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We consider deep inelastic scattering (DIS) on a large nucleus described as an extremal Reissner-
Nordström-AdS black hole using the holographic principle. Using the R-current correlators we determine
the structure functions as a function Bjorken-x, and map it on a finite but large nucleus with fixed atomic
number. The R-ratios of the nuclear structure functions exhibit strong shadowing at low-x.
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I. INTRODUCTION

Deep inelastic scattering (DIS) on nuclei have shown
that the nuclear structure functions deviate substantially
from that of the nucleon, especially at low Bjorken-x [1–4].
The depletion at low-x is usually referred to as shadowing.
It is currently understood as the coherent scattering on two
or more nucleons in the nucleus, as opposed to incoherent
scattering on individual nucleons. In this sense, shadowing
may be reminiscent of diffractive scattering in high energy
hadron-on-hadron scattering.
At extremely low-x, the measured nucleon structure

function shows a rapid growth of partons, primarily gluons
[5,6]. Phenomenological arguments suggest that the growth
saturates [7], a point supported by perturbative QCD
arguments [8]. A central question is then: how is the
growth of low-x partons in a nucleon, realized in a nucleus?
Is shadowing further enhanced at low-x? Some of these
important questions will be addressed and hopefully
answered in the future Electron-Ion-Collider (eIC).
DIS in holography at moderate-x is different from weak

coupling as it involves hadronic and not partonic constitu-
ents [9]. The large gauge coupling causes the charges to
rapidly deplete their energy and momentum, making them
invisible to hard probes. However, because the holographic
limit enjoys approximate conformal symmetry, the struc-
ture functions and form factors exhibit various scaling laws
including the parton-counting rules [10]. In contrast, DIS
scattering at low-x on a nonextremal thermal black hole
was argued to be partonic and fully saturated [11].

In this paper we consider DIS scattering on a large but
finite nucleus in holography using an extremal Reissner-
Nordström-AdS (RN-AdS) black hole [12] in the con-
formal limit. We use the mapping of the RN-AdS charge on
the atomic number to construct the nuclear R-ratio. This
point of view takes to the extreme the concept of coherent
DIS scattering on a dense nucleus, and therefore should be
of relevance in the shadowing or low-x region. The
intermediate-x and large-x regions are subleading in the
holographic limit as we explain below and detail elsewhere.
Our arguments will be similar to those presented for the
thermal nonextremal black hole in [11], with the key
difference being the large but finite charge as the atomic
number.
The organization of the paper is as follows: in Sec. II we

briefly review the setting for the RN-AdS black hole, and
specialize to the extremal case with zero temperature. In
Sec. III we detail DIS scattering on the extremal black hole
in leading order in the holographic limit, and give the
pertinent on-shell action for the probe gauge field. In
Sec. IV we explicit the holographic structure functions
on nucleus as an extremal RN-AdS black hole in the
conformal limit. The R-ratio is constructed and shown to
display shadowing at low-x. Our conclusions are in Sec. V.

II. RN-AdS BLACK-HOLE

Studies of fermionic systems in the context of gravity
dual theories have been carried by many [13–15]. For dense
nuclei we may simplify the nucleus by treating it as cold
black hole in the conformal limit, using the holographic
dual construction. In this section, we briefly review the
essentials of an RN-AdS black hole, and then specialize to
the extremal case.

A. General RN-AdS

The effective action describing bulk RN-AdS gravity
sourcing a U(1) gauge field reads
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S ¼ 1

2κ2

Z
d5x

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ − 1

4e2

Z
d5x

ffiffiffiffiffiffi
−g

p
F2 ð2:1Þ

with R the Ricci scalar, κ2 ¼ 8πG5 and Λ ¼ −6=R2 are the
gravitational and cosmological constant. The ensuing
gravitational equation is coupled to the Maxwell equation

Rmn −
1

2
gmnðR − ΛÞ ¼ κ2Tmn

Tmn ¼ gpqFmpFqn −
1

4
gmnFpqFpq

1ffiffiffiffiffiffi−gp ∂mð ffiffiffiffiffiffi
−g

p
FmnÞ ¼ 0: ð2:2Þ

Since Tm
m ¼ 0, the space is photon filled but with the

curvature of the AdS space. The RN-AdS black-hole
solution to (4.7) is charged in bulk with a U(1) scalar
potential

At ¼ μ −
Q
r2

ð2:3Þ

and a line element

ds2 ¼ r2

R2
ð−fdt2 þ dx⃗2Þ þ R2

r2f
dr2 ð2:4Þ

with

f ¼ 1 −
mR2

r4
þ q2R4

r6
ð2:5Þ

provided that the electric charge Q and the geometrical
charge q satisfy

q2R2

Q2
¼ 4

3
×
2κ2

4e2
¼ R2

6α
: ð2:6Þ

The last equality follows from the brane-filling setup,
where the parameters can be identified as

2κ2 ¼ 8π2R3

N2
c

4e2 ¼ α
64π2R
N2

c
ð2:7Þ

with α ¼ 1 for a U(1) R-charge, and α ¼ 1
4
Nc
Nf

for a D3-D7

U(1) vector charge.

B. Extremal RN-AdS

The RN-AdS black hole carries two horizons fðr�Þ ¼ 0
with rþ > r−, which are best seen by rewriting the warping
factor (2.5) as

fðrÞ ¼
�
1 −

r2þ
r2

��
1 −

r2−
r2

��
1þ r2þ

r2
þ r2−

r2

�
ð2:8Þ

with mR2 ¼ r4þ þ r4− þ r2þr2− and q2R4 ¼ r2þr2−ðr2þ þ r2−Þ,
provided that the mass m and the geometrical charge q
satisfy q4R4 ≤ 4m3R2=27, with R

ffiffiffiffiffiffiffiffiffi
m=3

p
≤ r2þ ≤ R

ffiffiffiffi
m

p
.

The temperature of the RN-ADS black hole is fixed by
the standard requirement of no conical singularity in the
vicinity of the outer horizon rþ

T ¼ r2þf0ðrþÞ
4πR2

¼ rþ
πR2

�
1 −

μ2π2R4γ2

r2þ

�
ð2:9Þ

with γ2 ¼ 1
12π2α

. Its chemical potential μ is fixed by the zero
potential condition on the outer horizon AtðrþÞ ¼ 0 or
μ ¼ Q=r2þ. With these identifications, the standard thermo-
dynamics typical of black holes follows.
The regulated Gibbs energy Ω ¼ TΔS follows from

(2.1) by inserting the RN-AdS charged black hole (2.4)–
(2.3) and subtracting the empty thermal AdS contribution
[14]. The result is

Ω ¼ −
V3

2κ2R3

�
r4þ
R2

þ q2R2

r2þ

�
ð2:10Þ

by tradingm ¼ r4þ=R2 þ q2R2=r2þ. The entropy s, energy ϵ,
pressure p densities and density n follow from (2.10)
through the usual grand canonical rule [12,14]

s ¼ 2πr3þ
κ2R3

ϵ ¼ 3m
2κ2R3

¼ 3p

n ¼ 2Q
e2R3

: ð2:11Þ

We will mostly consider the extremal RN-AdS black hole
for which T ¼ 0 with rþ ¼ r− ¼ πR2γμ. Specifically, the
bulk thermodynamical quantities in (2.11) simplify

s ¼ 2πffiffiffi
3

p ffiffiffi
α

p
n

ϵ ¼ 3

4
nμ ¼ 3p

n ¼ N2
c

96π2α2
μ3: ð2:12Þ

We note that s ∼ n ∼ ϵ=μ ∼ N2
cμ

3. The charge of the RN-
AdS black hole is dual to the R-charge on the boundary
carried by the gluinos in the adjoint representation. What is
meaningful for our identification with a cold nucleus is the
energy per particle ϵ=n ¼ 3

4
μ, which is independent of Nc.

The cold entropy per particle of the RN-AdS black hole
reflects on the possible entanglement entropy per particle of
a cold nucleus, but this is only suggestive. With this in
mind, we identify the extremal RN-AdS black hole with a
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very large but finite nucleus of volume VA ¼ 4
3
πR3

A with a

radius RA ¼ R1A
1
3, a number density A=VA ¼ n, energy

density EA=VA ¼ ϵ, and an energy per particle EA=A ¼ 3
4
μ

(conformal). For comparison, nuclear matter with small
scattering lengths carries EA=A ∼ 3

5
μ (free massive fer-

mions), while neutron matter with large scattering lengths
carries EA=A ∼ 3

4
μ close to the conformal limit.

III. DIS ON EXTREMAL RN-AdS

We now consider DIS scattering on a RN-AdS black hole
as the hologram of DIS scattering on a large nucleus at rest
in the double limit of a large number of colors and strong
gauge coupling. Some useful insights on standard DIS
scattering on nuclei can be found in [16] to which we refer
the interested reader. For completeness, we note that DIS
scattering on a nucleon using holography was first
addressed in [9], and on a thermal black hole in [11].
Although the thermal black hole is rather different from the
extremal RN-AdS black hole, in the DIS kinematics they
will share much in common as we now detail.

A. Structure functions

To probe the RN-AdS black hole in bulk, we use the U(1)
R-field AμðxÞ as the source of the fermion bilinear 4-vector
current in the boundary of AdS5 (r ¼ ∞). We first use
linear response theory to compute the boundary induced
current using an on-shell action. We then relate the retarded
Green function to pertinent structure functions in the DIS
limit. The expectation value of the fermion current is

JμðxÞ ¼ −i
Z

d4yhJμðxÞJνðyÞiRAνðyÞ ð3:1Þ

in the linear response approximation. Here R refers to the
retarded correlation function in the state of finite density. In
Fourier space (3.1) simplifies

JμðqÞ ¼ GR
μνðqÞAνð−qÞ ð3:2Þ

with the retarded Green’s function

GR
μνðqÞ ¼ −i

Z
d4y eiq·yhJμðyÞJνð0ÞiR: ð3:3Þ

The rest frame of the RN-AdS black hole selects the
fixed 4-vector nμ ¼ ð1; 0; 0; 0Þ. Current conservation and
covariance yields (3.3) in terms of two invariants R1;2

GR
μνðxA;q2Þ ¼

�
ημν −

qμqν
Q2

�
R1ðxA;q2Þ

þ
�
nμ −

n · q
Q2

qμ

��
nν −

n · q
Q2

qν

�
R2ðxA;q2Þ:

ð3:4Þ

The rest frame of the black hole is the rest frame of the
nucleus with fixed energy EA ¼ 3

4
Aμ. Since the binding

energy in a nucleus is small, we also have EA ≃ AmN and
therefore μ ≃ 4

3
mN . In our mapping, mN and μ are inter-

changeable for estimates. A hard photon with virtual
momentum qμ ¼ ðω; 0; 0; qÞ scattering off the nucleus in
the DIS kinematics satisfies q2 − ω2 ≡Q2 → ∞ with
ω ≃ q and fixed Bjorken-x

xA ¼ q2

−2q · ðnEAÞ
≡ Q2

2EAω
¼ xmN

EA
: ð3:5Þ

Kinematically, we expect 0 ≤ xA ≤ 1 or equivalently
0 ≤ x ≤ A. The DIS structure functions of the RN-AdS
black hole will be identified from the imaginary part of the
retarded response function

2πF1 ¼ ImR1 2πF2 ¼
ω

EA
ImR2: ð3:6Þ

B. On-shell action

To assess (3.3), we evaluate the metric perturbation
induced by the R-current Jμ in bulk. The corresponding
gravitational wave is vectorlike Amðt; x; uÞ (m ¼ μ, u) and
obeys Maxwell equations in AdS5 with pertinent boundary
condition at the boundary (u ¼ 0) and the horizon
(u ¼ uh). Throughout, the holographic direction is identi-
fied with u ¼ ðr�=rÞ2. The retarded response function (3.3)
is then extracted from the induced action S½A� as a
functional of the boundary fields Aμðt; x; 0Þ using

GR
μνðqÞ ¼

∂2SR

∂Aμ∂Aν

����
Aμ¼Aμðu¼0Þ

: ð3:7Þ

The first few leading contributions to (3.7) are illustrated in
Fig. 1(a). The first and leading contribution is of order N2

c.
This contribution accounts for coherent scattering on the
nucleus as a whole and is dominant at low-x. At inter-
mediate- and large-x, the subleading correction shown in

FIG. 1. Absorptive virtual-photon scattering on a nucleus as an
extremal RN-AdS black hole: (a) absorptive tree contribution;
(b) absorptive one-loop contribution. See text.
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Fig. 1(b) is more appropriate. The solid line refers to DIS
scattering from a fermion emitted-absorbed by the black
hole. It is of order N0

c and more computationally involved
[17]. Suffices to say that the emission-absorption of the
fermion carries information on the black hole as a cold
Fermi surface [15], which can also be addressed using
general arguments along with holography [18].
Equations (2.1) yield Maxwell equations in the geometry

of the extremal RN-AdS black hole. In the gauge Au ¼ 0,
we dial the incoming perturbation as a plane wave with
4-momentum qμ ¼ ðω; 0; 0; qÞ,

Aμðt; x; uÞ ¼ e−iωtþiqzAμðuÞ ð3:8Þ
and satisfying (i ¼ 1, 2)

ϖA0
0 þ kf0A0

3 ¼ 0

A00
i þ

f00
f0

A0
i þ

ϖ2 − k2f0
uf20

Ai ¼ 0

A00
0 −

1

uf0
ðk2A0 þϖkA3Þ ¼ 0: ð3:9Þ

The prime stands for a u–derivative, and the dimensionless
energy and momentum are

ϖ ≡ ω

2πγμ
; k≡ q

2πγμ
: ð3:10Þ

For the extremal black hole, we have rewritten the metric
(2.4) using u ¼ ðr�=rÞ2,

ds2¼ðπγμRÞ2
u

ð−f0ðuÞdt2þdx2Þþ R2

4u2f0ðuÞ
du2; ð3:11Þ

with f0ðuÞ ¼ 1 − 3u2 þ 2u3. The extremal black hole
horizon u ¼ uh ¼ 1 solves f0ðuhÞ ¼ 0.
There are no exact solutions to the wave equations (3.9).

Following [11] we will consider the kinematical limit
k ≫ K with K2 ¼ k2 −ϖ2, which corresponds to the
low-x regime with x ≪ μ=Q ∼mN=Q. The equation of
motion can now be solved for u ≪ uh, with the approxi-
mate warping

f0ðuÞ ¼ 1 −
�
u
γ̄2

�
2

þOðu3Þ ð3:12Þ

and γ̄4 ¼ 1
3
. In this approximation, the warping factor (3.12)

for the RN-AdS black hole becomes similar to that of an
ordinary thermal AdS black hole except for the differences
in scaling with the chemical potential instead of the
temperature. At this stage, our analysis of the longitudinal
and transverse waves is similar to the one presented in [11]
to which we refer for completeness.
In this regime, (3.9) are solved by sourcing the fields at

the AdS boundary, e.g.,

kðkþ A0 þϖA3Þðu ¼ 0Þ ¼ k2ALð0Þ ð3:13Þ

and similarly for the transverse wave AT , and by requiring
absorptive boundary conditions for the AT;L waves at the
black-hole horizon. As a result, the induced boundary action
S½A� develops large imaginary parts (c is Euler’s constant)

SR ¼ −
1

α

N2
cγ

2μ2

48

�
k2A2

Lð0Þ
�
2

�
cþ ln

k
3γ̄2

�
− iπ

�

þ 9π

Γ2ð1
3
Þ
�

k
3γ̄2

�2
3

�
1ffiffiffi
3

p − i

�
A2

Tð0Þ
�
: ð3:14Þ

Modulo the overall constant in (3.14) and the rescaling by γ̄,
the result is in agreement with the one derived in [11] for a
nonextremal thermal black hole. We now show how to use
(3.14) for extracting the nuclear structure functions at low-x.

IV. HOLOGRAPHIC NUCLEAR
STRUCTURE FUNCTIONS

The holographic structure functions (3.6) are obtained by
inserting (3.14) into (3.7), taking the derivatives and
identifying the imaginary parts. The result is

FTðxA;Q2Þ ¼ CT
μ2

xA

�
x2AQ

2

μEA

�2
3

FLðxA;Q2Þ ¼ CL
EA

μ

μ2

xA

�
x2AQ

2

μEA

�
ð4:1Þ

with

CT ¼ N2
c

217=3π2Γ2ð1=3Þα5=3

CL ¼ N2
c

1152π4α2
: ð4:2Þ

For xA ≪
ffiffiffiffiffiffiffiffiffi
μEA

p
=Q, we have FL ≪ FT , which is reminis-

cent of the Callan-Gross relation F2 ¼ FL þ FT ≃ 2xAF1,
noted also for a thermal black hole [11]. We recall that at
intermediate-x, the structure functions on a spin-1

2
target

obey instead F2 ¼ 2F1 [9]. From (4.1) we identify the
nucleus saturation line

QASðxAÞ ¼
ffiffiffiffiffiffiffiffiffi
μEA

p
xA

¼
ffiffiffi
3

p

2

μ

xA
A

1
2 ð4:3Þ

for the extremal RN-AdS black hole (2.12) identified as a
large nucleus (ignoring binding). The saturation momen-
tum grows with atomic number QAS ∼ A

1
2 since xA ∼ A0. In

weak coupling, simple QCD arguments for DIS suggest
QAS ≈ A

1
3. For A ¼ 1 it is consistent with the thermal

saturation line derived in [11] with the chemical potential
traded for temperature.
The chief results (4.1) are very similar to those derived in

[11] aside from the kinematical identifications and the
overall coefficients. This is perhaps not surprising since

KIMINAD A. MAMO and ISMAIL ZAHED PHYS. REV. D 101, 066013 (2020)

066013-4



DIS scattering on partons is shifted to low-x in holography,
as noted for the case of a thermal black hole in [11]. We
have now confirmed this for a charged but cold black hole
with a specific mapping to a cold nucleus. The thermal
black hole is more appropriate for the description of a
strongly coupled plasma.

A. Sum rule

The range of validity of (4.1) is limited to low-x,
parametrically far from the saturation line for large A.
To see this, it is useful to relate the leading twist in the OPE
expansion of the JJ correlator spacelike to the moment of
the structure function. For that, we note that in the deep
Euclidean regime with q2 → ∞ and xA → ∞, the leading
twist contribution to JJ is the twist-2 and protected energy-
momentum operator Tμν ¼ ðημν þ 4nμnνÞϵ=4. Since R1;2

are analytic in the complex zA ¼ 1=xA-plane minus the cuts
along jzA − 1j ≤ 0, we can relate the deep Euclidean region
around zA ≈ 0 to the physical region along the cuts by a
Cauchy transform. This procedure is standard, and the
result is the sum rule involving the twist-2 operator

ϵ ¼ 18E2
A

Z
1

0

dxAF2ðxA;Q2Þ

≈ 18E2
AðxAF2ðxA;Q2ÞÞxA≈μ=AQ ð4:4Þ

The integral is dominated by the low-x region xA ≈
μ=AQ ≪ μ

ffiffiffiffi
A

p
=Q far from the saturation line (4.3).

B. Normalization

For a comparisonwith conventional structure functions in
DIS on a finite nucleus, we need to address the issue of
normalization. Indeed, as defined through (3.4)–(3.6), the
holographic structure functions have dimensions mass-
square while the standard ones are dimensionless. The
reason is that in scattering off the extremal black hole the
state was normalized to 1 instead of a large nucleus at rest or

ð2πÞ32EAδð0⃗pÞ≡ 2EAVA → ð12παÞ2 A2

N2
cμ

2
ð4:5Þ

where the rightmost relation follows using the mapping to
the extremal black hole equation of state (2.12). When
inserted in (4.1) this factor yields dimensionless structure
functions for DIS scattering on a cold nucleus viewed as an
extremal AdS black hole. Inserting (4.5) into (4.1) and using
(3.5) to trade xA for x, we obtain the properly normalized
structure functions at low-x

FA
Tðx;Q2Þ ¼ C̃T

A
x

�
3x2Q2

4m2
N

�2
3

FA
Lðx;Q2Þ ¼ C̃L

3A
4x

�
3x2Q2

4m2
N

�
ð4:6Þ

with C̃T;L=CT;L ¼ π5ð48αÞ2=2N2
c.

C. R-ratio

In holography, the structure of the nucleon at low-x is
dominated by a virtual photon scattering off a spin-1

2

dilatino in bulk through a t-exchange of a Pomeron either
as a surface-exchange [19], or graviton-exchange with the
result [20]

FN
2 ðxÞ ¼

CΔ

xΔP

�
4m2

N

3Q2

�Δ−2
ð4:7Þ

Here Δ ¼ mRþ 2 refers to the conformal dimension of the
spin 1

2
, and the Pomeron intercept is ΔP ¼ 2j1 − Δ2j=ffiffiffi

λ
p

≪ 1, with empirically ΔP ≈ 0.08. For Δ ¼ 7
2
, the

structure functions obey conformal scaling, and the corre-
sponding hard form factors satisfy the parton-counting
rules [9]. Using (4.6) and (4.7), the nuclear R-ratio follows

R½x�≡
1
A F

A
2

FN
2

¼ C̃T

CΔ

xΔPþ1
3

x
2Δ−8

3

S

�
1þ 3C̃L

4C̃T

�
x
xS

�2
3

�
ð4:8Þ

with xS ≡ 2mN=
ffiffiffi
3

p
Q. To compare with the experimentally

measured structure functions at low-x in the shadowing
region, we need to correct (4.8) by a surface contribution
that is due to the finite size of the nucleus. Recall that the
RN-AdS black hole occupies all of the 3-volume, which is
not the case for a dense and large nucleus. This is readily
done through

R½x� → R½x� þ C

A
1
3

ð4:9Þ

where C is a parameter that cannot be fixed by our
arguments.
In Fig. 2 we show the surface corrected ratio (4.8)–(4.9)

in the small-x regime (x≲ xS) as the red-dashed line, with
A ¼ 42 and the parameters C;CT;L=CΔ fixed as

0.00 0.05 0.10 0.15
x

0.85

0.90

0.95

1.00

1.05

R[x]

FIG. 2. Parametrized DIS data on nuclei (solid curves) vs
holography (4.10) (dashed curve) in the shadowing region.
See text.
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0.52x
1
3
þ0.08 þ 2.85

A
1
3

: ð4:10Þ

The solid curves are the HPC parametrization of the
available nuclear parton distributions from [21]. The upper
blue-solid line is for A ¼ 12, the red-middle line is for
A ¼ 42 and the green-solid line is for A ¼ 208. We
note that our holographic results are only justified for very
low-x. They support shadowing of the low-x structure
functions in DIS scattering on an RN-AdS black hole as a
model for a dense nucleus.

V. CONCLUSIONS

We have suggested that DIS scattering on a large nucleus
is analogous to DIS scattering on an extremal RN-AdS
black hole in holographic QCD. In leading order the
absorptive part of the scattering amplitude is dominated
by coherent scattering on the bulk black hole, with structure

functions that are dominant at low-x. We have mapped
those results onto a finite nucleus with fixed atomic number
by suitably correcting for an overall normalization. The
R-ratio of the structure functions was shown to exhibit
strong shadowing at low-x, an illustration of the strong
depletion at low-x through absorption on the black hole. In
a way DIS scattering on the RN-AdS black hole is the
ultimate illustration of coherent scattering on a nucleus.
The effect of Fermi motion at large-x is absent in our
leading order analysis. It arises from a subleading DIS
scattering on the fermions emitted and then absorbed
quantum mechanically by the surface of the black hole.
It will be addressed next.
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