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Deep inelastic scattering on an extremal Reissner-Nordstrom-AdS
black hole. II. Holographic fermi surface

Kiminad A. Mamo  and Ismail Zahed’
Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA

® (Received 4 June 2019; accepted 27 February 2020; published 17 March 2020)

We consider deep inelastic scattering (DIS) on a dense nucleus described as an extremal RN-AdS black
hole with holographic quantum fermions in the bulk. We evaluate the 1-loop fermion contribution to the
R-current on the charged black hole, and map it on scattering off a Fermi surface of a dense and large
nucleus with fixed atomic number. Near the black hole horizon, the geometry is that of AdS, x R® where
the fermions develop an emergent Fermi surface with anomalous dimensions. DIS scattering off these
fermions yields to anomalous partonic distributions mostly at large-x, as well as modified hard scattering
rules. The pertinent R-ratio for the black hole is discussed. For comparison, the structure functions and the
R-ratio in the probe or dilute limit with no backreaction on the geometry, are also derived. We formulate a
hybrid holographic model for DIS scattering on heavy and light nuclei, which compares favorably to the

existing data for Pb, Au, Fe, C, and He over a wide range of parton-x.
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I. INTRODUCTION

Many years ago the EMC collaboration at CERN has
revealed that deep inelastic scattering (DIS) on an iron
nucleus deviates substantially from deuterium [1] contrary
to established lore. Since then, many other collaborations
using both electron and muon probes have confirmed this
observation [2—4]. Although the nucleus is a collection of
loosely bound nucleons with confined quarks, DIS scatter-
ing is much richer in a nucleus. The nuclear structure
functions display shadowing at low-x, a depletion at
intermediate-x, and an enhancement due mostly to Fermi
motion at large-x.

QCD supports the idea that hadrons are composed of
quarks and gluons as revealed by DIS scattering of
electrons on nucleons at SLAC. The scaling laws initially
reported follows from scattering on pointlike object or
partons. Because of asymptotic freedom, the partons
interact weakly at short distances leading to relatively
small scaling violations at intermediate-x. At low-x, per-
turbative QCD predicts a large enhancement in the nucleon
structure functions due to the rapid growth of the gluons [5]
that eventually saturate [6]. This observation has been
confirmed at HERA [7,8].
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DIS in holography at moderate-x is different from weak
coupling as it involves hadronic and not partonic constitu-
ents [9]. The large gauge coupling causes the charges to
rapidly deplete their energy and momentum, making them
invisible to hard probes. However, because the holographic
limit enjoys approximate conformal symmetry, the form
factors exhibit various scaling laws including the parton-
counting rules [10]. The holographic structure functions
fail to reproduce the Callan-Gross sum rule [9] at inter-
mediate-x, but agree with it at large-x when the parton
momentum fraction is in the neighborhood of 1 [11]. In
contrast, DIS scattering at low-x on a non-extremal thermal
black hole was argued to be partonic and fully satu-
rated [12].

This paper is a follow up on our recent investigation of
DIS scattering on a nucleus as an extremal RN-AdS black
hole [13]. In the double limit of a large number of colors
and gauge coupling, the leading contribution amounts to
the Abelian part of the R-current being absorbed in bulk by
the black hole. After mapping at the boundary, the ensuing
nuclear structure functions show strong shadowing at
low-x, but wane exponentially for large-x as originally
noted for the thermal black hole in [12].

At next to leading-order, the R-current scatters off
charged fermionic pairs forming a holographic Fermi liquid
around the black hole. The purpose of this paper is to detail
DIS scattering on this dense holographic liquid as the
analogue of DIS scattering on a nucleus described as a
Fermi liquid. Some aspects of this liquid near the horizon
were initially discussed in lower dimensions [14]. It should
be noted that at next to leading order the R-current scatters
also off bulk charged scalars. However, these scalars are
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bosonic and do not form a Fermi surface. Since the main
thrust of the paper is to probe the role of the quantum
corrections induced by a bulk Fermi surface to the leading
black-hole contribution as for a realistic DIS process on a
nucleus, the contribution of the quantum scalar corrections
to the DIS process will not be considered in this work.

Standard DIS scattering on a nucleus is mostly on a
Fermi gas in a mean field “trap,” so the present calculations
show how the same scattering operates on an emergent
Fermi surface with strongly coupled fermionic constituents
in a trap produced by a charged black hole. A chief
observation is that the partonic structure functions at
large-x, are modified by an emergent Fermi surface. The
latter follows from an AdS, x R3 reduction of the geometry
near the black-hole horizon, and asymptotes a warped
Fermi liquid near the boundary. The corresponding R-ratio
exhibits shadowing at very low-x, antishadowing at
intermediate-x and Fermi motion at large-x, much like the
R-ratio for DIS scattering on finite nuclei. Shadowing is
caused by the coherent many-body effects and is captured
by DIS scattering in leading order on the black hole at
low-x, while Fermi motion at large-x is due to the
incoherent scattering on quantum fermions around the
black hole in the form of a holographic Fermi surface.

This paper consists of several new results: (1) an explicit
derivation of the structure functions for DIS scattering
on the emerging holographic Fermi surface around an
extremal black hole; (2) the characterization of these
structure functions both at large-x and low-x, with the
identification of new anomalous exponents at large x; (3) an
explicit derivation of the R-ratio for DIS scattering on the
extremal black hole as a model for DIS scattering on a
dense and finite nucleus; (4) an explicit derivation of the
same structure functions in the probe fermion limit as
a model for DIS scattering on a dilute nucleus; (5) a
comparative study of the R-ratio in the probe limit; (6) a
detailed comparison to the empirical DIS scattering data
from light to heavy nuclei.

The organization of the paper is as follows: in Sec. I, we
briefly review the setting for the extremal RN-AdS black
hole, and the key characteristics of the holographic Fermi
liquid. In Sec. III, we derive the contribution to the
boundary effective action of an R-photon scattering off
bulk quantum fermions. The result is quantum and dom-
inant at large-x, and corrects the classical and leading
contribution from the bulk black hole. In Sec. IV, we
analyze the contribution stemming from the quantum
fermions near the horizon. In Sec. V, we detail our
derivation of the R-ratio for DIS scattering on a dense
nucleus as quantum corrected holographic black hole. For
comparison, we discuss in Sec. VI the probe or dilute limit
with the bulk fermions carrying a finite density in AdS
without affecting the underlying geometry. The pertinent
R-ratio in this regime is derived and analyzed. In Sec. VII
we motivate a hybrid holographic model for DIS scattering

‘e
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FIG. 1. Absorptive part of the R-current on a nucleus as an
extremal RN-AdS black hole: (a) absorptive contribution to order
N2; (b) absorptive fermionic contribution to order NY.

on light and heavy nuclei which compares favorably to the
existing world-data for a wide range of parton-x. Our
conclusions are in Sec. VIII. Some useful details are found
in several Appendixes.

II. EXTREMAL BLACK HOLE: DENSE LIMIT

In this work we will address DIS scattering on a cold and
dense nucleus as a dual to an RN-AdS black hole following
on our recent analysis [15]. Conventional DIS scattering on
cold nuclei with many of the conventions used are reviewed
in [16]. In holography, DIS scattering on a nucleus as an
RN-AdS black hole is illustrated in Fig. 1. In the holo-
graphic limit, the leading contribution is Fig. 1(a) with
the structure functions being the absorbed parts of the
R-current. To this order, the structure functions have
considerable support mostly at low-x [13] (see below).
At next-to-leading order, the R-current is absorbed through
the virtual fermionic loop shown in Fig. 1(b). This loop
describes a fermionic hallow around the RN-AdS black
hole that acts as a holographic Fermi liquid. Below we
detail how this contribution leads to structure functions
with mostly support at large-x. This description is com-
plementary to our recent analysis based on a generic
density expansion around a trapped Fermi liquid [15].

A. The extremal and charged black hole

The RN-AdS black hole is described by effective gravity
coupled to a U(1) gauge field in a 5-dimensional curved
AdS space [17]

1
S=—
2k2

dxy/=g9(R —2A) —ﬁ / dxy/=gF*. (2.1)

The Ricci scalar is R, and k> = 87Gs and A = —6/R? are
the gravitational and cosmological constant. The curvature
radius of the AdS space is R with line element

72

2 _
ds —F

2
(=fdi* + dx*) + :g—fdrz (2.2)

and warping factor
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f(r) = ( —Z—i*) (1—%) <1+;—g§+;—§> (2.3)

with r, >r_ the outer-inner horizons satisfying
f(rs) =0.
The black hole is charged and sources the R-potential
Q
A =p-— 2 (2.4)

provided that the electric charge Q and the geometrical
charge ¢ satisfy

2R2 4 2 2 RZ
0 3 4de 6a
where
872R3
2% = N2
647°R
40? = ;2 (2.6)

We have defined @ = 1 for a U(1) R-charge, and & = zlu]:/,_f

for a D3-D7 U(1) vector charge. The temperature of the
RN-AdS black hole is

2 2,2 R42

L) () rm RN g
4nR 7R ry

with y?> = 1/127%@&. The chemical potential u is fixed by

the zero potential condition on the outer horizon A,(r,) =0

or u=Q/r3. At extremality where T=0, we have

2z
ry=r_ = 7R*yu :%\/a'

B. Holographic Fermi liquid

The fermionic fields in bulk are characterized by the
Dirac action in a charged AdS black hole geometry

S== [ dxyGEr Dy - miy) (29
with r = T, and the long derivative

1
DM = 3M + _waerab - ieRAM

; (2.9)

The indices M,N --- or u,v,r--- refer to the space-time
indices, and a, b, - - - to space-time indices with underline
correspond to tangent space indices. Therefore, for exam-
ple, I'“ denotes the gamma matrices in the tangent space,
I'™ denotes gamma matrices in the curved spacetime. They
are specifically given in Appendix A.

A bulk fermion field of mass m and R-charge ey, is dual
to a composite boundary field of conformal dimension
A= % + mR. Since the horizon of the extremal charged
RN-AdS black is characterized by a finite U(1) electric
field, fermionic pair creation takes place through the
Schwinger mechanism. As a result, the black hole say
with positive R-charge absorbs the negative part of the pairs
and expel the positive part. Since AdS is hyperbolic and
confining, the positive charge falls back to the surface of
the black hole, accumulating into a hallow or holographic
Fermi liquid.

The characteristics of the low-lying excitations of the
holographic Fermi liquid for low frequencies |[k°| < u and

low momenta k = |l€\, have been discussed in [18,19]. In
particular, near the horizon the AdSs geometry factors
into AdS, x R3.

1. Case-1: ex& < 1 (mR)?

The fermions exhibit strong distortion in the AdS,
geometry, with [18]

g}s(ko,l?):c(l?)(ko)%k@ ?) (2.10)
and

v =~ (K = ky)}

==

L ! 2 :

= m (k —g(eRa—Z(mR) )) . (2.11)

Note that k% < 0 in this case, i.e., for ez < § (mR)>.
Throughout, we will use the block notation to refer to the

fermionic retarded (Feynman) propagators

gll g12
(% 2)

g21 g22 RF
2. Case-2: exa > % (mR)?

For k% > 0 and k < kg, the corresponding holographic
spectral function exhibits oscillating behavior and gapless
excitations, with comparable real and imaginary parts. In
other words, the excitations in this oscillating region are
short lived as they form and quickly fall into the extremal
RN-AdS black hole.

Further arguments [18,19] show that the fermionic
density diverges near the horizon causing strong back
reaction. As a result, the near horizon geometry becomes
a Lifshitz geometry whereby the Fermi-like volume is
resolved into concentric Fermi spheres each describing
heavy Fermions with narrow widths, thereby explaining the
gapless like excitations. This resolution occurs only for

|k°|/p ~ e~V and resorbs for |k°|/u ~ NC.

(2.12)
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FIG. 2. Schematic description of the poles of the Green
function. For sufficiently large U(1) charge ep some of the
quasinormal modes (QNM) of the RN-AdS black hole transmute
to narrow quasibound states (QBS) by moving closer to the
real-axis.

3. Case-3: ex& > 1 (mR)?

For k% > 0 and k > kg, localized and long lived fer-
mionic states emerge that are characterized by a Fermi
momentum kp > k. In this case, the retarded propagator
near the Fermi surface reads [18,19]

- h 0 0
VKO k) ~ ! 2.13
Gi (K. k) k—kF—ikO—H(kO)(o 1) (2.13)

with

T1(k%) = hye'tr (KO)%
b=Y0
M

Vi = arg (F(—ka) <e‘2”i”k - e_%e’”/a>). (2.14)

The coefficients h; ~ (& )17+ can be com-

1
puted numerically. For v, > 1 3 Vg =5 OF U > E we have a

Fermi liquid, a marginal Ferrm 11qu1d or anon-Fermi liquid,
respectively. Note that the transition from a non-Fermi
liquid to a Fermi liquid occurs for k° ~ k¥ which is fixed by
the condition k% ~ |v;T1(k2)|. Below, we will refer to the
non-Fermi liquid region k° < k¥ as the near horizon or
emergent contribution, and the Fermi liquid region k° > k9
as the far horizon or dilute contribution. The two contri-
butions will be added approximately since an exact con-
struction that interpolates between these two limiting
regimes is likely numerical and outside the scope of
this work.

A schematic description of the poles of (2.13) is given
in Fig. 2. For sufficiently large effective charge egv/a,

R2 and hz

some of the largely damped quasinormal modes (QNM) of
the RN-AdS black hole transmute to narrow quasi-bound
states (QBS) close to the real axis for fixed k < kr. For
increasing k — kp the narrow QBS start crossing the origin
@ = 0 turning to equally spaced holographic Fermi surfa-
ces (here 4 Fermi surfaces) as discussed in [19].

For fermions with larger effective charge, i.e., for e%e& >
Y(mR)* or k% >0, pair creation takes place near the
horizon as we noted earlier. A hallow of charged fermions
at the Fermi surface with kr > kp > 0, that supports quasi-
particles with GI! given in (2.13). For hard R-probes with

large ¢° in the DIS kinematics, only GL! (K%, k) is modified
close to the horizon, since G (w;,k + q) carries a large
momentum and is mostly unmodified in the ultraviolet,

ImGY (@, k + ¢)ImGY (K, k)
- TI'((Gl (ko + qo) - 10-2(kx + (’Ix) - wl)

-

x 28((k + ¢)* + @) ImGL (k°, k)) (2.15)

III. HOLOGRAPHIC STRUCTURE FUNCTIONS

The holographic structure functions on an extremal black
hole in leading order have been discussed in [15], to which
we refer for further details. For completeness, the results
will be summarized below, and extended to allow for the
next to leading order contributions from the holographic
Fermi liquid at the horizon.

A. Structure functions

We recall that the scattering amplitude of an R-photon of
longitudinal momentum ¢* = (w, ¢,0,0) scattering on a
black hole at rest in the Lab frame with n* = (1, 0,0, 0),
(3.22), can be tensorially decomposed into two invariant
functions Gl,z [13]

~ 9udy \ ~
G;I;u(Q) = (77;41/ - #) Gl + |:n;4nv

44, )] -~
+ (n-q) } Gy
(0%)?
with Q% = ¢, thanks to with the current conservation and

covariance. The corresponding DIS structure functions for
an R-photon on a black hole are defined as

n-q
T T2 (nﬂQL/ + nu‘]ﬂ)

(3.1)

Fl—ﬁlmél,
- (n-q), 1 .

- Im —G,. 3.2
e (32)

As in [13], the rest frame of a cold and extremal black
hole will be dual to the rest frame of a cold nucleus at the
boundary with fixed energy E4 = %A,u. Since the binding
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energy in a nucleus is small, we also have £, ~ Amj and
therefore the chemical potential y ~ %m ~- In our mapping,
my and p are interchangeable for estimates. A hard photon
with virtual momentum ¢* = (w, ¢, 0, 0) scattering off the
nucleus in the DIS kinematics satisfies ¢> — 0*> = Q> -
with @ ~ ¢ and fixed Bjorken-x

¢ 0 amy
-2q-(nE,) 2E,® E,

XA (33)
x4 will refer to the Bjorken variable of the black hole as a
nuclear target with 0 <x4 <1, and x to the Bjorken
variable of the free nucleon in the LAB frame
with 0 <x < A.

B. Classical black hole in leading order: Small-x

As we noted earlier, the leading order contribution to
the structure functions (3.2) in DIS scattering is classical
and of order N? as illustrated in Fig. 1. It does not involve
scattering off the fermions near the holographic surface,
which is of order N. In the regime Q < g < Q*/u the
leading contribution to the structure functions vanishes, as
the probe spin-1 R-field is prevented from falling to the
black hole by an induced potential barrier [12]. The
R-current correlator is purely real with an exponentially
vanishing imaginary part. In the regime g > Q3/u?, the
barrier wanes away with the classical and leading contri-
bution to the un-normalized structure function F, of the
form [13]

2 /. 202\% _ 2 /202
Fo(xs, 02~ O <xAQ ) Lo, Bar <ﬂ> (3.4)

Xq \ HE4 W xq \ HE4
with
- N2
_ c
CT - 217/3”2r2(1/3)&5/3
_ N?
C, =—— 3.5
L= 1527%2 (35)

with x, £, = xmy and C; < C7. This result was shown to
hold for low-x or x4 < \/uE,/Q, with the Callan-Gross
relationlike F, = 2x,F,. The normalized structure func-
tions follow as [13]

- 127aA\ 2 .
F1,2 = 2EAVAF1,2 = ( N ) F1’2 (36)
after using the black-hole equation of state. More specifi-
cally, we have (Q*> = ¢*> > 0)

) Cr (3PN 3C (30 g
A x \ 4m% 4x \ 4m3, '

with Cy;/Cr, = n°(48&)%/2N2.

The normalization in (3.6) amounts overall to normal-
izing F| , by the density of the black hole, canceling part of
the model dependence of the equation of state. In a way, the
normalized F'| ; are the un-normalized black-hole structure
functions F, 2 per degree of freedom. (3.7) is dominated by
the first contribution at low-x. We now show that the next
contribution is dominated by scattering off bulk fermions at
large-x from a holographic Fermi liquid close to the
horizon.

C. Classical black hole in leading order: Large-x

The large-x contribution to the dense black hole can be
obtained using the WKB approach also developed for the
thermal black hole in [12] with similar results modulo
pertinent changes in the parameters and normalization. In
particular, the structure function for x > y/q is found to
drop exponentially with the result

FBH , 2 3C 3 2.2
Py g7) [ 3C (3x 7)), (3.8)
A 2x \ 4my
where to exponential accuracy
D(x) ~ Cpe™ Vi, (3.9)

a2 (1/4)Vea
with Cp ~ e 3v2x . Below we will use (3.7) plus (3.8) to

describe DIS scattering on the BH in leading order. We now
proceed to analyze the quantum and subleading correction.

D. Quantum fermions in subleading order

The contribution of the subleading fermions to the
induced effective action can be obtained through the
holographic dictionary. It will be divided into two con-
tributions: 1/ the one stemming from the emergent Fermi
surface near the horizon through the geometrical reduction
to AdS, x R?; 2/ the one stemming from its ultraviolet
completion which is dual to a Fermi liquid in bulk AdSs
which we will seek in the dilute approximation below.

With this in mind, the shift of the R-field Ay, — Aydy0 +
ay, amounts to a shift in the Dirac action density in (2.8) at
the origin of the minimal coupling of the R-field

—ip(—iega,(r,q)1" )y =wB(r;q)y  (3.10)

In terms of (2.8)—(3.10) the bulk effective action for the
1-loop contribution in Fig. 1b at zero temperature reads

d* d*k
Srla,] = —(—i)/ﬁm

X/dﬁ\/g(rl)drz g(r2)Te(Dp(ry, rask + q)

X B(r2;q)Dp(ry. 113 k)B(r15q)) (3.11)
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The routing of the momenta in (3.11) corresponds to the
hard fermion with k 4+ ¢ and the soft fermion with k.
The R- ﬁeld in bulk a(r, g) relates to the R-field at the

boundary A (q) through the bulk-to-boundary propagator
Ka(r;q), Wthh satisfies K, (r — o0;¢) = 1,
|

1 d*q
Splal) = 3 / (27[)414;(:0)(61)1430)(—61)

a,(r;q) = Ka(r; )AY (). (3.12)

This allows the rewriting of (3.11) in the form of the
boundary action

d*k
x(—2z)/( ) /d”ld”z\/ ’"1 ”2 Tr DF Vl,rzskJFQ)Q”(72§Q)DF(’”2»Vlék)QU(’"HQ)) (3-13)

with the dressed bulk vertices

Q"(r; q) = —i(—iegK,(r; q)T*)

R (qR®
~—ep K, (q >rﬂ (3.14)
r

r

We have approximated the bulk-to-boundary K, (r; ) by
its vacuum contribution, with K;(x) the modified Bessel
function.

In the DIS regime Q < g < Q%/u with Q% = ¢, the
spin-1 fermion field remains localized near the boundary as
a potential barrier develops in bulk, a phenomenon also
observed for spin-1 boson fields [12]. In this regime, we
will approximate the hard part of the fermion propagator by
its vacuum (in AdSs) result [20]

DF(”l,’”2§k+Q):/dwlleF(’”h’b;wl’kJFQ)» (3.15)
where

Gp(r.7soy,k+q) =y, (r,)G¢ (01, k+q)§7, (r' ;)

(3.16)
with the vacuum (in AdSs) solution [21]
R*\3 R*\ /0
v (r.o) = (r> JmR—%<a)lr> <1>
y(r.o) =0, (3.17)
and
K +q%) —ioy(k,+q,) -
11 k :01( q 2Ky T4y
P (@1 k+q) (k+q)* + o7 —ie
kO 4+ ¢%) +io, (k -
Q%Z(wl,k+q)=61( tq) okt a)Zor 5 g

(k+q)? +w? —ie

The soft part of the fermion propagator can be separated
into its contribution deep in the infrared which is modified

|
by the induced holographic Fermi surface through the
geometrical reduction to AdS, x R?, and its ultraviolet
completion as we noted earlier. More specifically, near the
AdS, x R3 geometry, the infrared part of the soft the
propagator is of the form

Dp(r. 11 k) = w(r K. k)GE (KO K)grs(F KO k) (3.19)
with
g22(k0 ) gll(ko kl—) k)— _}1 .
GH (KO k;m > —m)
(3.20)

Note that only G4 (k° k) has a singular or Fermi-like
structure near k — ky. Hence, we will ignore the contri-
bution from GX(k°,k) to the current correlator. The
normalizable wave functions are given in (B1).

The time-ordered correlation function for the R-current
follows from the functional derivative

828 p[A]

G (q) = :
AL (9)54" (=q)

(3.21)

Using the spectral form of the Feynman propagator (3.19)—
(3.20), we can rewrite (3.21) in a more compact form

~ [ d*%k o
6 () =2 [ 155 [ (G (o k)
< Ny (01:q:k)GF (K0 K) A% (ki qiary)).  (3.22)
with the dressed vertices
Aﬁy(wl,q k)= /d”z\/ r)Wp(r2, @) 0" (ry: @)y, (12, k),
(3.23)

and
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Nalksason) = [ dn BT 0 rawelron). 9K F) = ReGa(kF) + isgn(l)imG(k.) (329

(324) " Using (3.25) and the fact that Gp(k°, %) is analytic in the
We recall that at zero temperature, the general Feynman ~ upper complex k°-plane, allow for the rewriting of the
and retarded propagators Gy,  are related by the relationship ~ imaginary part of (3.22) in the form
|

- d*k -
Gl (a) = [ 555 [ doron (o000 (i g 0 RETHGY 1.k + )7 (0.F),

(2m)*
&Pk [0 dk° . -
= / G / S / oo, Ny (0 ¢: k) A%, (k: : 0)) Tr(ImGyY (). k + g)ImGR (K. k), (3.26)
—1q

This result shows that for g° = 0, the imaginary part vanishes as it should as the effective action induced by the R-current
(3.13) is real. For ¢° # 0 this result is clearly negative as it should, since its contribution to (3.13) amounts to a self-energy
for the R-field which amounts to damped oscillations in time.

E. Large-x near the horizon

Using the vertex (D5) for momenta near kp, we can rewrite (3.26)

- da) kp
ImGY,(q) ZCZ(UkF)Cek%(—l)A —Iz(wlvq’kF)/( dka (ko, k)*Relo (@, q), (3.27)

with

Relp(w, q) = Re/

o dk°

5, @ (ko Kr(G (1. k + 9)GH (K. K))

0 >
—Re [ T a o701k + o) = o2k + 4.) = w))a5((k+ ) + ) ImGY (.)

l4°|
0 dk° h;ImII
~ ko, k)2 (=D, 78((k + q)* + w? ! 3.28
o e kP (a4 ) (.29

(3.28) can be simplified by enforcing the delta function

~ dk® hyImIT
ImGE, (q) ~ C* (v, ) Cok? / dk/ — a2 (ko, k)12 (x5 g3 k
(q) ~ kF oKF " | 27 1 (ko k) IE (x5 q F)\/_(k kp———ReH) (ImH)2

1\ %t ke 0 dk®
~ Cqo(vg, .22 <—) / dkkz/ —
G( k,: ) q2 kR F —‘q0| 27[

v R+ +2 mR - +1 1
x a2 (ky, k)xkkF+5/2(1 — x;)"R=12 ) F2 m Yk ,m Yk ,mR+~,1—x;
2 2 2
ImII
X \/5% o (3.29)
(k — kp — &£ — Rell)? + (ImIT)?
with the overall constant
P2 -

Covg,r2-) = 3 222 C2 () C vy, )by (v, ) Co. (3.30)

where 71, (vk,) = z_hy is a dimensionless constant to be determined numerically, and z_ = ’:—_2. Again, for the DIS kinematics

we set x; = —q*/2k - ¢, and |¢°| ~ g,. We rearranged the hypergeometric function , | using the same Pfaff identity (3.36).
Note that for the special value of v, = mR + 1, one can see that the x; dependence of the integrand in (3.29) reduces to the
one in [21] before the multiplication by the trace (for our case the trace is |/s;). However, for general v, the same partonic
content as in (3.37) is noted.
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For narrow quasiparticles, we may use the substitution
(ky =k—kp)

ImII
(ki —£ —Rell)? + (ImIT)?

k()
—>m’5<kl———ReH) (3.31)
3

and undo the £° integration in (3.29) with the result

2a+(ko,kﬁ2< 1 )”kFH

~ 1. kp
G (q) w5 Colo,) [ bk

e F |-+ Rell'| \g*z2
Xx:kﬁ'+2(1 —xk)r_%zF%(T+,T—7T_ 1,1—xy)
(3.32)
with
Rell' = 2hyuy, [k~ 'Re(e™r (=1)471)  (3.33)

where k° in x, is solution to the transcendental equation

[K°]

K+ 5 = Bl Re(eie (<1)2),  (3.34)
L
and we have defined a dimensionless constant
~ 2up,.+2
Colu,) =z=" " x Cgvg,. 2-)
T ~
=5 C* (v, ) C2 (v, ) 1y (v, ) Cop- (3.35)

Also note that a_ (ky, k) = ¢1z_k, + ¢,z_kq is a dimen-
sionless coefficient with dimensionless constants ¢;, =
Cia/z-.

In arriving to (3.32), we have made use of the Pfaff
identity

JFi(a,b.c.z) = (1—2)%F, (a, c—b, CZTZI) (3.36)

In the holographic Fermi liquid, the partonic distribution
function is seen to develop a modified exponent. A
comparison of the partonic distribution function (6.13) in
the probe limit, to (F4) where the black hole is present,
translates

1 \utl
d <?> k xl]:k+2(1_xk)T_%ZF%(T«f’T—,T_],]—xk)
(3.37)
with 27, =74 (v, +1/2) and the twist parameter

7 =mR + 3/2. Near the black hole horizon, the parton
distribution function develops a modified scaling law, but it

FIG. 3. Large-x dependence of the parton distribution function
for weak coupling in vacuum (dashed-red), strong coupling in
vacuum (dark-solid-blue) and near a holographic Fermi surface
(light-solid-green).

is still seen to vanish at the end points x;, = 0, 1. In Fig. 3
we show the modified behavior of the partonic distribution
function in (3.37) for fixed ¢*, z = 3 and v}, =1 versus x;
as the light-solid curve (green). The comparison is with the
large-x dependence of the nucleon for weak coupling
dashed curve (red), and strong coupling dark-solid curve
(blue). Near the black hole horizon, the distribution
function is shifted to intermediate-x. With our choice of
parameters, the holographic result (3.37) reduces to

1 3. . .
x;(1 —x;)2, in comparison to the strong coupling result
in vacuum x2(1 — x;)?, and the weak coupling result also in

the vacuum xi(l — x;)°. Remarkably, the formation of a
holographic fermionic surface through the AdS, x R3
reduction, is to shift the holographic partonic distribution
to intermediate-x, and modify the hard scattering rule.
For our choice of DIS kinematics, the non-normalized F 5
structure function (3.2) follows from (3.32) in the form

(90~ qy)

: I
Fa(xa,q) = ;xA ?Imex(q) (3.38)
with again Q? = ¢> > 0. Modulo the dispersion relation
and the anomalous exponents that characterize the holo-
graphic fermions in the reduced AdS, x R? geometry, the
results (3.32) and (3.38) are similar to the ones we derived
recently in [15] using general arguments.

IV. FERMIONIC CONTRIBUTION AT LOW-X

In the DIS regime with g > 0Q? or low-x, the structure
functions are dominated by the exchange of a Pomeron, a
multigluon exchange with vacuum quantum numbers. In
holography, this exchange is described either through a
closed surface exchange [22] or a graviton [23] in bulk.
For the latter, this regime was identified in the range

Vi« xxl /+/4 where the exchange involves the string
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scattering amplitude. Since x> e‘ﬂ, the strings are
small compared to the size of the AdS space so that the
scattering amplitude is quasilocal with almost flat space
signature.

S= /dlox\/—glo(KV),_O

8

where v are the Killing vectors for the compact part of the
10-dimensional space. The forward R-current scattering
amplitude follows from pertinent variation with respect to
the R-field. Here K refers to the kinematical factor
involving the fermions y and the R-field strength F, and
V is the exchanged flat space 10-dimensional Virazorro-
Shapiro string amplitude

o35 r(-<%
64 11

p= ?fﬁr(l +¥)

(4.2)

as illustrated in Fig. 4. The 10-dimensional Mandelstam
variables 3, 7 are related to the 4-dimensional ones s, ¢
through

with the warping made explicit.

X

FIG. 4. Absorptive part of the R-current on a nucleus as an
extremal RN-AdS black hole: (c) fermionic contribution to order
N? due to a closed string exchange in bulk at low-x.

i ) _ _
= / d"x\/=g10(4v" v, T, 0P — g (FTMOpypv, v + 20,0, 5T0w)) F™F ,, V|,—o

A. General setup

The 10-dimensional tree-level effective action that
describes the scattering of an R-photon off bulk quantum
fermions at low-x reads [23]

(4.1)

|
The imaginary part of the string amplitude (4.2) is

' N o . AF
0= 05 -

with the delta-function summing over the closed string
Regge trajectory. At low-x we have s ~ 1/x and j~ s~

1/x, so that for In(1/x)/v2 < 1,

O(7)
OB ~ G) o

We now recall that the field strength F™" describes the
bulk-to-boundary R-field-strength with incoming momen-
tum ¢* and outgoing momentum ¢*, while y describes the
bulk fermion with incoming and outgoing momentum k* in
the anomalous Fermi surface. The low-x regime with x < 1
corresponds to the kinematical regime ¢ - k > ¢ > k2, so
that the dominant contribution in K is the term with the spin
contraction of the form (g - k), i.e., the first term in (4.1).
Using

(4.4)

(4.5)

w(k) = (k) x Y(v) (4.6)

and normalizing

/ b /G 190, |Y(0)]? = c5R? (4.7)
SS

where Y() is a spherical harmonic in 3 in (4.1), we can
write down the one-loop effective action Sy for the diagram
shown in Fig. 4 as

) _ i . d4q d4k
Sl =) =38 [ o | ey

< [ g =g Fune)
) WVelo.

We now choose the polarizations to be transverse with
the additional axial gauge condition a, = 0, so that the
boundary-to-bulk R-field is

X Tr(Dy(r, r, k)T, (— (4.8)
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a,(r.3) = (RZ K, (qR2))nﬂ(q)eiq"‘. (4.9)

r

The corresponding field strengths are

. qR* . (qR*\ ...
F/w(q) = l(CI/lnv - nMQu)TKl (V el

, R qR*\ .
F,.(q) =n,q* Ko( )e"” (4.10)
and their contraction is
qR® qR*
FMPF’/ ——H’L nl, < ( ) K%(T
LR, (qR®
+qﬂqp K1 <r . (4.11)

B. Low-x near the horizon

To analyze the low-x contribution of the fermions near
the horizon, we will focus on the graviton exchange and
make use of warped momenta § throughout this section.
For small energy transfer g, < u, the bulk-to-bulk propa-
gator for transverse graviton a7 (gy, §,) can be written as

xyx)( qo0, Elx’rl?VQ)

(QO’ x> rl) fy xy(ZIO’ le)ﬁb(%’ qx’r2) (412)

where ¢(go, Gy, ry) is the normalizable wave function of
the graviton, and ny‘xy is its boundary Green’s function

ny Xy (Q(M Qx) = Q%G(QO’ le) (413)

where ReG(gg, G,) = f(gy, ) which can be determined
from the low-frequency expansion, and [24]

3C g2
ImG(‘?O? Z]x) = 1 (1 + <1 +q_g> 2)

(4.14)

where C is a proportionality constant, eo(%) is a function to

be determined from the low-frequency expansion coeffi-
cients, and

gi (qO LIx> — —2yie_i’”“i
U

] - (1) (415

1+l/i 2/1

where

2 1
vy = 2(5+2 j:4(1 Z;)). (4.16)

Note that for zero energy and momentum transfer
(Go =0 and g, = 0), the bulk-to-bulk propagator of the
graviton exchange vanishes ImG,, ,,(0,0, ry, r,) = 0 since
G.(0,0) = 0. Therefore, the t-channel contribution of the
graviton for the current-current correlation function or
forward deeply virtual Compton scattering away from
the probe limit vanishes. Its Reggeized form through higher
spins (closed string exchange), vanishes as well.

V. R-RATIO FOR A QUANTUM CORRECTED
RN-ADS BLACK HOLE

A. Particle and energy density at the horizon

Having assessed the structure functions both at large-x
and small-x near the black hole horizon, we now need to
normalize them. For that we need to evaluate the contri-
bution of the bulk fermions near the horizon to the particle
and energy densities, much like we did in the probe limit.
More specifically, we define

neg = (J')(qz < 1)

e=(T")(qz< 1) (5.1)

as the boundary expectation values of the time-component
of the R-current and the energy momentum tensor. The
expectation values follow from the holographic correspon-
dence in the tadpole approximation in AdS as

&k [ dk°

x (k) (k)ImTrGL (K0, k)

3 0
1) = [ 55 [ S telaz <)

x G (k)Cyry (k) (—ik0) ImTrGR (KO, k)

(J1) = —ieg

(5.2)

with Iy (gz < 1) = Ix(gqz < 1) playing the role of a
spectral weight, and defined in (6.23). Evaluating the
momentum integral near the Fermi surface, we find

k
(") k(1 =)
=-—~C;hC ST 5.3
n eR J 9| 1 + R H/| ( )
with Cy = % and the dimensionless constant
R =
C; = RY(mRy + vy, ) | —Zkpz_ + eR\/E
7\ R 3
2
a? (ko. k) -2
2 Vir 5.4
QQup + I)Wz( \/_) (54)
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Since Iy = I%, we have ¢ = nk". Note that k, is the
solution of the transcendental equation (3.34), which near
the Fermi surface k — kj can be solved as ky ~ C/z_ with
the dimensionless constants

Colvs,) = (vphylm(efrr (—1)24)) ™5 (5.5)

1-2 .
and 71, = z- e h,. Therefore, for the dense limit near the

horizon, we make the identification

E,=V,e = Ae/n = AK° (5.6)

2

_ 1. (1= /1 \wrt!
ImG,(q) ® 5 Co(vi, )a (ko ky = 0) <C]2z2> F Fer

| + Rell|

Here CG(yk ) and a, (k, k; = 0) ~ ¢,z_k¢ are both dimensionless constants, and x;~ k Axy = lzN X since *4

Here n and e are identified with the particle and energy
densities of the target of volume V, and total energy E,
following the identification in IIIA.

B. Normalized structure functions: Dense regime

Having determined n, € in the dense limit near the
horizon, we can now normalize the corresponding structure
function (3.32) through the substitution

ImG%, (q)
et

The integral in (3.32) can be evaluated near the Fermi
surface k — k with the result

ka+2 (58)

(1 —xkF)T_%zF%(u,T_,r =11 —x,).

= '”N . Here

ko ~ Cy/z_ plays the role of the Fermi energy of the quasiparticles in the holographic Fermi liquid near the honzon 7_. We

recall that

1 r

o R

2/3Va RVa

R
H 2 M (5.9)

with & = 1 for a U(1) R-charge, and & = 1N ~< for a D3-D7 U(1) vector charge.
Using (3.38) together with (5.7)—(5.8), we can extract the normalized structure function of the holographic Fermi liquid

(xx, ko = xmy)

Fo(x,, q2 ~ - /42 Vip 12 U 45
%ieﬁcmsz(@’f’a, vp, hy) <? k‘F (1—x, ) Fir,,7_,7—1,1 = Xg, ) (5.10)
where we defined the dimensionless constant
. 1\wet21 Qo + D)Gla7+u, - D0 + vy, + (e + 15, — )2
Cadas2(er. 7.0, vp. hy) = <_~> <Co ke /7 o 1 ~ 2 . (5.11)
3a 8 (EVa+ JsepVa)(z—1)

with

1 3\2 k2 1 5
Vi, (eg.7.@) = (E <T—§> +M—§&—§e§&>

N i
Co = (vphysin(yp + 2wy, ))

yp=arg (F(—Q,ykl_) <e—2mkp _ e‘%—’kﬁ) ) ‘

(5.12)

Note that for a large effective charge eRﬁ — 00, we have
yr = —2nv, and Cy — 0 which implies that the structure

function (5.10) vanishes in the probe limit & ~ j\% - 0,
which is also the regime where the backreaction from the

flavor branes can be ignored.

C. R-ratio in the dense regime

The R-ratio for the quantum corrected black hole
consists of: (1) the leading classical contributions (3.7)
plus (3.8) both at small and large x respectively; (2) the
subleading quantum correction from the emergent Fermi
surface (6.28) in the AdS, x R? in the near horizon
approximation; (3) the subleading quantum correction
from a normal Fermi liquid far from the horizon in the
dilute or probe approximation (6.30) to be detailed below.
To map this ratio on that of a dense nucleus, we follow [13]
and define

/1\ Fdense (.X, q2)

£ = - 5.13
Fnucleon (x7 q2) ( )

Rdense ()C q )
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with the dense structure function

F(zlense (x’ q2) 3q2 2 . 3C; 3x2q2
= "~ |Cr|—= 34+ — D
A Namg) © 2 Lamg )PW

2\ v, +2
M kE Vi 45 3
+(CAd826123 <?> xk];F (1 —xkF) 22F%(T+,T_,T— 1,1 —xkF)—I—Cl

normalized by the nucleon structure function (6.31).
For clarity, we recap the different definitions used for
parton-x (0 < x4, < 1) and entering (5.14) and the normali-
zation (6.31)

X Ep = xmy

xmy = xi ko = xi kg (5.15)

x4 refers to the parton fraction in a nucleus, x refers to the
parton fraction in a nucleon within a nucleus, and x;, refers
to the parton fraction in relation to ky ~ Cy/z_ from the
emergent Fermi energy.

In (5.14), the first bracket is the leading and classical
contribution, and the second bracket is the subleading and
quantum contribution. More specifically, the first (3.7) (low-
x) and second (3.8) (large-x) contributions stem from DIS
scattering on the bulk classical black hole. The third (6.28)
contribution stems from DIS scattering off the emerging
holographic liquid close to the black hole horizon. The

fourth and last contribution FQdSSA(x‘qZ) = Fgﬂu:(x'qz) (6.30)

stems from DIS scattering off the distorted Fermi liquid
far from the horizon in the probe approximation to be
discussed thoroughly below. The quantum correction near
the black hole is vanishingly small at small-x.

The relative and arbitrary normalization C; = 0.07 is
introduced to account for the normal Fermi liquid con-
tribution far from the horizon which is asymptotically AdS;
as we discussed earlier. It will be estimated in the dilute
limit below and added to the near horizon contribution. A
more quantitative calculation using the exact response
function throughout the holographic space distorted by
the RN-AdS extremal black hole, that reduces to AdS, near
the horizon and asymptotes the dilute limit near the
boundary, is numerically intensive and goes outside the
scope of this work. We note that the values of C; < 0.07
keep the AdS, plus AdS5 quantum corrections subleading
in comparison to the leading RN-AdS black hole contri-
bution for all values of kz and most parton-x.

To quantify each of the contributions in the R-ratio, we
now need to fix the parameters entering this expression,
many of which are tied by holography. We first fix the
explicit holographic parameters: @ = N./4N; = 1 (ratio of
branes), 27°cs/v/4xl = 0.01 (strong coupling) and ep =
0.3 (charge of the probe fermions). Next, we fix the scaling
parameters entering in the nucleon pdf: 7 = 3 (hard scaling
law) and j = 0.08 (Pomeron intercept). The nucleon

M), (5.14)

A

confining scale enters through f = 1/(myz_)> = p
asymptotically (6.31). We fix it to § = 17.65. Finally,
we fix the parameters of the emergent Fermi surface:
vp = 1 (Fermi velocity), i, = 1 for simplicity, pu/my =
1.2 (chemical potential) for a typical nucleus

With these parameters fixed, we show in Figs. 5-7, the
dense R-ratio versus x for different Fermi momenta
kp/my =4, 0.5, 0.3. For kp/my > 0.4~ kp/my the
contribution from the emergent AdS, Fermi surface near
the horizon is small but real. This contribution disappears
for kr < kr as we noted in (2.11), and only the AdS;
contribution far from the horizon remains. The contribu-
tion from the emergent AdS, Fermi surface becomes
comparable to the far horizon AdSs contribution at
large-x and only for large values of k;/my. For all values
of kr/my and most values of x, the leading black hole
contribution is dominant. Some of the key features of
DIS scattering on a nucleus are already captured by

0.6
0.5¢
0.4}
0.3}
0.2

BH+Fads2 +FAdSs

Rdense (X)

0.1¢ Fadss

_J

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 5. Dense R-ratio (5.13) with kz/my = 4. See text.

0.7F
0.6

0.5¢

0.4F
03k BH+Fads2 +FAdss

Hdense (X)

0.0 {—Fads2 : : :
0.0 0.2 0.4 0.6 0.8 1.0
X

FIG. 6. Dense R-ratio (5.13) with kz/my = 0.5. See text.
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04F

0.3t BH+Fadss
=
8 0.2 ]
3 BH ‘J
o

0.1} ]

Fadss
0.0t

0.0 0.2 0.4 0.6 0.8 1.0
X

FIG. 7. Dense R-ratio (5.13) with kz/my = 0.3, and without
the contribution from AdS,. See text.

Figs. 5-7 with shadowing and anti-shadowing at small-x
due to the coherent scattering on the black hole, and Fermi
motion at large-x that is increasingly apparent from DIS
scattering on the AdSs from the far horizon part at small
kr/my. We will return to these important physical issues
below through a more realistic model for DIS scattering on a
finite nucleus with comparison to the existing world-data
from DIS scattering on light and heavy nuclei.

VL. DIS IN THE PROBE LIMIT: DILUTE REGIME

We now consider scattering in the probe limit, where the
bulk fermions carry a density without affecting the under-
lying AdS; geometry (with or without a wall), i.e., % -0

d*k
2r)*

Gl (q) = /

dk®

with \/LE X ega = p, fixed where & ~ < o> 1 and p is the
chemical potential. This limit, can be regarded as the UV
completion for the emergent Fermi surface in bulk, but also
can be considered as DIS scattering on a very dilute
nucleus. This amounts to using the free spectral form
(3.16) with the substitution

ImGY (@, k) — znp(w;. K)3(K* + @?)5  (6.1)

Here np(w, l;) = 0(u, — (k> + a)%)%) is the Fermi occupa-
tion factor for a fermion of momentum 12 mass @; and
Fermi energy y,, and the vacuum (AdSs) wave functions.
For the confining case, the mass w; is quantized. This
analysis complements the one we have discussed recently
using generic arguments based on a density expansion of a

trapped Fermi liquid [15].

A. Large-x

With this in mind, consider the case of scattering in the
ultraviolet region of the black hole, with the hard fermion of
momentum k + ¢ and the remaining fermion of momentum
k treated in the probe approximation. This example will
help clarify the relationship between our analysis and that
in [21]. For that we use the vacuum propagator (3.15) for
both the hard fermion and the density modified propagator
(B6) and (6.1) for the soft fermion in (3.26),

/ dan oy / daranReTr(Gr (@, k + Q)N (@1 4 03) G (@, KA (33 G ).

&k
/ / wr /da)la)l/da)Qa)zTr(Ing(wl,k+q)A”(a)l;q;wz)Ing(wz,k)A”(wz;q;a)l)) (6.2)
q

where the hard vertices are defined as

N1 g s) = / Ao/ (2. 1) Q4 (r2: Q) (2. ).

A (wy; q; wy) /drl\/ g(r)w(ri, @) Q% (ri;q)y(ry, o).

Here y(r,w) and w(r, w) are the hard wave functions [21]

v(z,0) =

with the chiral projectors P
functions

ImGg(w;, k + ¢)ImGg(w,, kO, l_é) -

ZS/z[JmR—l/Z(wZ)PJr

W(z.0) = 222[P_J g1 p(02) + T gt o (@

(6.3)

+ Jrs12(@2)P_],

)Pl (6.4)

=1(1+ys). In this regime, the imaginary parts are reducible to on-shell delta

(=K + ) + 1)75((k + q)* + o) (=K + @3)znp(w,, /’;)5(‘7<2 + w3)
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after using (6.1). Recall that ng(w, 12) is the Fermi distribution for a fermion of mass @ and momentum k near the boundary
in the probe limit. With this in mind, (6.2) becomes

nGirla)» [ 0% [0 A [ dud [l o
|q°] 2 0 2 0 2

) tr((=(K+ ) + o) N (@1 g 02) (=K + @2) A (@23 g3 01))28((k + )* + o) 28(K + o93),

/ &k / dK° /qz da? /(‘1—0)2)2 do ( )
|q ‘ 271_ o 2 o 2 zv 0)17 wZ’ q
X tr((=(K + ) + o) (=K + 02)r* P )78((k + 9)* + 0})an (2, K)S(K + w3), (6.5)

with the physical condition w; + @, < ¢ (i.e., ameson or virtual photon of mass g decaying into KK-fermions of masses w,
and w,), and

(o9
I (w),0,,q) = eRR4CI/0 dz 22J g1 )2 (012)J g1 2 (022) K (g2)

2—(mR—1/2) mR—L

~ eRR4mw ZQA dz ZmR+%JmR—l/2(w1Z)K1(qZ)

1 (@, (@, \ "R @2\ ~(mR+3)
~2epR*(mR +1/2 (> ( ‘> <1+1) 6.6
RRY 7 \q q 7 (00

where we made use of the approximation
2—(mR—1/2) ol 6

Jnr— N—————— mA=; 7
mR 1/2(0)2Z> F(mR+ 1/2) (@,2) ( )

2 2
for w,z < 1. Note that without making the approximation w,z < 1, the above integral I, ~ F4(a, b;c,d,; —%,—%)

[25,26] where F, is the fourth Appell series of hypergeometric functions which is indeed convergent only for w; + w, < g.
The integral in (6.6) is in agreement with the R-current scattering on a dilatino in [21]. Evaluating the integral in (6.5)
over w; using the delta-function 5(w? — s;), and using (6.6), we have

o) 25 [k [0 G [T R (R on T+ )+ VO + on)p P )ngd 4 03). (63)
lg°| <7

where s; = —(k + ¢)*. The evaluation of the remaining k%-integral in (6.8) using the last delta-function, yields
o 7 [¢dw} [ Pk np(@,, k
Gt @)~ [ 752 [ G P T (=0 )+ Dt o) (69

2E,
where E; =/ |k + @% < |¢°|, and K° = E,

To extract the structure functions (3.2) from (6.9) we carry the spin trace by contacting with the timelike frame vector
n* =(1,0,0,0),

3 i}
nun ImG (g / ' dwz/ dk3 P, (v/50 02, ) ((= (K + ) + /SO~ + )P ) = (za;k’k)’

7 dw 3 np(wy. k
z”% %/(;j 153]%1)(\/5’0’2,61) ((”‘k)z—%(k“I‘F\/ng)”z)M’ (6.10)

2E,
where we have assumed 7 - ¢ ~ 0 and k> ~ 0. Note that the trace in (6.10) is the same trace evaluated in [21] for w, = 0 (see
their Eq. 72). Using (3.2) with x4 = —¢*/2P, - g, we can now extract the structure functions F (x4, ¢*) of a state with
momentum P from (6.10)
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3 2 N<® de? [ Pk np(w,, k)
P ’2z22‘17/ _2/_12‘ e g2 @2, K
2(XA q ) 4 2XA(n‘PA)2 0 2 (27[)3 Zl/( Sks W2, q)(l’l ) 2Ek P
. N<¢ dw? [ Pk np(ws. k
P = [T 92 [ SR ok + o ). (6.11)
0 2 (27) 2E,

We have x; =—¢*/2k-q, sp = —(k+q)*~—¢*(1-1/x), and k° = E, = (|k]> + @2)} < |¢°. We can reduce
1,,(\/Sk. . q) in (6.6) in terms of x; as

Lo (/53 03, 9) % 2eg R} (mR -+ 1/2)y* 2R3 g T2) (1 g gitni1/2), (6.12)

for the mass range w, < A. Using (6.12), we can rewrite the structure functions (6.11) in terms of x; as

- 1\7! 1 N<q dw? &Pk n a),lz
Fating?) » 2= 12 () s [N By [ S5 g 1 -

q n-Py)? 2 (2z)?  2E;
. 1\ [N<¢ dw? o &k np(wy. k) .
Fi(x4.q°) 207 xR (z = 1) ((12> /) 72 (@3)2 / (27)> T%f%l —x)"2 (6.13)

with the twist parameter is 7 = mR + 3/2, following the approximation (v, < q)

w»H 1 )%0)2
S| —=1) —==0. 6.14
. 612 <xk q ( )
B. Low-x

In contrast to the dense limit in (4.13), the bulk-to-bulk graviton propagator in the probe limit, is given by

© dw? 22J s (z20)2*J s (Z0)

Guyay(G0: G102, 7) =
xy,x)r(qu ZZ) /O 2 _[+w2_i€

(6.15)

where 1 = —g* = g§ — g3. Therefore, G, ,,(Go = 0.3, = 0,z,2') # 0 does not vanish in the probe limit. In this limit, the
graviton exchange Reggeizes by including higher spin-j (stringy) exchange as

o d_a)2 22‘]5(” (ZO))ZQ‘I&(ﬂ (ZICU)

K.7~7~x77,:
(J:80+ G 2.2) A 5 T o e

(6.16)

with A(j) = (4 +2VA(j — 2))-.
With this in mind, we now consider the case of the one-loop fermionic contribution in the probe limit at low-x. In this
regime, the bulk-to-bulk fermion propagator is of the form [20]

—if+to _

do’

Dy(r.r k) == [ G

Note that only in this section, we have added an extra factor of 7 in the gamma matrix in comparison to (3.18) and replaced @
by —w to make the comparison with standard results easier. Inserting (4.11) in (4.8), we obtain the on-shell one-loop

effective action Sp [ALO) =n,| = n,,nplm@;”(q )s

]
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q2R6

n,n,ImGY (g / /O dko/di”\/_<n n, aR° ~——[K3(gR?*/r)+ K} (qR*/7)] + q,q,n* 1(qR2/r))

o] 270

xTr(ImDR(r r, k)F”(—lk)ag"‘”)ImVR\t 0

dw? &Pk np(w,k
~C, / dry/=gv g"g" / / 5 F2Ek J
4

x <(n-k)2q

(C()Rz/ 2mR—1 RZ/ 5
J

zCl(%>T_1Aq2dTw2(w2)T_z/ 2% 22’}(@2 2f+3< n-k)?* K2 (w)) + K2(w )]+4L 2K2 (w ))

=1 (¢ dw? 3k np(w, o ;
<) [T iy [ OB [ gy (I ) 4 ki i)

R 4 2R6
KR )+ Ko ]+ e Rt
2\2V4x2

— s

1

(r/R?) 35(r—r. )

q 0 k
1\ [¢dw? - &k np(0.k) ((n-k)?
~C; (g) A T(wz) 2/(2ﬂ>3 2E, ( pe [1027+3 +1; 2r+3]+4 2” I 2T+3> (6.18)
Here E;, = (|k|> + 0*)} < |¢°|, k* = E;, and x; = 1/. Also we have set r; = RVd's/2\/]j, w; = qR*/r; = qz,,
R 2—(2mR—1)
c, =75 (6.19)

2V/aZAT2(mR + 1/2)

and defined the integrals

(6.20)

R - o2 P+ )T = )T ()
I, A dww"K5(w) = 2"2 T(2)

with v =1 (n+ 1). They are related to each other recursively (n— 1)1, = (n+ 1)l
The structure functions of the nuclei at small-x in the probe limit are given by

, 1\*! 1 N<q? d? &k np(w, k)
F ) ~27C, | = - - = 21—2/ L R AV I
) 2206 () 5t [Ty [ Pl + Dy

. 1\ [N<¢ da? o &Pk np(w.k) (1
F1(XA’612)N277C4(?> A T(“’z) 2/(27[)3 2, <4_x]2(11,21+3)' (6.21)

The effects caused by the diffusion in the radial direction on the structure functions far from the black hole at low-x, are
discussed in Appendix E.

C. Normalized structure functions

To normalize the structure functions in the probe limit, we recall that the bulk density and bulk energy density follows
from the holographic principle as

i(gz < 1) //\2 dwzl (qz< 1 )/kp(w) &k
n(gz = v Z , W

A d 2 ke (o) d3k
Egz<1) = /0 0 Iklgz< l,a))/) 20y VK + o? (6.22)

2

where kp(w) = \/u2 — ®?*, and
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Ix(qgz < 1,0) = R* /z dz 7773 (w?)2
(6.23)

after taking ¢zK(¢qz < 1) ~ 1. The w-integration in (6.22)
is carried over the bulk spectral density /¢ (0, ®) with an
upper cutoff A. In the conformal case, the cutoff is a priori
arbitrary. In the conformally broken case, say a hard wall at
7 =2z_,wecan set Z_A = z_my in (6.22) and assuming A
large, to pick only the nucleon ground state. A higher cutoff
would include higher excited states of the nucleon. With
this in mind, we can first undo the k-integration by
approximating it near the Fermi surface, and then undo
the w-integration by keeping only the leading contribution

for 5= (z_my)* > 1,
1 R*
7] <1 %771(3
gz ) 87% (r—1)p! r
R4

gz ) k}Ep (6.24)

87 (z—1)p!
with Ep = (k% + mlzv)%. We now identify the bulk density
in=A/V, as the density of a fixed target say a nucleus,
with A-nucleons in a fixed volume V, and a total energy
E, = AEp. The normalized structure F'; , are then related
to our earlier and un-normalized structure functions F 12
through

- F
F1’2 = ZEAVAFI,Z == 2AEA # (625)
n

1. Case-1 (Large-x)

The normalized structure functions at large-x follow by
inserting (6.21) and (6.24) into (6.25) with # = 1/(myz_)?

Fy(x.4°) pmz\ ! -
ZTz&ﬁ(T— 1)%e% q—zN (1 = xp)™2

F 2 2\ -1
_ned ) (x.4°) ~d4n*(t — 1)2(3%e (ﬁ—mN) AxTFH(I —xp)2

A q2
(6.26)
We define the x-fractions
4 @ xmy
F —2pF . q ZEFCU EF
2 _ 2
X4 1 4 F (6.27)

and note that the large-x structure functions in (6.26) in the
probe approximation obey the analogue of the Callan-Gross
relation F, = 2x, F for a holographic and dilute nucleus.
Also we note that (6.26) are analogous to the so-called

structure functions of the nucleus obtained through the
so-called x-scaling of the structure functions of the nucleon.

2. Case-2 (Small-x):

Doing the momentum integrals in (6.21) near k — kp
and doing the appropriate normalization as in the large-x
regime, we find

Fy(x.4°) my )" 1
—222 ) NG, —2N — o203 + 11 2043
q XF

m2\ =1 1
2 P aaC () AT ,
A T l( qz ) (4)6%; 1,2‘r+3>

D. R-ratio in the probe limit

(6.28)

We define the R-ratio of the nucleus in the probe (dilute)
limit as

% F(zlilute (x’ q2)

£ = - 6.29
Fgucleon (.X', q2) ( )

R girge (X, ‘]2> =

where F§U¢(x, ¢?) is given by the sum of (6.26) for large-x
and (6.28) for small-x,

1“5“””()@612)z f pm3\ (Pmi !
A 7> 7

X (8712(7 —1)2e2xt (1 — xp)™2

C57l'2

2V/4xd 25912 (2 = 1) &),

To2ei3 + 11 2043) 1 > (6.30)

and F3uleon(x g2) is given by

FReclon(x.q?) _ s (ﬁm?v> <ﬂmf2v> -l
A q* q*

X <87r2(1 —1)2e2x (1 —x)2

CS”2 {IO$21+3 + Il.2r+3] 1) (6 31)
24l 2% (e = 1) & )7

The additional multiplicative function f(z) with argument
1= fm%/q* asymptotes a constant in the DIS regime
which is our AdSs result. The specific form of f(i) depends
on the details of the confining model for finite ¢> (see for
example Eq. (3.28) and Eq. (4.3) in [11] for the soft-wall
model) but in the DIS limit, the asymptotic constant can be
reabsorbed through a shift # — . We recall that pm3, =
1/ 72 is related to the confining scale here, and that
xpEp = xmy. Also we have in (6.28) j = 1 in the absence
of transverse diffusion or curvature corrections. When

the latter are included j — 1 — O(1/+/4). The structure

066014-17



KIMINAD A. MAMO and ISMAIL ZAHED

PHYS. REV. D 101, 066014 (2020)

1101

1.05¢

Ryilute(X)

1.00

0.95¢

0.0 0.2 0.4 0.6 0.8 1.0
X

FIG. 8. Dilute R-ratio (6.29) for kp/my = 0.3. See text.
function of the proton follows from (6.30) by setting kp =
0 or through the substitution x; — x. The R-ratio for the
probe or dilute limit is independent of # — j and ¢2. Note
that the first contribution is proportional to 21’ while the
second is proportional to e%/+/A independent of the
R-charge, as expected for Pomeron-like exchange.

In Fig. 8 we show the behavior of the dilute R-ratio (6.29)
versus x for fixed Fermi momentum ky/my = 0.3. The
holographic parameters used are fewer but consistent with
those used for the dense R-ratio in Fig. 5. Specifically, we
have used: egr = 0.3 (R-charge of the bulk fermion),
27%cs/\/4xk = 0.01 (strong coupling), 7 = 3 (hard scaling
exponent), j = 0.08 (Pomeron intercept). In the dilute case,
the R-ratio is dominant at large-x and asymptotes 1 at small-
x. Clearly visible is the EMC-like effect for 0.2 < x < 0.8
and the Fermi motion for x > 0.8. We have checked that the
overall features of Fig. 8§ remain unchanged for smaller
values of ey but fixed kr/my in conformity with the probe
limit. This holographic behavior is very similar to the one we
presented recently using general arguments [15].

VII. HYBRID MODEL FOR DIS SCATTERING ON
A FINITE NUCLEUS

Nuclei to a large extent are a collection of nucleons
trapped by a mean-field usually the result of a Hartree-Fock

Rnucleus (X)

(@)

approximation to the two-body and dominant interaction.
Three- and higher-body interactions are suppressed as
expected from the saturation properties and the bulk
compressibility of nuclear matter.

DIS scattering on a nucleus is expected to be dominated
by incoherent scattering on a dilute collection of nucleons
at intermediate- and large-x, with modifications at small-x
due coherent scattering induced by the residual and small
two- and three-body mediated interactions following the
rapid growth in parton-x.

A way to capture this, short of a more systematic density
expansion outlined in [15], is to suggest that the nucleus
structure function F3'(x, g?) is composed of the dilute
contribution (6.30) warped by AdSs; (low density and
dominant contribution) plus the dense and quantum
corrected black hole (5.14) (high density and subdominant
contribution) with a new mixing coefficient C, to be
determined from the best fit to the world-data. In principle
C, can be obtained through a reorganization of the present
scattering analysis, but we currently do not know how to
achieve it. With this in mind, we define

Fgucleus(x’ q2) - Fgense<x’ qZ) nglute(x’ q2)

= C 7.1
1 A +0s (7.1)
and the corresponding nucleus R-ratio as
anucleus (.X', qZ)
Rnucleus (X, q2) =4 : (72)

Fr21ucleon (X, q2) .

To compare the holographic results following from (7.2)
to the world-data from DIS scattering on heavy and light
nuclei, all the holographic parameters are set as before:
&= N./4N; =1 (ratio of branes), 27%cs/VArh = 0.01
(strong coupling) and e = 0.3 (charge of the probe
fermions), 7 = 3 (hard scaling law), j = 0.08 (Pomeron
intercept) and f — f = 17.65 (confining scale). The
parameters of the emergent Fermi surface are also fixed
as before: v = 1 (Fermi velocity), 7, = 1 for simplicity,

1.2

207
1.1} Pb

1.0¢

Rnucleus (X)

0.9

|

0.005 0.010  0.050 0.100

0.001 0.500 1

X

(b)

FIG. 9. Nucleus R-ratio (7.2) for Lead Pb with A = 207 and Gold Au with A = 197. We have fixed k;/my = 0.395. See text. The
data points are from [29,30] for Pb (pink), and [31] for Au (red), see also Fig. 7 in [32].
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u/my = 1.2 (chemical potential for a typical nucleus), and
krp/my = 0.395 (for Au, Pb, and Fe), 0.277 (for C), 0.119
(for He) (Fermi momentum). We note that our choices for
the nuclei Fermi momenta are very close to those extracted
from quasielastic electron scattering experiments on nuclei
[27] modeled using the Fermi gas model [28]. The
parameter C; = 0.07 fixes the quantum correction to the

1.0

black hole due to the far horizon contribution. Our analysis
of the data shows that the mixing parameter for the best fit
is C, =0.793. Clearly, there is some form of double
counting of the quantum corrections at large-x, but this
is minimal since C,/C, = 0.09.

We show in Figs. 9-12(a), the nucleus R-ratio versus x
for Au, Pb, Fe, C, and He on a linear scale. The overall

1.2}
11}

1.0

Rnucleus (X)

0.9¢

|

0.005 0.010

0.0500.100  0.500 1

X

(b)

0.001

FIG. 10. Nucleus R-ratio (7.2) for Iron Fe with A = 56. We have fixed kp/my = 0.395. See text. The data points are from

[29,30,33,34], see also Fig. 5 in [32].

121 12¢
Z 14
E |
& 100 |||'| | |
0.9} !
00 02 04
X
(a)

FIG. 11.
[31,35-37], see also Fig. 3 in [32].

1.20¢
1.15¢
1.10¢ T/ 1
1.05¢
1.00¢
0.95¢
0.90¢

0.85%
0.0

Rnucleus (X)

0.4 0.6 0.8
X

(@)

0.2 1.0

1.2}
X 1.1}
o 1.0}
0.9}
0.001 0.0050.010 0.0500.100 0.500 1
X
(b)

Nucleus R-ratio (7.2) for Carbon C with A = 12. We have fixed kp/my = 0.277. See text. The data points are from

1.2} i
—_— 3He J
X ¥
= 1.1}
>
E -
S 1.0} i1
c
09} I
0.001 0.0050010 0.0500.100 0.500 1
X
(b)

FIG. 12. Nucleus R-ratio (7.2) for Helium He with A = 3. We have fixed kr/my = 0.119. See text. The data points are from [35,38],

see also Fig. 1 in [32].
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agreement with the heavy and heavy-light nuclei data is fair
throughout, the exception being He where the holographic
model overshoots in the antishadowing region. This may be
an indication that the coherent scattering captured by the
black hole should be weaker, which is sensible. Figs. 9—12(b)
display the same ratio on a semilogarithmic scale to highlight
the low-x contribution where the data are scarce. A key
proposal of the future Electron-lon-Collider (EIC) is to
provide measurements for the nuclear R-ratio in this region.

Remarkably, the R-ratio (7.2) exhibits shadowing for
x < 0.1, antishadowing for 0.1 < x < 0.3, the EMC-like
effect for 0.3 < x < 0.8 and Fermi motion for x > 0.8. As
we noted earlier, shadowing and antishadowing are caused
by coherent DIS scattering on the dense component in (7.1)
due to the underlying black hole in our analysis, while the
EMC effect and Fermi motion are mostly due to incoherent
DIS scattering on the dilute component in (7.1) with the
nucleus mostly composed of individual nucleons warped
by AdSs.

VIII. CONCLUSIONS

In the double limit of a large number of colors and strong
coupling, DIS scattering off an extremal black hole is of
order N? following from the absorption of the bulk
R-current by the black hole. The corresponding structure
functions are dominated by low-x. Scattering off the black
hole is the ultimate coherent scattering off a dense nucleus
with strong shadowing as we noted in [13].

To order N9, DIS scattering is off holographic fermions
hovering near the black-hole horizon due to quantum pair
creation, and warped holographic fermions far from the
black hole horizon near the boundary. Close to the horizon,
the geometry is that of AdS, x R? with an emergent Fermi
surface and anomalous scaling laws. DIS scattering off
these bulk fermions show that their structure functions on
the boundary exhibit anomalous exponents and modified
hard scattering rules in comparison to scattering off bulk
fermions in the dilute or probe limit. DIS scattering off
these fermions exhibit Fermi motion at large-x.

DIS scattering on a wide range of nuclei maybe captured
by a hybrid holographic model whereby most of the DIS
scattering is incoherent and off a holographic Fermi liquid
warped by AdSs at intermediate- and large-x, with the
remainder following from coherent scattering off a quan-
tum corrected RN-AdS black hole at small-x. The ensuing
results agree remarkably with the existing data on DIS
scattering on finite nuclei over a broad range of parton-x.
More data at low-x from the planned EIC collider will be
welcome for a better understanding of the coherent scatter-
ing through the black-hole mechanism suggested here.
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APPENDIX A: CONVENTIONS IN CURVED
SPACE

The gamma matrices in curved and tangent space used to
analyze the Dirac equation in the extremal RN-AdS black
hole will be made explicit here. For that, consider the
generic line element in curved space

ds* = —g,d* + g,.dr* + g;;dx? (A1)

If we refer to the indices in curved space by p, v (also t, i)
and those in the tangent space by a, b (also ¢, i) then the
gamma matrices are related by

' =T%e,*, I"m=+/g"T=L. (A2)
If we set the vierbeins as [39]

el = \/g,dt, el = \/g,dx', (A3)
then we have
I'"=+/g"T", I =+/g'Ti, I"=/g"Tt. (A4)

In the tangent space, the gamma matrices read [19]
F£—<i61 0) Ff—<63 O>
0 l.Gl 0 03
-0, O 0 -
(7)) ()
0 () —0) 0

Iz — (_?62 "(’)2)_ (A5)
The nonvanishing spin connections are
w, = —foel, Wy = fret (A6)
with
/
foE%%\/F7 flE%% g’ (A7)

APPENDIX B: SOFT SPINORS

The soft normalizable wave functions were constructed
in [39], we reproduce them here for completeness. The
Dirac equation in the AdS, x R? geometry is solved by the
rescaled spinors

@,
wi(rsk) = (—gg™") g x %X(%) B
0
2. 1 r_ r_ Yk
walril) = ot | 0 |l ()" e

with
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(] 1
D, = ( ) EWa+(k0,k)‘P(_O>
(B2)

and W = —iviazv_, a+(k0, k) = El (k - kF) + Ezko + -
where ¢, ~ f—f. The explicit spinors are

— =7
w0~y (_r r_>
+ + R%

mR2 Zl:l/k
vy = " B3
+ (%Rz + eR\/%) ( )
with R, = R/2\/§, and
a k*R?
v = W/m%R%—ge%, m? = m?* + o (B4)

Note that for pure AdS,, the soft wave-functions
simplify

@ =0 @&, = (k> k). (B5)
Finally, note that the Feynman propagator for the soft
part in (3.19)—(3.20) is given by

d py (. k)
2r K —w

i ik =watr) [ Jwrn s

with the boundary spectral function pg(w, /_é) and the

normalizable wave function y,(r, l:) for the Dirac equation
in curved AdSs.

APPENDIX C: PARAMETERS vy 7t .1y Ky /p
ENTERING THE NEAR HORIZON GREEN’S
FUNCTION

We recall that the retarded Green’s function (2.13) in the
near horizon limit can be recast in the form
|

r

— U"Jr% © 34y
A)fl(Zz;qu];k):C(Vk)(ﬁ) QA dzy35 Ky (q22) T i (@122),

with

C(vi) = erR*(mRy + 1) (2V/3) 7.

GR (K0, &) ~

By (0 o>
k= (ou— L0 -k \o 1

» ) KON\ 2v
H(k()) = hz,ue’”r (—) k,
H

K kE\:
”k:\/5<2_§>’

T

Yr = arg <F(—2uk) (e‘z””’k - e_%e’”/g>>, (C1)

where k3 /> = (eka—1(z—2)?)/3a, and ko /u~Cy/2V/3V @
with the dimensionless constant
1
Co(vi,) = (vphyIm(e™e (=1)™4)) . (C2)
The dimensionless parameters v, h,, h,, and kp/u that
characterize the retarded Green’s function (2.13) and (3.20),
are in principle determined numerically as in [18] for the
3-dimensional spacetime, and analytically for R-charged
black holes as in [19]. Here, we will not carry out the
numerical analysis to determine the parameters precisely, but
we note that all of them are some functions of eg, 7, and &, i.e.,
vi(eg, 7, @), /:ll(eR,T,&), Ez(eR,T, @), and kp/p(eg,, ).
Therefore, the dimensionless parameters vy, &y, hy, kp/u,
and the dimensionful parameter y are free parameters. The
parameter /2, drops out in the normalization. The remaining
parameter is set to /1, = 1 for simplicity.

APPENDIX D: EFFECTIVE VERTICES

The soft-to-hard transition vertices entering in the bulk
DIS amplitude involve (BS5) for the reduction to AdS, or
(B2) in general for the soft part, with the hard part of the
wave function given by

R*\: R?
uy = (7) JmR—% <601 7)

0. (D1)

U

More specifically, for pure AdS,, the transition vertex is
simply given by

(D2)

(D3)
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In general, the transition vertices are of the form

0 V1
i ro\ut / i 1 i| V2
Ajy (o153 k) = —ep R2 /drzx/ g'Ka(ry;q)u 0 I+ o |’
0 0
o\" /o
. o\ uts 0 10
Aoy (rs 015 q5k) = —eg| — /drz\/ Vg Ka(r2q ey,
R 0 (1
1 7y
(1 T 0
j r_ veth rr v, i 1
Ay (ris ks g o) = —ep R /drn/ —99") IV @ KA (r11 g 0 I* ol
0 0
0\" /o
. r_ l’k""% O . O
Ay (risk; s 01) = —ep <F> /drn/ @K A(r1iq 5 I* 0 (D4)
1
7y 1
Using the gamma matrices explicitly, we can simplify the effective vertices (D4). More specifically, we have
. r_\ vt
A (rs w15 q3k) = ieg (ﬁ) /drzv 9(=99"")~ \/ GV Ka(ra; q)uyvy, (D5)
with the rest of the vertices following by symmetry
Af (s ks g o) = =Af (r; 15,65 k),
A (ris ks g ) = Agy(ras 01543 k) =0, (D6)

and all other components vanishing. Performing the change of variable r = R?/z and setting z < z_, we can rewrite the
integral in (D5) as

A1 (23 0133 k) = Clu)ay (ko, k)1 (@13 g k)

ro\ Ut foo 3
= C(vi)a (ko. k) (F) /0 d235 " gK (922)J pr-s(@122). (D7)
with
R
Cluy) = e RV 5 3y (D8)

74

The integration can be carried out analytically with the result

ro\ vt oo 3y,
L(oig:k) = { /0 dzy75 " qK1(q22)d g_s(@122)

r_\ vets 1 w1 mR—3 mR+ v, +3 mR+v,+ 1 1 a)%
= (F) Cz(Vk)m (;) 2F1< 5 . 3 ,mR+§,—? , (D9)
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with

(mR-sz +3)F(mR+zzk +1)

I'(mR +1) o (D10)

s
C.(wy) = 2474

Note that for the special value v, = v = mR, the integrand reduces to the one in [21], and can be evaluated exactly as

r

- vk+% [<3] %‘H’Z
I(01:q:k) = 7 /o dz75 " Ki(q22)J pp-i(@122)

r_ vty s [ mR—% > —(mR+3)
(&) @) ()

and C,(v}) = 280 (mR +3).

APPENDIX E: LOW-X STRUCTURE FUNCTIONS WITH RADIAL DIFFUSION

Far from the black hole and including diffusion in the radial direction, the structure functions can be written as

do?® [ &k np(w, k
2(x4,q / / E FZEk )FZ(xkquvw)
® do? d3k ng(w k)
F = — FOK) b (s ), El
) = [T [ S o) (®1)
where [40] (see also [41])
3/2 dZ dZ egk(]_p> _logz(yz/z/)
F (xk q 6() 32”5/2//PA )PV/(Z,’CU) (Zzlqz) \/Z; e K
3/2 d d gk(l_p> logz(z/z/)
gip zdz 5\ € o)
20 0) = 2 [ LR P ) (B2)
with APPENDIX F: BLACK HOLE WITH
ex@ < 1(mR)? OR k% < 0
Near the black hole the bulk fermions get modified in the
) 5 infrared as illustrated in Fig. 2. The modification depends
Pi(z, %) = (92)*(K7i(q2) + K5 (q2)) quantitatively on their charge and mass near the horizon as
Pl (z.4*) = (q2)*K3(q2) we discussed earlier. For fermions with e}a < § (mR)?
, . , B3 k% < 0, the modification is universal and follows from the
P, (d @) =7 %2 JmR—l/Z(a)Z ): (E3) reduced AdS, x R3 geometry. More specifically, for hard

R-probes with large ¢° in the DIS kinematics, only G (K, k)
is modified close to the horizon, since G (w1, k + ¢) carries a
large momentum and is mostly unmodified in the ultraviolet.
p=2/VA (2.7 0.¢%x) = log(zj——), and gg=3= In this regime, the holographic fermions form a disc of radius
Ar2 /N2, kg in momentum space as we noted earlier, with large real
and imaginary parts. With this in mind, we have

ImGy (@ k + ¢)ImGR (K. K) — Tr((e) (K + ¢°) = ioa(k, + q.) = 0)78((k + ¢)* + ) x ImGi! (K. %))~ (F1)
Here Gl = Grdiag(0, 1) is given in (2.10) for small @. Again note the emerging non-Fermi liquid scaling for v, < % with

the transition to a normal Fermi liquid for @ = @,. as discussed earlier. Using the vertex for pure AdS, (D2), we can rewrite
(3.26) as
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- © dw?
mGF.(q) = G*Cyl—1) A @ / Ak RRC2 () (w1 ¢ K)Rel (@4, 4, %), (F2)

with Cp = 1/(127?), and the real part of 1,0 is

o dk°

Relp(wy,q,x4) = Re/
—oo 27

3, TG @1k + 9)G} (K. F))

0 .
ke /0 ﬂTr((m(ko +4°) —ioy(ky + q,) — @1)78((k + q)* + w})ImGy' (k°., k))

¢°| 27
0 dk° 2 2 Y (1020
o [ S sk + ) + wDlmC(R) ) (F3)

By first doing the integral over w; in (F2) and using the delta function in (F3), we finally obtain

ImGY.(q) ~7/dkk2C2(vk)q21§(\/s_;q;k) Sk m(

4

—ahkwwwv,

I
Xﬁm( 2+ 1

—C(k) (=) *!
2le + 1 ’

C, /1 \ut R 2 mR - 1 1
m—g(?> 2/dkk2c2(uk)c§(yk)x;k+5/2(1—xk)mR—1/22F%<m Tehs R bt ,mR—l——,l—xk)

2 ' 2 2

(F4)

with k% fixed to @, in s, = —(k + q)>. We have defined x; = —¢*/2k - q, x4 = ¢*/2E4q,, and made use of the DIS

kinematics to approximate s; ~ —¢>(1 — 1/x;), |¢°| = q,.
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