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We investigate the relationship between asymptotic symmetries of QCD and vacuum transitions induced
during scattering. Starting with the Fock vacuum in the far past, the infinity of conservation laws associated
to (non-Abelian) asymptotic symmetries in QCD can be used to determine the vacuum in the far future. We
show that the corresponding asymptotic Hilbert space in the future is generated by a class of dressed states
in which each finite energy particle is dressed by a cloud of interacting soft gluons. We identify the precise
structure of the dressing using conservation laws and show that the corresponding asymptotic states are
equivalent to the generalized coherent states defined by Catani et al.
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I. INTRODUCTION

Since the seminal work of Strominger in [1], conserva-
tion laws associated to asymptotic symmetries have played
an increasingly important role in uncovering the infrared
structure of gauge theories and gravity. The associated
constraints on the S matrix of these theories are intimately
connected to soft theorems. For the so-called leading
asymptotic symmetries such as large gauge transformations
in Yang-Mills theory and supertranslations in perturbative
gravity, these constraints relate the residue of the Weinberg
soft factor to the insertion of soft modes in the scattering
states of the theory. This relationship between soft theorems
and conservation laws has an interesting offshoot [2–6] in
that the insertion of soft modes results in a shifted vacuum.
Because of an infinity of soft modes parametrized by their
location on the celestial sphere, one has an infinite
degeneracy of vacua. It was shown in [2–5] that transitions
between these vacua are constrained by conservation laws
and starting with a vacuum in the far past, conservation
laws imply that scattering states in the far future are such
that the finite energy particles are dressed by a cloud of low
frequency modes. In QED and gravity it has been shown
that these “dressed states” are equivalent to the well-known
Faddeev-Kulish states. Thus, starting with a number of
technical assumptions primary among which is the infinity
of conservation laws, one can obtain the dressed states of
the theory in which the S matrix is infrared finite.
We would like to ask precisely the same question in

QCD. That is, starting with the infinite dimensional non-
Abelian group of asymptotic symmetries, what does a

given vacuum of perturbative QCD transit to in the far
future? In a nutshell, we show that a close scrutiny of
existing works on the relationship between dressed states
and symmetries in perturbative gravity helps us to distill a
minimal set of assumptions under which one obtains the
asymptotic states in which finite energy partons are dressed
by a cloud of (infinitely) correlated soft gluons. We argue
that these states are equivalent to the well-known dressed
states in QCD [7,8].
We emphasize that our analysis of determining the

dressing only involves asymptotic symmetries and the so-
called orthogonality condition. We do not use any multisoft
gluon theorem (which is equivalent to Ward identities in
undressed Fock states) to help us fix the dressing operator.
This leads to a rather intricate analysis in which higher order
(nested) Ward identities, orthogonality with respect to
insertion of multiple gluons, and global color conservation
come together to give the definition of a dressed state.
The paper is organized as follows. In Sec. II we recast the

ideas in [2–5] to derive the Faddeev-Kulish states in
gravity. In Sec. III we apply these ideas in the context
of QCD so as to derive a set of dressed states in QCD. In
Sec. IV we show that under a set of assumptions, one can
recover the dressed states in QCD, which were obtained by
Catani et al. in [8], from Ward identities associated to
asymptotic symmetries in QCD.

II. FROM ASYMPTOTIC SYMMETRIES TO
DRESSED STATES IN GRAVITY

In this section we revisit the works of [2–5,9] with a
motive of understanding the dressed states in gravity and
their relationship with asymptotic symmetries. We begin by
reviewing the relationship between Ward identities asso-
ciated to Bondi-Metzner-Sachs (BMS) supertranslations
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and leading single soft graviton theorem [10,11] in Sec. II A.
In Secs. II B and II C, a brief review of the work [4] in
connecting the dressed states in gravity and BMS super-
translations is presented. Further in Secs. II D and II E, we
show that under certain assumptions one can derive the
Faddeev-Kulish states in gravity from BMS supertransla-
tions. In Sec. II F an alternative asymptotic state to the
Faddeev-Kulish state is presented.

A. Review of BMS supertranslation Ward identity
and leading single soft graviton theorem

We start with the definition of the supertranslation charge
Q½f� [10]. Supertranslation charges are associated to the
class of vector fields that preserve the structure of an
asymptotically flat metric. These charges are parametrized
by an arbitrary function fðz; z̄Þ on the sphere. Q½f� can be
written as the sum of a soft part (Qsoft½f�) and a hard part
(Qhard½f�). Upon asymptotic quantization of the charge, one
can see that Qsoft½f� is responsible for the creation or
annihilation of a soft graviton mode. Additionally, one uses
the Christodoulou-Klainerman (CK) condition1 to relate the
positive helicity soft graviton mode with the negative
helicity soft graviton mode. Finally, the soft charge can
be written as

Qsoft½f�¼ lim
Ep→0

Ep

4πκ

Z
d2wD2

wfðw;w̄Þða−ðEpp̂Þþa†þðEpp̂ÞÞ;

¼ lim
Ep→0

Ep

4πκ

Z
d2wD2

w̄fðw;w̄ÞðaþðEpp̂Þþa†−ðEpp̂ÞÞ:

ð2:1Þ

Here p̂ denotes the direction of the soft graviton labeled by
the coordinates ðw; w̄Þ and κ2 ¼ 32πG.Dw=Dw̄ refers to the
covariant derivative with respect to the two-sphere
The hard charge Qhard½f� receive contributions from two

terms. One of them includes the contribution of the energy-
momentum tensor of massless particles at null infinity,
while the other includes the contribution of massive
particles that will reach timelike infinity. The hard charge
action on a massless and massive particle2 can be written as

Qhard½f�jini ¼
X
i¼in

Ekifðk̂iÞjini;

Qhard½f�jinimassive ¼
X
i¼in

mifHðk⃗i=miÞjinimassive;

houtjQhard½f� ¼
X
i¼out

Ekifðk̂iÞhoutj;

massivehoutjQhard½f� ¼
X
i¼out

mifHðk⃗i=miÞhoutjmassive: ð2:2Þ

Here, the sums
P

in and
P

out are over all the hard particles
in the “in” and “out” states. Energy and mass of the hard
particles are denoted by Eki and mi, respectively. The unit
spatial vector and three-momentum of the ith particle are
denoted by k̂i and k⃗i, respectively. For a massive particle,
fHðk⃗i=miÞ is defined by

fHðk⃗i=miÞ ¼
Z

d2wGðk⃗i=mi;w; w̄Þfðw; w̄Þ: ð2:3Þ

where

Gðk⃗i=mi;w; w̄Þ ¼ −
1

2π
D2

w̄
ððϵþðw; w̄ÞÞ · ðki=miÞÞ2

ðp=EpÞ · ðki=miÞ
: ð2:4Þ

Here p≡ Epð1; p̂Þ denotes the four-momentum and
ϵþðw; w̄Þ denotes the polarization of the soft graviton labeled
by the coordinates ðw; w̄Þ. The polarization vector ϵþðw; w̄Þ
can be written as ϵþðw; w̄Þ ¼ 1=

ffiffiffi
2

p ðw̄; 1;−i;−w̄Þ.
The Ward identity for supertranslation can be written as

houtj½Q½f�; S�jini ¼ 0 ⇔ houtj½Qsoft½f�; S�jini
¼ −houtj½Qhard½f�; S�jini: ð2:5Þ

For simplicity let us consider the in and out states to contain
only massive particles. Then, the Ward identity becomes

lim
Ep→0

Ep

4π

Z
d2wD2

w̄fðw; w̄ÞðhoutjaþðEpp̂ÞSjini

þ houtjSa†−ðEpp̂ÞjiniÞ

¼ −κ
�X

out

mifHðk⃗i=miÞ −
X
in

mifHðk⃗i=miÞ
�
houtjSjini:

ð2:6Þ

Using crossing symmetry, the above equation can be
written as

lim
Ep→0

Ep

2π

Z
d2wD2

w̄fðw; w̄ÞðhoutjaþðEpp̂ÞSjiniÞ

¼ −κ
�X

out

mifHðk⃗i=miÞ −
X
in

mifHðk⃗i=miÞ
�
houtjSjini:

ð2:7Þ

The Weinberg soft graviton theorem [12] is given by

lim
Ep→0

EphoutjaþðEpp̂ÞSjini

¼ κ

2

�X
i¼out

ðϵþðw; w̄Þ · kiÞ2
ðp=EpÞ · ki

−
X
i¼in

ðϵþðw; w̄Þ · kiÞ2
ðp=EpÞ · ki

�

× houtjSjini: ð2:8Þ
1The readers can refer to [10] for further details.
2The seminal work for outgoing/incoming particles being

massive was done in [11].
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We adopt the notation,

Sð0Þðp̂; kiÞ≡ ðϵþðw; w̄Þ · kiÞ2
ðp=EpÞ · ki

; ð2:9Þ

with which the leading soft factor in the rhs of [12] can be
written as

Sð0Þðp̂;fkigÞ≡
X
i¼out

ðϵþðw;w̄Þ ·kiÞ2
ðp=EpÞ ·ki

−
X
i¼in

ðϵþðw;w̄Þ ·kiÞ2
ðp=EpÞ ·ki

;

ð2:10Þ

≡ X
i¼out

Sð0Þðp̂; kiÞ −
X
i¼in

Sð0Þðp̂; kiÞ: ð2:11Þ

Now one can show the equivalence of the Ward identity
with a soft theorem by choosing a particular fðz; z̄Þ,
namely,

fðz; z̄Þ ¼ sðz; z̄;w; w̄Þ≡ 1þ ww̄
1þ zz̄

·
w̄ − z̄
w − z

: ð2:12Þ

In the rest of the paper, for simplicity of the calculations,
we choose the specific form of fðz; z̄Þ in (2.12) which led
us to the soft theorem. After choosing this, we denote the
soft charge and hard charge as Qsoftðp̂Þ and Qhardðp̂Þ,
respectively. The soft charge therefore becomes

Qsoftðp̂Þ ¼ lim
Ep→0

1

2
EpðaþðEpp̂Þ þ a†−ðEpp̂ÞÞ: ð2:13Þ

In this paper we are always concerned with the action of
the soft operator at the level of scattering amplitudes.
Therefore, using the notion of crossing symmetry we can
always relate an outgoing positive helicity soft graviton
with a negative helicity soft graviton. Hence, (2.13) can be
further written as

Qsoftðp̂Þ ¼ lim
Ep→0

EpaþðEpp̂Þ: ð2:14Þ

The action of the hard charge can be written as

Qhardðp̂Þjki ¼ −
κ

2
Sð0Þðp̂; kÞjki; ð2:15Þ

where Sð0Þðp̂; kÞ is already defined in (2.9).

B. Dressed states in gravity

Following [2], a number of recent works [3–5,13–18]
have analyzed the intricate relationship between the
spontaneous breaking of asymptotic symmetries, the

corresponding existence of soft modes as Goldstone
modes, and the asymptotic Hilbert space which is com-
prised of the coherent states of such soft modes. A number
of these works (notably [3–5,17]) have argued that under
certain conditions, which we summarize below, the states in
which asymptotic conservation laws are satisfied as Ward
identities are precisely the well-known dressed states in
which the S matrix is infrared finite in the case of QED and
gravity[9,19].
We revisit the earlier analysis [3,4] below in the context

of perturbative gravity but with an eye towards QCD. More
in detail, we attempt to recast some of the main ideas in
[3,4] by asking the following question: if we assume that
supertranslations are a symmetry of the perturbative S
matrix, what are the additional assumptions we need in
order to derive the precise form of dressed states in
perturbative gravity?
In the next section, we review and extract the key ideas

contained in [3,4] which will help us determine the
asymptotic Hilbert space from the existence of asymptotic
symmetries in QCD.

C. Faddeev-Kulish states in gravity from BMS
supertranslations

In [4], the authors showed that conservation of the BMS
charge leads to asymptotic states in which S-matrix
elements are infrared finite.3 The argument can be sum-
marized as follows.
Let us consider all the degenerate vacua as eigenstates of

the BMS supertranslation soft charge and consider a
transition between scattering states built over such vacua.
Let jNi denote the eigenstate of the soft operator Qsoftðp̂Þ
[defined as in (2.13)]. Let jNout; outi=Nin; ini denote the
outgoing/incoming states which are the eigenstates of
Qsoftðp̂Þ with eigenvalues Noutðp̂Þ=Ninðp̂Þ; i.e.,

Qsoftðp̂ÞjNout; outi ¼ Noutðp̂ÞjNout; outi;
Qsoftðp̂ÞjNin; ini ¼ Ninðp̂ÞjNin; ini: ð2:16Þ

The supertranslation Ward identity between such states can
be written as

hNout; outj½Qsoftðp̂Þ; S�jNin; ini
¼ −hNout; outj½Qhardðp̂Þ; S�jNin; ini: ð2:17Þ

The above expression can be evaluated as

ðNoutðp̂Þ − Ninðp̂ÞÞhNout; outjSjNin; ini
¼ Ωsoftðp̂ÞhNout; outjSjNin; ini; ð2:18Þ

3The analogous analysis in QED was done in [2,5].

GENERALIZED COHERENT STATES IN QCD FROM … PHYS. REV. D 101, 066010 (2020)

066010-3



where Ωsoftðp̂Þ is given by the soft factor (2.10). In
evaluating the rhs of (2.17) one assumes that the hard
charge has a trivial action on the degenerate vacua. Now the
above equation suggests two possibilities:

Noutðp̂Þ − Ninðp̂Þ −Ωsoftðp̂Þ ¼ 0 ð2:19Þ

or

hNout; outjSjNin; ini ¼ 0: ð2:20Þ

Now, if we demand that the transition amplitude between
such degenerate vacua is nontrivial then

Noutðp̂Þ − Ninðp̂Þ ¼ Ωsoftðp̂Þ: ð2:21Þ

The authors in [4] proposed an ansatz for the dressing
operator for constructing such states which can be written
as

eRN ¼ exp

�
κ

Z
d½k�ρðkÞ

Z
Λ
d½q�Nμνðq; kÞða†μνðqÞ

− aμνðqÞ
�
: ð2:22Þ

We will study this operator in detail in the next section.
They further showed that the Faddeev-Kulish states belong
to such a class of dressed states and these satisfy the
constraint (2.21).

D. A closer look at the derivation of dressed states
from symmetries

As we recalled above, the derivation of dressed states
consistent with the supertranslation conservation law relied
on three key inputs.

(i) The dressed state is an eigenstate of the soft charge.
(ii) The hard charge has a trivial action on the dressing

(as it had no gravitational contribution).
(iii) S-matrix elements evaluated in the dressed states are

nontrivial.
However, there are some caveats here that need to be
emphasized from our perspective.
(1) As we review below, due to the fact that vacuum is

shifted by supertranslation soft charge, the dressed
state for any choice of dressing cannot be an
eigenstate of the soft charge. Because of this it
may appear that the analysis presented in the
previous Sec. II B is inconsistent. However, as we
show below, this analysis can be made consistent if
we demand that the dressed states satisfy a constraint
called the orthogonality condition.4 Analysis of the

orthogonality condition will be central to us in the
derivation of QCD asymptotic states.

(2) If we work in linearized gravity where the hard
charge has no contribution from the gravitational
news tensor, it is indeed true that the hard charge
commutes with the dressing. However, if the super-
translation hard charge contains a contribution from
the gravitational field, one needs to be careful with
the commutators of the hard charge with the dress-
ing. We will address this issue below by using the
known action of the supertranslation charge on the
Goldstone mode conjugate to the soft mode [10].

These caveats turn out to be even more severe in QCD and
hence, in order to apply the analysis of [2–4], in that case,
we determine the relationship between dressed states and
asymptotic conservation laws in a slightly different manner,
such that both the caveats mentioned above become
explicit. Namely, our goal is to explore to what extent
the infinity of supertranslation conservation laws can
constrain the form of the dressed states. To address this
question, we start with four assumptions.
(1) Supertranslation symmetry is a symmetry of the

quantum S matrix.
(2) Soft graviton modes satisfy what we call orthogon-

ality relations with respect to the asymptotic states of
the theory. The orthogonality condition simply
means that if we consider a state jψi which is a
tensor product of the (dressed) finite energy state and
one or more soft graviton state, then this state jψi is
orthogonal to all the (dressed) finite energy states.

(3) The S-matrix elements are nontrivial.
(4) The supertranslation hard charge has a trivial action

on the dressing,
As we show below, by using all the assumptions mentioned
above one can determine the dressed states in gravity. In
Sec. II F we show that if one follows along the lines of [10]
one obtains a different type of dressing. It turns out that in
this analysis one need not use assumption (4).
To determine the dressed states which respect the above

mentioned assumptions, we start with an ansatz for the
dressing operator following [2,3,9]

eRN ¼ exp

�
κ

Z
d½k�ρðkÞ

Z
Λ
d½q�Nμνðq; kÞða†μνðqÞ

− aμνðqÞ
�
; ð2:23Þ

where ρðkÞ≡ b†ðkÞbðkÞ is the number operator for the
external massive particles [we are considering massive
scalar particles for simplicity and b†ðkÞ, bðkÞ are the
creation and annihilation operators for scalar particle
respectively], κ2 ¼ 32πG, and Nμνðq; kÞ is an arbitrary
real function which has a pole in Eq. Here d½k�≡ d3k

ð2πÞ22Ek
is

the Lorentz invariant measure. Λ is an upper cutoff for the
4The known construction of dressed states such as Faddeev-

Kulish states do satisfy this condition as was shown in [4,5].
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integral over q to ensure that the dressing comprises of only
low energy gravitons. a†μνðqÞ and aμνðqÞ are the graviton
creation and annihilation operators, respectively, which can
be written in the polarization basis as

a†μνðqÞ ¼
X
r¼�

ϵrμνðqÞar†ðqÞ; aμνðqÞ ¼
X
r¼�

ϵ�rμνðqÞarðqÞ:

ð2:24Þ

These operators obey the commutation relation

½arðqÞ; as†ðq0Þ� ¼ δrsð2EqÞð2πÞ3δ3ðq⃗ − q⃗0Þ: ð2:25Þ

A dressed state is constructed using the action of the
asymptotic operator (2.23) on a “bare” state. Here we
consider the dressing on a massive scalar field defined by

φðxÞ ¼
Z

d½k�½bðkÞeik:x þ b†ðkÞe−ik:x�: ð2:26Þ

The creation and annihilation operators of the scalar
particle obey the commutation relation

½bðkÞ; b†ðk0Þ� ¼ ð2πÞ3ð2EkÞδ3ðk⃗ − k⃗0Þ: ð2:27Þ

The dressed scalar state is then defined by

eRN jki ¼ eRNb†ðkÞj0i ¼ ½eRN ; b†ðkÞ�j0i ¼ eRNðkÞb†ðkÞj0i;
ð2:28Þ

where

eRNðkÞ ¼ exp

�
κ

Z
Λ
d½q�Nμνðq; kÞða†μνðqÞ − aμνðqÞ

�
:

ð2:29Þ

The action of the asymptotic operator on a multiparticle
state can also be found similarly,

eRN jk1; k2…kni ¼ eRNðk1ÞeRNðk2Þ…eRNðknÞjk1; k2…kni;
ð2:30Þ

where jk1; k2;…; kni denotes a multiparticle state gener-
ated by the action of creation operators b†ðk1Þ,
b†ðk2Þ;…; b†ðknÞ on the Fock vacuum. From (2.30) it is
clear that the dressing operator factorizes in the “hard”
particle space.
Having defined the dressed state, we demonstrate caveat

(1) which we discussed in the beginning of this section. Let
us consider the action of the soft operatorQsoftðp̂Þ (2.13) on
a dressed state. The soft charge can be written as

Qsoftðp̂Þ ¼ lim
Ep→0

Ep

2
ðaþðEpp̂Þ þ a†−ðEpp̂ÞÞ: ð2:31Þ

The action ofQsoftðp̂Þ on the dressed state defined by (2.28)
can be expressed as

Qsoftðp̂ÞeRN jki ¼ ½Qsoftðp̂Þ; eRNðkÞ�jki þ eRNðkÞQsoftðp̂Þjki:
ð2:32Þ

Let us first compute the commutator term

½Qsoftðp̂Þ; eRNðkÞ�
¼ ½Qsoftðp̂Þ; RNðkÞ�eRNðkÞ;

¼ lim
Ep→0

Ep

2

�
aþðEpp̂Þ þ a†−ðEpp̂Þ; κ

×
Z

Λ
d½q�Nμνðq; kÞða†μνðqÞ − aμνðqÞ

�
eRNðkÞ;

¼ lim
Ep→0

κEpNμνðp; kÞϵþμνðp̂ÞeRNðkÞ; ð2:33Þ

where we used (2.25) and (2.24) to compute the last line
from the second line. Therefore, (2.32) can be written as

Qsoftðp̂ÞeRN jki ¼ lim
Ep→0

κEpNμνðp; kÞϵþμνðp̂ÞeRNðkÞjki

þ eRNðkÞQsoftðp̂Þjki: ð2:34Þ

The second term in the above expression can be written as

eRNðkÞQsoftðp̂Þjki ¼ eRNðkÞb†ðkÞQsoftðp̂Þj0i: ð2:35Þ

This corresponds to the action of the asymptotic operator
on a one particle state built from a supertranslated vacuum.5

If this term vanishes, then clearly the dressed state would
be the eigenstate of the soft operator. But as the super-
translation charge shifts vacuum instead of annihilating it,
this is not true.
In order to determine the dressed states in gravity let us

start with our assumption (1) that supertranslation is a
symmetry of the S matrix. We then have the corresponding
Ward identity

dhoutj½Qðp̂Þ;S�jinid ¼ 0; ð2:36Þ

where Qðp̂Þ ¼ Qsoftðp̂Þ þQhardðp̂Þ [defined in (2.13) and
(2.15)]. dhoutj, jinid denotes the dressed out and in states,
which are given as

5One can also use the prescription (2.14) forQsoftðp̂Þ and claim
that the extra term (2.35) vanishes. But this subtlety will again
arise when one considers its action on an outgoing dressed state
(bra).
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dhoutj ¼ houtje−RðoutÞ
N ¼ houtj exp

�
−κ

X
i¼out

Z
Λ
d½q�Nμν

i ðq; kiÞða†μνðqÞ − aμνðqÞ
�
;

jinid ¼ eR
ðinÞ
N jini ¼ exp

�
κ
X
i¼in

Z
Λ
d½q�Nμν

i ðq; kiÞða†μνðqÞ − aμνðqÞ
�
jini: ð2:37Þ

And ki denotes the momentum of the external particles in the outgoing and incoming states. After expressing the charge as
the sum of soft and hard parts, the Ward identity (2.36) becomes

houtje−RðoutÞ
N ½Qsoftðp̂Þ; S�eR

ðinÞ
N jini ¼ −houtje−RðoutÞ

N ½Qhardðp̂Þ; S�eR
ðinÞ
N jini: ð2:38Þ

Let us now consider the lhs of (2.38). This can be expanded as

houtjQsoftðp̂Þe−R
ðoutÞ
N SeR

ðinÞ
N jini − houtje−RðoutÞ

N SeR
ðinÞ
N Qsoftðp̂Þjini

þ houtj½e−RðoutÞ
N ; Qsoftðp̂Þ�SeR

ðinÞ
N jini − houtje−RðoutÞ

N S½Qsoftðp̂Þ; eR
ðinÞ
N �jini: ð2:39Þ

We can now use assumption (2), namely, the orthogonality condition, which implies that both of the first two terms of the
above equation vanish. Therefore, we are left with

houtj½e−RðoutÞ
N ; Qsoftðp̂Þ�SeR

ðinÞ
N jini − houtje−RðoutÞ

N S½Qsoftðp̂Þ; eR
ðinÞ
N �jini: ð2:40Þ

The commutators in the above expression can be evaluated using (2.33) as

½e−RðoutÞ
N ; Qsoftðp̂Þ� ¼ lim

Ep→0
κEpNoutðpÞe−R

ðoutÞ
N ; ½Qsoftðp̂Þ; eR

ðinÞ
N � ¼ lim

Ep→0
κEpNinðpÞeR

ðinÞ
N ; ð2:41Þ

where

NoutðpÞ ¼
X
i¼out

Nμν
i ðp; kiÞϵþμνðp̂Þ; NinðpÞ ¼

X
i¼in

Nμν
i ðp; kiÞϵþμνðp̂Þ: ð2:42Þ

Using these we can evaluate the lhs of (2.38) to

houtj½e−RðoutÞ
N ; Qsoftðp̂Þ�SeR

ðinÞ
N jini − houtje−RðoutÞ

N S½Qsoftðp̂Þ; eR
ðinÞ
N �jini;

¼ κ lim
Ep→0

EpðNoutðpÞ − NinðpÞÞhoutje−R
ðoutÞ
N SeR

ðinÞ
N jini: ð2:43Þ

The rhs of (2.38) can be expanded as

houtjQhardðp̂Þe−R
ðoutÞ
N SeR

ðinÞ
N jini − houtje−RðoutÞ

N SeR
ðinÞ
N Qhardðp̂Þjini;

þ houtj½e−RðoutÞ
N ; Qhardðp̂Þ�SeR

ðinÞ
N jini − houtje−RðoutÞ

N S½Qhardðp̂Þ; eR
ðinÞ
N �jini: ð2:44Þ

Using the action of the hard charges, the first two terms in the above expression gives

houtjQhardðp̂Þe−R
ðoutÞ
N SeR

ðinÞ
N jini − houtje−RðoutÞ

N SeR
ðinÞ
N Qhardðp̂Þjini ¼ −

κ

2
Sð0Þðp̂; fkigÞhoutje−R

ðoutÞ
N SeR

ðinÞ
N jini; ð2:45Þ

where

Sð0Þðp̂; fkigÞ ¼
X
i¼out

ðϵþðw; w̄Þ · kiÞ2
ðp=EpÞ · ki

−
X
i¼in

ðϵþðw; w̄Þ · kiÞ2
ðp=EpÞ · ki

: ð2:46Þ

Using expressions (2.45) and (2.43), the Ward identity (2.38) can finally be written as
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κ lim
Ep→0

EpðNoutðpÞ − NinðpÞÞhoutje−R
ðoutÞ
N SeR

ðinÞ
N jini;

¼ κ

2
Sð0Þðp̂; fkigÞhoutje−R

ðoutÞ
N SeR

ðinÞ
N jini − houtj½e−RðoutÞ

N ; Qhardðp̂Þ�SeR
ðinÞ
N jini þ houtje−RðoutÞ

N S½Qhardðp̂Þ; eR
ðinÞ
N �jini: ð2:47Þ

At this point let us recall caveat (2). If the hard charge has a contribution from the gravitational news tensor, then Qhardðp̂Þ
does not commute with the dressing and one will not retrieve the usual conservation laws (2.19). In the Appendix B we
show that the contribution from the commutator of the hard charge with the dressing is ofOðΛÞ, where Λ is the upper cutoff
in the dressing operator. If Λ is sufficiently small then one could ignore these terms. Hence, the last two terms in the rhs of
(2.47) vanishes by assumption (4). Therefore,

κ lim
Ep→0

EpðNoutðpÞ − NinðpÞÞhoutje−R
ðoutÞ
N SeR

ðinÞ
N jini;¼ κ

2
Sð0Þðp̂; fkigÞhoutje−R

ðoutÞ
N SeR

ðinÞ
N jini: ð2:48Þ

We can now use assumption (3) to show that,

lim
Ep→0

EpðNoutðpÞ − NoutðpÞÞ ¼
1

2
Sð0Þðp̂; fkigÞ ð2:49Þ

or

lim
Ep→0

Ep

�X
i¼out

Nμν
i ðp; kiÞϵþμνðp̂Þ −

X
i¼in

Nμν
i ðp; kiÞϵþμνðp̂Þ

�
¼ 1

2

�X
i¼out

ðϵþðw; w̄Þ · kiÞ2
ðp=EpÞ · ki

−
X
i¼in

ðϵþðw; w̄Þ · kiÞ2
ðp=EpÞ · ki

�
: ð2:50Þ

From the above expression we can associate naturally,

Nμν
i ðp; kiÞ ¼

1

2

kμi k
ν
i

p · ki
: ð2:51Þ

Thus, we have recovered the dressing factor for each
external particle.
Substituting (2.51) in the dressing operator (2.29) we

finally get the dressed state as

eRNðkÞjki ¼ exp

�
κ

2

Z
Λ
d½q� k

μkν

q · k
ða†μνðqÞ − aμνðqÞ

�
jki:

ð2:52Þ

This matches with the Faddeev-Kulish states in gravity [3].

E. Orthogonality relations for multiple
soft graviton insertions

Having derived the dressed states in gravity, we would
now like to see whether these states decouple a finite
number of soft graviton modes; i.e., we would like to see
whether the orthogonality condition [assumption (2)] holds
for more than one soft graviton mode. This analysis
becomes important in QCD as it leads to a modification
of the dressing factor in QCD. We will explain this detail in
the QCD section. Since we already know that at the leading
level, the multiple soft graviton theorems are not indepen-
dent in the sense that each of the soft factors can be

determined using just the leading single soft factor; one
does not expect any issue for the orthogonality condition
involving multiple soft graviton modes. We will explicitly
prove this in this section.
Without loss of generality, let us consider a case in which

vacuum is shifted by two soft graviton modes; i.e., we
would like to show

houtjQsoftðp̂1ÞQsoftðp̂2Þe−R
ðoutÞ
N SeR

ðinÞ
N jini ¼ 0; ð2:53Þ

where Qsoftðp̂1Þ and Qsoftðp̂2Þ are soft graviton modes
given by

Qsoftðp̂1Þ ¼ lim
Ep1

→0
Ep1

aþðEp1
p̂1Þ; ð2:54Þ

Qsoftðp̂2Þ ¼ lim
Ep2

→0
Ep2

aþðEp2
p̂2Þ; ð2:55Þ

and eRN is the dressing operator already derived in the
previous Sec. (2.52). The lhs of (2.53) can be evaluated as
done in [3,5]. It will receive contributions from the three
terms as shown in Fig. 1.
(1) Both the soft gravitons are connected to the external

particles.
(2) One of the soft gravitons is connected to the external

particle and the other is connected to the dressing
operator.

(3) Both the soft gravitons are connected to the dressing
operator.
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The first contribution (1) can be evaluated by the leading
double soft graviton theorem6 in the undressed states as

ðhoutjQsoftðp̂1ÞQsoftðp̂2Þe−R
ðoutÞ
N SeR

ðinÞ
N jiniÞexternal

¼ κ2

4
Sð0Þðp̂1; fkigÞSð0Þðp̂2; fkjgÞhoutje−R

ðoutÞ
N SeR

ðinÞ
N jini:
ð2:56Þ

The second contribution (2) can be evaluated in the
following way. The soft graviton connected to the external
particle can be evaluated by single leading soft graviton
theorem while the soft graviton connected to the dressing
operator can be evaluated by the contraction of the soft
operator with the dressing, i.e., ½Qsoftðp̂Þ; eRN �. Therefore,
this contribution can be written as

κ

2
Sð0Þðp̂1; kiÞðhoutj½Qsoftðp̂2Þ; e−R

ðoutÞ
N �SeRðinÞ

N jini

þ houtje−RðoutÞ
N S½Qsoftðp̂2Þ; eR

ðinÞ
N �jiniÞ

þ κ

2
Sð0Þðp̂2; fkigÞðhoutj½Qsoftðp̂1Þ; e−R

ðoutÞ
N �SeRðinÞ

N jini

þ houtje−RðoutÞ
N S½Qsoftðp̂1Þ; eR

ðinÞ
N �jiniÞ: ð2:57Þ

Using the form of the dressing operator we derived in the
previous section, we can finally evaluate the above expres-
sion to

ðhoutjQsoftðp̂1ÞQsoftðp̂2Þe−R
ðoutÞ
N SeR

ðinÞ
N jiniÞexternalþdressing

¼ −
κ2

2
Sð0Þðp̂1;fkigÞSð0Þðp̂2;fkjgÞhoutje−R

ðoutÞ
N SeR

ðinÞ
N jini:
ð2:58Þ

The final contribution (3) can be evaluated by the con-
traction of the soft operators with the dressing. Hence, this
term can be written as

houtj½Qsoftðp̂1Þ; ½Qsoftðp̂2Þ; e−R
ðoutÞ
N ��SeRðinÞ

N jini
þ houtj½Qsoftðp̂1Þ; e−R

ðoutÞ
N �S½Qsoftðp̂2Þ; eR

ðinÞ
N �jini

þ houtj½Qsoftðp̂2Þ; e−R
ðoutÞ
N �S½Qsoftðp̂1Þ; eR

ðinÞ
N �jini

þ houtje−RðoutÞ
N S½Qsoftðp̂1Þ; ½Qsoftðp̂2Þ; eR

ðinÞ
N ��jini; ð2:59Þ

which evaluates to

ðhoutjQsoftðp̂1ÞQsoftðp̂2Þe−R
ðoutÞ
N SeR

ðinÞ
N jiniÞdressing

¼ κ2

4
Sð0Þðp̂1; fkigÞSð0Þðp̂2; fkjgÞhoutje−R

ðoutÞ
N SeR

ðinÞ
N jini:
ð2:60Þ

Adding up all the contributions (2.56), (2.58), and (2.60)
we finally get

houtjQsoftðp̂1ÞQsoftðp̂2Þe−R
ðoutÞ
N SeR

ðinÞ
N jini ¼ 0: ð2:61Þ

Therefore, as expected, the two soft gravitons modes
indeed decouple, if we are using the dressing operator
(2.52). Without loss of generality, one can extend this
analysis to multiple soft graviton modes and arrive at the
same result, which suggests that the assumption (2) holds
as expected.
As an aside, we can also use the orthogonality for one

soft graviton mode and single soft graviton theorem to
constrain the dressing ansatz we had started with. This is
demonstrated in Appendix A.
In short, in perturbative gravity, it turns out that by

the super translation Ward identity and the condition of
orthogonality in the dressed states, the form of the
dressed state is fixed. Additionally, one can use the
orthogonality condition in the dressed states and the single
soft theorem in the undressed states to constrain the
dressing (Appendix A). Both of these constraints lead to
the same conclusion.

F. An alternative dressing

In all the previous analysis, for the determination of
dressed states, we assumed (4) in which the soft gravitons
are treated as a zero frequency limit of finite energy
gravitons. This, together with the other assumptions, (1),
(2) and (3), one naturally obtains the Faddeev-Kulish states.
But, as pointed out by the authors in [10], for obtaining the
correct BMS transformations, one needs to treat the soft
modes as independent degrees of freedom. This is equiv-
alent to extending the radiative phase space, so that
one includes not only the free data Czz and Cz̄ z̄,

7 but
also the boundary modes (boundary of null infinity)
defined by Cðz; z̄Þ and Nðz; z̄Þ. These additional data are
defined by

CzzjIþ
−
¼ D2

zC; ð2:62Þ
Z

∞

−∞
duNzz ¼ D2

zN; ð2:63Þ

6One can use either consecutive or simultaneous double soft
graviton theorems because at the leading level this choice is
irrelevant in the case for gravitons. This choice becomes subtle in
QCD.

7Czz, Cz̄ z̄ are the radiative metric components of an asymp-
totically flat metric. These are unconstrained by Einstein equa-
tions and all other radiative components can be written in terms of
Czz and Cz̄ z̄.
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where Nzz ¼ ∂uCzz is the Bondi news tensor. Dz refers to
the covariant derivative with respect to the two-sphere.
After taking this into account, the action of the BMS
supertranslation charge (Q½f�) on these data can be
written as

½Q½f�; Nzzðu; z; z̄Þ� ¼ fðz; z̄Þ∂uNzzðu; z; z̄Þ;
½Q½f�; Czzðu; z; z̄� ¼ fðz; z̄Þ∂uCzzðu; z; z̄Þ − 2D2

zfðz; z̄Þ;
½Q½f�; Nðz; z̄Þ� ¼ 0;

½Q½f�; Cðz; z̄Þ� ¼ −2fðz; z̄Þ: ð2:64Þ

In light of the above, we would additionally like to use the
assumptions (1), (2), and (3) to determine a set of dressed
states. Let us consider an ansatz for the dressed state of the
following form:

eRN ¼ exp

�
κ

2

Z
d½k�ρðkÞ

Z
d2q̂D2

z̄Nðq̂; kÞCðz; z̄Þ
�
;

ð2:65Þ

where ρðkÞ ¼ b†ðkÞbðkÞ is the number operator for the
external particles.8 Here ðz; z̄Þ are the coordinates for
representing the direction q in the integral over the sphere.
Nðq̂; kÞ is an arbitrary real function and Dz̄ refers to the
covariant derivative with respect to the two-sphere.
The action of the dressing operator on a bare state is

similar to (2.28) and we can write the dressed state as

eRN jki ¼ eRNb†ðkÞj0i ¼ ½eRN ; b†ðkÞ�j0i ¼ eRNðkÞb†ðkÞj0i;
ð2:66Þ

where

eRNðkÞ ¼ exp

�
κ

2

Z
d2q̂D2

z̄Nðq̂; kiÞCðz; z̄Þ
�
: ð2:67Þ

In this section, for clarity let us start with the super-
translation charge Q½f� for an arbitrary fðz; z̄Þ and then
later on in the calculations we will substitute for the
particular fðz; z̄Þ in (2.12). The supertranslation Ward
identity between such states can be written as

houtje−RðoutÞ
N ½Q½f�;S�eRðinÞ

N jini ¼ 0; ð2:68Þ
where

e−R
ðoutÞ
N ¼ exp

�
−
κ

2

X
i¼out

Z
d2q̂D2

z̄Niðq̂;kiÞCðz; z̄Þ
�
; ð2:69Þ

eR
ðinÞ
N ¼ exp

�
κ

2

X
i¼in

Z
d2q̂D2

z̄Niðq̂; kiÞCðz; z̄Þ
�
: ð2:70Þ

The above equation can be expanded as

houtjQ½f�e−RðoutÞ
N SeR

ðinÞ
N jini − houtje−RðoutÞ

N SeR
ðinÞ
N Q½f�jini

þ houtj½e−RðoutÞ
N ; Q½f��SeRðinÞ

N jini
− houtje−RðoutÞ

N S½Q½f�; eRðinÞ
N �jini ¼ 0: ð2:71Þ

If we use assumption (2) then the hard part of the charge
only contributes to the first two terms in the above equation.
The last two terms can be evaluated using (2.64). After a bit
of calculation one arrives at

κ

�X
i¼out

Z
d2q̂Niðq̂; kiÞD2

z̄fiðq̂Þ

−
X
i¼in

Z
d2q̂Niðq̂; kiÞD2

z̄fiðq̂Þ
�
houtje−RðoutÞ

N SeR
ðinÞ
N jini

− κ

�X
i¼out

fiðk̂iÞEi −
X
i¼in

fiðk̂iÞEi

�

× houtje−RðoutÞ
N SeR

ðinÞ
N jini ¼ 0: ð2:72Þ

Now if one chooses fðz; z̄Þ in (2.12), so that the integral
over q̂ gets localized in a particular direction, say p̂, then
the above equation simplifies to

FIG. 1. Diagrams illustrate the different ways to connect two soft graviton modes in the Feynman diagram. The first diagram shows
both soft gravitons connected to the external legs. The second diagram shows one of the soft gravitons connected to the external leg
while the other is connected to the dressing operator. The last diagram involves both soft gravitons connected to the dressing operator.

8We consider massless scalar particles in this case for
convenience.
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κ

�X
i¼out

Niðp̂; kiÞ −
X
i¼in

Niðp̂; kiÞ
�
houtje−RðoutÞ

N SeR
ðinÞ
N jini

−
κ

2

�X
i¼out

Sð0Þðp̂; kiÞ −
X
i¼in

Sð0Þðp̂; kiÞ
�

× houtje−RðoutÞ
N SeR

ðinÞ
N jini ¼ 0: ð2:73Þ

We can now use the assumption (3) to get the constraint

κ

2

�X
i¼out

Sð0Þðp̂; kiÞ −
X
i¼in

Sð0Þðp̂; kiÞ
�

¼ κ

�X
i¼out

Niðp̂; kiÞ −
X
i¼in

Niðp̂; kiÞ
�
: ð2:74Þ

From the above equation it is natural to associate

Niðp̂; kiÞ ¼
1

2
Sð0Þðp̂; kiÞ ¼

ϵþμνðp̂Þkμi kνi
2ðp=EpÞ:ki

: ð2:75Þ

Here ϵþμνðp̂Þ ¼ ϵþμ ðp̂Þϵþν ðp̂Þ. Therefore the dressed state can
be written as

eRN jki ¼ eRNðkÞjki

¼ exp

�
κ

2

Z
d2q̂D2

z̄

�
ϵþμνðq̂Þkμkν
ðq=EqÞ:k

�
Cðz; z̄Þ

�
jki:

ð2:76Þ

We can again simplify the above expression due to the
property

D2
z̄

�
ϵþμνðq̂Þkμkν
ðq=EqÞ:k

�
¼ ð2πÞEkδ

ð2Þðz − zkÞ; ð2:77Þ

where ðzk; z̄kÞ refers to the direction of the external particle.
Finally, the dressed particle can be written as

eRNðkÞjki ¼ exp

�
κ

2
EkCðzk; z̄kÞ

�
jki: ð2:78Þ

It is important to note that, unlike the Faddeev-Kulish
states, these dressed states are made out of Goldstone
modes conjugate to zero modes. Unlike the derivation for
Faddeev-Kulish states from supertranslation Ward identity
in which one has to neglect the OðΛÞ terms where Λ is the
upper cutoff for the dressing, one need not make this
assumption in this present derivation. The relationship
between such states and the Faddeev-Kulish states has
been analyzed in [2].

III. FROM ASYMPTOTIC SYMMETRIES TO
DRESSED STATES IN QCD

In this section we apply the same analysis as we have
done to the case of gravity. We try to find a set of dressed
states that are compatible with the Ward identities asso-
ciated to large gauge transformations in Yang-Mills theory.
In Sec. III A, the equivalence of Ward identities of large
gauge transformations with the leading soft gluon theorem
is reviewed. In Sec. III B we start with a simple ansatz
(inspired from gravity) for a dressed state in QCD and
constrain the dressing using certain assumptions which we
will discuss later in the section. As a check we also verify
the orthogonality condition for the dressing operator using
the soft gluon theorem in Sec. III C.

A. Review of single soft gluon theorem
in undressed states

Here we briefly review the equivalence between leading
single soft gluon theorem and asymptotic symmetries in
Yang-Mills theory. The reader can refer to [1,20,21] for
further details. The asymptotic charge defined at future null
infinity can be written as

Q½α� ¼ 1

g2

Z
Iþ
−

trðα � F Þ; ð3:1Þ

where Iþ
− is the past of future null infinity. F is the gauge

field strength defined as F ¼ F a
μνTa, where F a

μν ¼ ∂μAa
ν−

∂νAa
μ þ gfabcAb

μAc
ν:α≡ αaðz; z̄ÞTa, where αaðz; z̄Þ is an

arbitrary function on the sphere and Ta refers to the Lie
algebra generator. g is the coupling constant. Using the
equation of motion (DμFμν ¼ g2jν, where Dμ is the gauge
covariant derivative and jν the matter current) and the
asymptotic fall off of the gauge fieldsAa

μ’s near null infinity
[1,20,21], we can write the asymptotic charge as sum of a
soft part Qsoft½α� and a hard part Qhard½α�. After quantiza-
tion, one can write the soft charge as [1]

Qsoft½α� ¼ − lim
Ep→0

Ep

Z
d2w

ffiffiffi
2

p ∂w̄α
bðw; w̄Þ

2ð1þ ww̄Þ
× ðabþðEpp̂Þ þ ab†− ðEpp̂ÞÞ; ð3:2Þ

¼− lim
Ep→0

Ep

Z
d2w

ffiffiffi
2

p ∂wα
bðw;w̄Þ

2ð1þww̄Þ
ðab−ðEpp̂Þþab†þ ðEpp̂ÞÞ: ð3:3Þ

Here, p̂ refers the direction of the soft gluon labeled by the
coordinates (w, w̄). Using crossing symmetry, one can
rewrite the soft charge so as to include only one of the
polarizations in each of the expressions. Then the above
expression can be further written as
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Qsoft½α�¼− lim
Ep→0

Ep

Z
d2w

ffiffiffi
2

p ∂w̄α
bðw;w̄Þ

ð1þww̄Þ abþðEpp̂Þ; ð3:4Þ

¼ − lim
Ep→0

Ep

Z
d2w

ffiffiffi
2

p ∂wα
bðw; w̄Þ

ð1þ ww̄Þ ab−ðEpp̂Þ: ð3:5Þ

Similarly, one can write the action of the hard charge on an
external state with momentum k and color c as9

Qhard½α�jðk; cÞi ¼ gαbðk̂ÞTb
cdjðk; dÞi; ð3:6Þ

where k̂ refers to the direction of momentum of the
external state.
The Ward identity for the large gauge transformation can

be written as

houtj½Q½α�; S�jini ¼ 0 ⇔ houtj½Qsoft½α�; S�jini
¼ −houtj½Qhard½α�; S�jini: ð3:7Þ

Using the definition of soft and hard charge, the above
Ward identity becomes

lim
Ep→0

Ep

Z
d2w

ffiffiffi
2

p ∂wα
bðw; w̄Þ

ð1þ ww̄Þ houtjabþðEpp̂ÞSjini

¼ −g
�X

out

αbðk̂iÞTb
i −

X
in

αbðk̂iÞTb
i

�
houtjSjini: ð3:8Þ

The leading soft gluon theorem10 [1] for a positive helicity
soft gluon of color a and in the direction p̂ labeled by the
coordinates (wp; w̄p) can be written as

lim
Ep→0

EphoutjaaþðEpp̂ÞSjini ¼ gSð0Þaðp̂; fkigÞhoutjSjini;

ð3:9Þ

where

Sð0Þaðp̂; fkigÞ ¼
X
i¼out

Sð0Þaðp̂; kiÞ −
X
i¼in

Sð0Þaðp̂; kiÞ; ð3:10Þ

with

Sð0Þaðp̂; kiÞ≡ ϵþðp̂Þ · ki
ðp=EpÞ · ki

Ta
i ; ð3:11Þ

where p≡ Epð1; p̂Þ denotes the four-momentum of the soft
gluon and ϵþðp̂Þ refers to the polarization vector of the soft

gluon, which is given by ϵþðp̂Þ ¼ 1=
ffiffiffi
2

p ðw̄p; 1;−i;−w̄pÞ. ki
denotes the four-momentum and Ta

i denotes the Lie algebra
generator in the representation of the ith hard particle.
If one chooses a particular αðw; w̄Þ which is

α ¼ αbðw; w̄ÞTb ¼ δabð1þ wpw̄pÞ
w − wp

Tb ð3:12Þ

then the Ward identity (3.8) matches with the leading soft
gluon theorem (3.9). For this particular choice of α, we
denote the soft and hard charges as Qa

softðp̂Þ and Qa
hardðp̂Þ,

respectively, and are given by

Qa
softðp̂Þ ¼ lim

Ep→0
EpaaþðEpp̂Þ: ð3:13Þ

Qa
hardðp̂Þjðk; bÞi ¼ −gðSð0Þaðp̂; kÞÞbcjðk; cÞi: ð3:14Þ

We will be using Qa
softðp̂Þ and Qa

hardðp̂Þ in the rest of our
calculations.
It is important to note that in this work we are working

with tree-level asymptotic charges only. Although we
restrict our attention to the case where quarks are massless
(as the understanding of QCD asymptotic symmetries is
most developed in this context), the analysis of Sec. IV will
not rely on this assumption.11 We will be working with a
gauge group SUðNÞ in which the gauge generators satisfy

½Ta; Tb� ¼ ifabcTc ð3:15Þ

and are normalized as TrðTaTbÞ ¼ 1
2
δab. The gluons trans-

form in the adjoint representation [ðtaÞbc ¼ ifabctc] while
quarks transform in the fundamental representation.

B. Dressed states from Ward identity

In Sec. II C, it was shown that under certain assumptions
one can recover a set of dressed states in perturbative
gravity from asymptotic symmetries. In this section we will
proceed along the same lines. We start with the following
assumptions:
(1) (Non-Abelian) Large gauge transformation is a

symmetry of the S matrix. Because of the non-
Abelian nature of the asymptotic symmetry, this
assumption is more subtle than the corresponding
assumption in gravity where supertranslations gen-
erate an Abelian group.
We quantify this assumption as a hierarchy of

Ward identities9The above mentioned action of the hard charge is for tree level
only. In this work, we are only considering the action of the hard
charge at tree level and therefore the loop corrections to the
charge are not considered.

10We are considering the tree-level S matrix.

11As an aside, we note that assuming that quarks are massless
is not an unreasonable assumption in the context of perturbative
QCD where the S matrix is well defined.
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½Qa1ðp̂1Þ; ½Qa2ðp̂2Þ; ½…½Qanðp̂nÞ; S�…� ¼ 0 ∀ n;

ð3:16Þ

where Qa1ðp̂1Þ ¼ Qa1
softðp̂1Þ þQa1

hardðp̂1Þ are defined
in (3.13) and (3.14).

(2) Soft gluon modes satisfy orthogonality relations
with respect to asymptotic states of the theory. In
this context, orthogonality condition means that a
finite number of insertion of soft gluons generates a
null state (i.e., the resulting state is orthogonal to all
the asymptotic states of the theory without soft
external gluons). This is equivalent to the equation,

houtjQa1
softðp̂1ÞQa2

softðp̂2Þ…Qan
softðp̂nÞU†out

E SUin
E jini¼0;

ð3:17Þ

where U†out
E ; Uin

E are the dressing operator acting on
the out and in states, respectively.

(3) The S-matrix elements are nontrivial.
As a warm up, let us first consider the simplest ansatz for

the dressing operator which is motivated from the (infrared
finite) asymptotic states of QED and gravity.

UE¼PĒexp

�
g
Z

d½k�ρbcðkÞ
Z

E
d½q�ðNaμðq;kÞÞbcAa

μðqÞ
�
;

ð3:18Þ

where

d½k�≡ d3k
ð2πÞ32Ek

; d½q�≡ d3q
ð2πÞ32Eq

;

ρbcðkÞ≡ b†bðkÞbcðkÞ; Aa
μðqÞ≡ aa†μ ðqÞ − aaμðqÞ:

ð3:19Þ

Here k refers to the external particle momenta while q refers
to the gluon momenta. b†bðkÞ (bbðkÞ) is the creation
(annihilation) operator for the external particle with
momentum k and color b. aa†μ ðqÞ, aaμðqÞ are the creation
and annihilation operators associated to the gluon field
which can be written in the polarization basis as

aa†μ ðqÞ ¼
X
r¼�

ϵrμa
a†
r ðqÞ and aaμðqÞ ¼

X
r¼�

ϵr�μ aar ðqÞ:

ð3:20Þ

aar ðqÞ, ab†s ðq0Þ satisfy the normalization condition:

½aar ðqÞ; ab†s ðq0Þ� ¼ ð2EqÞð2πÞ3δrsδðq⃗ − q⃗0Þδab: ð3:21Þ

N aμðk; qÞ is an arbitrary matrix valued function in the color
space of external particles which has a pole in Eq. There is
an upper cutoff E for the dressing operator which ensures

that only low energy gluons are included in the dressing.
Unlike gravity, due to the non-Abelian nature we choose a
particular ordering of the operators Aa

μðqÞ in (3.18). Aa
μðqÞ’s

are ordered in such a way that the lowest energy operator
will act first on the external particles. P̄E denotes this
energy ordering.
The action of the dressing operator (3.18) on an external

single particle state with momentum k and color index b
can be written as

UEjðk; bÞi ¼ ðUEðkÞÞbcjðk; cÞi; ð3:22Þ

where ðUEðkÞÞbc is given by

ðUEðkÞÞbc ¼
�
P̄E exp

�
g
Z

E
d½q�ðN aμðq; kÞÞAa

μðqÞ
��

bc
:

ð3:23Þ

In a similar way, the action of the dressing operator on a
multiparticle state can be found to be

UEjðk1; b1Þ; ðk2; b2Þ…ðkn; bnÞi
¼ ðUEðk1ÞÞb1c1ðUEðk2ÞÞb2c2

…ðUEðknÞÞbncn jðk1; c1Þ; ðk2; c2Þ…ðkn; cnÞi: ð3:24Þ

Therefore, the dressing operator “factorizes” in the color
space of external particles. In the rest of the calculations, we
will suppress the color indices and will denote the dressing
operator simply by UEðkiÞ.
We have defined the dressed state (3.23) to have a

hierarchy in the softness of gluon momenta in such a way
that the nth order term in the dressing operator takes the
following form:

UEðkÞjgn ¼ gn
Z

E
d½q1�…

Z
Eqn−1

d½qn�N a1μ1ðq1; kÞ

…N anμnðqn; kÞAa1
μ1ðq1Þ…Aan

μnðqnÞ: ð3:25Þ

The factor (n!) in the denominator of the expansion of the
exponential cancels with the (n!) ways the energy ordering
can be taken into account. Having defined the dressed state,
let us start with assumption (1),

dhoutj½Qaðp̂Þ; S�jinid ¼ 0; ð3:26Þ

where Qaðp̂Þ ¼ Qa
softðp̂Þ þQa

hardðp̂Þ [which are already
defined in (3.13) and (3.14)]. dhoutj and jinid represents
the dressed outgoing and incoming states which are
given by

dhoutj ¼ houtjU†out
E and jinid ¼ Uin

E jini:
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Here,

U†out
E ¼

Y
ki¼out

U†out
E ðkiÞ and Uin

E ¼
Y
ki¼in

Uin
E ðkiÞ:

After writing the charge as a sum of the soft and hard parts,
we can write the Ward identity as

houtjU†out
E ½Qa

softðp̂Þ; S�Uin
E jini

þ houtjU†out
E ½Qa

hardðp̂Þ; S�Uin
E jini ¼ 0: ð3:27Þ

The first term can be expanded as

houtjQa
softðp̂ÞU†out

E SUin
E jini

þ houtj½U†out
E ;Qa

softðp̂Þ�SUin
E jini

− houtjU†out
E S½Qa

softðp̂Þ; Uin
E �jini: ð3:28Þ

Now by assumption (2) the first term in the above
expression vanishes. Hence, (3.28) becomes

houtj½U†out
E ;Qa

softðp̂Þ�SUin
E jini

− houtjU†out
E S½Qa

softðp̂Þ; Uin
E �jini: ð3:29Þ

The commutator involved in the above expression has
been evaluated in Appendix C, resulting in the following
expression:

houtjU†out
E ½Qa

softðp̂Þ; S�Uin
E jini

¼ g lim
Ep→0

EpðN a
outðp; fkigÞ −N a

inðp; fkigÞÞ

× houtjU†out
E SUin

E jini; ð3:30Þ

where

N a
outðp; fkigÞ ¼

X
i¼out

N aμðp; kiÞϵþμ ðp̂Þ and

N a
inðp; fkigÞ ¼

X
i¼in

N aμðp; kiÞϵþμ ðp̂Þ: ð3:31Þ

Now let us consider the second term in Eq. (3.27), which
can be expanded as

houtjQa
hardðp̂ÞU†out

E SUin
E jiniþhoutj½U†out

E ;Qa
hardðp̂Þ�SUin

E jini
−houtjU†out

E SUin
EQ

a
hardðp̂Þjini

−houtjU†out
E S½Qa

hardðp̂Þ;Uin
E �jini: ð3:32Þ

The second and fourth terms involve the action of Qa
hardðp̂Þ

on the dressing operator. This action is nontrivial as the
hard charge acts on a gluon of arbitrary energy by rotating
its color. However, as can be readily verified, the action of
Qa

hardðp̂Þ on the dressing will produce terms which are 1

order higher in the coupling g as compared to the rest of the
terms. Thus, if we are interested in determining the dressing
at leading order in g, these terms vanish. Without a
perturbative expansion in g, the action of the hard charge
on the dressing is nontrivial and we will come back to this
issue in Sec. IV B.
The remaining terms can be evaluated by the action of

the hard charge on the external state given by (3.14).
Therefore, we get

houtjU†out
E ½Qa

hardðp̂Þ; S�Uin
E jini

¼ −gSð0Þaðp̂; fkigÞhoutjU†out
E SUin

E jini: ð3:33Þ

Using (3.30) and (3.33), the Ward identity finally becomes

g½Sð0Þaðp̂; fkigÞ − lim
Ep→0

EpðN a
outðp; fkigÞ

−N a
inðp; fkigÞÞ�houtjU†out

E SUin
E jini ¼ 0: ð3:34Þ

Now we use the last assumption (3) and hence,

X
i¼out

Sð0Þaðp̂; kiÞ −
X
i¼in

Sð0Þaðp̂; kiÞ

− lim
Ep→0

EpðN a
outðp; fkigÞ −N a

inðp; fkigÞÞ ¼ 0; ð3:35Þ

which can be also written as

lim
Ep→0

Ep

�X
i¼out

N aμðp; kiÞ −
X
i¼in

N aμðp; kiÞ
�
ϵþμ ðp̂Þ

¼
X
i¼out

ki · ϵþðp̂Þ
ki · ðp=EpÞ

Ta
i −

X
i¼in

ki · ϵþðp̂Þ
ki · ðp=EpÞ

Ta
i :

As in gravity we can now associate,

lim
Ep→0

EpN aμðp; kiÞϵþμ ðp̂Þ ¼
ki · ϵþðp̂Þ
ki · ðp=EpÞ

Ta
i : ð3:36Þ

Hence

N aμðp; kiÞ ¼
kμi

ki · p
Ta
i : ð3:37Þ

Substituting the above expression in the dressing ansatz we
finally get the dressed state as

UEjðk; bÞi ¼ P̄E exp

�
g
Z

E
d½q� kμ

k · q
Ta
kA

a
μðqÞ

�
jðk; bÞi:

ð3:38Þ
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C. Orthogonality relations for single soft gluon insertion

We now ask if this dressed state (3.38) is such that a finite
number of soft gluon modes satisfy the orthogonality
relation (2). As we show below, this is not the case and
we have to modify the ansatz.
Let us first consider the orthogonality condition involv-

ing one soft gluon mode; i.e.,

houtjQa
softðp̂ÞU†out

E SUin
E jini ¼ 0: ð3:39Þ

Using the definition of soft charge, Eq. (3.39) can be
written as

lim
Ep→0

EphoutjaaþðEpp̂ÞU†
EoutSU

in
E jini ¼ 0: ð3:40Þ

The above expression receive contributions from two terms
as in gravity as shown in Fig. 2. One of them corresponds to
the case when the soft gluon mode is connected to the
external legs and the other corresponds to the case when it
is connected to the dressing operator. The amplitude with
the soft gluon mode connected to the external legs is given
by the leading single soft gluon theorem and it evaluates to

ðhoutjQa
softðp̂ÞU†out

E SUin
E jiniÞexternal

¼ gSð0Þaðp̂; fkigÞhoutjU†out
E SUin

E jini: ð3:41Þ

When the soft gluon mode is connected to the dressing
operator, the corresponding amplitude can be evaluated by
the contraction of the soft operator with the dressing
operator,

ðhoutjQa
softðp̂ÞU†out

E SUin
E jiniÞdressing

¼ houtj½Qa
softðp̂Þ; U†out

E �SUin
E jini

þ houtjU†out
E S½Qa

softðp̂Þ; Uin
E �jini: ð3:42Þ

By using the commutators given in Appendix C, the above
term evaluates to

ðhoutjQa
softðp̂ÞU†out

E SUin
E jiniÞdressing

¼ −gSð0Þaðp̂; fkigÞhoutjU†out
E SUin

E jini: ð3:43Þ

Summing (3.41) and (3.43) we finally get

g½Sð0Þaðp̂; fkigÞ − Sð0Þaðp̂; fkigÞ�houtjU†out
E SUin

E jini ¼ 0:

ð3:44Þ

We can see that the orthogonality relation involving one
soft gluon mode is satisfied.
However, it is rather easy to see that these states do not

satisfy the orthogonality condition when more than one soft
gluon insertion is present. This is simply because such an
orthogonality would imply that no consecutive soft emis-
sions of gluons (that is, emission of one soft gluon from
another soft gluon) can take place. In the next section we
start with a rather general ansatz and show that the
assumptions (1), (2), and (3) will lead to asymptotic states
of the theory in which soft gluon correlations are taken into
account.

IV. GENERALIZED DRESSING OPERATOR

As explained in the previous section, the dressing ansatz
we started with does not include gluon-gluon correlations
and hence cannot satisfy the orthogonality condition
involving multiple soft gluon insertions. In this section
we modify the ansatz so as to take this into account.
The most natural modification of the ansatz of the

previous section is given by

UEjðk; bÞi ¼ ðUEðkÞÞbcjðk; cÞi; ð4:1Þ

where

ðUEðkÞÞbc ¼
�
P̄E exp

�
g
Z

E
d½q1�N a1μ1

ð1Þ ðq1; kÞAa1
μ1ðq1Þ

þ g2
Z

E
d½q1�

Z
Eq1

d½q2�N a2μ2;a1μ1
ð2Þ ðq1; q2; kÞAa1

μ1ðq1ÞAa2
μ2ðq2Þ

�

þ g3
Z

E
d½q1�

Z
Eq1

d½q2�
Z

Eq2
d½q3�N a3μ3;a2μ2;a1μ1

ð3Þ ðq1; q2; q3; kÞAa1
μ1ðq1ÞAa2

μ2ðq2ÞAa3
μ3ðq3Þ

�
þ � � �

�
bc
; ð4:2Þ

FIG. 2. The figure demonstrates the different ways to connect a
soft gluon mode in the Feynman diagram. The first diagram
involves a soft gluon connected to the external leg while the
second involves a soft gluon connected to the dressing operator.
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where N a1μ1
ð1Þ ðq1;kÞ;N a2μ2;a1μ1

ð2Þ ðq1;q2;kÞ;N a3μ3;a2μ2;a1μ1
ð3Þ ðq1;

q2;q3;kÞ… are all matrix valued functions in the color
space of the external state. The rest of the notations follow
from the initial ansatz (3.19).
The first term in themodified dressed state corresponds to

the initial dressing we had started with. In order to include
the gluon-gluon correlationswe consider an infinite series of
terms (series in coupling constant g) in the exponent.
As indicated earlier, we would like to determine each

term in the exponent [at OðgnÞ] using the assumptions (1),
(2), and (3). In fact, in order to determine the term in the
dressing at order gn we only require the following.12

½Qa1ðp̂1Þ; ½Qa2ðp̂2Þ;…½Qanðp̂nÞ; S�…� ¼ 0 at OðgnÞ;
houtjQa1

softðp̂1Þ…Qan
softðp̂1ÞU†

ESUEjini ¼ 0 at OðgnÞ:
ð4:3Þ

Let us start with theWard identity involving one asymptotic
charge and demand that our states are such that the identity
is satisfied at OðgÞ:

dhoutj½Qaðp̂Þ; S�jinid ¼ 0; ð4:4Þ

where the out and in states are now dressed by the modified
dressing operator. We repeat the same procedure we had
done with the earlier ansatz by writing the charge as the
sum of the soft and hard parts and separately evaluating
these terms.
The soft part can be expanded as

houtjU†out
E ½Qa

softðp̂Þ; S�Uin
E jini

¼ houtjQa
softðp̂ÞU†out

E SUin
E jini

þ houtj½U†out
E ;Qa

softðp̂Þ�SUin
E jini

− houtjU†out
E S½Qa

softðp̂Þ; Uin
E �jini: ð4:5Þ

The commutators involved in the term can be evaluated
using the results in Appendix C [(C5) and (C6)] and the
above expression evaluates to

houtjQa
softðp̂ÞU†out

E SUin
E jini þ g lim

Ep→0
EpðN a

ð1Þoutðp; fkigÞ

−N a
ð1Þinðp; fkigÞÞhoutjU†out

E SUin
E jini þOðg2Þ; ð4:6Þ

where N a
ð1Þoutðp; fkigÞ;N a

ð1Þinðp; fkigÞ is defined as

N a
ð1Þoutðp; fkigÞ ¼

X
i¼out

N aμ
ð1Þðp; kiÞϵþμ ðp̂Þ and

N a
ð1Þinðp; fkigÞ ¼

X
i¼in

N aμ
ð1Þðp; kiÞϵþμ ðp̂Þ: ð4:7Þ

The hard part of Eq. (4.4) evaluates to

houtjU†out
E ½Qa

hardðp̂Þ; S�Uin
E jini

¼ −gSð0Þaðp̂; fkigÞhoutjU†out
E SUin

E jini: ð4:8Þ

In deriving the above equation, we have used the fact that at
OðgÞ the action ofQa

hardðp̂Þ on the dressing operator is zero.
Therefore the Ward identity finally becomes

g½−Sð0Þaðp̂; fkigÞ þ lim
Ep→0

EpðN a
ð1Þoutðp; fkigÞ

−N a
ð1Þinðp; fkigÞÞ�houtjU†out

E SUin
E jini

þ houtjQa
softðp̂ÞU†out

E SUin
E jini þOðg2Þ ¼ 0: ð4:9Þ

Now if we use our assumption that the dressed states are
such that the orthogonality condition for one soft gluon
mode holds at OðgÞ and the assumption (3) then we finally
get the conservation law

Sð0Þaðp̂; fkigÞ − lim
Ep→0

EpðN a
ð1Þoutðp; fkigÞ

−N a
ð1Þinðp; fkigÞ ¼ 0; ð4:10Þ

which is same as the initial conservation law (3.34) we got
with the simplest ansatz we started with. Hence, from this
conservation law we can write

N aμ
ð1Þðp; kiÞ ¼

kμi
ki · p

Ta
i : ð4:11Þ

A. Nested Ward identity

Having determined the first term in the dressing ansatz
using the assumptions, we now use the same to extract the
second order term in the ansatz. In order to proceed let us
consider the Ward identity involving two asymptotic
charges:

½Qaðp̂1Þ; ½Qbðp̂2Þ; S�� ¼ 0: ð4:12Þ

We now use this Ward identity at Oðg2Þ to determine
N a2μ2;a1μ1

ð2Þ ðq1; q2; kÞ:

houtjU†out
E ½Qaðp̂1Þ; ½Qbðp̂2Þ; S��Uin

E jini ¼ 0: ð4:13Þ

The charges can be written as the sum of the soft and hard
parts and the above expression becomes

houtjU†out
E ½Qa

softðp̂1Þ þQa
hardðp̂1Þ; ½Qb

softðp̂2Þ
þQb

hardðp̂2Þ; S��Uin
E jini ¼ 0; ð4:14Þ

where the soft and hard charges are defined in (3.13) and
(3.14):

12We are assuming a particular ordering in energy associated to
the soft charge Ep1

> Ep2
> …Epn

.
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Qa
softðp̂1Þ ¼ lim

Ep1
→0
Ep1

aaþðEp1
p̂1Þ; ð4:15Þ

Qa
hardðp̂1Þjðk; bÞi ¼ −gðSð0Þaðp̂1; kÞÞbcjðk; cÞi; ð4:16Þ

Qb
softðp̂2Þ ¼ lim

Ep2
→0
Ep2

abþðEp2
p̂2Þ; ð4:17Þ

Qb
hardðp̂2Þjðk; cÞi ¼ −gðSð0Þbðp̂2; kÞÞcdjðk; dÞi: ð4:18Þ

Using the action of charges, the expression (4.14) finally
evaluates to [the details are given in Appendix D]

g2ð lim
Ep2

→0
Ep2

lim
Ep1

→0
Ep1

N aμ;bν
ð2Þ ðp1; p2; fkigÞϵþμ ðp̂1Þϵþν ðp̂2Þ

− Sð0Þbðp̂2;p1ÞÞacSð0Þcðp̂1; fkigÞÞhoutjU†out
E SUin

E jini
þ houtjQa

softðp̂1ÞQb
softðp̂2ÞU†out

E SUin
E jini þOðg3Þ ¼ 0:

ð4:19Þ

Now we can use the assumption (2) and demand that the
orthogonality involving two soft gluon modes holds at
Oðg2Þ; then we get the following conservation law:

lim
Ep2

→0
Ep2

lim
Ep1

→0
Ep1

N aμ;bν
ð2Þ ðp1; p2; fkigÞϵþμ ðp̂1Þϵþν ðp̂2Þ

¼ Sð0Þbðp̂2;p1ÞÞacSð0Þcðp̂1; fkigÞ: ð4:20Þ

It is important to note that the Sð0Þbðp̂2;p1ÞÞac represents
the soft factor associated to one soft gluon being emitted
from another soft gluon. Therefore, the matrix involved in
the soft factor will be in the adjoint representation. Using
these we can finally write

N aμ;bν
ð2Þ ðp1; p2; kiÞ ¼

pμ
2

p1:p2

kνi
ki:p1

ifbacTc
ki
: ð4:21Þ

This procedure can be done recursively to extract the nth
order term in the exponent of the modified dressed state.
For this, one needs to evaluate the nested Ward identity
involving n asymptotic charges along with the orthogon-
ality condition for n soft gluons. It turns out that
the N anμn;…;a1μ1

ðnÞ ðq1; q2;…; qn; kÞ-term will be picked

by the commutators involving n soft charges with the
dressing operator, i.e., ½Qa1

softðp̂1Þ;½Qa2
softðp̂2Þ;½…½Qan

softðp̂nÞ;
UE�…� and along with the commutators of the hard
operator with the soft operator (D7) one is able to determine
N anμn;…;a1μ1

ðnÞ ðq1; q2;…; qn; kÞ. For exampleN a3μ3;a2μ2;a1μ1
ð3Þ ×

ðq1; q2; q3; kÞ can be found to be

N a3μ3;a2μ2;a1μ1
ð3Þ ðq1; q2; q3; kÞ

¼ kμ1

q1 · k
·

qμ21
q2 · q1

·
qμ31

q3 · q1
ðifa1a3a4Þðifa4a2a5ÞTa5

k

þ kμ1

q1 · k
·

qμ21
q2 · q1

·
qμ32

q3 · q2
ðifa2a3a4Þðifa1a4a5ÞTa5

k :

ð4:22Þ

Note that from the Ward identities in Eq. (4.3), only the
pole piece of each of the coefficients N anμn;…;a1μ1

ðnÞ ðq1;
q2;…; qn; kÞ of the generalized dressing operator can be
determined. Also, the orthogonality condition in Eq. (4.3)
can be verified using the similar procedure in Sec. II E. One
needs to use the consecutive multisoft gluon theorems in
order to do so.
It is interesting to note that the ansatz we have started

with has already been identified by Catani et al. in [8]. They
showed that such states naturally emerge from the Faddeev-
Kulish approach of asymptotic dynamics and the S matrix
between such states are shown to be infrared finite at the
leading order. The properties of such states have been
extensively studied in [8,22–27].

B. Some thoughts on the color rotation
of dressing operator

Throughout this paper, we faced a thorny issue of
evaluating the action of Qa

hardðp̂Þ on the dressing operator.
For the dressed states in gravity, the action of Qa

hardðp̂Þ on
the dressing exponent did not modify the infrared structure
of the dressing and in this sense its effect on the dressed
states (as far as evaluating S-matrix elements are con-
cerned) could be ignored. In QCD, the issue is far more
subtle as (a) Qa

hardðp̂Þ on the dressing exponent rotates
colors of the constituent soft gluons and (b) the “rotated
dressing” obtained by the action of the hard charge has the
same infrared singularity as the original dressing.
In our analysis, we bypassed this issue by considering

Ward identities recursively in the coupling g due to which
the action of the hard charge on the dressing never appeared
in our analysis. However, we will now like to speculate that
precisely due to points (a) and (b) mentioned above, the
hard charge action on the dressing is trivial as far as its
contribution to S-matrix elements is concerned.
For simplicity, we consider the (finite) action of the hard

charge as opposed to its infinitesimal action. Namely, let us
introduce a (formal) group elementUhðgϵÞ ¼ expðiQh½ϵ�Þ.13
Then,

UhðgϵÞUEUhðg−1ϵ Þ ¼ Ugϵ
E ; ð4:23Þ

13Recall that this group is infinite dimensional and hence our
definition is rather formal, but suffices for the purposes of this
section.
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where in the new dressing each soft gluon is rotated in the
color space by gϵ. However, due to (a) and (b) and using the
analysis of [19], we find it plausible that a dressed state
obtained fromUgϵ

E will not be in the asymptotic Hilbert space
obtained by using the original dressing operator UE. Stated
differently,

houtjU†
ESU

gϵ
E jini ¼ 0: ð4:24Þ

This is because the exponential suppression due to
virtual infrared soft factors is not canceled by the dressing
as the incoming and outgoing states are dressed by
inequivalent (color rotated) dressings. A detailed analysis
of these speculations remain outside the scope of the paper.

V. CONCLUSIONS

In this paper, we tried to build upon the work of [2–5] in
the context of the perturbative QCD S matrix. Our goal was
to find out the extent to which (leading) asymptotic
symmetries of QCD can be used to determine the asymp-
totic states of the theory. In order to do this, we revisited
the analysis in gravity [4] and extracted out the minimal set
of conditions under which supertranslation symmetries
implied the existence of dressed states in gravity. We used
these ideas to derive the structure of dressed states in QCD
from asymptotic Ward identities. Under certain technical
conditions, our analysis led us to the conclusion that the
vacuum structure of QCD, which is consistent with asymp-
totic conservation laws, is equivalent to that derived by
Catani et al. in [8]. We would once again like to emphasize
that our analysis only relied on certain orthogonality
conditions (defined in Sec. IV) and Ward identities.
Nowhere did we make use of multiple soft gluon theorems.
In addition to the issue of understanding the action of the

hard charge on the dressing operator, many important
questions remain open. As we reviewed for perturbative
gravity, if we do not start with an ansatz where the dressing
operator involves contributions of low frequency modes (as
opposed to soft modes which are precisely the zero
frequency Goldstone modes) then the Ward identity leads
us to an alternative dressing operator where the exponent
only contains soft modes. This point was discussed in detail
in QED [2,5] where it was shown how such an alternative
dressing is related to the well-known Faddeev-Kulish
dressing. It will be interesting to start with such an ansatz
in QCD where dressing only contains soft (zero frequency)
gluons and derives the dressing operator. The relationship
of such dressings with the generalized coherent states of [8]
may shed more light on the relationship between the
infrared structure of QCD and asymptotic symmetries. In
this work, we have restricted ourselves to charges at tree
level. It would be also interesting to include loop-level
corrections to the hard charge and its implications on the
dressing operator. We would like to address these issues in
a future work.
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Note added.—While this manuscript was being prepared, a
paper [28] appeared which also investigates the relationship
between dressed states in QCD and asymptotic symmetries.
In that paper, starting from the generalized coherent states
of Catani et al., the authors analyze the quantum correction
to the asymptotic charges as a result of such a dressing. Our
work is rather complementary in the sense that we ask if
conservation laws associated to asymptotic symmetries can
be used to derive the nature of dressed states when aided by
certain well-motivated assumptions. In this sense we
believe that the two papers complement each other.

APPENDIX A: DRESSED STATES FROM SOFT
THEOREM IN GRAVITY

In this Appendix we will use the orthogonality condition
involving one soft graviton mode as a constraint for
determining the dressing operator. In other words, we will
the study the implications of this orthogonality condition
on the ansatz eRN .
We start with the orthogonality condition

houtjQsoftðp̂Þe−R
ðoutÞ
N SeR

ðinÞ
N jini ¼ 0; ðA1Þ

where eRN is defined as (2.23).
Note that the lhs of this expression corresponds to two

terms. One of the contributions comes from the soft
graviton connected to the external legs and the other comes
from the soft mode connected to the dressing. The soft
graviton connected to the external legs can be computed
through the leading single soft theorem in the undressed
states and the other can be computed through contraction of
the soft mode with the dressing operator eRN.
The external leg contribution can be computed through

the leading single soft theorem in the undressed states (2.8)
as

ðhoutjQsoftðp̂Þe−R
ðoutÞ
N SeR

ðinÞ
N jiniÞexternal

¼ κ

2
Sð0Þðp̂; fkigÞhoutje−R

ðoutÞ
N SeR

ðinÞ
N jini; ðA2Þ
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where Sð0Þðp̂; fkigÞ is defined in(2.10). The contribution
from the dressing can be evaluated as the contraction of the
Qsoftðp̂Þ with the dressing operator, i.e.,

ðhoutjQsoftðp̂Þe−R
ðoutÞ
N SeR

ðinÞ
N jiniÞdressing

¼ houtj½Qsoftðp̂Þ; e−R
ðoutÞ
N �SeRðinÞ

N jini
þ houtje−RðoutÞ

N S½Qsoftðp̂Þ; eR
ðinÞ
N �jini;

¼ −κ lim
Ep→0

EpðNoutðpÞ − NinðpÞÞhoutje−R
ðoutÞ
N SeR

ðinÞ
N jini:

ðA3Þ
In going from the first line to the second we used the
commutation relations (2.41). Here Nout and Nin is defined
in (2.42) therefore the total contribution becomes the sum
of (A2) and (A3). Hence,

houtjQsoftðp̂Þe−R
ðoutÞ
N SeR

ðinÞ
N jini

¼ κ

�
− lim
Ep→0

EpðNoutðpÞ − NinðpÞÞ þ
1

2
Sð0Þðp̂; fkigÞ

�

× houtje−RðoutÞ
N SeR

ðinÞ
N jini ¼ 0: ðA4Þ

If we use the assumption (3) we get

lim
Ep→0

EpðNoutðpÞ − NoutðpÞÞ ¼
1

2
Sð0Þðp̂; fkigÞ; ðA5Þ

which is the same constraint as (2.49).
To conclude, in perturbative gravity we can equivalently

use the single orthogonality relation as well as single soft
graviton theorem in the undressed states to constrain the
dressing.

APPENDIX B: ACTION OF HARD CHARGE ON
DRESSED STATES

In this section we give an argument for our assumption
(4). We are interested in evaluating the following terms:

− houtj½e−RðoutÞ
N ; Qhardðp̂Þ�SeR

ðinÞ
N jini

þ houtje−RðoutÞ
N S½Qhardðp̂Þ; eR

ðinÞ
N �jini: ðB1Þ

The commutator in the first term of the above expression
can be written as

½e−RðoutÞ
N ; Qhardðp̂Þ� ¼ −Ae−R

ðoutÞ
N ; ðB2Þ

where

A ¼
�
½RðoutÞ

N ;Qhardðp̂Þ� −
½RðoutÞ

N ; ½RðoutÞ
N ;Qhardðp̂Þ��
2!

þ…

�
:

ðB3Þ

Using the action of hard charge the first and second term in
the above expression can be evaluated to

½RðoutÞ
N ;Qhardðp̂Þ� ¼ −

Z
Λ
d½q�Sð0Þðp̂; qÞNμνðq; kiÞða†μνðqÞ

þ aμνðqÞÞ; ðB4Þ
½RðoutÞ

N ; ½RðoutÞ
N ;Qhardðp̂Þ��

¼
Z

Λ
d½q�Sð0Þðp̂; qÞNμνðq; kiÞNρσðq; kiÞIμνρσ; ðB5Þ

where

Iμνρσ ≡ ημρηνσ þ ημσηνρ − ημνηρσ; ðB6Þ
and Sð0Þðp̂; qÞ is already defined in (2.9). It is not difficult to
see that both of the integrals in the above expressions are of
the order OðΛÞ where Λ is the upper cutoff of the dressing
operator. If the cutoff is assumed to be significantly small
so that only low energy gravitons constitute the dressing
then these integrals are vanishing. Hence,

½e−RðoutÞ
N ; Qhardðp̂Þ� ¼ OðΛÞ: ðB7Þ

A similar analysis also holds for ½Qhardðp̂Þ; eR
ðinÞ
N �.

APPENDIX C: ACTION OF SOFT CHARGE ON
THE DRESSING OPERATOR

In this section we will derive the commutation relations
of the soft gluon chargeQa

softðp̂Þwith the dressing operator.
Let us first consider the dressing operator:

UEðkÞ ¼ P̄E exp

�
g
Z

E
d½q�N aμðq; kÞAa

μðqÞ
�
; ðC1Þ

where Aa
μðqÞ ¼ aa†μ ðqÞ − aaμðqÞ and d½q� ¼ d3q

ð2πÞ3ð2EqÞ.

As explained in Sec. III B, due to the non-Abelian nature
the operators in (C1) are strictly ordered in energy. The
gluon operator with the lowest energy will act first. The nth
order expansion of the dressing operator can be written as

UEðkÞjgn ¼ gn
Z

E
d½q1�…

Z
Eqn−1

d½qn�N a1μ1ðq1; kÞ

…N anμnðqn; kÞAa1
μ1ðq1Þ…Aan

μnðqnÞ: ðC2Þ
Let us consider the commutator of the soft operator

Qsoft
a ðp̂Þ [defined as in (3.13)] on the nth order term in the

dressing operator; i.e., we consider

½Qa
softðp̂Þ; gn

Z
E
d½q1�…

Z
Eqn−1

d½qn�N a1μ1ðq1; kÞ

…N anμnðqn; kÞAa1
μ1ðq1Þ…Aan

μnðqnÞ�: ðC3Þ
Since the integral is ordered in energy with the lowest
energy gluon operator on the right, the soft operator will act
only on the rightmost operator. Hence,
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½Qa
softðp̂Þ; UEðkÞjgn � ¼ gUEðkÞjgn−1 limEp→0

EpN aμðp; kÞϵþμ ðp̂Þ:

ðC4Þ

It is now easy to see that

½Qa
softðp̂Þ; UEðkÞ� ¼ gUEðkÞ lim

Ep→0
EpN aμðp; kÞϵþμ ðp̂Þ: ðC5Þ

Similarly one can also see that

½Qa
softðp̂Þ; U†

EðkÞ� ¼ −g lim
Ep→0

EpN aμðp; kÞϵþμ ðpÞU†
EðkÞ:

ðC6Þ

If we now consider the modified dressing operator defined
as

UEðkÞ ¼ P̄E exp

�
g
Z

E
d½q1�N a1μ1

ð1Þ ðq1; kÞAa1
μ1ðq1Þ

þ g2
Z

E
d½q1�

Z
Eq1

d½q2�N a2μ2;a1μ1
ð2Þ

× ðq1; q2; kÞAa1
μ1ðq1ÞAa2

μ2ðq2Þ þ…

�
: ðC7Þ

One could use the same analysis for the commutation
relation of the soft operator with the modified dressing
operator and verify that

½Qa
softðp̂Þ; UEðkÞ� ¼ gUEðkÞ lim

Ep→0
EpN aμðp; kÞϵþμ ðp̂Þ

þOðg2Þ þ…: ðC8Þ

Using this result we can also find the nested commutator.

½Qa
softðp̂1Þ; ½Qb

softðp̂2Þ; UEðkÞ��
¼ g2UEðkÞ lim

Ep2
→0
Ep2

lim
Ep1

→0
Ep1

N aμðp1; kÞN bν

× ðp2; kÞϵþμ ðp̂1Þϵþν ðp̂2Þ
þ g2UEðkÞ lim

Ep2
→0
Ep2

lim
Ep1

→0
Ep1

N aμ;bν
ð2Þ

× ðp1; p2; kÞϵþμ ðp̂1Þϵþν ðp̂2Þ þOðg3Þ: ðC9Þ

APPENDIX D: NESTED WARD IDENTITY WITH
DRESSED STATES

In this section we evaluate (4.14) using the action of the
charges. We start with the lhs of (4.14)

houtjU†out
E ½Qa

softðp̂1Þ þQa
hardðp̂1Þ; ½Qb

softðp̂2Þ þQb
hardðp̂2Þ; S��Uin

E jini; ðD1Þ

which can be written as

houtjU†out
E ½Qa

softðp̂1Þ; ½Qb
softðp̂2Þ þQb

hardðp̂2Þ; S��Uin
E jini þ houtjU†out

E ½Qa
hardðp̂1Þ; ½Qb

softðp̂2Þ þQb
hardðp̂2Þ; S��Uin

E jini: ðD2Þ

Before proceeding with the computation, we note that the action ofQa
hardðp̂Þ on the dressing operator will produce terms of

Oðg2Þ. This, together with the action of Qa
softðp̂Þ on the external states or the dressing operator, will contribute at Oðg3Þ.

Therefore, the terms involving the action of Qa
hardðp̂Þ on U†out

E or Uin
E in (D2) will not contribute at Oðg2Þ.

Let us consider the second term in the above equation first. Since the hard charge will only act on the external states, this
becomes

houtjU†out
E ½Qa

hardðp̂1Þ; ½Qb
softðp̂2Þ þQb

hardðp̂2Þ; S��Uin
E jini ¼ gSð0Þaðp̂1; fkigÞhoutjU†out

E ½Qbðp̂2Þ; S�Uin
E jini;¼ 0: ðD3Þ

In going from the first line to the second we used the Ward identity involving one asymptotic charge. Therefore in (D2) we
are left with evaluating

houtjU†out
E ½Qa

softðp̂1Þ; ½Qb
softðp̂2Þ þQb

hardðp̂2Þ; S��Uin
E jini

¼ houtjU†out
E ½Qa

softðp̂1Þ; ½Qb
hardðp̂2Þ; S��Uin

E jini þ houtjU†out
E ½Qa

softðp̂1Þ; ½Qb
softðp̂2Þ; S��Uin

E jini: ðD4Þ

The first term in the above expression can be expanded as

houtjQb
hardðp̂2Þ½U†out

E ;Qa
softðp̂1Þ�SUin

E jini − houtj½U†out
E ;Qa

softðp̂1Þ�SUin
EQ

b
hardðp̂2Þjini

− houtjQb
hardðp̂2ÞU†out

E S½Qa
softðp̂1Þ; Uin

E �jini þ houtjU†out
E S½Qa

softðp̂1Þ; Uin
E �Qb

hardðp̂2Þjini
þ houtjU†out

E ½Qa
softðp̂1Þ; Qb

hardðp̂2Þ�SUin
E jini þ houtjU†out

E S½Qb
hardðp̂2Þ; Qa

softðp̂1Þ�Uin
E jini; ðD5Þ

which can be evaluated to
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houtjU†out
E ½Qa

softðp̂1Þ; ½Qb
hardðp̂2Þ; S��Uin

E jini
¼ −ðg2 lim

Ep1
→0
Ep1

N aμ
ð1Þðp1; fkjgÞϵþμ ðp1ÞSð0Þbðp̂2; fkigÞ

þ lim
Ep2

→0
Ep2

ðSð0Þbðp̂2;p1ÞÞacN cμ
ð1Þðp1; fkigÞϵþμ ðp2ÞÞhoutjU†out

E SUin
E jini þOðg3Þ;

¼ −g2ðSð0Þaðp̂1; fkjgÞSð0Þbðp̂2; fkigÞ
þ ðSð0Þbðp̂2;p1ÞÞacSð0Þcðp̂1; fkigÞÞhoutjU†out

E SUin
E jini þOðg3Þ: ðD6Þ

For evaluating the last two terms in the expression (D5) we have used the commutator

½Qa
softðp̂1Þ; Qb

hardðp̂2Þ� ¼ −gðSð0Þbðp̂2;p1ÞÞacQc
softðp̂1Þ: ðD7Þ

(D7) can be easily derived using the definition of Qa
softðp̂1Þ and Qb

hardðp̂2Þ in Eqs. (3.13) and (3.14)14

½Qa
softðp̂1Þ; Qb

hardðp̂2Þ� ¼ ½ lim
Ep→0

Ep1
aaþðEp1

p̂1Þ; Qb
hardðp̂2Þ�

¼ lim
Ep→0

Ep1
½aaþðEp1

p̂1Þ; Qb
hardðp̂2Þ�

¼ − lim
Ep1

→0
Ep1

gðSð0Þbðp̂2; p1ÞÞacacþðEp1
p̂1Þ

¼ −gðSð0Þbðp̂2; p1ÞÞacQc
softðp̂1Þ: ðD8Þ

Similarly using the orthogonality condition involving one soft gluon mode, the second term in (D4) reduces to

houtj½½U†out
E ;Qa

softðp̂1Þ�; Qb
softðp̂2Þ�SUin

E jini þ houtjU†out
E S½Qb

softðp̂2Þ; ½Qa
softðp̂1Þ; Uin

E ��jini
− houtj½U†out

E ;Qa
softðp̂1Þ�S½Qb

softðp̂2Þ; Uin
E �jini − houtj½U†out

E ;Qb
softðp̂2Þ�S½Qa

softðp̂1Þ; Uin
E �jini

þ houtjQa
softðp̂1ÞQb

softðp̂2ÞU†out
E SUin

E jini: ðD9Þ

The commutators in the given expression have already been derived in Appendix C [(C8) and (C9)]. Hence, the above
expression can be evaluated to be

g2 lim
Ep2

→0
Ep2

lim
Ep1

→0
Ep1

ðN aμ
ð1Þðp1; fkjgÞN bν

ð1Þðp2; fkigÞ þN aμ;bν
ð2Þ ðp1; p2; fkigÞÞϵþμ ðp1Þϵþν ðp2Þ

× houtjU†out
E SUin

E jini þ houtjQa
softðp̂1ÞQb

softðp̂2ÞU†out
E SUin

E jini
¼ g2ðSð0Þaðp̂1; fkjgÞSð0Þbðp̂2; fkigÞ þ lim

Ep2
→0
Ep2

lim
Ep1

→0
Ep1

N aμ;bν
ð2Þ ðp1; p2; fkigÞϵþμ ðp̂1Þϵþν ðp̂2ÞÞ

× houtjU†out
E SUin

E jini þ houtjQa
softðp̂1ÞQb

softðp̂2ÞU†out
E SUin

E jini þOðg3Þ; ðD10Þ

where

N aμ;bν
ð2Þ ðp1; p2; fkigÞ ¼

X
i¼out

N aμ;bν
ð2Þ ðp1; p2; kiÞ −

X
i¼in

N aμ;bν
ð2Þ ðp1; p2; kiÞ: ðD11Þ

Therefore, summing the contributions (D6) and (D10) we finally get (D1) as

g2ð lim
Ep2

→0
Ep2

lim
Ep1

→0
Ep1

N aμ;bν
ð2Þ ðp1; p2; fkigÞϵþμ ðp̂1Þϵþν ðp̂2Þ − Sð0Þbðp̂2;p1ÞÞacSð0Þcðp̂1; fkigÞÞ

× houtjU†out
E SUin

E jini þ houtjQa
softðp̂1ÞQb

softðp̂2ÞU†out
E SUin

E jini þOðg3Þ: ðD12Þ

14It is important to note that this is valid only at tree level. The hard charge receives loop corrections starting at Oðg2Þ and therefore
(D7) receives loop corrections. But these will not affect our analysis since such contributions to (D1) will be at Oðg3Þ and higher.
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