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We explore, in the framework of linearized quantum gravity, the induced gravitational interaction
between two gravitationally polarizable objects in their ground states in the presence of an external
quantized gravitational radiation field. The interaction energy decreases as r−5 in the near regime, and
oscillates with a decreasing amplitude proportional to r−1 in the far regime, where r is the distance between
the two objects. The interaction can be either attractive or repulsive depending on the propagation direction,
polarization and frequency of the external gravitational field. That is, the induced interaction can be
manipulated by varying the relative direction between the orientation of the objects with respect to the
propagation direction of the incident gravitational radiation.
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I. INTRODUCTION

It is well known that in a quantum sense, there inevitably
exist quantum vacuum fluctuations, which may induce
some novel effects. One of the most famous examples is the
electromagnetic Casimir-Polder (CP) interaction [1]. In
general, fluctuating electromagnetic fields in vacuum
induce instantaneous electric dipole moments in neutral
atoms, which then couple with each other via the exchange
of virtual photons to yield an interaction energy. For atoms
or molecules in different states, such CP interactions
behave differently in terms of distance-dependence [2–15].
For example, the interatomic or intermolecular interaction
behaves as r−6 and r−7 in the near and far regimes res-
pectively when the atoms or molecules are in their ground
states [1], while it behaves as r−3 and r−1 in the near and far
regimes respectively when they are prepared in a sym-
metric/antisymmetric entangled state [14].
Likewise, one may also expect a gravitational CP-like

interaction if one accepts that basic quantum principles are
also applicable to gravity. Unfortunately, a full theory of
quantum gravity is elusive at present. Even though, one
may still study quantum gravitational effects at low
energies in the framework of linearized quantum gravity
[16,17], the basic idea of which is to express the spacetime
metric as a sum of the flat background spacetime metric and
a linearized perturbation, and quantize the perturbation part
in the canonical approach. Based on linearized quantum
gravity, the gravitational CP-like interactions between two
gravitationally polarizable objects in their ground states,

and between one gravitationally polarizable object and a
gravitational boundary, have recently been studied in
Refs. [18–23]. Similar to the electromagnetic case, the
behaviors of gravitational CP-like interactions are signifi-
cantly different when the gravitationally polarizable objects
are prepared in different states. For example, the gravita-
tional CP-like potential is found to be proportional to
r−10 and r−11 in the near and far regimes respectively
when the two objects are in their ground states [18–21],
while it behaves as r−5 and r−1 in the near and far regimes
respectively when the two objects are in a symmetric/
antisymmetric entangled state [24].
Naturally, a question arises as to whether such quantum

gravitational effects can be modified or enhanced in certain
circumstances. Fortunately, there are similar examples in
quantum electrodynamics. For example, the interaction
between two ground-state atoms or molecules is found
to be modified in the presence of external electromagnetic
radiation fields [25–29]. That is, the externally applied
electromagnetic field induces dipole moments in atoms or
molecules, which are coupled with each other via the
exchange of a single virtual photon, and an interaction is
induced. This process is clearly different from the case
without external electromagnetic fields, which arises from
two-photon exchange. Similarly, in the gravitational case,
one may expect that the quantum gravitational quadrupole-
quadrupole interactions will also be modified in the
presence of an external gravitational radiation field.
In this paper, we explore the quantum gravitational

quadrupole-quadrupole interaction between a pair of gravi-
tationally polarizable objects in their ground states, which
are subjected to a weak external gravitational radiation
field based on the leading-order perturbation theory in the
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framework of linearized quantum gravity. First, we describe
in details the system we deal with. Then, we obtain the
general expression for the interaction energy between the
two objects. Finally, we discuss our results in specific cases
and obtain the corresponding interaction potentials.
Throughout this paper, the Einstein summation convention
for repeated indices is assumed, and the Latin indices run
from 1 to 3 while the Greek indices run from 0 to 3. Units
with ℏ ¼ c ¼ 16πG ¼ 1 are applied, where ℏ is the
reduced Planck constant, c is the speed of light and G is
the Newtonian gravitational constant.

II. BASIC EQUATIONS

We consider two gravitationally polarizable objects
(labeled as A and B) coupled with a bath of fluctuating
gravitational fields in vacuum, which are subjected to a
weak external gravitational radiation field. The objects
A and B are modeled as two-level systems with two internal
energy levels, � 1

2
ω0, associated with the eigenstates jgi

and jei, respectively. The total Hamiltonian is

H ¼ HF þHR þHS þHI; ð1Þ
where HF is the Hamiltonian of the fluctuating vacuum
gravitational field, HR the Hamiltonian of the external
gravitational radiation field, HS the Hamiltonian of the
two-level systems (A and B), and HI the interaction
Hamiltonian between the objects and the gravitational
fields. Here HI takes the form

HI ¼ −
1

2
QA

ij½ϵijðx⃗AÞ þEijðx⃗AÞ�−
1

2
QB

ij½ϵijðx⃗BÞ þEijðx⃗BÞ�;
ð2Þ

where QAðBÞ
ij is the induced quadrupole moment of the

object AðBÞ, ϵij is the gravitoelectric tensor characterizing
the weak external gravitational radiation field, and Eij is the
gravitoelectric tensor of the fluctuating vacuum gravita-
tional fields defined as Eij ¼ C0i0j by an analogy between
the linearized Einstein field equations and the Maxwell
equations [30], whereCμναβ is theWeyl tensor. Wewrite the
spacetime metric gμν as a sum of the flat spacetime metric
ημν and a linearized perturbation hμν, then the gravito-
electric tensor Eij can be expressed as (in the transverse
traceless gauge)

Eij ¼
1

2
ḧij: ð3Þ

Suppose that the linearized perturbation hμν is quantized, in
this regard, we can decompose hμν into positive and
negative frequency parts hþμν and h−μν, respectively, and
define the gravitational vacuum state j0i as

hþμνj0i ¼ 0; h0jh−μν ¼ 0: ð4Þ

It follows immediately that h0jhμνj0i ¼ 0. In general,
however, h0jðhμνÞ2j0i ≠ 0, where the expectation value is
understood to be suitably renormalized. In the transverse
traceless gauge, the quantized gravitational perturbations
have only spatial components hij, which takes the standard
form

hij ¼
X
p⃗;λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2ωð2πÞ3
s

½aλðp⃗ÞeðλÞij e
iðp⃗·x⃗−ωtÞ þ H:c:�; ð5Þ

where aλðp⃗Þ is the annihilation operator of the gravitational
vacuum field with wave vector p⃗ and polarization λ, eðλÞij are

polarization tensors, ω ¼ jp⃗j ¼ ðp2
x þ p2

y þ p2
zÞ1=2, and

H.c. denotes the Hermitian conjugate. As for the weak
external gravitational radiation field, we assume that it can
be described as a quantized monochromatic gravitational
wave containing N gravitons. Then, the corresponding
gravitoelectric tensor ϵij can be given as

ϵij ¼ −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω3
Rρn

2Nð2πÞ3

s
½bðk⃗ÞeðεÞij e

iðk⃗·x⃗−ωRtÞ þ H:c:�; ð6Þ

where ρn is the number density of gravitons, bðk⃗Þ and eðεÞij

are respectively the corresponding annihilation operator
and the polarization tensors with jk⃗j ¼ ωR, and ε labels the
polarization state.
In the absence of an external gravitational field, the

interaction between a pair of ground-state objects coupled
with a bath of fluctuating gravitational fields in vacuum is a
fourth-order effect [18–20]: The gravitational vacuum
fluctuations induce quadrupole moments in the two objects,
which are correlated and an interaction energy is thus
induced. Physically speaking, such an induced interaction
originates from vacuum fluctuations and arises through the
exchange of a pair of virtual gravitons between the two
objects. In the present case, the leading interaction between
quadrupole moments induced by the external gravitational
radiation field will also be a fourth-order effect. However,
the difference is that the quadrupole moments are now
induced by the external gravitational field, which are then
correlated to each other through gravitational vacuum
fluctuations. That is, a real graviton will be scattered by
a pair of objects which are coupled via the exchange of a
virtual graviton, and an interaction is then induced, which is
analogous to the electromagnetic case [25].
We choose the initial state of the system to be

jϕi ¼ jgAgBij0ijNi; ð7Þ

where jgAgBi is the ground state of the objects, j0i is the
vacuum state of the fluctuating gravitational field, and jNi is
the number state of the external gravitational radiation field.
The initial energy of the whole system is Eϕ ¼ E0 þ NωR,
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whereE0 denotes the ground-state energy of the objects and
fluctuating gravitational field in vacuum. The leading
contribution to the interaction energy can be obtained from
fourth-order perturbation theory, which contains 48 possible
Feynman diagrams in our case, and a typical one is shown in
Fig. 1. However, the calculations can be greatly simplified
by collapsing the two one-graviton interaction vertices in
the time-ordered diagrams, which can be described as an
effective two-graviton interaction Hamiltonian. To do
this, we introduce the gravitational polarizability of the
objects, and, for simplicity, assume that the objects are
isotropically polarizable. Then, the induced quadrupole can
be expressed as

QAðBÞ
ij ¼ αðεÞAðBÞϵij; ð8Þ

where αðεÞAðBÞ is the isotropic polarizability of object AðBÞ. In
order to calculate the interaction, we only keep the corre-
sponding terms after substituting Eq. (8) into Eq. (2). Then,
the effective Hamiltonian takes the form

Heff
I ¼ −

1

2
αðεÞA ϵijðx⃗AÞEijðx⃗AÞ −

1

2
αðεÞB ϵijðx⃗BÞEijðx⃗BÞ: ð9Þ

The interaction energy can be calculated based on the second
order perturbation theory

ΔE ¼ −
X
I

hϕjHeff
I jIihIjHeff

I jϕi
EI − Eϕ

; ð10Þ

with only four contributing time-ordered diagrams as shown
in Fig. 2. Summing up all the contributions, the interaction
energy can be expressed as

ΔEAB ¼ −
ω3
Rρn

256ð2πÞ6 α
ðεÞ
A αðεÞB eðεÞij e

ðεÞ
kl cos ðk⃗ · r⃗Þ

Z
d3p⃗

X
λ

eðλÞij e
ðλÞ
kl

ω3

ω − ωR
eip⃗·r⃗

−
ðN þ 1Þω3

Rρn
256Nð2πÞ6 αðεÞA αðεÞB eðεÞij e

ðεÞ
kl cos ðk⃗ · r⃗Þ

Z
d3p⃗

X
λ

eðλÞij e
ðλÞ
kl

ω3

ωþ ωR
eip⃗·r⃗; ð11Þ

where r⃗ ¼ x⃗A − x⃗B. Here the summation of polarization tensors in the transverse traceless gauge gives [17]

X
λ

eðλÞij e
ðλÞ
kl ¼ δikδjl þ δilδjk − δijδkl −

1

ω2
Hijkl þ

1

ω4
Pijkl; ð12Þ

where

Hijkl ¼ ∂i∂jδkl þ ∂k∂lδij − ∂i∂kδjl − ∂i∂lδjk − ∂j∂kδil − ∂j∂lδik; Pijkl ¼ ∂i∂j∂k∂l: ð13Þ
For convenience, we define a gravitational radiation intensity IR in analogy to the electromagnetic case [31] as

FIG. 1. A typical time-ordered diagram for the calculation of
inter-object interaction in the existence of an external quantized
gravitational field. The blue solid line represents a real graviton,
while the dotted one represents a virtual one.

FIG. 2. Four time-ordered diagrams represent the four contrib-
uting terms in the second order perturbation theory.
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IR ¼ hNjϵ2ijjNi ¼ ω3
Rρn

8Nð2πÞ3 ð2N þ 1Þ; ð14Þ

since the intensity of the radiation field should be proportional to the number of gravitons. For a large graviton number
N ≫ 1, we have

IR ≃
ω3
Rρn

4ð2πÞ3 : ð15Þ

Thus, the interaction energy (11) can be expressed as

ΔEAB ¼ −
IR

128π
αðεÞA αðεÞB eðεÞij e

ðεÞ
kl cos ðk⃗ · r⃗ÞVijkl; ð16Þ

where

Vijkl ¼ ½ðδikδjl þ δilδjk − δijδklÞω4
R − ω2

RHijkl þ Pijkl�
cosωRr

r
: ð17Þ

After some algebraic manipulations, the full form of Vijkl is given by

Vijkl ¼
1

r5
½ðδikδjl þ δilδjk − δijδkl þ r̂ir̂jδkl þ r̂kr̂lδij − r̂ir̂kδjl − r̂ir̂lδjk − r̂jr̂kδil − r̂jr̂lδik þ r̂ir̂jr̂kr̂lÞr4ω4

R cosωRr

þ 2ð−δikδjl − δilδjk þ δijδkl − r̂ir̂jδkl − r̂kr̂lδij þ 2r̂jr̂kδil þ 2r̂jr̂lδik þ 2r̂ir̂kδjl þ 2r̂ir̂lδjk − 5r̂ir̂jr̂kr̂lÞr3ω3
R sinωRr

þ ð−3δikδjl − 3δilδjk þ δijδkl þ 3r̂ir̂jδkl þ 3r̂kr̂lδij þ 9r̂jr̂kδil þ 9r̂jr̂lδik þ 9r̂ir̂kδjl þ 9r̂ir̂lδjk

− 45r̂ir̂jr̂kr̂lÞr2ω2
R cosωRrþ 3ðδikδjl þ δilδjk þ δijδkl − 5r̂ir̂jδkl − 5r̂kr̂lδij − 5r̂jr̂kδil − 5r̂jr̂lδik − 5r̂ir̂kδjl

− 5r̂ir̂lδjk þ 35r̂ir̂jr̂kr̂lÞrωR sinωRrþ 3ðδikδjl þ δilδjk þ δijδkl − 5r̂ir̂jδkl − 5r̂kr̂lδij − 5r̂jr̂kδil − 5r̂jr̂lδik

− 5r̂ir̂kδjl − 5r̂ir̂lδjk þ 35r̂ir̂jr̂kr̂lÞ cosωRr�; ð18Þ

where r̂i is a component of the unit vector r⃗=r. The above result shows that the total interaction energy depends on the
polarization, frequency and propagation direction of the external gravitational radiation field. In the following, we consider
two explicit examples.
First, when the propagation direction of the external gravitational radiation field is parallel to the orientation of the two

objects, or equivalently, the polarization plane is perpendicular to r⃗, i.e., k⃗ · r⃗ ¼ ωRr and eðεÞij r̂i ¼ 0, Eq. (16) can be
rewritten as

ΔEAB ¼ −
IR

64πr5
αðεÞA αðεÞB eðεÞij e

ðεÞ
ij ðr4ω4

R cos
2 ωRr − 2r3ω3

R sinωRr cosωRr − 3r2ω2
R cos

2 ωRr

þ 3rωR sinωRr cosωRrþ 3 cos2 ωRrÞ; ð19Þ

where eðεÞii ¼ 0 and eðεÞij ¼ eðεÞji have been applied. In the near regime, i.e., ωRr ≪ 1, the leading term takes the form

ΔEAB ≃ −
3IR
64πr5

αðεÞA αðεÞB eðεÞij e
ðεÞ
ij ; ð20Þ

while in the far regime, i.e., ωRr ≫ 1, it becomes

ΔEAB ≃ −
ω4
RIR

64πr
αðεÞA αðεÞB eðεÞij e

ðεÞ
ij cos ðωRrþ ϕÞ cosωRr; ð21Þ

where ϕ ¼ arcsin 2ffiffiffiffiffiffiffiffiffiffiffiffi
4þω2

Rr
2

p . This shows that the gravitational interaction between two objects in the presence of an external

gravitational field decreases as r−5 in the near regime, while in the far regime it oscillates with a decreasing amplitude
proportional to r−1. Moreover, from Eqs. (20)–(21), we observe that in the near regime, the interaction is always attractive,
while in the far regime, it can be attractive or repulsive depending on the frequency of the external gravitational field and the
interobject distance.
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Second, if the propagation direction of the incident external gravitational radiation field is perpendicular to the

orientation of the two objects, i.e., k⃗ · r⃗ ¼ 0, then Eq. (16) yields

ΔEAB ¼ −
IR

128πr5
αðεÞA αðεÞB ½ð2eðεÞij e

ðεÞ
ij − 4eðεÞi1 e

ðεÞ
i1 þ eðεÞ11 e

ðεÞ
11 Þr4ω4

R cosωRrþ 2ð−2eðεÞij e
ðεÞ
ij þ 8eðεÞi1 e

ðεÞ
i1 − 5eðεÞ11 e

ðεÞ
11 Þr3ω3

R sinωRr

þ 3ð−2eðεÞij e
ðεÞ
ij þ 12eðεÞi1 e

ðεÞ
i1 − 15eðεÞ11 e

ðεÞ
11 Þr2ω2

R cosωRrþ 3ð2eðεÞij e
ðεÞ
ij − 20eðεÞi1 e

ðεÞ
i1 þ 35eðεÞ11 e

ðεÞ
11 ÞrωR sinωRr

þ 3ð2eðεÞij e
ðεÞ
ij − 20eðεÞi1 e

ðεÞ
i1 þ 35eðεÞ11 e

ðεÞ
11 Þ cosωRr�; ð22Þ

where we have taken r̂i ¼ ð1; 0; 0Þ and k⃗ ¼ ð0; 0; kÞ. In the
near regime, i.e., ωRr ≪ 1, the leading term of Eq. (22)
becomes

ΔEAB≃−
3IR

128πr5
αðεÞA αðεÞB ð2eðεÞij e

ðεÞ
ij −20eðεÞi1 e

ðεÞ
i1 þ35eðεÞ11 e

ðεÞ
11 Þ:
ð23Þ

So, the interaction energy decreases as r−5 in the near
regime. Remarkably, it can be either attractive or repulsive
depending on the polarization of the external gravitational
radiation field. For example, the interaction is attractive if
the polarization tensor contains only diagonal elements
which may correspond to the þ mode of gravitational
waves, while it behaves as repulsive when there are only
off-diagonal elements which may correspond to the ×
mode. In the far regime, i.e., ωRr ≫ 1, Eq. (22) reduces to

ΔEAB ≃ −
ω4
RIR

128πr
αðεÞA αðεÞB ð2eðεÞij e

ðεÞ
ij − 4eðεÞi1 e

ðεÞ
i1

þ eðεÞ11 e
ðεÞ
11 Þ cosωRr: ð24Þ

That is, when the propagation direction of external gravi-
tational radiation field is perpendicular to the orientation of
the objects, the interaction energy in the far regime
oscillates with a decreasing amplitude which is propor-
tional to r−1. The interaction can be attractive or repulsive
depending on the polarization and frequency of the external
gravitational radiation field, and the interobject distance.
For a given external field, the interaction periodically
behaves between attractive and repulsive as the interobject
distance varies.

III. DISCUSSION

In this paper, we investigate the gravitational quadru-
pole-quadrupole interaction between two gravitationally
polarizable objects coupled with a bath of fluctuating
gravitational fields in vacuum in the presence of a weak
quantized gravitational radiation field, based on the leading

order perturbation theory in the framework of linearized
quantum gravity. Our result shows that the interaction
energy behaves as r−5 in the near regime and oscillates
with a decreasing amplitude proportional to r−1 in the far
regime. The interaction can be either attractive or repulsive,
depending on the polarization, frequency and direction of
propagation of the external gravitational field. When the
orientation of the two objects is parallel to the propagation
direction of the incident gravitational radiation field, the
interaction is always attractive in the near regime, while in
the far regime it can be attractive or repulsive depending on
the frequency of the external gravitational field and the
interobject distance. When the orientation of the objects is
perpendicular to the propagation direction of the incident
gravitational radiation field, the attractive or repulsive
property of the interaction depends on the polarization
of the incident gravitational radiation in the near regime,
while in the far regime it also depends on the frequency of
the external gravitational field and the interobject distance.
To conclude, the induced gravitational interaction due to a
weak external gravitational field can be manipulated by
changing the relative orientation of the objects with respect
to the propagation direction of the incident gravita-
tional field.
Finally, let us note that there are contributions from other

multipole moments to the inter-object interactions (such as
monopole-quadrupole cross terms). In the presence of
gravitational waves, a mass monopole oscillates, and an
effective mass quadrupole is formed as seen by a distant
observer in analogy to the electromagnetic case [32].
Therefore, the monopole-monopole and monopole-quadru-
pole interactions due to gravitational vacuum fluctuations
and in the presence of external gravitational waves can also
be investigated in the present formalism. We hope to turn to
these issues in the future.
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