dφ2: ð7:4Þ

This spacetime is locally AdS and the Klein-Gordon
equation □Φ ¼ 0 can be analytically solved as [18]

ϕm ¼ Γðaþ 1ÞΓðbþ 1Þ
Γðaþ bþ 1Þ x−

iω
2rhFða; b; 1þ aþ b; xÞ; ð7:5Þ

where we decompose the scalar field as Φ¼e−iωtþmφϕmðrÞ
and define

x¼ 1−
r2h
r2
; a¼−

iðωþmÞ
2rh

; b¼−
iðω−mÞ

2rh
: ð7:6Þ

This solution satisfies ingoing boundary condition at the
horizon. The asymptotic form of the solution near the AdS
boundary is given by

ϕm ¼ 1þ
�
iω
2rh

þ abfψðaþ 1Þ þ ψðbþ 1Þg
�
ϵ

þ abϵ lnðe2γ−1ϵÞ þOðϵ2 ln ϵÞ; ð7:7Þ

where ϵ ¼ 1 − x ¼ r2h=r
2, γ is the Euler’s constant

and ψðxÞ ¼ Γ0ðxÞ=ΓðxÞ is the polygamma function. We
consider the time-periodic Gaussian source around φ ¼ π
as Φjr¼∞ ¼ e−iωtgðφÞ where g is the Gaussian function
introduced in Eq. (2.5). Then, the response function
becomes

hOðφÞi ¼
X
m

hOmicmeimφ;

hOmi≡
�
iω
2rh

þ abfψðaþ 1Þ þ ψðbþ 1Þg
�
r2h; ð7:8Þ

where cm¼ð2πÞ−1=2R dφgðφÞeimφ≃ð−1Þme−σ2m2=2. Setting
observation point at φ ¼ 0, we can obtain the image of the
BTZ black hole as

ΨSðxSÞ ¼
Z

d

−d
dφhOðφÞie−iωφxS=f

¼ 2d
X
m

hOmicm
sin½dðm − ωxS=fÞ�
dðm − ωxS=fÞ

: ð7:9Þ

Figure 12 shows jΨSj2 for rh ¼ 0.3, 0.6, 0.9, 1.2. We can
always find peaks at xS=f ¼ 1 regardless of the horizon
radius. Corresponding angle is θring ¼ π=2. The effective
potential for null geodesics in the BTZ spacetime is given
by vðrÞ ¼ 1 − r2h=r

2. This implies that all null geodesics
with ω2=l2 > 1 fall into the black hole. However, like as
the pure AdS case, if we tune the angular momentum per
unit energy as l=ω ¼ 1, we can realize the null geodesic
propagating along the AdS boundary. The ring found in the
image of the BTZ would originate from the null geodesic
on the boundary. Therefore, the “ring” found in the image

(a) (b) (c) (d)

FIG. 11. Image of the pure AdS4 (rh ¼ 0) for ω ¼ 80.5, σ ¼ 0.01, and d ¼ 0.5. The observation point are varied as θobs ¼ 0°, 30°,
60°, 90°.

IMAGING BLACK HOLES THROUGH THE AdS/CFT … PHYS. REV. D 101, 066018 (2020)

066018-9



of BTZ does not have much information about the black
hole spacetime. However, the dual gravitational theory does
not need to be pure Einstein in general. For example, it has
been conjectured that the dual gravitational theory for a
high Tc superconductor is given by Einstein-Maxwell-
charged scalar system [19–21]. Also, there can be a higher
derivative corrections if we take into account the quantum
gravity effect. Then, the dual black hole space time will
deviate from BTZ and we would be able to observe images
of black holes even for (1þ 1)-dimensional materials.

VIII. EINSTEIN RING FROM RETARDED
GREEN FUNCTION

We have been constructing the images of the AdS black
hole from the response functions in the previous sections.
Since the response function is closely related to the retarded
Green function, in this section we reinterpret the image of
the Einstein ring from holography in terms of the retarded
Green function. We demonstrate that poles of the Green
function, which correspond to quasinormal mode (QNM)
frequencies on the AdS black hole in the gravity side, give
major contribution for the formation of the Einstein ring.
We also estimate the “Einstein radius” for weakly coupled
quantum field theories which unlikely have their gravity
duals. We find that the temperature dependence of the
Einstein radius of weakly coupled theories is suppressed
and gives qualitative difference with theories which have
their gravitational duals.
The linear response hOi with respect to the external

source JO on unit S2 is written as

hOðt;θÞi¼−2π
Z

dt0dθ0sinθ0Gðt;t0;θ;θ0ÞJOðt0;θ0Þ; ð8:1Þ

where we have assumed that the source JO is axisymmetric.
We introduce the retarded Green functionGðt; t0; θ; θ0Þ. It is
well known that the Green function is given by the real time
correlation function as

Gðt; t0; θ; θ0Þ ¼ −iΘðt − t0Þh½Oðt; θÞ;Oðt0; θ0Þ�i; ð8:2Þ

where Θðt − t0Þ is the step function and h� � �i is the
ensemble average with the equilibrium density matrix.
(For example, see Ref. [22] for the derivation.) Let us
suppose that the source JO is monochromatic with a
frequency ω. The Green function and the source can be
expanded in terms of Fourier modes and spherical har-
monics YlðθÞ≡ Ylm¼0ðθÞ as

Gðt; t0; θ; θ0Þ

¼
X
l

Z
dω0

2π
e−iω

0ðt−t0ÞGlðωÞYlðθÞYlðθ0Þ; ð8:3Þ

JOðt0; θ0Þ ¼ e−iωt
0X

l

JlYlðθ0Þ: ð8:4Þ

Thus, we can rewrite the response function (8.1) as

hOðt; θÞi ¼ −e−iωt
X
l

GlðωÞJlYlðθÞ: ð8:5Þ

For simplicity, we set the observation point at the north
pole: θobs ¼ 0, which is the antipodal point of the external
source localized at θ ¼ π. From the formula (1.1) that we
have proposed, the image of the Einstein ring on the virtual
screen is given by

ΨSðt;θSÞ¼
Z

2π

0

dφ
Z

d

0

dθ sinθhOðt;θÞiexp
�
−
iω
f
x⃗ · x⃗S

�
;

ð8:6Þ

where d is the radius of the lens and we assume d ≪ 1 in
the unit of the radius of S2. We have introduced polar
coordinates on the boundary S2 and the screen as

x⃗ ¼ sin θðcosφ; sinφÞ;
x⃗S ¼ f sin θSðcosφS; sinφSÞ: ð8:7Þ

Note that the formula (8.6) means the Fourier transform of
the response function multiplied by a window function
which is nonzero only within a small finite region on S2.
Now, we will rephrase the formula in terms of the

retarded Green function. We perform the integration with
respect to φ by using x⃗ · x⃗S ¼ f sin θ sin θS cosðφ − φSÞ,
and plug Eq. (8.5) into Eq. (8.6). As a result, we obtain

ΨSðt; x⃗SÞ ¼ 2π

Z
d

0

dθ sin θhOðt; θÞiJ 0ðω sin θS sin θÞ

¼ −2πe−iωt
X
l

GlðωÞJl
Z

d

0

dθ sin θYlðθÞ

× J 0ðω sin θS sin θÞ; ð8:8Þ

FIG. 12. Image of BTZ black holes with rh ¼ 0.3, 0.6, 0.9, 1.2.
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where J nðxÞ is the Bessel function of the first kind, which
comes from the φ-integration. For θ ≤ d ≪ 1, the spherical
harmonics can be approximated by the Bessel function as

YlðθÞ ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1=2

2π

r
J 0ððlþ 1=2ÞθÞ: ð8:9Þ

Using the above expression and replacing sin θ ≃ θ in
Eq. (8.8), we can explicitly perform the θ-integration
and obtain

ΨSðt; x⃗SÞ ≃ −
ffiffiffiffiffiffi
2π

p
d2e−iωt

X
l

ðlþ 1=2Þ1=2GlðωÞ

× JlΔððlþ 1=2Þd;ω sin θSdÞ; ð8:10Þ

where we have defined

Δðx; yÞ≡ xJ 1ðxÞJ 0ðyÞ − yJ 1ðyÞJ 0ðxÞ
x2 − y2

: ð8:11Þ

The function Δðx; yÞ has the highest peak with width ∼π at
x ¼ y and is damping as jx − yj becomes large. If ωd ≫ 1,
Δððlþ 1=2Þd;ω sin θSdÞ in Eq. (8.10) has greater values
around jl=ω − sin θSj≲ π=ωd ≪ 1. Thus, we can even-
tually evaluate

ΨSðt; x⃗SÞ ∝ e−iωtGlðωÞJljl¼ω sin θS : ð8:12Þ

Formally, Eq. (8.10) means that the image on the virtual
screen corresponds to convolution of the Green function
and the window function in wave-number space l.
Therefore, it turns out that the image resolution is charac-
terized by the window function as Δl=ω ≃ ΔθS ≃ π=ωd.
In the view of the gravity side, poles of the retarded

Green function in the frequency domain correspond to
QNM frequencies, ω ¼ Ωn

l ∈ C, where n ¼ 0; 1; 2;…
represent overtone numbers. We can expect that jΨSj2
has a large value when the frequency of the given mono-
chromatic source, ω, is close to the position of a QNM
frequency in the complex ω-plane, so that the Einstein ring
is formed on the screen. In other words, the condition for
the Einstein radius θS ¼ θring is written as

ω ≃ ReΩn
l¼ω sin θring

; ð8:13Þ

for an overtone number n.
The field equation of the massless scalar field,

Φðt; r; θ;φÞ≡ e−iωt
P

l YlðθÞψlðrÞ=r, is given by
�
−

d2

dr2�
þ lðlþ 1ÞvðrÞ þ FðrÞF0ðrÞ

r

�
ψlðrÞ ¼ ω2ψlðrÞ;

ð8:14Þ
where vðrÞ is the effective potential for null geodesics
defined in Eq. (4.2) and we have introduced the tortoise

coordinate dr� ¼ dr=FðrÞ. According to the Wentzel-
Kramers-Brillouin (WKB) analysis [23], QNMs are char-
acterized by the behavior of the effective potential around
an extremum. In the eikonal limit ω ≃ l ≫ 1, the local
maximum of a part of the potential vðrÞ plays a significant
role and is given by Eq. (4.3). As a result, the QNMs that
originate from this local maximum are described by

ReΩn
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þvmax − α2

q
;

ImΩn
l ¼ α

�
kðnÞ þ 1

2

�
; ð8:15Þ

where α≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðd2v=dr2�Þ=ð2vÞ

p
jr¼rmax

and kðnÞ is a real
number of Oð1Þ. Even though this expression of the QNM
frequencies is derived for asymptotically flat spacetime,
this is still valid for asymptotically AdS case since the
QNM is highly oscillating as a function of r� for ω, l ≫ 1
and can be easily connect to the desired solution near the
AdS boundary. (For detailed WKB analysis in asymptoti-
cally AdS spacetimes, see Refs. [24–27].) For l ≫ 1, we
have ReΩn

l ≃ l
ffiffiffiffiffiffiffiffiffi
vmax

p
and Eq. (8.13) gives

sin θring ≃
1ffiffiffiffiffiffiffiffiffi
vmax

p : ð8:16Þ

This is consistent with our direct numerical calculations.
The retarded Green function GlðωÞ is a well-studied

quantity in quantum field theories. For example, the Green
function of a weakly coupled ϕ4 theory with mass m and
coupling λ is given by

GlðωÞ ¼
1

−ω2 þ lðlþ 1Þ þm2
T
; ð8:17Þ

where mT ¼ m2 þOðλT2Þ is the effective mass with the
thermal effect. Then, the Einstein radius for weakly
coupled theory is given by sin2 θring ¼ 1 −m2

T=ω
2. It does

not depend on the temperature for a sufficiently large ω and
gives θring ≃ π=2. This suggests that, from the temperature
dependence of the Einstein ring, we can diagnose if a given
quantum field theory has its gravity dual.

IX. CONCLUSION AND DISCUSSION

We have studied how we can construct the holographic
image of the AdS black hole using observables in its dual
field theory. We have considered a thermal CFT with a
scalar operator, which corresponds in the AdS=CFT to the
massless scalar field in Sch-AdS4 spacetime with a spheri-
cal horizon. We have put a time periodic localized source
for the operator and have computed its response function by
the AdS=CFT dictionary. Applying the Fourier transfor-
mation (1.1) onto the response function, we have observed
the Einstein ring as the image of the AdS black hole
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(Fig. 8). The Einstein radius has an increasing trend as a
function of the horizon radius rh. It is also consistent with
the angle of the photon sphere calculated from the geodesic
analysis on the basis of the geometrical optics.
We have shown that, if the dual black hole exists, we can

construct the image of the AdS black hole from the
observable in the thermal QFT. In other words, being able
to observe the image the AdS black hole in the thermal QFT
can be regarded as a necessary condition for the existence
of the dual black hole. Finding conditions for the existence
of the dual gravity picture for a given quantum field theory
is one of the most important problems in the AdS=CFT. We
would be able to use the imaging of the AdS black hole as a
test for it. One of the possible applications is super-
conductors. It is known that some properties of high Tc
superconductors can be captured by the black hole physics
in AdS [19–21]. One of the other interesting applications is
the Bose-Hubbard model. It has been conjectured that the
Bose-Hubbard model at the quantum critical regime has a
gravity dual [28–30]. If we can realize these materials on
S2, they will be appropriate targets for observing AdS black
holes by experiments. Applying localized sources on such
materials and measuring their responses, we would be able
to observe Einstein rings by tabletop experiments.
Can we distinguish the AdS black hole from thermal

AdS by the observation of the Einstein ring? Results in
Section VII A indicate that a “ring” will be also observed
even for the thermal AdS. The angle of the ring is, however,
always fixed at θring ¼ π=2 irrespective of the temperature of
the thermal radiation in the global AdS. This implies that we
would be able to distinguish theAdS black hole from thermal
AdS by the temperature dependence of the Einstein radius.
Finally we make some comments on a relation to black

hole chaos and AdS=CFT correspondence. It has been
suggested [9] that in quantum field theories with their
gravity dual, the quantum Lyapunov exponent λ defined by
out-of-time-ordered correlators saturates the bound λ ≤
2πT where T is the temperature of the system. The
saturation is due to the strong redshift near the horizon
of the black hole in the gravity dual [8]. In our study, the
photon sphere exists due to the strong curvature of the
spacetime near the horizon, and typical time delay is
discretized because the winding number of the null geo-
desics characterizes the observed image of the black hole.
Since the time delay is nothing but the chaotic behavior of
the black hole, we expect some relation between the
frequency ω, temperature T and the integration of the
observed amplitude ΨS. It would be interesting to find a
concrete relation for these quantities, as another check for
the existence of the gravity dual based on the choas, as well
as the direct imaging we proposed in this paper.
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APPENDIX A: DETAIL OF
NUMERICAL CALCULATIONS

The scalar field Φðt; r; θ;φÞ is decomposed as

Φðt; r; θ;φÞ ¼ e−iωt
X∞
l¼0

clϕlðrÞYl0ðθÞ; ðA1Þ

where Yl0ðθÞ is the scalar spherical harmonics with zero
magnetic quantum number (m ¼ 0). Since the boundary
condition (2.5) is axisymmetric, the scalar field can also be
axisymmetric and decomposed only by Yl0ðθÞ. Also the
time dependence of the scalar field can be factorized by
e−iωt because the boundary condition is monochromatic.
For actual computations, it is convenient to introduce the
tortoise coordinate as

r� ¼
Z

r

∞

dr0

Fðr0Þ : ðA2Þ

In terms of the tortoise coordinate, r� ¼ −∞ and 0
correspond to the horizon ðr ¼ rhÞ and AdS boundary
ðr ¼ ∞Þ, respectively. Near the AdS boundary, the relation
between r� and r becomes

r� ¼−
1

r
þ 1

3r3
þO

�
1

r4

�
; r¼−

1

r�
þ r�

3
þOðr2�Þ: ðA3Þ

Substituting Eq. (A1) into Eq. (2.3), we obtain the equation
for ϕl as

�
d2

dr2�
þ 2F

r
d
dr�

þ
�
ω2 −

lðlþ 1ÞF
r2

��
ϕl ¼ 0: ðA4Þ

The asymptotic solution at horizon becomes

ϕl ∼ e−iωr�ðr → rhÞ; ðA5Þ

where we took the ingoing mode. The asymptotic solution
at the AdS boundary is given by

ϕl ¼ p0ð1þ p2r2� þ p4r4� þ p5r5� þ � � �Þ
þ q3ðr3� þ q5r5� þ � � �Þ: ðA6Þ
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where

p2 ¼
1

2
fω2 − lðlþ 1Þg;

p4 ¼
1

24
½−3fω2 − lðlþ 1Þg2 þ 2f4ω2 − lðlþ 1Þg�;

p5 ¼
1

20
rhð1þ r2hÞf3ω2 − lðlþ 1Þg;

q5 ¼
1

10
f−ω2 þ lðlþ 1Þ þ 4g: ðA7Þ

Here, p0 and q3 are not determined by the asymptotic
expansion, which correspond to the source and response.
We numerically integrate Eq. (A4) from horizon to AdS

boundary. From the ingoing condition (A5), we impose the
initial condition at r� ¼ rmin� ≃ −3 as

ϕl ¼ 1;
dϕl

dr�
¼ −iω: ðA8Þ

Solving Eq. (A4) by the 4th order Runge-Kutta method, we
obtain numerical values of ϕ and dϕ=dr� near the AdS
boundary, r� ¼ rmax� ≃ −10−3. From Eq. (A6), we obtain
the boundary value of the scalar field as

p0 ¼
ϕl

1þ p2r2�

����
r�¼rmax�

þOððrmax� Þ3Þ: ðA9Þ

Using the obtained complex asymptotic value p0, we
normalize the numerical solution as

ϕ̄lðrÞ ¼
ϕlðrÞ
p0

: ðA10Þ

This solution satisfies ϕ̄l → 1 (r → ∞). For notational
simplicity, hereafter, we will omit the “bar” of the scalar
field.
To obtain the response q3, we differentiate Eq. (A4) by

r�. Then, dnϕl=rn� (n ¼ 0, 1, 2, 3) appear in the resultant
equation. The second derivative d2ϕl=r2� can be eliminated
by Eq. (A4). As the result, we can compute d3ϕl=r3� from
our numerical data of dϕl=r� and ϕl. From the third order
derivative, we obtain q3 as

q3 ¼
d3ϕl=r3� − 24p4r� − 60p5r2�

6f1þ 10q5r2�g
����
r�¼rmax�

þOððrmax� Þ3Þ: ðA11Þ

For σ ≪ 1, we can decompose the Gaussian source by
the spherical harmonics as

gðθÞ¼
X
l

clYl0ðθÞ;

cl≃ ð−1Þl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ1=2

2π

r
exp

�
−
1

2
ðlþ1=2Þ2σ2

�
: ðA12Þ

Therefore, the response function in θ-space is given by

hOðθÞi ¼ −
X
l

clq3Yl0ðθÞ: ðA13Þ

Substituting this into Eq. (1.1) and performing the 2-
dimensional Fourier transformation, we obtain the images
in Fig. 8.

APPENDIX B: VALIDITY OF GEOMETRICAL
OPTICS APPROXIMATION IN AdS

It is well known that, if we adopt the eikonal approxi-
mation, the massless Klein-Gordon equation yields the
Hamilton-Jacobi equation for null geodesic in general
curved spacetime.
We assume that the scalar field is Φ ¼ aðxμÞeiSðxμÞ and

the gradient of the phase function, ∂μS, has typically the
same scale as frequency ω. Substituting this ansatz into the
field equation and taking ω ≫ 1, we have the eikonal
equation from the leading in ω as

gμν∂μS∂νS ¼ 0: ðB1Þ

This is nothing but the Hamilton-Jacobi equation for
massless particle, where pμ ≡ ∂μS is the 4-momentum.
In fact, differentiating Eq. (B1), we can easily derive null
geodesic equation as

0 ¼ ∇αðgμν∂μS∂νSÞ ¼ 2pμ∇μpα ðB2Þ

together with the null condition gμνpμpν ¼ 0.
For the null geodesic equation, we consider the solution

with the conserved energy and angular momentum given by
(4.1), so that Hamilton’s function is

Sðt; r; θ;φÞ ¼ −ωtþ lφþ
Z

dr
FðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − l2vðrÞ

q
; ðB3Þ

where

∂S
∂t ¼ pt ¼ −ω;

∂S
∂φ ¼ pφ ¼ l;

∂S
∂r ¼ pr ¼

1

FðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − l2vðrÞ

q
: ðB4Þ

Thus, it turns out that the wave front characterized by SðxμÞ
will propagate along trajectories of null geodesics under the
eikonal approximation, that is, the geometrical optics.
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Now, let us deal with the field equation more continu-
ously. We focus on an eigenstate with frequency ω and
angular momentum l. By defining ψ ≡ rϕl, the field
equation (A4) can be rewritten as

�
d2

dr2�
− VðrÞ

�
ψ ¼ 0; ðB5Þ

where the effective potential is

VðrÞ ¼ −ω2 þ lðlþ 1ÞFðrÞ
r2

þ FðrÞF0ðrÞ
r

: ðB6Þ

If jVðrÞj ≫ 1, we obtain the WKB solution

ψ ¼ 1ffiffiffiffiffiffiffipr�
p exp

�
i
Z

r�
dxpr�ðxÞ

�
; ðB7Þ

where

p2
r� ¼ −VðrÞ ðB8Þ

Compared with (B4), we find the following correspondence:

pr� ⇔
∂S
∂r� ¼ FðrÞ ∂S∂r : ðB9Þ

If the condition

ω2;l2 ≫
FðrÞF0ðrÞ

r
ðB10Þ

is satisfied, both the eikonal approximation and the
WKB approximation lead to the same effective potential
and phase function for ω, l ≫ 1. However, since
FðrÞF0ðrÞ=r ≃ 2r2 near the AdS boundary, even for any
large frequencyω the above condition will violate as goes to
the AdS boundary. Roughly speaking, this is because the
gradient of the metric function, ∂rgμν, will be larger than the
frequency due to a so-called AdS potential.
As a result, in order to predict the wave propagation of

the scalar field, inside the AdS bulk including the black
hole we can apply the geometric optics for a sufficiently
large frequency ω. Near the AdS boundary, we should deal
with it in the WKB method together with appropriate
matching procedures.
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