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Holographic surface defects in D=5, N =4 gauged supergravity
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Solutions describing holographic surface defects in D =5, N =4 gauged supergravity theories are
constructed. It is shown that a surface defect solution in pure Romans’s gauged supergravity is singular.
Adding a single vector multiplet allows for the construction of a nonsingular solution. The on-shell action
and one point functions of operators in the presence of the defect are computed using holographic

renormalization.
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I. INTRODUCTION

Holography is a powerful tool for studying quantum
field theories. Using holography, extended defect operators
such as Wilson lines, surface operators, and domain walls
can be studied. In theories with holographic duals, there
are two methods leading to the construction of the duals of
p-dimensional defect operators in d-dimensional con-
formal field theory (CFT). First, one can consider probe
branes embedded in an AdS,; slice of AdS,;; and in
some cases wrapping some other manifold. When the
number of probe branes is small, the backreaction can
be neglected and the probe brane provides a good descrip-
tion of the defect in the dual gauge theory [1,2]. A defect
will preserve some supersymmetry if a x-symmetry pro-
jector for the probe exists in the AdS background [3].

The second method involves searching for supergravity
solutions that are warped products of an AdS,.; factor
(together with other spaces such as spheres) over base spaces
such as a Riemann manifold with boundary. The solutions,
which are often called Janus solutions [4], are locally
asymptotic to AdS,, | and describe a backreacted geometry
dual to a defect. Bogomol'nyi-Prasad-Sommerfield (BPS)
solutions are obtained by imposing the vanishing of the
fermionic supersymmetry transformations in a bosonic
background. These BPS equations are generally easier to
solve than the equations of motion. Some examples of such
solutions are Janus domain wall solutions [5,6], Wilson lines
[7], and surface operators [8] in type IIB supergravity and
Janus solutions in M-theory [9,10].1

'See [11-15] for earlier work on holographic defect solutions.
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The solutions listed above preserve 16 of the original
32 supersymmetries and the large amount of supersymme-
tries allows for the construction of large families of exact
solutions. The possibility of finding holographic duals of
defect operators in supergravity backgrounds which are
dual to less supersymmetric theories is an interesting
question. There are large classes of d =4, N =2 SCFTs
and several constructions of holographic duals (see e.g.,
[8,16,17]). These supergravity solutions are considerably
more complicated than the AdSs x S° dual of N = 4 SYM.
Consequently, the construction of holographic duals for
defects in N = 2 SCFTs in type II or M-theory is challeng-
ing. Instead of considering the full 10- or 11-dimensional
theory, it is simpler to consider a lower dimensional gauged
supergravity and construct defect solutions there. In special
cases, lower dimensional supergravities are consistent
truncations and solutions can be uplifted to the full 10- or
11-dimensional theory. Even if this is not the case, the lower
dimensional theories are still useful for studying general
aspects of the defect solutions and may reveal clues for how
to construct defect solutions in the full theory.

N =4 gauged supergravities in five dimensions have
16 supersymmetries and their AdSs vacua can be used
to describe four-dimensional N =2 SCFTs. The pure
gauged supergravity was constructed in [18,19], whereas
the addition of matter multiplets and general gaugings
were constructed in [20,21]. The AdS5 vacua and moduli
spaces for these theories were analyzed in [22]. Some
recent papers studying solutions in these theories can be
found in [23-27].

In the present paper, we study D =5, N =4 gauged
supergravity solutions which are dual to surface defects in
the N = 2 SCFTs. The structure of the paper is as follows:
In Sec. II, we briefly review the pure D = 5, N = 4 gauged
supergravity of Romans. We consider an ansatz for the
defect solution of the form AdS; x S' warped over an
interval. Such an ansatz can be related to a charged black
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hole by double analytic continuation and it is shown that
there is no global regular solution for the defect as a conical
deficit or excess in either the bulk or boundary cannot be
removed. In Sec. III, we review the matter coupled theory
and its gaugings, and show that completely regular solutions
can be constructed for this theory. In Sec. IV, we utilize these
solutions to calculate holographic observables, namely the
one point functions of operators in the presence of the defect
as well as the on-shell supergravity action which is related to
the free energy in the presence of the defect. We discuss the
results and some directions for future research in Sec. V. In
Appendix A, we present details of the spin connection and
the form of supersymmetry transformations used in the main
part of the paper. We also show that the solution in Sec. IV
preserves 8 of the 16 supersymmetries. In Appendix B, we
present a solution corresponding to a line defect in the
Euclidean N = 4 gauged supergravity.

II. ROMANS’S GAUGED N =4 SUPERGRAVITY

The field content of Romans’s gauged supergravity
[18,19] is given by the N = 4 gauged supergravity multiplet
(eyr’ Wﬂa’aﬂ’A,{nBZw)(aﬂgb) (21)
which contains the graviton e,”, four gravitini y,,, a U(1)
gauge field a,, an SU(2) Yang—Mllls gauge field A}, two
antisymmetric tensor fields By, four spin 1/2 ferrnlons Xas
and a single scalar ¢. In the above, indices a, b =1, 2, 3, 4
are spin(5) = USp(4) indices, I,J,K = 1,2,3 are SU(2)
adjoint indices, and a, f = 4,5 are SO(2) = U(1) indices.
All fermionic fields satisfy the symplectic Majorana con-
dition. We review our conventions in Appendix A. In the
pure Romans’s theory, a mostly minus signature is used.
Starting in Sec. III, a mostly plus signature is utilized to
agree with the conventions of [20].
The bosonic Lagrangian is given by

1 1 1
eI = =R =& S, =2 E(FFL, + BB,
1 1 -1 puvpot 1 a b
+ 5 8”(]58”47 + Z e~ etr a gaﬁB/prBo-f

—FIF! a

urt ped

) + V() (2.2)

where the field strengths and scalar potential take the form

fuw = 0,a, = 0ya,,
Fl, = 0,Al —0,Al + g,e"XA] AKX,
g _
V= §2 (672 + 2\/591@,

SN

This Lagrangian (2.2) leads to the equations of motion

4 1
R =20,0,0=3V () gy +£™ (2f,mff —ggwfpaf”")

Fl’ +2B%,B;

1
+§2 <2F{l ggﬂV(F/ImFI/m+B;L,Bﬂ(m)> -0

—D¢+ +\/ " ”——(F’ Fm 4 B2 Brva) =0,

(5—4]&/}4) —1 S}IU/)(FT(F] FI _|_Ba Ba ) =0,
1

D,(EFH)=3e el [, =0,

e~lerrot e D, Bl — g, E B =0, (2.4)

where the covariant derivative acting on a vector repre-
sentation is
D V" =V, V' 4 ga,ePVIF + ge’KATVEa (2.5)

The supersymmetry transformation of the fermions are

&l/ya = D;tga + yﬂTabEb - (}/ﬂyp - 45Zyp>

1
\/_
X <Hz/pab +—= vpab)

1
= y”au¢8u + Aabgb

Ya =
X V2
1
— 5 7 va fh vab ’ 2.6
2\/6}/ ( pvab — {1 l) ( )
where the action of the covariant derivative on a spinor is
1 b LY’ b
D,e,=V e, +§91%(F45)a €p +592Aﬂ(rl45)a e, (2.7)
and
szlf = g(F/Iw(Fl)ab + B/(Alu(ra)ab)’
hiy = &7Q%f,,
1/1 1
Tub e —1 _ 2 (T ab
6 <\/§9ch +291§ >( 45)"
1 1
A = ( 05 - a1& )(ths)ab (2.8)

The matrices I'; satisfy the D =35 Euclidean Clifford
algebra

(T () + (T) (M) = 28,8, (2.9)

and the charge conjugation matrix Q“ = —Q"“ can be used

to raise or lower spinor indices
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£ = Qe £, = Qupe’ (2.10)

so that Q,,Q"¢ = §¢ for consistency. I's is chosen such that
(T12345),” = 85. As discussed in [18], different choices of
the parameters g; and g, correspond to different gauged
supergravities. For the choice ¢, = v2g; = 2V/2, the
theory has an anti-de Sitter vacuum with radius of curvature
Lags = 1 and preserves 16 supersymmetries. These values
of the couplings are used in what follows. The bosonic and
fermionic supersymmetries combine into the superalgebra
SU(2,2|2) which is also the superconformal algebra of
d=4, N =2 SCFTs.

A. Half-BPS surface defect in Romans’s theory

The superalgebra SU(2,2|2) contains a superalgebra
SU(1,1|1) x SU(1,1|1) x U(1), which has eight odd
generators and an even SO(2,1) x SO(2,1) x U(1)* =
S0(2,2) x U(1)? subalgebra. Such an unbroken super-
algebra corresponds to half-BPS superconformal surface
operators in N = 2, d = 4 SCFTs [28]. The even part of the
subgroup can be realized holographically by the ansatz

ds* = f (r)zdsid% — f2(r)?d0* — f3(r)*dr?,

Al = §13A(r)do. (2.11)

A solution of this form can be generated by performing a
double Wick rotation of the BPS black hole solution
[29,30] used in [31] to calculate super-Renyi entropies.
The half BPS-solution to the equations of motion is then
given by

ds®> = r’H(r)*3(cosh?pdt*> — dp* — sinh?pdg?)

_ f(r) 2_H(r)2/3 2
I R
H=1+%.  f=rH -1
—H'B, Al=4D —#}za. 2.12
£ <ﬂ ViRt (2.12)

This solution preserves 8 of the original 16 supersymme-
tries of the AdSs vacuum of Romans’s theory and is a
special case of the matter coupled solution that is presented
in the following section. The number of supersymmetries
and the verification of the equations of motion follow from
the more general case considered there.

The minimal value of the radial coordinate ry is
determined by the largest root of f(r) which previously
corresponded to the outer horizon of the BPS black hole.
Expanding about the origin r, leads to

ds* ~di* + (1 — 4q)do?,

1

so that the absence of a conical singularity in the bulk
requires 6 ~ @ + 2x/\/1 —4q. The boundary metric is
conformal to flat space

dsj = cosh*pdr* — dp* — sinh*pdg® — dO” = ds} 45, — d6”.
(2.14)

Note that for the boundary metric (2.14) is regular for any
periodicity of 0. However after conformally mapping
AdS; x S' to R'3 a conical deficit is present at the location
of the surface defect, unless we require the identification
0 ~ 0 + 2z. Consequently, a nonvacuum solution describ-
ing a surface defect in R'3 with ¢ # 0 will have angular
deficit or excess in either the bulk or the boundary. It is
possible to remove the conical singularity in both the bulk
or boundary by coupling vector multiplets as we will show
in the next section.

III. MATTER COUPLED THEORY

It is possible to add matter multiplets to the pure
Romans’s theory. The N = 4 vector multiplet
(Aue A ™) (3.1)
contains a vector field A, four fermions 4;, and five scalars
@™. The indices i = 1,...,.4and m = 1,...,5 are USp(4)
and SO(5) indices, respectively. The matter couplings and
gaugings are completely determined in terms of embedding
tensors &y and fyyp [20,21]. The supersymmetric vacua
of such theories where investigated in [22].
These embedding tensors satisfy the quadratic con-
straints
fR[MNfPQ]R =0, (fMQfQNP =0 (3-2)
and determine the gauging of the R-symmetry. It is
convenient to introduce a composite index M = {0, M}
such that the covariant derivative acting on a vector
representation is given by

D, VM =V, VM 4 gAN X\ pMV7P,

XMNP = _fMNPv XUMN = _é:MN- (3-3)

The coupling of n vector multiplets is described by a coset
representative ) of SO(5,n)/SO(5) x SO(n). The coset
representative ) decomposes as

V="V, (3.4)
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wherem =1,....5and a = 1,...,n are SO(5) and SO(n)
indices, respectively. As an element of SO(5,n), V must
satisfy

muy = Vi npoVn = =Vi" V"™ + Viu“Vy*  (3.5)

where 1,y = diag(—1,-1,-1,—1,=1,+1,...,+1). The
scalar kinetic terms are expressed in terms of the matrix

MMN - VMmVNm + VMaVMa (36)

and the bosonic Lagrangian is given by

1 1
e_lﬁ == ER - ZZZMMNH%HN”” ——2

_—22(3 TP +

4H2DHO 1%

1 MN
< (D My (DA MY)

— PV +e Ly, (3.7)

where L, is a topological term. The covariant field
strengths are
H) = 0,AM = 0,40 + gX\pMAN AT + gZMNB,, .

7w = L g (3.8)

where B, are two-form fields that are introduced in the
process of gauging the theory. The scalar potential is

V=V, +V,+Vs,

1 1 1
=2 Fane fQRSZ_Z <12 MMO pNR P _ : MMONR ) PS

1
n . nMQnNRnPS>
1
V, = EfMNéPQZ4(MMPMNQ —MPyNQ),
1
6v2

with the completely antisymmetric matrix M yypor taking
the form

V3 = —= funplorZMMNPOR (3.9)

Mynpor = €mnopg V" V"V Vo V. (3.10)

The SO(5) index M of V), can be converted to a pair of
antisymmetric USp(4) indices ij through the formulas

Vil =3 V" VM —v LMTHQLG, (3.11)

with a sum over m. The matrices

Z:ij _ ﬂzZleVMikVlegMN’
Caij — ZZVMaVNiijN,

iy 2 . .
plj — _gZ—lVMszNlePklfMNP7

P = 251V Yy KV il fUNP (3.12)
appear in the fermion shift matrices
AV = (=114 297,
V6
A = —\%(C"’ +p7).
A = 2 (=g 4 ), (3.13)

A minus sign has been inserted into Agj relative to [21] to
match the BPS equations of Romans’s supergravity in a
mostly plus signature as in [20]. The BPS equations are

oy, = Dyg —é <QijZVMikH% —\/_ SE2HY )
X (v, = 48" e + 19 QAT
V6
3
Sy = —l—\g_( 19, Z)r e

1
Q;V "H%+—2‘25’?H0U) e
zf( T g e )T

+ \/_gQUA];JE'k,
; 1
ok = i VDV )r e = EVy Hy e

+ V290,45 e, (3.14)

with the action of the covariant derivative on a spinor
given by

Dﬂé'i = V 81' - VM,»k(? VMkj(‘fj -

+ gAY frunp VIV e

QA%MNVMikVNkj €j
(3.15)

A. Half-BPS surface defect in the
matter coupled theory

The gauging corresponding to Romans’s supergravity
with Lags = 1 is given by

1
fune = —ﬁfMNP M.N.P € {123},
1
G = =2 (515% - 5353,
£y = 0. (3.16)
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As shown in [22], a fully supersymmetric AdSs vacuum
requires &,; = 0. We will couple one vector multiplet and
choose the coset element

V =exp(¢;Y3) (3.17)

with the noncompact generator (Y3),,, = 63,06, + 03,06m-
The scalar ¢5 is a singlet under gauge transformations
generated by o3 € su(2). The theory can be truncated to
2, ¢3. A3, AS, g, and the Lagrangian is

1

1 1
e L= —R—ZZZ 3 2¢‘(F,3W+F2D)2+§e‘2¢3(F,3“,—F2,,)2

3 1
_52_2(8;!2)2 —5(814(153)2 + 2(2_2 + Z(€¢3 + 6_4)3 ))

(3.18)
|

1
R, + 5 S2(e*PF, Fy + €729G,G,,)

~35729,%0,% —

where AS$
¢z = AE = 0, we recover Romans’s theory with the gauge
field Az rescaled. The STU model [29] can be embedded
into the matter coupled theory with the identifications

= A, is the vector from the vector multiplet. For

T :%6‘_453,
U :le‘/’%
z
F,= Fg —|—F2,,,
G, = Ff,l, - Fgl,. (3.19)

The third vector field comprising the STU model is a,, from
Sec. II. The equations of motion are

a,u¢3ay¢3

1 4
+ 9 (E X2 (N FVF gy + MGV Gg) + 3 (27 4+ (e + e‘¢3))> =0

where 5 and i are the chemical potentials for A* and AS, respectively. For Q = ¢ and g

to that of the previous section (2.12) upon identifying A,.,, =

1 1 2
\/?8,,(\/—92‘28”2) +273(0,%) - Ez(ezf/’3 FWF,, +ehG"G,,) + 3 (e +e~? —2373) =0,
\/_ 0,(\/—903) — ~ZH(e*FF,, — e72:G"G,,) + 25(ef — e™2) = 0,
\/——8u(\/_—92262"’3F"”) -0,
0,(/—gZ?e2:GM) = 0. (3.20)
\/— H
It is straightforward to verify that the equations are solved by the double Wick rotated two charge solution of [29]
H\H,)'?
ds®> = r*(H,H,)"/*(—cosh?pdt*> + dp* + sinh?pdp?) + A +(]72dr2,
( 1 2) ( ) (H1H2)2/3 f
1+ 2 w1+ d f= -
r r
> = (HH,)!°, 21/)3__1,
(H\H,) 0
0
A3—|—A6:< + pg — >d9, A3—A6:< — Ye — >d9 3.21
Rl arir M3 — M 2+q (3.21)

= 0, this solution (3.21) reduces

V2A,4. As before, the spacetime closes at the largest root

of f(r) which is now given by

-2(0 +q). (3.22)

l—qg- 1
r%:quJFE\/]JF(Q—fIV

After expanding the bulk metric about r,, the absence of an angular deficit or excess in both the bulk metric and the
boundary metric requires
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(0-9)?*=2(0+7q). (3.23)

It is convenient to redefine the integration constants ¢ and

0 as

Q=q+ g,
q9=491— 9 (3.24)
so that regularity at the origin requires g; = g3 and the
spacetime closes at rj = 1 — g3. The spacetime develops a
singularity at » = 0, but this value will be excluded from
the physical range of the radial coordinate for ¢35 < 1.

In the solution (3.21), both scalars have a nontrivial
profile. The dilaton X is regular at the origin, but the
additional scalar ¢); contains a kink

Z'(rg) =0,

@3/ (ro) #0. (3.25)

For generic chemical potentials, the gauge fields have a
nonzero holonomy around » = ry. We show in Appendix B
that the bosonic background (3.21) preserves 8 of the 16
supersymmertries of the gauged supergravity.

IV. HOLOGRAPHIC OBSERVABLES

In this section, we use holographic renormalization
[32,33] to calculate some holographic observables, namely
the free energy and vacuum expectation values of operators
in the presence of a surface defect.

A. Free energy

Using the equations of motion, the on-shell action takes
the form

1
Shuik = —/ dx\/=g (E (e FWF,, + GG,
M
4522 _
+§(Z + Z(e?s + e %)) ).

The bulk action is divergent and can be renormalized by
imposing a cutoff on the spacetime. In Fefferman-Graham
coordinates

dz?

1 o
dS2 :Z—2+Z—Zgl~jdx’dxf (41)

one imposes the cutoff z = ¢ and adds boundary counter-
terms. Since the regularized spacetime contains a boundary,
the Gibbons-Hawking term

SGH:/ d4X\/—hK:—/
oM

oM

d*xz0.V—-h (4.2

must be included to maintain the variational principle of
the metric. In the above formula, huv is the induced metric

on the boundary and K is the trace of the extrinsic
curvature. In the notation of [25], the bulk fields are
expanded as

gij:ggf)+zzg,(f)+z (gu) (logz)zh >+logzh,(.;)>+...,

T =1+7%(b logz+by)+
d3=72*(cilogz+cs) + ...,
F=d(A, +A,7” +A5z%logz+...),

G=d(a,+az* +ay?logz +...), (4.3)

and the equations of motion are solved order by order in z.
The expansion of the Ricci tensor is

4 1 1 1
R,=—-=—5Trlg'¢'| + —Trlg"'q] + Tr[g“g’g‘lg’}
¢ 2 27
4 1 / /) -1 1 —1 /
R = — 29 5%t ¢,+ (dg'd); '—ZTr[g J1g;
1
+R[g];; + 2—ZTr[g‘19’]gl], (4.4)

where R[g];; is the boundary Ricci tensor and primes denote

derivatives with respect to z. The expansion of the volume
element

\/__g

—g0

2 4
Z Z 1 1
— (1 4+24@ 2 [ f4) 2 p22) 4 2 (4(2))2
[ N ( 5157 4 (1)

+ (log z)>u'® 4 log zu(l)ﬂ + ey

(4.5)

will be needed when expanding the action. The ij compo-
nent of the Einstein field equation to order O(z°) is
solved by

2 1 1 0
91(';) = ) <R[g(0)]ij —ER[9<O)]g§j)) (4.6)
which implies
@ — L grgon,
6
22 — L (R1a1 ROV — 2 RO
159 = | RgPlRIgVNY =5 RGO ). (4.7)

The zz component of the Einstein field equation to order
O(z?) is solved by
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u® = —% (3% + ¢2),

ull) = —% (3b1by + ¢y ¢3),

41® = 122 — 0 — 34() — (3p2 + ¢3) - 2 (3b3 + c3)
—4(3b1by +c1cy) + % (IFPo +1G0).  (48)

where |F|?, = F;;F;,9"0% g% is the norm of the boun-
PO j
dary field strength and similarly for |G|§(O). The leading

divergence takes the form

1
— d*x\/ =g (=1 + 4)

: (4.9)
€ Jom

where the coefficients come from Sy, and Sgpy respec-
tively. This is canceled by the counterterm oS, =

-3 oM d*xv/—h. The subleading divergences are

1 3
— /=g =14+1-=):2 4.1
d'x\[—g < + 2>t (4.10)

2
& Jom

where the coefficients come from Sy, Sgy, and 654
respectively. This can be canceled by the counterterm

68, = —% f oM d*x\/—hR[h]. The logarithmic divergences
are given by

1

1
Suan ~ [5 (9 = 122) = L (381 + )

2
1 2 2
+§(‘F|g<0) + |f|g(0)> loge,

2
Seu ~ 3 (3b7 + 1) loge,

581 ~ (3b3 + ¢3)(loge)? + 2(3b1by + c1¢5) log e,

55, ~0-loge. (4.11)

The logarithmic divergences are canceled by the counter-
terms

58, :é/d%\/—_hlogsKR[hyfR[h]U —;R[h]2>
— FiiF;; —GUGZ-J} +/d4X\/—_h[—3(Z— 1)?

3 1

- T —1)2 -3 ——— 3.
2loge( V-3 210g8¢3}

(4.12)
Putting together the different contributions, the renormal-
ized action

Sten = hf% (Sbui + Sgu + 68y + 88, + 65;3) (4.13)

evaluates to

Sren = (% - q%)Vol(AdS3)Vol(Sl) (414)

for the surface defect where Vol(AdS3) is the regularized
volume of the AdS; factor.

B. Vacuum expectation values

Using the renormalized action (4.13), the vacuum
expectation values can be computed through differentiation

1 8Sien

(Oy) = ﬁé—lﬁ o = —3b,,
)= =ate ),
(" = ﬁ%ﬁl - = %(% + 2a,)’,
1) =~ =m0 ). @19

where T'[h];; is the boundary stress tensor. For the surface
defect solution, the asymptotic expansion is

1 1 ¢ 9 4
r_z+<4 3>Z 36°

10861% + 63q‘21 — ZOqS S
3888

(4.16)

and the expectation values are

(O5) = =45,

<O¢3> = =,

(To) = 02(1 + q2),
(o) = q2(1 = q2),

3 —10ass, O
)= (3-20) (70 @17)
gst / ij

so that there are no conformal anomalies: (T%) = 0. Note
that the solution does not contain any logarithmic diver-
gences and the boundary stress tensor is therefore given by

1 1

+ (B2 =1)% + ) hi;. (4.18)
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V. DISCUSSION

In this paper, we investigated solutions of D =5, N = 4
gauged supergravity that are holographic duals of half-BPS
conformal surface defects in a N = 2 SCFT. The ansatz for
the solution is informed by the unbroken symmetries of
such defects and is given by AdS; x S! warped over an
interval with nontrivial gauge potentials along S'. We
showed for pure Romans’s theory that the only solution
in this class which is nonsingular is the AdSs vacuum; all
nontrivial solutions suffer from a conical defect. This
situation is improved by coupling vector multiplets to
N =4 gauged supergravity. The simplest case of one
additional vector multiplet already allows for the construc-
tion of a one parameter family of regular solutions dual to
conformal surface defects preserving 8 of the 16 super-
symmetries of the vacuum.

An important question is whether solutions of lower
dimensional gauged supergravities can be uplifted to 10- or
11-dimensional solutions for which the dual SCFTs are in
general known from decoupling limits of brane configu-
rations. It has been shown that pure Romans’s theory is a
consistent truncation of type IIB [34,35], type IIA [36],
and M-theory [37] and hence solutions of this theory can be
uplifted. Much less is known about uplifts of matter
coupled D =5, N =4 gauged supergravity. In [38], it
was argued that Romans’s theory coupled to two tensor
multiplets is a consistent truncation of an orbifold of
AdSs x 3. Recently, in [39,40] a consistent truncation
of 1l-dimensional supergravity on Maldacena-Nunez
geometries was constructed, leading to D=5, N =4
gauged supergravity including three vector multiplets.

The rigidity of supersymmetric N = 4 vacua [22] makes
the existence of other consistent truncations likely.

Since our solution has only two gauge fields and scalars
turned on, it can be related to solutions in D =5, N =2
gauged supergravity [29,30]. It has been shown in [36] that
these solutions can be uplifted to 10 and 11 dimensions,
which means that our solution can be uplifted too. It was
argued in [38] that the truncations used in our paper fall into
a class of truncations of gauged N = § supergravity which
can be uplifted to 10 dimensions [41]. One could also
consider applying the construction in our paper to a general
class of the gauged supergravities of [38] which describe
Zy orbifolds and investigate whether in the field theory, the
surface operators of the orbifold theory can be obtained
from surface operators of N =4 SYM [42-44]. We leave
these interesting questions for future work.
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APPENDIX A: CONVENTIONS AND
SUPERSYMMETRY

The frame field for the metric

dS2 = r2(H1H2>1/3(_COSh2pdt2 + d/)z + Sil’lthd§02)
f (H\H,)'/?

-7 er
(H\H,)*3

+ do* +

is chosen to be

e" = r(H,H,)"/° cosh pdt,
e? = r(H,H,)"/sinh pde,
f1/2

3 4 __
e’ = 7(H1H2)1/3 do, et =

e' = r(HH,)"%dp,

/
(L H,) 7 lf )T A

The spin connection is then given by

@' = sinh pdt,
w7 d
(H H,)"/°dr
= —cosh pdep,
W
(H\H,)"/%dr
w7 d
(H\H,)"/%dr

e f1/2 i f1/2 »
(H H,)"/¢dr \(H\H,)'?) "

All fermions satisfy the symplectic Majorana condition

(r(HH,)"®) cosh pdt,
w2

w (r(H H,)"%)dp,

w (r(H,H,)"®) sinh pdg,

(A2)

e = BQ,,e (A3)

where B is related to the usual charge conjugation matrix C
by B = y,C. An explicit basis for the spacetime y matrices
in the signature (—, +, 4, +, +) is

y0:i61®ﬂ,
n=o0QI710,
Y2 =03 @ oy,

73 =03 @ 02,
Y4 = 03 Q 03,

A basis for the Euclidean Clifford algebra I' is
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I''=0,®1,
I'h =03 ® o0y,
I3 =03 ® 03,
[y=0,®1,
I's =03 ® 0y,

Q=0 Q®o>. (A5)

In the chosen gauging,

i, 1
ij — _ 221’*11 ,
N
Calj - 07
i 1 coshgs
A R
2V2 X
1 _ sinh¢;

aij 5¢
PETT% Ty

Tls- (A6)

Using the explicit solution to the equations of motion, the
dilatino and gaugino variations both lead to the projection
condition

1

(Tus)/e; = W(%Js —iv/fra)ie. (A7)

Substituting this projector into the AdS; x S!
variations gives

gravitino

1 i
<8 + = sinh PYo1 — 3 —cosh ,0}’0’;41—";
<8 7134F3
1
0y — ECOShth - smh Pr23al’;
(0= (=3
These equations can be integrated to
1 J ip k
g =exp( 0| u3—5 |45 | exp( 5713l
2 ; 2 j
it ! @ "
X exp (5 }’034r3> exp <§ 712) En(r).
k !

Antiperiodicity of &; under & — 0 + 2z requires the chemi-
cal potential to be quantized y; € Z. After multiplying by
73413, the projection condition can be expressed in the form

(1 +iy/frals + r/H HyysTass) g;=0.

(A8)

XS
XS
XS
OX

(A9)

(A10)

Similarly multiplying by I'y5 leads to

1—i vf Tys + ! r ! 0
—_]— _— E. = .
PJHH, YT JEE, )6

(A1)

Using these equations, the radial gravitino equation can be
put into the form

0,&; = (a + by3sI'sys)e; (A12)

The solution to equations of this form [45] is
1

_ VH H, +1

r(H1H2)1/6< ’ e

/ J
+i7/4r45 r\/H1H2—1>

i
X (1 =7343s) /*

&(r) =

(€0)s (A13)
for some constant symplectic Majorana spinor &,. It can be
checked explicitly that the above Killing spinor satisfies the
symplectic Marjorana condition.

APPENDIX B: HALF-BPS LINE DEFECT
SOLUTION

A half-BPS solution describing a superconformal line
defect can be constructed in the Euclidean version of pure
Romans’s supergravity. In the notation of [24], the super-
symmetry variations are

Sy, = D,e— lzyﬂWO";E—i- 12( P — 48y h, €
i
Sy = ———(y"D,4 + 0,Wés + iy™d,h,, e Bl
% 2\/5(7/ A+ O,Wés + iy 0, hy,) (B1)
with
W =2(2X + X2),
h”y:X_](Fl &36 +B 6 +B ) l.Xzfﬂy,
X = e MV, (B2)

The superconformal line defect preserves an SO(1,2) x
SO(3) bosonic symmetery which can be realized by the
ansatz

ds* = f1(y)dsip + f2(y)?dQ5 + f3(y)*dy?,

B~ = Ci(y)volyz + C(y)volg. (B3)
A similar solution containing only these fields was ana-
lyzed in [24]. Imposing the projection condition 63¢ = &,
gives
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1
oy = D& — Eyﬂg,

5y =0, (B4)
which are the BPS equations describing AdSs. Thus the
tensor field B~ breaks half the supersymmetries and does
not backreact on the metric. C(y) and C,(y) are deter-
mined by the tensor field equation of motion

dB~ +*B~ =0. (B5)
The full solution is
f1 =coshy,
f2 = sinhy,
f3 = 17
C = 'a +b .y + coshy |,
sinhy sinhy
a y .
= b —sinhy |. B6
coshy - (coshy s y) (B6)
Using the coordinates
dz® + dx?
2
dS[H]2 = T,
dQ3 = do* + sin’0d¢?, (B7)

the solution can be mapped to Euclidean Poincaré coor-
dinates

1
ds* = — (de* + dz* + dr? + r*(d6” + sin®0d¢?*))
z

(B8)

through the coordinate transformation

X

r = xtanhy. (B9)

Z — b
coshy
In this coordinate system, the tensor field takes the form

B~ = Cidt A dr + Cydr A dz + Cy5in6dO A dep,

- ~ 1 z Z r
ST < Leinh-1 (1
r/C=z7"0C = (r2+22)3/2 [ar+b<rsmh (Z)

Z b
~ Z Z r r
C;=a +b sinh~' (=) ==,
’ r?+ 72 ( r’+ 7 (Z> Z)

(B10)

and the leading behavior of the tensor field at the
boundary is

b dind b
B—N<_’+%> 2 ’+<__’+%>sin9deAd¢
Z r r 4 r

(B11)

giving the source and vacuum expectation values of the
dual A =3 operator. Since the spacetime is Euclidean
AdSs, the dual stress tensor vanishes

(T;;) =0. (B12)
The solution can be uplifted to type IIB supergravity or
D = 11 supergravity [34,37], but the higher form fields

become complex when Wick rotating back to Lorentzian
signature.

[1] A. Karch and L. Randall, Open and closed string inter-
pretation of SUSY CFT’s on branes with boundaries, J.
High Energy Phys. 06 (2001) 063.

[2] O. DeWolfe, D.Z. Freedman, and H. Ooguri, Holography
and defect conformal field theories, Phys. Rev. D 66,
025009 (2002).

[3] K. Skenderis and M. Taylor, Branes in AdS and p p wave
space-times, J. High Energy Phys. 06 (2002) 025.

[4] D. Bak, M. Gutperle, and S. Hirano, A dilatonic deforma-
tion of AdS(5) and its field theory dual, J. High Energy
Phys. 05 (2003) 072.

[5] E. D’Hoker, J. Estes, and M. Gutperle, Exact half-BPS type
IIB interface solutions. I. Local solution and supersymmet-
ric Janus, J. High Energy Phys. 06 (2007) 021.

[6] E. D’Hoker, J. Estes, and M. Gutperle, Exact half-BPS type
1IB interface solutions. II. Flux solutions and multi-Janus,
J. High Energy Phys. 06 (2007) 022.

[7]1 E. D’Hoker, J. Estes, and M. Gutperle, Gravity duals of
half-BPS Wilson loops, J. High Energy Phys. 06 (2007)
063.

[8] H. Lin, O. Lunin, and J. M. Maldacena, Bubbling AdS space
and 1/2 BPS geometries, J. High Energy Phys. 10 (2004)
025.

[9] E. D’Hoker, J. Estes, M. Gutperle, and D. Krym, Exact half-
BPS flux solutions in M-theory. I: Local solutions, J. High
Energy Phys. 08 (2008) 028.

[10] E. D’Hoker, J. Estes, M. Gutperle, and D. Krym, Janus
solutions in M-theory, J. High Energy Phys. 06 (2009) 018.

066016-10


https://doi.org/10.1088/1126-6708/2001/06/063
https://doi.org/10.1088/1126-6708/2001/06/063
https://doi.org/10.1103/PhysRevD.66.025009
https://doi.org/10.1103/PhysRevD.66.025009
https://doi.org/10.1088/1126-6708/2002/06/025
https://doi.org/10.1088/1126-6708/2003/05/072
https://doi.org/10.1088/1126-6708/2003/05/072
https://doi.org/10.1088/1126-6708/2007/06/021
https://doi.org/10.1088/1126-6708/2007/06/022
https://doi.org/10.1088/1126-6708/2007/06/063
https://doi.org/10.1088/1126-6708/2007/06/063
https://doi.org/10.1088/1126-6708/2004/10/025
https://doi.org/10.1088/1126-6708/2004/10/025
https://doi.org/10.1088/1126-6708/2008/08/028
https://doi.org/10.1088/1126-6708/2008/08/028
https://doi.org/10.1088/1126-6708/2009/06/018

HOLOGRAPHIC SURFACE DEFECTS IN D =5, N =4 ...

PHYS. REV. D 101, 066016 (2020)

[11] S. Yamaguchi, Bubbling geometries for half BPS Wilson
lines, Int. J. Mod. Phys. A 22, 1353 (2007).

[12] J. Gomis and C. Romelsberger, Bubbling defect CFT’s,
J. High Energy Phys. 08 (2006) 050.

[13] O. Lunin, On gravitational description of Wilson lines,
J. High Energy Phys. 06 (2006) 026.

[14] O.Lunin, 1/2-BPS states in M theory and defects in the dual
CFTs, J. High Energy Phys. 10 (2007) 014.

[15] A. Clark and A. Karch, Super Janus, J. High Energy Phys.
10 (2005) 094.

[16] D. Gaiotto and J. Maldacena, The gravity duals of N =2
superconformal field theories, J. High Energy Phys. 10
(2012) 189.

[17] O. Aharony, L. Berdichevsky, and M. Berkooz, 4d N = 2
superconformal linear quivers with type ITA duals, J. High
Energy Phys. 08 (2012) 131.

[18] L.J. Romans, Gauged N = 4 supergravities in five dimen-
sions and their magnetovac backgrounds, Nucl. Phys. B267,
433 (1986).

[19] M. Awada and P. K. Townsend, N = 4 Maxwell-Einstein
supergravity in five dimensions and its SU(2) gauging,
Nucl. Phys. B255, 617 (1985).

[20] G. Dall’Agata, C. Herrmann, and M. Zagermann, General
matter coupled N = 4 gauged supergravity in five dimen-
sions, Nucl. Phys. B612, 123 (2001).

[21] J. Schon and M. Weidner, Gauged N = 4 supergravities,
J. High Energy Phys. 05 (2006) 034.

[22] J. Louis, H. Triendl, and M. Zagermann, N = 4 super-
symmetric AdSs vacua and their moduli spaces, J. High
Energy Phys. 10 (2015) 083.

[23] D. Cassani, G. Dall’Agata, and A.F. Faedo, BPS domain
walls in N = 4 supergravity and dual flows, J. High Energy
Phys. 03 (2013) 007.

[24] N. Bobey, F. F. Gautason, and K. Hristov, Holographic dual
of the Q background, Phys. Rev. D 100, 021901 (2019).

[25] P. Benetti Genolini, P. Richmond, and J. Sparks, Topologi-
cal AdS/CFT, J. High Energy Phys. 12 (2017) 039.

[26] H.L. Dao and P. Karndumri, Supersymmetric AdSs black
holes and strings from 5D N = 4 gauged supergravity, Eur.
Phys. J. C 79, 247 (2019).

[27] H.L. Dao and P. Karndumri, Holographic RG flows and
AdSs black strings from 5D half-maximal gauged super-
gravity, Eur. Phys. J. C 79, 137 (2019).

[28] D. Gaiotto, Surface operators in N = 2 4d gauge theories,
J. High Energy Phys. 11 (2012) 090.

[29] K. Behrndt, M. Cvetic, and W. A. Sabra, Nonextreme black
holes of five-dimensional N =2 AdS supergravity, Nucl.
Phys. B553, 317 (1999).

[30] K. Behrndt, A.H. Chamseddine, and W.A. Sabra, BPS
black holes in N = 2 five-dimensional AdS supergravity,
Phys. Lett. B 442, 97 (1998).

[31] M. Crossley, E. Dyer, and J. Sonner, Super-Renyi entropy
and Wilson loops for A/ =4 SYM and their gravity duals,
J. High Energy Phys. 12 (2014) 001.

[32] S. de Haro, S.N. Solodukhin, and K. Skenderis, Holo-
graphic reconstruction of space-time and renormalization in
the AdS/CFT correspondence, Commun. Math. Phys. 217,
595 (2001).

[33] K. Skenderis, Lecture notes on holographic renormalization,
Classical Quantum Gravity 19, 5849 (2002).

[34] H. Lu, C.N. Pope, and T. A. Tran, Five-dimensional N = 4,
SU(2) x U(1) gauged supergravity from type IIB, Phys.
Lett. B 475, 261 (2000).

[35] M. Cvetic, H. Lu, and C. N. Pope, Consistent warped space
Kaluza-Klein reductions, half maximal gauged supergrav-
ities and CP" constructions, Nucl. Phys. B5§97, 172 (2001).

[36] M. Cvetic, M. J. Duff, P. Hoxha, J. T. Liu, H. Lu, J. X. Lu,
R. Martinez-Acosta, C.N. Pope, H. Sati, and T. A. Tran,
Embedding AdS black holes in ten dimensions and eleven
dimensions, Nucl. Phys. B558, 96 (1999).

[37]1 J. P. Gauntlett and O. Varela, D = 5 SU(2) x U(1) gauged
supergravity from D = 11 supergravity, J. High Energy
Phys. 02 (2008) 083.

[38] R. Corrado, M. Gunaydin, N. P. Warner, and M. Zagermann,
Orbifolds and flows from gauged supergravity, Phys. Rev. D
65, 125024 (2002).

[39] K.C. Matthew Cheung, J.P. Gauntlett, and C. Rosen,
Consistent KK truncations for MS5-branes wrapped on
Riemann surfaces, Classical Quantum Gravity 36, 225003
(2019).

[40] D. Cassani, G. Josse, M. Petrini, and D. Waldram, Sys-
tematics of consistent truncations from generalised geom-
etry, J. High Energy Phys. 11 (2019) 017.

[41] A. Khavaev, K. Pilch, and N.P. Warner, New vacua of
gauged N = 8 supergravity in five dimensions, Phys. Lett.
B 487, 14 (2000).

[42] S. Gukov and E. Witten, Gauge theory, ramification, and the
geometric langlands program, arXiv:hep-th/0612073.

[43] J. Gomis and S. Matsuura, Bubbling surface operators and
S-duality, J. High Energy Phys. 06 (2007) 025.

[44] N. Drukker, J. Gomis, and S. Matsuura, Probing N =4
SYM with surface operators, J. High Energy Phys. 10
(2008) 048.

[45] L.J. Romans, Supersymmetric, cold and lukewarm black
holes in cosmological Einstein-Maxwell theory, Nucl. Phys.
B383, 395 (1992).

066016-11


https://doi.org/10.1142/S0217751X07035070
https://doi.org/10.1088/1126-6708/2006/08/050
https://doi.org/10.1088/1126-6708/2006/06/026
https://doi.org/10.1088/1126-6708/2007/10/014
https://doi.org/10.1088/1126-6708/2005/10/094
https://doi.org/10.1088/1126-6708/2005/10/094
https://doi.org/10.1007/JHEP10(2012)189
https://doi.org/10.1007/JHEP10(2012)189
https://doi.org/10.1007/JHEP08(2012)131
https://doi.org/10.1007/JHEP08(2012)131
https://doi.org/10.1016/0550-3213(86)90398-6
https://doi.org/10.1016/0550-3213(86)90398-6
https://doi.org/10.1016/0550-3213(85)90156-7
https://doi.org/10.1016/S0550-3213(01)00367-4
https://doi.org/10.1088/1126-6708/2006/05/034
https://doi.org/10.1007/JHEP10(2015)083
https://doi.org/10.1007/JHEP10(2015)083
https://doi.org/10.1007/JHEP03(2013)007
https://doi.org/10.1007/JHEP03(2013)007
https://doi.org/10.1103/PhysRevD.100.021901
https://doi.org/10.1007/JHEP12(2017)039
https://doi.org/10.1140/epjc/s10052-019-6775-7
https://doi.org/10.1140/epjc/s10052-019-6775-7
https://doi.org/10.1140/epjc/s10052-019-6656-0
https://doi.org/10.1007/JHEP11(2012)090
https://doi.org/10.1016/S0550-3213(99)00243-6
https://doi.org/10.1016/S0550-3213(99)00243-6
https://doi.org/10.1016/S0370-2693(98)01208-8
https://doi.org/10.1007/JHEP12(2014)001
https://doi.org/10.1007/s002200100381
https://doi.org/10.1007/s002200100381
https://doi.org/10.1088/0264-9381/19/22/306
https://doi.org/10.1016/S0370-2693(00)00073-3
https://doi.org/10.1016/S0370-2693(00)00073-3
https://doi.org/10.1016/S0550-3213(00)00708-2
https://doi.org/10.1016/S0550-3213(99)00419-8
https://doi.org/10.1088/1126-6708/2008/02/083
https://doi.org/10.1088/1126-6708/2008/02/083
https://doi.org/10.1103/PhysRevD.65.125024
https://doi.org/10.1103/PhysRevD.65.125024
https://doi.org/10.1088/1361-6382/ab41b3
https://doi.org/10.1088/1361-6382/ab41b3
https://doi.org/10.1007/JHEP11(2019)017
https://doi.org/10.1016/S0370-2693(00)00795-4
https://doi.org/10.1016/S0370-2693(00)00795-4
https://arXiv.org/abs/hep-th/0612073
https://doi.org/10.1088/1126-6708/2007/06/025
https://doi.org/10.1088/1126-6708/2008/10/048
https://doi.org/10.1088/1126-6708/2008/10/048
https://doi.org/10.1016/0550-3213(92)90684-4
https://doi.org/10.1016/0550-3213(92)90684-4

