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We develop a method for obtaining exact time-dependent solutions in Jackiw-Teitelboim gravity
coupled to nonconformal matter and study consequences for NAdS2 holography. We study holographic
quenches in which we find that the black hole mass increases. A semiholographic model composed of an
infrared NAdS2 holographic sector representing the mutual strong interactions of trapped impurities
confined at a spatial point is proposed. The holographic sector couples to the position of a displaced
impurity acting as a self-consistent boundary source. This effective 0þ 1-dimensional description has a
total conserved energy. Irrespective of the initial velocity of the particle, the black hole mass initially
increases, but after the horizon runs away to infinity in the physical patch, the mass vanishes in the long run.
The total energy is completely transferred to the kinetic energy or the self-consistent confining potential
energy of the impurity. For initial velocities below a critical value determined by the mutual coupling, the
black hole mass changes sign in finite time. Above this critical velocity, the initial condition of the particle
can be retrieved from the SLð2; RÞ invariant exponent that governs the exponential growth of the bulk
gravitational SLð2; RÞ charges at late time.
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I. INTRODUCTION

Nearly AdS2 holography [1–4] provides a rich play-
ground for exploring many fundamental questions. It is a
template for understanding the inner working of the holo-
graphic correspondence given that some possible dual
systems, such as the infrared regime of the Sachdev-Ye-
Kitaev (SYK) model, can also be exactly solved in the large
N limit [5,6] (see also [7–9]). Other significant applications
are the deeper understanding of real-time holography that
can shed new light on quantum many-body systems
(especially those which are maximally chaotic), and also
new insights on the black hole information loss paradox via
a solvable toy model of real-time black hole evaporation.

For such applications, the setup of nearly AdS2 holography
has to include additional bulk fields which provide propa-
gating modes in the 2D gravity theory. In this work, we
explore such setups in the classical regime in real time by
generating exact time-dependent solutions.
Since nearly AdS2 holographic systems have an intrinsic

cutoff scale, it is well motivated to study a semiholographic
setup where the holographic degrees of freedom are coupled
to a dynamical source at the boundary ofAdS2 depictingUV
dynamics. The mutual coupling must be such that the total
energy is conserved. Semiholographic constructions of this
type have been explored in the context of non-Fermi liquids
[10–12] and also the quark-gluon plasma [13–16].
The semiholographic approach is suited for scenarios

where a holographic description can be valid only for some
strongly interacting infrared degrees of freedom of the
system while some degrees of freedom are perturbative. It
can be relevant for understanding the formation of quark-
gluon plasma from perturbative processes [13]. A funda-
mental derivation of semiholography in the context of QCD
has been discussed in [17]. From the point of view of
phenomenological applications, it also gives us a flexible
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way to apply holography to laboratory setups where the
ultraviolet complete description is not relevant [10,18]. It is
from this perspective that we apply semiholographic
approach for a nearly AdS2 holographic system coupled
to a dynamical source at the boundary. We apply this to
study confined strongly interacting impurities.
In our model, the NAdS2 holographic sector depicts

the dual infrared dynamics of many-body interactions
localized at the origin where the impurities are confined.
The motion in space of an impurity can be thought of as
a deformation of this 0þ 1-dimensional NAdS2 holo-
graphic theory with the time-dependent position of the
impurity representing a self-consistent external source of
an irrelevant operator with a dynamically generated
expectation value. The displaced impurity in turn follows
Newtonian law of motion under the influence of the
force generated by its coupling to the bulk field—
he dual irrelevant holographic operator now generates
the tension of the confining force. Since the NAdS2
holographic sector is an infrared conformal theory, it
should be deformed only via an irrelevant operator. The
semiholographic setup then models the dynamics at
intermediate energy scales phenomenologically such that
the total energy of the system is always conserved. We
study the exact time-dependent solutions of the full
system in this model.
The gravitational description for nearly AdS2 holography

is the two-dimensional Jackiw-Teitelboim (JT) gravity with
nonconformal matter [19–21]. The peculiarity of the JT
model is that the metric is always locally AdS2. This is
ensured by the presence of a nonpropagating dilaton field,
which does not couple to matter. Its equation of motion
enforces the Ricci scalar to be a constant, acting like a
Lagrange multiplier. Nevertheless, the dilaton’s boundary
condition even in the absence of matter generates nontrivial
states in the dual theory, which can be characterized by time
reparametrizations just like in the SYK model. This JT
gravity coupled to matter cannot be lifted to a higher
dimensional setup, because if it were possible, then the
dilaton which maps to the size of the extra compactified
space should have coupled to matter (see [22–25] and also
[26] for instance).
The presence of a second law of thermodynamics in JT

gravity coupled to matter turns out to be a subtle issue
[27,28]. The formation of a horizon alone does not
guarantee a second law as in the case of higher dimensional
setups. Under the right circumstances, the value of the
dilaton on the horizon grows monotonically and essentially
coincides with the thermal entropy when the system
thermalizes. However, we will find that in the semiholo-
graphic setup the runaway behavior of the horizon and
entanglement of the particle with the coarse-grained macro-
scopic variables of the holographic system leads to a novel
scenario where the black hole mass can vanish without any
contradiction with the second law.

We find remarkably that although in pure holographic
setups the mass of a preexisting black hole increases when
subjected to a quench at the boundary, in our semiholo-
graphic model the preexisting black hole is always com-
pletely depleted of its mass at long time. This behavior is
the reverse of what we find in higher dimensional semi-
holographic setups in the presence of scalar mutual
couplings.1

The plan of the paper is as follows. In Sec. II, we discuss
JT gravity coupled to matter and its holographic interpre-
tation. To be self-contained, we present results previously
obtained by other authors along with some new ones. In
Sec. III, we present our method for obtaining exact time-
dependent solutions in JT gravity and study quenches in the
pure holographic setup. In Sec. IV, we present the semi-
holographic model for impurities and study its solutions. In
Sec. V, we conclude with a summary of results, and discuss
some open questions.

II. THE SETUP

A. Bulk equations of motion

The Jackiw-Teitelboim model [19–21] provides the
simplest example of a two-dimensional pure gravity theory
in which nonvacuum states with finite energy exist. To
produce time-dependent solutions though, we need to have
either time-dependent boundary conditions or couple it to
self-interacting matter.
The general version of the action which is suitable for

taking the large N type limit in the dual theory is

S ¼ 1

16πG

�Z
d2x

ffiffiffiffiffiffi
−g

p
Φ
�
Rþ 2

l2

�
þ Smatter½g; χ�

�

þ 1

8πG

Z
du

ffiffiffiffiffiffi
−h

p
ΦbK: ð1Þ

Note that u appearing in the Gibbons-Hawking-York
counterterm above is to be identified with the boundary
time i.e., the time of the boundary observer. Also Φb is
simply the value of Φ at the boundary. The key feature of
this theory is that the dilaton field Φ does not couple to
matter. This implies that the bulk metric remains always
pure AdS2 locally. Indeed by varying the action with
respect to Φ, we simply obtain

Rþ 2

l2
¼ 0: ð2Þ

Varying the action with respect to the bulk metric yields

1A similar phenomenon of disappearance of horizon in the
bulk in nearly AdS2 setups has been found in [29]. The
explanation proposed for this result also works naturally in
our case.
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TΦ
μν þ Tμν ¼ 0; ð3Þ

where

TΦ
μν ≡∇μ∇νΦ − gμν∇2Φþ 1

l2
gμνΦ;

Tμν ¼ −
2ffiffiffiffiffiffi−gp δSmatter

δgμν
: ð4Þ

Note that the Bianchi identity is satisfied when R ¼ −2=l2.
Therefore, the equation of motion (3) is indeed consistent
in a locally AdS2 background spacetime. We set l ¼ 1
by appropriate choice of units for the sake of our
convenience.
In what follows, wewill not assume that the matter sector

is conformal and thus generalize the results in [1,4].
Without assuming specific details of the matter sector,
we can readily proceed by only implementing the local
conservation of energy and momentum, i.e.,

∇μTμν ¼ 0: ð5Þ
Since the background spacetime remains locally AdS2, we
can always adopt the Fefferman-Graham coordinates

ds2 ¼ 1

z2
ð−dt2 þ dz2Þ; ð6Þ

in which the conservation equations assume the explicit
form

∂zTzt ¼ ∂tTtt; ∂zðzTzzÞ ¼ Ttt þ z∂tTzt: ð7Þ
The general form of Tμν should then be

Tztðz; tÞ ¼ FϵðtÞ þ
Z

z

ϵ
dz1∂tTttðz1; tÞ; ð8Þ

Tzzðz; tÞ¼
GϵðtÞ
z

þ z
2
∂tFϵðtÞþ

1

z

Z
z

ϵ
dz1Tttðz1; tÞ

þ z
2

Z
z

ϵ
dz1∂2

t Tttðz1; tÞ−
1

2z

Z
z

ϵ
dz1∂2

t Tttðz1; tÞz21;

ð9Þ

with

FϵðtÞ ¼ Tztðϵ; tÞ; ð10Þ

GϵðtÞ ¼ ϵTzzðϵ; tÞ −
ϵ2

2
∂tTztðϵ; tÞ ð11Þ

and ϵ denoting an arbitrary radial cutoff which for the sake
of convenience should be chosen close to the boundary
z ¼ 0. The boundary conditions for the bulk matter fields
determine FϵðtÞ and GϵðtÞ. Then (8) and (9) determine Tzt
and Tzz in terms of Ttt.

The various components of (3) turn out to be

∂2
zΦþ ∂zΦ

z
−
Φ
z2

¼ −Ttt; ð12Þ

∂z∂tΦþ ∂tΦ
z

¼ −Tzt; ð13Þ

∂2
tΦþ ∂zΦ

z
þ Φ
z2

¼ −Tzz ð14Þ

in the Fefferman-Graham coordinates. The first equation
above involving only radial derivatives determines the
radial profile of Φ. The remaining equations reduce simply
to constraints after we utilize the results of matter energy
and momentum conservation given by (8) and (9). These
constraints are therefore only time-dependent equations
determining data at the cutoff z ¼ ϵ.
The most general solution of (12) is

Φðz; tÞ ¼ αϵðtÞ
z

þ βϵðtÞz −
z
2

Z
z

ϵ
dz1Tttðz1; tÞ

þ 1

2z

Z
z

ϵ
dz1Tttðz1; tÞz21: ð15Þ

Substituting the above in (13) and (14), and also utilizing
(8) and (9) we obtain

2∂tβϵðtÞ þ FϵðtÞ ¼ 0; ð16Þ

∂2
t αϵðtÞ þ 2βϵðtÞ þ GϵðtÞ ¼ 0: ð17Þ

As claimed, these determine the two time-dependent
functions in (15) and thus the data on the cutoff.
Utilizing (10) and (11) we obtain the following useful
form of these constraints:

∂tβϵðtÞ ¼ −
1

2
Tztðϵ; tÞ; ð18Þ

∂3
t αϵðtÞ ¼ Tztðϵ; tÞ þ

ϵ2

2
∂2
t Tztðϵ; tÞ − ϵ∂tTzzðϵ; tÞ: ð19Þ

Note that (16) and (17) are equivalent to the above only if
we choose appropriate integration constants in αϵðtÞ. This
issue is readily addressed if we use the following integral
forms for αϵðtÞ and βϵðtÞ:

βϵðtÞ ¼ −Cϵ −
1

2

Z
t

−∞
dt1Tztðϵ; t1Þ; ð20Þ

αϵðtÞ¼AϵþBϵtþCϵt2

þ
Z

t

−∞
dt1

Z
t1

−∞
dt2

Z
t2

−∞
dt3

�
Tztðϵ; t3Þ− ϵ∂tTzzðϵ; t3Þ

þ ϵ2

2
∂2
t Tztðϵ; t3Þ

�
: ð21Þ
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Above Aϵ, Bϵ and Cϵ are arbitrary constants. These
expressions together with (15) thus completely specify Φ
in the presence of bulk matter.

B. Holographic interpretation

The holographic dictionary for the Jackiw-Teitelboim
model has been established in [1–4] and a thorough treat-
ment of holographic renormalization can be found in [30,31]
(see also [32]). In the general situation, it is required to
impose an appropriate self-consistent cutoff so that the dual
quantum theory lives on an appropriate trajectory z ¼ ϵfðtÞ
which should be determined from the equations of motion
themselves. The trajectory of the cutoff does not always
coincide with the boundary of the AdS2 spacetime which is
at z ¼ 0 but is typically near the latter if ϵ is sufficiently
small. The dimensionful parameter ϵ is related to the UV
cutoff of the dual quantum theory and is thus an external
parameter. It turns out that we can take the limit ϵ → 0when
the matter sector satisfies certain conditions. In this happy
situation, the dual quantum theory is UV complete.2

We adopt the second method first. It is natural to impose
the background metric for the dual quantum theory to be
ds2 ¼ −du2. Let us parametrize the cutoff trajectory via the
boundary time so that it is given by the functions zðuÞ and
tðuÞ. The holographic dictionary then implies that the
induced metric on the cutoff should be

httðzðuÞ; tðuÞÞ ¼ −
1

ϵ2
: ð22Þ

To achieve this, we will require that

zðuÞ ¼ ϵt0ðuÞ þOðϵ2Þ: ð23Þ
Above the prime denotes differentiation with respect to u.
The function tðuÞ is determined by the boundary condition
on Φ. The key to obtain SLð2; RÞ symmetry in the IR is to
impose the boundary condition where the value ofΦ on the
cutoff trajectory satisfies

ΦbðuÞ ¼ ΦðzðuÞ; tðuÞÞ ¼ ϕrðuÞ
ϵ

ð24Þ

with ϕrðuÞ being an arbitrary function which should be
specified. In this paper we will set it to be a constant and
represent it by ϕ̄r following [3].
We will see later that for well behaved matter sector

where we can take the limit ϵ → 0, the most singular term
in (15) is indeed z−1 and its coefficient is

α0ðtÞ ¼ lim
ϵ→0

αϵðtÞ: ð25Þ

Then it follows from (15), (23) and (24) that

αϵðtðuÞÞ ¼ ϕ̄rt0ðuÞ þOðϵγÞ with γ > 0;

i:e:; α0ðtðuÞÞ ¼ ϕ̄rt0ðuÞ: ð26Þ

For instance, in presence of a minimally coupled free bulk
scalar field with m2 ¼ 5=16 the subleading term above
has γ ¼ 1=2.
The dynamics of gravity is then captured by the function

tðuÞ which should be determined from the bulk equations
of motion. To see this, we first note that the on-shell action
for the pure gravity part is3

Sgravon−shell ¼
1

8πG

Z
du

ffiffiffiffiffiffi
−h

p
ΦbK ¼ 1

8πG

Z
du

1

ϵ

ϕ̄r

ϵ
K

¼ ϕ̄r

8πG

Z
du

�
1

ϵ2
þ other singular terms

− Schðt; uÞ þ � � �
�

ð27Þ

where

Schðt; uÞ ¼ t000ðuÞ
t0ðuÞ −

3

2

t00ðuÞ2
t0ðuÞ2 ð28Þ

is the Schwarzian derivative. The dotted terms vanish in the
limit ϵ → 0. The term proportional to 1=ϵ2 and the other
singular terms (e.g., one proportional to ϵ−3=2 which occurs
in the presence of a minimally coupled free bulk scalar field
with m2 ¼ 5=16) can be subtracted away by appropriate
local counterterms (which are built out of the matter
sources and their time derivatives) to render the limit
ϵ → 0 finite [30,31]. We emphasize that new singular
terms at subleading orders in ϵ can appear in the presence
of bulk matter. After adding the counterterms and taking the
ϵ → 0 limit, we obtain

Sgravon−shell ¼
ϕ̄r

16πG

Z
duð−2Schðt; uÞÞ; ð29Þ

which gives part of the action for the variable tðuÞ that
determines the cutoff trajectory.
The matter sector lives in AdS2. The holographic dic-

tionary for this sector can be set up in the traditional way in

2This statement is true strictly in the large N limit only where
the classical gravity approximation is valid. In such cases
however, the theory is not actually embeddable in a higher
dimensional holographic theory as discussed before. Never-
theless, the presence of UV completion for a large range of
irrelevant deformations should not surprise us because the dual
quantum theory lives in 0þ 1-D.

3One can readily compute the extrinsic curvature K of the
cutoff trajectory fγðuÞ∶ðzðuÞ ¼ ϵt0ðuÞ; tðuÞÞg. The result is that

K ¼
1 − ϵ2 t000ðuÞ

t0ðuÞ

ð1 − ϵ2 t00ðuÞ2
t0ðuÞ2 Þ

3
2

¼ 1 − Schðt; uÞϵ2 þOðϵ4Þ:
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the limit ϵ → 0, although in the presence of a cutoff one
needs to set up the dictionary with a bit more care. In
this paper we will deal with cases when we can indeed take
the limit ϵ → 0. The matter sector of course modifies the
equation of motion for tðuÞ.
This equation for tðuÞ can always be obtained from the

renormalized on-shell action. However, equivalently
assuming that the limit ϵ → 0 exists we will be able to
also obtain it from the constraint (19) rather easily. This will
be the topic of our next subsection.

C. Time reparametrization

As discussed above, we will deal only with cases in
which the limit where the UV cutoff in the dual quantum
theory can be taken to infinity or equivalently ϵ → 0 exists.
In such cases, we can use (26) which states that α0ðtðuÞÞ ¼
ϕ̄rt0ðuÞ. Then differentiating both sides of this relation
thrice with respect to t, we readily obtain

⃛α0 ¼ ϕ̄r
ðSchðtðuÞ; uÞÞ0

t0ðuÞ2 : ð30Þ

Above dot and prime denote differentiation with respect to
t and u, respectively. From (19) it then follows that

ϕ̄rðSchðtðuÞ;uÞÞ0 ¼ t0ðuÞ2lim
ϵ→0

½Tztðϵ; tðuÞÞ− ϵ∂tTzzðϵ; tðuÞÞ�:
ð31Þ

A necessary condition that the matter sector should satisfy
then is that the following limit

lim
ϵ→0

½Tztðϵ; tðuÞÞ − ϵ _Tzzðϵ; tðuÞÞ�

should exist. Of course we should also worry about
choosing right integration constants so that we obtain
(20) and (21).
To see how this can work, we study the example of a

minimally coupled free bulk scalar field χ withm2 ¼ 5=16.
The dual operator in the quantum theory has Δ ¼ 5=4.
Sourcing the bulk scalar then results in an irrelevant
deformation in the dual quantum theory. The Klein-
Gordon equation

∂2
zχ − ∂2

t χ −
5

16z2
χ ¼ 0 ð32Þ

in the locally AdS2 spacetime has a solution with the
following asymptotic expansion:

χðz; tÞ ¼ JpðtÞz−1
4 þOpðtÞz54 þ J̈pðtÞz74 þOðz134 Þ: ð33Þ

Of course the Klein-Gordon equation can be solved exactly,
but at present wewill focus only on its asymptotic expansion
which is specified completely in terms of JpðtÞ and OpðtÞ.

The components of the energy-momentum tensor of this
field are given by

Ttt ¼
1

2

�
ð∂tχÞ2 þ ð∂zχÞ2 þ

5

16z2
χ2
�
;

Tzt ¼ ∂tχ∂zχ;

Tzz ¼
1

2

�
ð∂tχÞ2 þ ð∂zχÞ2 −

5

16z2
χ2
�
: ð34Þ

Utilizing (33), we can readily find that

lim
ϵ→0

½Tztðϵ; tÞ − ϵ∂tTzzðϵ; tÞ�

¼ 3

2

�
5

4
OpðtÞ_JpðtÞ þ

1

4
JpðtÞ _OpðtÞ

�
ð35Þ

and therefore we satisfy the necessary condition for our
holographic dictionary to make sense in the limit ϵ → 0. For
this condition to also be sufficient, we need to show that the
formal solution ofΦ given by (15) indeed yields the desired
asymptotic behavior in the limit ϵ → 0. To examine this, we
can again substitute (33) in (34) and then in (15), and finally
take the ϵ → 0 limit. This yields

Φðz; tÞ ¼ lim
ϵ→0

�
α0ðtÞ
z

þ J2pðtÞ
4
ffiffiffi
z

p

þ
�
−
J2pðtÞ
16ϵ

3
2

þ βϵðtÞ
�
zþOðz3=2Þ

�
ð36Þ

with all other subleading terms not shown here having finite
ϵ → 0 limit. We observe that the coefficient of z apparently
blows up when ϵ → 0 due to presence of a ϵ−3=2-term.
However, utilizing (20), we can obtain

βϵðtÞ¼−C0þ
1

8ϵ
3
2

Z
t

−∞
dt1Jpðt1Þ _Jpðt1Þ

−
1

2

Z
t

−∞
dt1

�
5

4
Opðt1Þ _Jpðt1Þ−

1

4
_Opðt1ÞJpðt1Þ

�
þ���

¼−C0þ
J2pðtÞ
16ϵ

3
2

−
1

2

Z
t

−∞
dt1

�
5

4
Opðt1Þ _Jpðt1Þ−

1

4
_Opðt1ÞJpðt1Þ

�
þ���

ð37Þ
with C0 ¼ limϵ→0 Cϵ and � � � indicate terms which vanish in
the limit ϵ → 0. Crucially we have assumed above that

lim
t→−∞

J2pðtÞ ¼ 0: ð38Þ

This assumption is crucial because only with this we get a
sensible asymptotic behavior of Φ in the ϵ → 0 limit which
can be finally obtained by assembling (20), (21), (35), (36)
and (37). This asymptotic expansion turns out to be
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Φðz; tÞ ¼ 1

z

�
A0 þ B0tþ C0t2

þ 3

2

Z
t

−∞
dt1

Z
t1

−∞
dt2

Z
t2

−∞
dt3

�
5

4
OpðtÞ_JpðtÞ

þ 1

4
JpðtÞ _OpðtÞ

��
þ J2pðtÞ

4
ffiffiffi
z

p − zC0

−
z
2

Z
t

−∞
dt1

�
5

4
Opðt1Þ _Jpðt1Þ −

1

4
_Opðt1ÞJpðt1Þ

�

þOðz32Þ: ð39Þ

In particular, due to (38), the ϵ−3=2-term in the coefficient of z
in (36) has now been mitigated. An alternative to (38) could
have been to set

Cϵ ¼ − lim
t→−∞

J2pðtÞ
16ϵ

3
2

þOðϵ0Þ:

However this would have implied that C0 is singular. This
does not work as C0t2 appears in α0 which is the coefficient
of the z−1-term. We can conclude that if JpðtÞ vanishes
sufficiently fast in the far past, then the asymptotic expan-
sion ofΦ has nonsingular coefficients in the limit ϵ → 0. Not
only does this guarantee that singular terms in this limit are
mitigated but also that the relevant integrals are finite.
Eventually OpðtÞ is determined from JpðtÞ from regularity
which implements causal response in holography. Also
clearly because of time-translation symmetry of AdS2, if
JpðtÞ is constant then so isOpðtÞ. In this case, althoughΦ is
modified as evident from (39), the ϵ → 0 is nonproblematic.
We can thus legitimately investigate the time-reparamet-

rization equation (31) in the limit ϵ → 0 which in our
example reduces to

ðSchðtðuÞ; uÞÞ0 ¼ 3t0ðuÞ2
2ϕ̄r

�
5

4
OpðtðuÞÞ_JpðtðuÞÞ

þ 1

4
JpðtðuÞÞ _OpðtðuÞÞ

�
: ð40Þ

The bulk regularity condition which we will study explic-
itly later implies that

OpðtÞ ¼
Z

t

−∞
dt1GRðt − t1ÞJpðt1Þ; ð41Þ

where GRðt − t1Þ is known. Furthermore, since the boun-
dary time is u as discussed before, the source (perturbation)
which couples to the dual operator withΔ ¼ 5=4 is actually

JðuÞ ¼ t0ðuÞ−1
4JpðtðuÞÞ ð42Þ

and similarly the expectation value of the operator that is
actually measured as response is

OðuÞ ¼ t0ðuÞ54OpðtðuÞÞ: ð43Þ

Therefore,

OðuÞ ¼
Z

u

−∞
du1GRðtðuÞ − tðu1ÞÞt0ðuÞ54t0ðu1Þ54Jðu1Þ: ð44Þ

Substituting (42) and (43) in (40), we obtain

ðSchðtðuÞ;uÞÞ0 ¼ 3

2ϕ̄r

�
5

4
OðuÞJ0ðuÞþ1

4
JðuÞO0ðuÞ

�
: ð45Þ

The above equation should be understood with OðuÞ
defined via (44). Thus the time-reparametrization equation
is actually a fourth-order integrodifferential equation. It is
to be noted that since the Schwarzian is invariant under a
fractional linear transformation of tðuÞ

tðuÞ → atðuÞ þ b
ctðuÞ þ d

;

as is the reparametrized retarded correlation function

GRðtðuÞ − tðu1ÞÞt0ðuÞ54t0ðu1Þ54;

owing to the SLð2; RÞ symmetry of the background AdS2
geometry in which the Klein-Gordon equation is solved.
We can conclude that the time-reparametrization equation
retains SLð2; RÞ symmetry even in the presence of min-
imally coupled bulk matter.
One can indeed show that in the presence of minimally

coupled free bulk scalar field with −1=4 < m2 < 3=4 i.e.,
corresponding to a deformation with 1=2 < Δ < 3=2, the
general form of the time-reparametrization equation is

ðSchðtðuÞ;uÞÞ0 ¼CΔðΔOðuÞJ0ðuÞþðΔ−1ÞJðuÞO0ðuÞÞ;
ð46Þ

with

OðuÞ¼
Z

u

−∞
du1GRðtðuÞ− tðu1ÞÞt0ðuÞΔt0ðu1ÞΔJðu1Þ; ð47Þ

and CΔ¼ð2Δ−1Þ=ϕ̄r which can be set to unity by
choosing of ϕ̄r ¼ 2Δ − 1 since only a single scalar
deformation is being considered. The equation is symmet-
ric under SLð2; RÞ transformation of tðuÞ due to the
invariance of

GRðtðuÞ − tðu1ÞÞt0ðuÞΔt0ðu1ÞΔ

under this transformation. Furthermore, Φ indeed has an
asymptotic expansion with nonsingular coefficients in the
limit ϵ → 0.
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IfΔ ≥ 3=2, the leading asymptotic behavior ofΦ is more
singular than z−1. For instance, when Δ ¼ 3=2, the matter
energy density leads to leading z−1 log z asymptotics of Φ.
The on-shell action then has log ϵSchðt; uÞ term which
cannot be subtracted by a counterterm which is a local
functional of the sources.4 A holographic interpretation of a
Δ ≥ 3=2 deformation makes sense only after imposing a
UV cutoff in the dual theory.

D. A brief tale of three coordinates

In Jackiw-Teitelboim gravity, the metric is locally always
AdS2 and gravity has no local bulk dynamics. Nevertheless,
a diffeomorphism of the bulk coordinates which is non-
trivial at the boundary has a physical effect as it produces a
nontopological on-shell action. This time reparametrization
is described by the variable tðuÞ which maps the physical
(boundary) time u of the observer to the time coordinate
t of Fefferman-Graham coordinates. However, due to the
SLð2; RÞ symmetry of the on-shell action and also the
equations of motion discussed above, a fractional linear
transformation of tðuÞ has no physical effect on observables
such as correlation functions. So the physically distinct
solutions of tðuÞ are members of the Diff=SLð2; RÞ coset.
In absence of matter, the time-reparametrization equa-

tion (46) implies that the Schwarzian derivative of tðuÞ
must be a constant, i.e.,

SchðtðuÞ; uÞ ¼ � 2π2

β2
ð48Þ

with β being a real parameter. For the negative sign of the
Schwarzian derivative of tðuÞ, the solution is

tðuÞ ¼ tanh

�
πu
β

�
ð49Þ

up to a SLð2; RÞ transformation. The three parameters of
the SLð2; RÞ transformation along with β supply the
necessary four integration constants of (46). If the
Schwarzian derivative of tðuÞ is a positive constant, then
the solution is

tðuÞ ¼ tan

�
πu
β

�
ð50Þ

up to a SLð2; RÞ transformation. In this case, the solution is
periodic with period β. A periodic Lorentzian time does not
make sense so we reject such solutions as unphysical.
For Euclidean signature however, we accept periodic

solutions with period β as these can indeed be interpreted as
thermal solutions with temperature β−1. Under Euclidean
continuation where both t → it and u → iu, the Schwarzian

reverses sign. In this case, only positive constant values of
the Schwarzian are physically acceptable. Furthermore,
under u → iu, the Lorentzian solution (49) goes to the
Euclidean solution (50) such that indeed t → it.
It is natural to ask if we can interpret tðuÞ in the bulk.

When the cutoff ϵ is imposed, its trajectory is zðuÞ ≈ ϵt0ðuÞ
as discussed before. However, when we can take the
limit ϵ → 0, it is more useful to consider tðuÞ as the
boundary limit of a bulk diffeomorphism. Of course,
the bulk diffeomorphism corresponding to a given tðuÞ
is not unique, so to make such an identification we need
gauge fixing. Instead of retaining Fefferman-Graham gauge
where gzz ¼ 1=z2 and gzt ¼ 0, we will use ingoing
Eddington-Finkelstein gauge in which the AdS2 metric
takes the form:

ds2 ¼ −
2

r2
drdu −

�
1

r2
−MðuÞ

�
du2 ð51Þ

where grr ¼ 0 and gru ¼ −1=r2, and the boundary time u is
also an ingoing null bulk coordinate. The function MðuÞ
parametrizes the residual gauge freedom, i.e., diffeomor-
phisms which preserve this gauge. To see this explicitly, we
first choose MðuÞ ¼ 1 and write the metric in this gauge
as below

ds2 ¼ −
2

ρ2
dρdτ −

�
1

ρ2
− 1

�
dτ2: ð52Þ

To get back (51) with an arbitraryMðuÞwe need to perform
the (gauge-preserving) diffeomorphism

τ ¼ τðuÞ; ρ ¼ τ0ðuÞr
1 − τ00ðuÞ

τ0ðuÞ r
; ð53Þ

with

−2SchðτðuÞ; uÞ þ τ0ðuÞ2 ¼ MðuÞ: ð54Þ

Under such a diffeomorphism, the ingoing null coor-
dinate (observer’s boundary time) u maps to τ which is
the ingoing null coordinate (boundary time) of a fixed
mass M ¼ 1 black hole, and this map τðuÞ is determined
by the dynamical mass MðuÞ. Furthermore the radial
coordinate transforms by a time-dependent fractional
linear transformation whose parameters are determined
by τðuÞ.
We need to connect the Fefferman-Graham time t, with

which the bulk metric assumes the canonical (Poincare
patch) form (6), to the observer’s time u. We can do this by
first mapping t to τ, and then using the map from τ to u
found above. To bring the bulk metric (6) to the ingoing
Eddington-Finkelstein form (52) with MðuÞ ¼ 1 we need
to perform the diffeomorphism4This is similar to the case of a conformal anomaly.
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t ¼ 1

2

�
tanh

�
τ

2
þ arctanhρ

�
þ tanh

�
τ

2

��
;

z ¼ 1

2

�
tanh

�
τ

2
þ arctanhρ

�
− tanh

�
τ

2

��
: ð55Þ

At the boundary z ¼ 0, i.e., ρ ¼ 0, we find that

t ¼ tanh

�
τ

2

�
ð56Þ

which matches with the form (49) if we set β ¼ 2π. In this
case, as follows from (48),

Schðt; τÞ ¼ −
1

2
: ð57Þ

In order to obtain the general ingoing Eddington-
Finkelstein form of the metric (51) with an arbitrary
MðuÞ from the canonical Fefferman-Graham coordinates,
we simply need to substitute (53) in (55). Then at the
boundary z ¼ 0 i.e., r ¼ 0, we find that

tðuÞ ¼ tanh

�
τðuÞ
2

�
: ð58Þ

Utilizing the composition law of the Schwarzian

Schððf ∘ gÞðuÞ; uÞ ¼ SchðgðuÞ; uÞ
þ g0ðuÞ2Schððf ∘ gÞðuÞ; gðuÞÞ; ð59Þ

(57) and (58) we find that

Sch ≔ SchðtðuÞ; uÞ ¼ SchðτðuÞ; uÞ − 1

2
τ0ðuÞ2: ð60Þ

Comparing with (54), we obtain

Sch ¼ −
1

2
MðuÞ: ð61Þ

This relates the boundary variable tðuÞ to the time-
dependent black hole mass MðuÞ, and thus provides a
bulk interpretation of tðuÞ. The actual Arnowitt-Deser-
Misner (ADM) mass of the black hole is [1,3]

MADMðuÞ ¼
ϕ̄r

16πG
ð−2 SchÞ ¼ ϕ̄r

16πG
MðuÞ: ð62Þ

Therefore,

−SchðtðuÞ; uÞ ¼ 8πG
ϕ̄r

MADMðuÞ: ð63Þ

The pure JTon-shell gravitational action (29) in the presence
of a minimally coupled bulk scalar field is modified to

Sgravon−shell ¼
ϕ̄r

16πG

Z
duð−2SchðtðuÞ; uÞÞ

þ 1

16πG

Z
duJðuÞOðuÞ: ð64Þ

One can also readily derive the equation of motion for tðuÞ
given by (46) from the above action after expressingMADM
in terms of the Schwarzian of tðuÞ, and alsoOðuÞ in terms of
JðuÞ and tðuÞ via (47) [3]. We have derived this time-
reparametrization equation in the previous subsection from
the bulk gravitational constraints instead.

E. The second law and the profile of the dilaton

Here we review results presented in [28] regarding the
second law in JT gravity, and then we discuss how to obtain
the profile of the dilaton in the physical geometry corre-
sponding to the observer ’s time at the boundarywhich in the
ingoing Eddington-Finkelstein gauge takes the form of (51).
Since in 1þ 1-D spacetime any smooth null curve is

a null geodesic, for any smooth null curve xμðλÞ we can
find an affine parameter λ such that lμ ¼ dxμ=dλ satisfies
lμlμ ¼ 0 and

ðl ·∇Þlμ ¼ 0: ð65Þ
Contracting the dilaton equation (3) we obtain

ðl ·∇Þ2Φ ¼ −Tμνlμlν ð66Þ
i.e.,

D2Φ
Dλ2

¼ −Tμνlμlν: ð67Þ

Assuming

dΦ
dλ

����
λ→∞

¼ 0; ð68Þ

it follows that

dΦ
dλ

¼
Z

∞

λ
dλ1Tμνlμlν: ð69Þ

Since classical bulk matter satisfies the null energy con-
dition Tμνlμlν > 0, we obtain that

dΦ
dλ

> 0: ð70Þ
Therefore ΦðλÞ is a monotonically increasing function on a
null curve where (68) is satisfied.5 Such a null curve can be
readily found if the full geometry settles down to a static
configuration at late time—it is the one which coincides
with the apparent horizon rhðuÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
MðuÞp

at late time in

5It is a different question of course if such a monotonically
increasing entropy function also satisfies a first law. We will not
deal with this issue here.
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the coordinates where the metric assumes the form (51). If
the geometry does not become static and/or the limit (68)
does not exist because the null geodesic cannot be extended
to arbitrarily large affine time in the future, then a second
law need not hold in the classical solution.
The equation determining the dilaton profile (3) takes a

much simpler form in the coordinates (51) than what we
obtained before in the case of Fefferman-Graham. In
presence of a free scalar field χ with m2 ¼ ΔðΔ − 1Þ
and minimally coupled to the metric, the rr component
of (3) is simply

∂2
rΦþ 2

∂rΦ
r

¼ −ð∂rχÞ2: ð71Þ
The Klein-Gordon equation for χ is

∂rðdþχÞ þ
ΔðΔ − 1Þ

2r2
χ ¼ 0; ð72Þ

where

dþχ ¼ ∂uχ −
1

2
ð1 − r2MðuÞÞ∂rχ: ð73Þ

We note that dþχ ≡ ðξ ·∇Þχ, i.e., the directional derivative
of χ along the outgoing null direction ξμ with ξu ¼ 1

and ξr ¼ −ð1=2Þð1 − r2MðuÞÞ.
We should choose 1 < Δ < 3=2. For concreteness, let

Δ ¼ 5=4. The asymptotic expansion of χ which follows
from (73) is

χ¼ JðuÞr−1
4þJ0ðuÞr34þOðuÞr54

þ
�
3

2
J00ðuÞ− 3

16
JðuÞMðuÞ

�
r
7
4þO0ðuÞr94þ��� : ð74Þ

Then the solution of (71) is

Φ¼ aðuÞ
r

þbðuÞþJðuÞ2
4

r−
1
2

þ
Z

r

0

dr00
1

r002

�
1

8
JðuÞ2r0012−

Z
r00

0

dr0r02ð∂r0χðr0;uÞÞ2
�
:

ð75Þ

Note both the integrals above are finite. One can of course
write similar expressions for arbitrary Δ.
The rr and tt components of (3) are of course constraints

and therefore they reduce to equations determining aðuÞ
and bðuÞ in (75). These are

bðuÞ ¼ a0ðuÞ; ð76Þ

a000ðuÞ −MðuÞa0ðuÞ − 1

2
aðuÞM0ðuÞ

¼ ð2Δ − 1ÞðΔOðuÞJ0ðuÞ þ ðΔ − 1ÞO0ðuÞJðuÞÞ: ð77Þ

We now observe that since the boundary time corre-
sponds to the observer’s time in the r and u coordinates, the
Dirichlet boundary condition for Φ simply implies that

aðuÞ ¼ ϕ̄r: ð78Þ

We choose ϕ̄r as a constant. Substituting this in (77) we
obtain that

bðuÞ ¼ 0; ð79Þ

−
1

2
M0ðuÞ ¼ CΔðΔOðuÞJ0ðuÞ þ ðΔ − 1ÞO0ðuÞJðuÞÞ;

with CΔ ¼ 2Δ − 1

ϕ̄r
: ð80Þ

We readily note that the content of the above equation is
nothing but the time parametrization tðuÞ, which character-
izes the map from the physical time u to the time t of the
vacuum. To see this, we recall our result from the previous
subsection that the change of coordinates which takes our
present metric (51) to pure AdS2 with MðuÞ ¼ 0 implies a
time reparametrization at the boundary tðuÞ given by
SchðtðuÞ; uÞ ¼ −ð1=2ÞMðuÞ. Substituting this in (80) we
indeed recover our old time-reparametrization equa-
tion (46). We also recall that we choose ϕ̄r ¼ 2Δ − 1, so
that CΔ ¼ 1.
The combination of boundary condition on the dilaton

(78) and the constraint (77) thus determines the massMðuÞ
in the Eddington-Finkelstein coordinates even when ϕ̄r is
not a constant. Then we need to use the relation MðuÞ ¼
−2SchðtðuÞ; uÞ here to obtain the time-reparametrization
equation with a general time-dependent ϕ̄r.
The dilation profile, e.g., for Δ ¼ 5=4, then can be

obtained from (75) and it is

Φ¼ 3

2r
þJðuÞ2

4
r−

1
2

þ
Z

r

0

dr00
1

r002

�
1

8
JðuÞ2r0012−

Z
r00

0

dr0r02ð∂r0χðr0;uÞÞ2
�
;

ð81Þ

where we have set ϕ̄r ¼ 2Δ − 1 ¼ 3=2. This explicit form
will help us to determine whether the second law can be
indeed satisfied.

III. FINDING EXPLICIT TIME-DEPENDENT
SOLUTIONS

A. Conserved charges and Ward identities

In the case of pure JT gravity, the Noether charges
corresponding to the SLð2; RÞ symmetries have been
discussed in [3]. The infinitesimal SLð2; RÞ transforma-
tions are tðuÞ → tðuÞ þ ϵδtðuÞ, with δtðuÞ ¼ 1; tðuÞ; tðuÞ2
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generating translation, dilation and special conformal
transformation respectively. The corresponding conserved
charges are

Q0 ¼
t000ðuÞ
t0ðuÞ2 −

t00ðuÞ2
t0ðuÞ3 ; ð82Þ

Q1 ¼ tðuÞ
�
t000ðuÞ
t0ðuÞ2 −

t00ðuÞ2
t0ðuÞ3

�
−
t00ðuÞ
t0ðuÞ ; ð83Þ

Q2¼ tðuÞ2
�
t000ðuÞ
t0ðuÞ2−

t00ðuÞ2
t0ðuÞ3

�
−2tðuÞ

�
t00ðuÞ
t0ðuÞ−

t0ðuÞ
tðuÞ

�
: ð84Þ

We can readily see that

Q0
iðuÞ ¼

tðuÞi
t0ðuÞ Sch

0 ð85Þ

for i ¼ 0, 1, 2 so that indeed these are conserved on shell in
pure Teitelboim-Jackiw gravity, i.e., when SchðtðuÞ; uÞ is a
constant. Furthermore, the Casimir

Q2
1 −Q0Q2 ¼ −2Sch ð86Þ

is a constant in the absence of matter. For later convenience,
we define the Noether charges

Q ¼ 1

2
ðQ0 −Q2Þ; Q� ¼ 1

2
ðQ0 þQ2 � 2Q1Þ: ð87Þ

Shifting to the variable τðuÞ, which is the boundary time of
the MðuÞ ¼ 1 black hole and is related to tðuÞ via (58), we
obtain the explicit forms

Q ¼ τ000ðuÞ
τ0ðuÞ2 −

τ00ðuÞ2
τ0ðuÞ3 − τ0ðuÞ; ð88Þ

Qþ ¼
�
τ000ðuÞ
τ0ðuÞ2 −

τ00ðuÞ2
τ0ðuÞ3 −

τ00ðuÞ
τ0ðuÞ

�
eτðuÞ; ð89Þ

Q− ¼
�
τ000ðuÞ
τ0ðuÞ2 −

τ00ðuÞ2
τ0ðuÞ3 þ τ00ðuÞ

τ0ðuÞ
�
e−τðuÞ; ð90Þ

which satisfy

Q0 ¼ 1

τ0ðuÞ Sch
0; Q0

� ¼ e�τðuÞ

τ0ðuÞ Sch
0: ð91Þ

Furthermore, the Casimir is

Q2 −QþQ− ¼ −2Sch: ð92Þ

We note that all derivatives of τ at a given value of τ can be
expressed in terms of the Noether charges:

τ0 ¼ 1

2
ðQ−eτ þQþe−τ − 2QÞ; ð93Þ

τ00 ¼ 1

4
ðQ−eτ −Qþe−τÞðQ−eτ þQþe−τ − 2QÞ; ð94Þ

τ000 ¼ 1

4
ðQ2

−e2τ þQ2þe−2τ −QðQ−eτ þQþe−τÞÞ
× ðQ−eτ þQþe−τ − 2QÞ: ð95Þ

One can then take the following approach to obtain all
solutions of τðuÞ in the absence of matter. At the initial
moment u ¼ uin, we need to specify the value of τðuinÞ and
the three Noether charges. In the absence of matter, the
values of these Noether charges do not change. At the
initial instant we can then use (93) to obtain τ0ðuinÞ. Next,
we update τ using

τðuin þ ΔuÞ ¼ τðuinÞ þ τ0ðuinÞΔu:

Since we have τðuin þ ΔuÞ, we can use (93) again to obtain
τ0ðuin þ ΔuÞ. We can thus continue further to generate τðuÞ
from the initial data given by τðuinÞ and the three (constant)
values of the Noether charges.
Note that one can always set the Noether charges to the

following constant values:

Q ¼ −
2π

β
; Q� ¼ 0 ð96Þ

via an appropriate SLð2; RÞ transformation. In this case,
Sch ¼ −2π2=β2 and

τðuÞ ¼ τðuinÞ þ
2π

β
ðu − uinÞ: ð97Þ

Furthermore, without changing the values of the charges
given by (96), we can set

τðuinÞ ¼
2π

β
uin

and reproduce (49). Setting the value of τðuinÞ also
amounts to a SLð2; RÞ transformation of tðuÞ. Actually
for any choice of Noether charges there will be a one
parameter family of SLð2; RÞ transformations which will
leave them invariant—this family then defines the
chosen SLð2; RÞ frame. A SLð2; RÞ transformation has
no effect on physical observables, therefore we can
derive all real-time properties of thermal equilibrium
state at temperature β−1 from this simple solution (49)
which is linear in u.
For a constant value of Sch ¼ −2π2=β2, we can para-

metrize all real values of SLð2; RÞ charges as follows:
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Q ¼ −
2π

β
cosh θ cosϕ; Q− ¼ 2π

β
ðsinh θ cosϕþ sinϕÞ; Qþ ¼ 2π

β
ðsinh θ cosϕ − sinϕÞ: ð98Þ

The general solution corresponding to the above charges are

τðuÞ ¼ β

π
arctanh

 
e
θ
2ðcosh η

2
cos ϕ

2
þ sinh η

2
sin ϕ

2
Þ tanh ðπβ uÞ þ e

θ
2ðsinh η

2
cos ϕ

2
þ cosh η

2
sin ϕ

2
Þ

e−
θ
2ðsinh η

2
cos ϕ

2
− cosh η

2
sin ϕ

2
Þ tanh ðπβ uÞ þ e−

θ
2ðcosh η

2
cos ϕ

2
− sinh η

2
sin ϕ

2
Þ

!
: ð99Þ

The parameters θ, ϕ and η represent an SLð2; RÞ trans-
formation of tðuÞ as should be clear from (49). However, it
is explicit in (98) that only θ and ϕ along with β determine
the Noether charges. The parameter η nevertheless sets
the value of τðuinÞ and is thus not a redundant variable. The
above parametrization will be useful in characterizing the
dynamics in the presence of matter.

B. The algorithm

When bulk matter satisfies appropriate conditions, the
SLð2; RÞ symmetry of the time-reparametrization equa-
tion (46) is preserved. Nevertheless, the modified Noether
charges are not local. Therefore, it is more useful to derive
the modified Ward identities of the Noether charges of the
pure Schwarzian action which can be obtained from (46)
and (91). Setting CΔ ¼ 1 by choosing ϕ̄r appropriately,
these modified Ward identities are

Q0 ¼ τ0ðuÞ
�
ΔOthðτðuÞÞ

dJthðτðuÞÞ
dτðuÞ

þ ðΔ − 1ÞJthðτðuÞÞ
dOthðτðuÞÞ

dτðuÞ
�
; ð100Þ

Q0þ ¼ eτðuÞτ0ðuÞ
�
ΔOthðτðuÞÞ

dJthðτðuÞÞ
dτðuÞ

þ ðΔ − 1ÞJthðτðuÞÞ
dOthðτðuÞÞ

dτðuÞ
�
; ð101Þ

Q0− ¼ e−τðuÞτ0ðuÞ
�
ΔOthðτðuÞÞ

dJthðτðuÞÞ
dτðuÞ

þ ðΔ − 1ÞJthðτðuÞÞ
dOthðτðuÞÞ

dτðuÞ
�
; ð102Þ

where

JthðτðuÞÞ ¼ JðuÞτ0ðuÞΔ−1; ð103Þ

OthðτðuÞÞ ¼ OðuÞτ0ðuÞ−Δ: ð104Þ

The time-reparametrization equation (46) itself can be
written in the form

dHðuÞ
du

¼ J0ðuÞOðuÞ ð105Þ

where we can readily identify HðuÞ with the Hamiltonian,
i.e., the Noether charge corresponding to the u-translation
symmetry which is broken explicitly in the presence of
JðuÞ. This Hamiltonian explicitly is

HðuÞ ¼ SchðtðuÞ; uÞ − ðΔ − 1ÞJðuÞOðuÞ

¼ SchðτðuÞ; uÞ − 1

2
τ0ðuÞ2

− ðΔ − 1Þτ0ðuÞJthðτðuÞÞOthðτðuÞÞ: ð106Þ

Above, we have used (60). It is to be noted that each of the
four Ward identities, namely (100), (101), (102) and (105)
implies the equation of motion (46) for τðuÞ and has no
content otherwise. Nevertheless, we will be able generate
time-dependent solutions via exploiting the integral forms
of the three Ward identities (100), (101) and (102). The
Ward identity (105) will provide a consistency check and
accuracy test for numerics.
In order to proceed further, we will need to understand

how to obtainOðuÞ self-consistently from JðuÞ. If we know
tðuÞ for u < u0, then (47) tells us how to obtain OðuÞ. The
problem is that the integral in (47) can only be defined via
an appropriate analytic continuation for which it is neces-
sary to first go to frequency space—this will be a
cumbersome procedure for a nontrivial tðuÞ which is not
linear or a simple function of u.
This difficulty can be readily circumvented via JthðτðuÞÞ

and OthðτðuÞÞ defined in (103) and (104). These are the
scalar source and response respectively corresponding to
the bulk scalar field χ living in the metric (52) with
MðuÞ ¼ 1 and with boundary time τðuÞ as discussed
before. In these coordinates, the form of the Klein-
Gordon equation is simply a special case of that given
by (72) and (73) with MðτÞ ¼ 1, i.e.,

∂ρðdþχÞ þ
ΔðΔ − 1Þ

2ρ2
χ ¼ 0 ð107Þ

where
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dþ ¼ ξ ·∇; with ξρ ¼ −
1

2
ð1 − ρ2Þ; ξτ ¼ 1: ð108Þ

With an input of JthðτÞ obtained from (103) and initial
conditions χðρ; τ ¼ 0Þ, we can readily solve this equation
via the method of characteristics to obtainOthðτÞ. From the
latter, we can extract OðuÞ if needed utilizing (104).
To see how this works explicitly, we take the specific

case of Δ ¼ 5=4. It is useful to first define

dþχ ≔ dþχ −
1

8
JthðτÞρ−5

4 −
5

8

dJthðτÞ
dτ

ρ−
1
4 ð109Þ

because dþχ has a nonsingular asymptotic expansion

dþχ ≈ −
5

8
OthðτÞρ1

4 ð110Þ

near ρ ¼ 0. We note that

∂τχ ¼ dþχ þ
1

2
ð1 − ρ2Þ∂ρχ þ

1

8
JthðτÞρ−5

4 þ 5

8

dJthðτÞ
dτ

ρ−
1
4:

ð111Þ

Furthermore, the equation of motion for dþχ is

∂ρdþχ þ
5

32ρ2

�
χ − JthðτÞρ−1

4 −
dJthðτÞ
dτ

ρ
3
4

�
¼ 0; ð112Þ

so that

dþχðρ; τÞ ¼ −
Z

ρ

o
dρ1

5

32ρ21

�
χðρ1; τÞ − JthðτÞρ−

1
4

1

−
dJthðτÞ
dτ

ρ
3
4

1

�
: ð113Þ

Crucially the integral above on the right-hand side is finite.
Therefore, if we are given an initial profile χðρ; τ ¼ τinÞ and
we also know JthðτÞ for all τ < τ0, we can readily obtain
OthðτÞ for all τ < τ0 as follows. First, given χðρ; τ ¼ τinÞ at
initial time, we can use (113) to generate dþχ. From the
latter, we can obtain ∂τχ at initial time utilizing (111). The
knowledge of ∂τχ then allows us to propagate χ to the next
time instant. We can thus continue and generate χðρ; τÞ
along with dþχðρ; τÞ up to the instant we know JthðτÞ
exactly. Furthermore, the asymptotic expansion (110)
allows us to extract OthðτÞ.
We are now ready to describe our algorithm for

finding τðuÞ for a given JðuÞ. This relies primarily on
the integrated form of the following Ward identities (100),
(101) and (102):

QðuÞ −QðuinÞ ¼
Z

τðuÞ

τðuinÞ
dτ1

�
ΔOthðτ1Þ

dJthðτ1Þ
dτ1

þ ðΔ − 1ÞJthðτ1Þ
dOthðτ1Þ

dτ1

�
; ð114Þ

QþðuÞ −QþðuinÞ ¼
Z

τðuÞ

τðuinÞ
dτ1eτ1

�
ΔOthðτ1Þ

dJthðτ1Þ
dτ1

þ ðΔ − 1ÞJthðτ1Þ
dOthðτ1Þ

dτ1

�
; ð115Þ

Q−ðuÞ −Q−ðuinÞ ¼
Z

τðuÞ

τðuinÞ
dτ1e−τ1

�
ΔOthðτ1Þ

dJthðτ1Þ
dτ1

þ ðΔ − 1ÞJthðτ1Þ
dOthðτ1Þ

dτ1

�
: ð116Þ

Our algorithm then consists of the following steps:
(1) Given initial values of τðuinÞ and the three SLð2; RÞ

charges, we can extract τ0ðuinÞ using (93) and τ00ðuinÞ
using (94).

(2) From τ0ðuinÞ and known JðuÞ, we can extract
JthðτðuinÞÞ using (103) and then dJth=dτ at τðuinÞ
since we also know τ00ðuinÞ.

(3) Given initial profile of χ (more on this later), Jth and
dJth=dτ at τðuinÞwe extract the initial profile of dþχ.

(4) We then obtain OthðτÞ at τðuinÞ using (110).
(5) We can now update the three SLð2; RÞ charges

corresponding to the next time instant using
(114), (115), (116).

(6) We propagate τ to the next time instant using τ0ðuinÞ.
Furthermore, we propagate the radial profile of χ to
the next time instant utilizing ∂τχ which can be
extracted from known dþχ via (111).

(7) We repeat all steps above at the next time instant.
It is to be noted that we are always evolving the bulk scalar
field in a geometry whose boundary time is τðuÞ and not u
itself and corresponding to MðuÞ ¼ 1 black hole. This
however requires constant remapping of the source and also
the response as discussed above. The integrated form of the
Ward identity (105)

HðuÞ −HðuinÞ ¼
Z

u

uin

du1J0ðu1ÞOðu1Þ ð117Þ

can be used to check the accuracy of the numerics. For
doing this, we will need to extract OðuÞ from OthðτðuÞÞ
using (104).
Instead of specifying the initial values of the three

Noether charges along with τðuinÞ, we could have provided
τ0ðuinÞ, τ00ðuinÞ and τ000ðuinÞ. Then one can use our algorithm
by initializing the values of the Noether charges via (88). It
is more physical to provide the initial values of the Noether
charges though.

JOSHI, MUKHOPADHYAY, and SOLOVIEV PHYS. REV. D 101, 066001 (2020)

066001-12



The presence of a source JðuÞ essentially has two
physical effects: (i) it makes the Hamiltonian H time
dependent, and (ii) it also varies the SLð2; RÞ frame along
with the Hamiltonian by making all Noether charges (88)
time dependent and implying that even if the system settles
down in the far future with a constant value of the
Hamiltonian, the SLð2; RÞ frame will still be generically
different from the initial one. The difference between initial
and final SLð2; RÞ frames can be detected via long-time
correlations between far past and far future.
However, only the relative difference between the initial

and final SLð2; RÞ frames is physical because a time-
independent SLð2; RÞ transformation of the full solution
(which also changes initial data) will surely have no
physical effect.
At any point of time, since we know the three Noether

charges we can use (98) to obtain the instantaneous values
of the three parameters βðuÞ, θðuÞ and ϕðuÞ. Substituting
these instantaneous values in (99) and matching the
right-hand side with τðuinÞ at u ¼ uin, we can determine
the instantaneous ηðuÞ as well. It is to be noted that we are
not promoting β, θ, ϕ and η to time-dependent variables
in (99).6 Rather we are matching with this form at every
instant independently to extract the instantaneous values
of the four parameters βðuÞ, θðuÞ, ϕðuÞ and ηðuÞ.
Representing the instantaneous functional form of τðuÞ
via these four parameters helps us to track the change
in SLð2; RÞ frame of the pure AdS2 boundary time tðuÞ,
which is encoded by θðuÞ and ϕðuÞ, along with ηðuÞ and
the value of the SLð2; RÞ invariant Sch which is given
by Sch ¼ −2π2=βðuÞ2.
The class of problems we will examine in the next

subsection will correspond to perturbing a preexisting
thermal state by a scalar source which decays sufficiently
fast in time. In this case, the minimally coupled bulk scalar
fields will vanish initially in absence of sources as other-
wise they will have singular profiles. Therefore, we will
choose initial conditions where χ vanishes on the initial
time surface—if chosen sufficiently far in the past, then it
will be so in any bulk coordinate system. Furthermore, due
to the presence of SLð2; RÞ symmetry, we can always set
initial temperature to be 1=ð2πÞ [i.e., βðu → −∞Þ ¼ 2π
and Mðu → −∞Þ ¼ 1 in the bulk] and furthermore τðu →
−∞Þ ≈ u can be set initially by an appropriate time-
independent SLð2; RÞ transformation as discussed before.
This will also imply that if uin is in the far past we can
choose

τðuinÞ¼uin; QðuinÞ¼−1; QþðuinÞ¼Q−ðuinÞ¼0:

ð118Þ

An alternative algorithm: The reader has possibly
already noted that we could have followed an alternative
route where we need not have conformally mapped the
source JðuÞ to that of a state with a constant temperature. In
this case, we could have used the bulk geometry (51)
updating MðuÞ ¼ −2Sch ¼ Q2 −QþQ− along with the
SLð2; RÞ charges. The Klein-Gordon equation in this
geometry given by (72) and (73) features only MðuÞ but
not its derivative. Therefore, we can solve the Klein-
Gordon equation in these coordinates with the physical
source JðuÞ and thus obtainOðuÞ directly via the method of
characteristics. However, it turns out that especially in the
semiholographic case, Jth and Oth give us useful insights.
The alternative algorithm however is useful for obtaining
the profile of the bulk dilaton utilizing (81). This alternative
algorithm also serves the purpose of cross-checking
numerical results.

C. A typical pumped state in NAdS2 holography

We study the typical case of a Gaussian source JðuÞ
which couples to an operatorOðuÞwithΔ ¼ 5=4 following
the algorithm mentioned before. As mentioned, we choose
the mass of the preexisting black hole to have unit mass and
without loss of generality the standard SLð2; RÞ frame
where only Q is nonzero.
The chosen Gaussian source JðuÞ is shown in Fig. 1(a).

We plot the resulting OðuÞ in Fig. 1(b). After conformal
mapping to the state with constant temperature 2π, the
source JthðτðuÞÞ and the response OthðτðuÞÞ are as shown
in Fig. 1(c) and Fig. 1(d) respectively. We readily observe
that the conformal mapping hardly alters the source and the
response.
The time dependence of the black hole mass and the

SLð2; RÞ charges are as shown in Fig. 2(a) and Fig. 2(b)
respectively. Although the black hole mass does not change
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FIG. 1. Sources and responses: As expected, the responses die
down at late time once the sources vanish. (a) Plot of JðuÞ. (b) Plot
of OðuÞ. (c) Plot of JthðτðuÞÞ. (d) Plot of OthðτðuÞÞ.

6If we do so, then η will be a fixed constant determined by
τðuinÞ and the initial values of the three Noether charges, and not
a time-dependent variable.
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monotonically just as in the case of higher dimensional
analogues, the final black hole mass is significantly bigger
than the initial black hole mass. Also the final SLð2; RÞ
frame is different from the initial one. This SLð2; RÞ
rotation is physically measurable although with some
difficulty as it would require measurement of correlation
functions Gðu; u0Þ with very large u − u0 and with ðuþ
u0Þ=2 fixed to values when J is large. We thus explicitly
find that the quench (pump) leads to formation of soft hair
on the black hole represented by SLð2; RÞ frame rotation.
The SLð2; RÞ charges imply that τ0, τ00 and τ000 behave as

shown in Fig. 3. Remarkably, τ saturates to a constant, so
that the map of the time of the physical state to that of the
fixed temperature state has a finite endpoint. We observe
that τ0 is always positive (ensuring that the map to the time
of the fixed temperature state is causal) and τ00 is always
negative.
Verification of the second law: The quantum quench

leads to a transition between two static configurations for
both the bulk metric and the bulk dilaton. Therefore, the
arguments presented in Sec. II E imply that the second law

should hold, i.e.,ΦðλÞ should increase monotonically along
any smooth null curve with affine parameter λ. We should
choose an appropriate null curve with which wewill be able
to interpolate between the initial and final thermal entropies
monotonically. Such an appropriate choice is the event
horizon, the smooth null curve (geodesic) interpolating the
initial and final horizons at rh� ¼ 1=

ffiffiffiffiffiffiffiffi
M�

p
where M� are

the final (initial) black hole masses. Evidently from
Eq. (51), this event horizon can be obtained by solving

dr
du

¼ 1

2
ðMðuÞr2 − 1Þ ð119Þ

with the boundary condition that rðu → ∞Þ ¼ 1=
ffiffiffiffiffiffiffiffi
Mþ

p
.

Note the event horizon is not determined causally because
the final black hole mass Mþ is determined by the full
history of the quenching protocol.
The dilaton profile Φðr; uÞ during the quench can be

readily computed following the algorithm mentioned in the
previous subsection. At u → �∞ it is however easy to
see from (81) that Φðr; u ¼ �∞Þ ¼ 3=ð2rÞ because the
bulk scalar χ vanishes. Therefore the value of Φ on the
horizon interpolates between Φ� ¼ 3=ð2rh�Þ where rh� ¼
1=

ffiffiffiffiffiffiffiffi
M�

p
is the location of the horizon at u → �∞when the

black hole masses are M�. Furthermore, M� ¼ π2=β2� ¼
π2T2

� with T� being the final (initial) temperatures. It
follows that Φ� ∝ ð3=2ÞðπT�Þ. Identifying the on-shell
gravitational (Schwarzian) action with the free energy, we
can readily see that the entropy S� ∝ T� as should be the
case [3].
Computing Φðr; uÞ via our numerical algorithm and

plotting it on the horizon (119), we obtain Fig. 4. It is clear
then that the entropy grows monotonically from the initial
to the final thermal value. Note that the entropy starts
growing much before the quench is significant (around
u ¼ 0). This peculiarity is due to the noncausal nature of
the event horizon on which the dilaton is evaluated.

2 0 2 4 6 8 10

0.60

0.58

0.56

0.54

0.52

0.50

u

sc
h

2 0 2 4 6 8 10

1.0

0.8

0.6

0.4

0.2

0.0

u

(a)

(b)

FIG. 2. The time dependence of the black hole mass and the
SLð2; RÞ charges. (a) Plot of Hsch ¼ −1=2MðuÞ This plot is very
similar to the case of quenches in higher dimensional holographic
systems whereMðuÞ grows but not monotonically. (b) Plot of the
SLð2; RÞ charges as a function of time: Note that the final
SLð2; RÞ frame is different since Q� are non-vanishing.
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FIG. 3. The plot of τðuÞ, which maps the time of the physical
state to that of the fixed temperature state, and its derivatives. The
generic result is that τðuÞ saturates to a constant and its derivatives
vanish.
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Finally, we note that quantum quenches in SYK model
have been studied in [33,34]. However, we consider
different types of deformations here. It will be interesting
to obtain our results using field-theoretic tools.

IV. A SEMIHOLOGRAPHIC MODEL FOR
TRAPPED IMPURITIES

A. Our model

We will construct a simple semiholographic model for
confined impurities and their mutual strong interactions.
The time-dependent position X⃗ðuÞ of an impurity can be
treated as an extra field in the effective 0þ 1-D theory.
When the orbital angular momentum vanishes, the motion
is one-dimensional. Here we will restrict ourselves to this
simple situation.
In our model, the strongly interacting NAdS2 holo-

graphic sector depicts the dual infrared dynamics of the
localizedmutual interactions of the impurities confined at the
originXðuÞ ¼ 0. Themotion in space of a displaced impurity
can be thought of as a deformation of theNAdS2 holographic
theory with XðuÞ representing a self-consistent external
source. The center of the force XðuÞ ¼ 0 from the point of
view of theNAdS2 holographic sector is then the value of the
source for which the deformation to the Schwarzian action
vanishes. SinceXðuÞ itself follows Newtonian dynamics, the
whole description is semiholographic [15,17], i.e., hologra-
phy with a self-consistent dynamical source at the boundary
and with a total conserved energy.
The effective string tension of the confining force is thus

the self-consistent expectation value of an operatorO in the
NAdS2 holographic theory. The confining potential there-
fore takes the form

V ¼ λOðuÞXðuÞ ð120Þ

where λ is a dimensionful hard-soft coupling constant.
Then λXðuÞ should be identified with the source JðuÞ

(non-normalizable mode) of the bulk scalar field χ dual to
the operator OðuÞ. Requiring that the holographic theory
suffers only an irrelevant deformation about the Schwarzian
action and that it retains SLð2; RÞ invariance in the large N
limit (classical gravity approximation) imply that OðuÞ
must have scaling dimension Δ such that 1 < Δ < 3=2.
The mass of the dual bulk field χ should satisfy 0 < m2l2 <
3=4 sincem2l2 ¼ ΔðΔ − 1Þwith l being the radius of AdS2
(we set l ¼ 1), and its asymptotic expansion should be

χðr; uÞ ≈ λXðuÞr1−Δ þ � � � : ð121Þ

We will now construct the full self-consistent dynamics
such that a total conserved energy exists. Let us start with
the boundary field XðuÞ. Newton’s law corresponding to
the potential (120) readily gives

miX00ðuÞ ¼ −λOðuÞ ð122Þ

where mi is the mass of the impurity. Then the kinetic
energy is

Hkin ¼
1

2
miX0ðuÞ2; ð123Þ

which satisfies

H0
kin ¼ −λOðuÞX0ðuÞ: ð124Þ

The algorithm for determining OðuÞ along with the time
reparametrization τðuÞ [equivalently the mass MðuÞ of the
AdS2 black hole] has been discussed before. Assembling
our previous results, we quote the equation of motion (105)
for τðuÞ�
SchðτðuÞ; uÞ − 1

2
τ0ðuÞ2 − λðΔ − 1ÞXðuÞOðuÞ

�0

¼ λOðuÞX0ðuÞ: ð125Þ

Above OðuÞ should be obtained self-consistently by
solving the Klein-Gordon equation in the AdS2 black
hole background (52) with MðuÞ ¼ 1 but with source
specified by

XthðτðuÞÞ ¼ XðuÞτ0ðuÞΔ−1: ð126Þ

The response to this source isOthðτðuÞÞ from which we can
extract OðuÞ utilizing the relation

OðuÞ ¼ OthðτðuÞÞτ0ðuÞΔ: ð127Þ

Equations (122) and (125) thus completely specify the
semiholographic dynamics.
We readily note that (124) and (125) imply the existence

of a total conserved energy Htot satisfying
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FIG. 4. The dilaton grows on the black hole event horizon
monotonically within numerical accuracy interpolating between
the thermal limits at early and late times.
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H0
tot ¼ 0; ð128Þ

and which is explicitly given by

Htot¼HkinþSchðτðuÞ;uÞ−1

2
τ0ðuÞ2−λðΔ−1ÞXðuÞOðuÞ

¼Hkin−
1

2
MðuÞ−λðΔ−1ÞXðuÞOðuÞ: ð129Þ

In the second line, we have used (61) relating MðuÞ and
τðuÞ.7 We readily see that the terms other than Hkin can be
interpreted as a self-consistent effective potential:

Veff ¼ −
1

2
MðuÞ − λðΔ − 1ÞXðuÞOðuÞ: ð130Þ

The action of the full system from which all equations of
motion i.e., (122) and (125) follow is thus

S ¼ 1

16πG

Z
du

1

2
miX02 − Sgravon−shell½JðuÞ ¼ λXðuÞ� ð131Þ

where Sgrav is given by (64). This action should be viewed
as a functional of XðuÞ and tðuÞ. Noting that

16πG
δSgrav
δXðuÞ ¼ 16πG

δSgravon−shell
δJðuÞ

δJðuÞ
δXðuÞ ¼ λOðuÞ

we readily find that extremizing (131) with respect to XðuÞ
yields the Newtonian equation (122). On the other hand,
extremizing Sgravon−shell with respect to tðuÞ yields (125) as we
have noted before.
The relative sign between the two terms in the full action

given by Eq. (131) can look strange. However, as explained
in [35], this relative sign appears in the context of effective
JT gravities when we trade in kinetic energy of an
extraneous degree of freedom for an effective potential
energy (see Appendix A of [35] for a cogent explanation
using the analogy of the classic central force problem). In
our case, the full action can be regarded as the action on the
worldline of the displaced impurity with the gravitational
NAdS2 system providing a self-consistent effective poten-
tial energy. Our full action has a higher dimensional origin
like the examples discussed in [35] but note that it cannot
be embedded in a higher dimensional holographic setup.
The equilibrium solution for the above problem is

XðuÞ ¼ 0 where the confining force vanishes8 and in which
the bulk is thermal at the ambient medium temperature so
that MðuÞ is a constant. The bulk scalar vanishes as does

OðuÞ. Our initial conditions are set by such an equilibrium
configuration. To usher in time dependence, we consider
an impulse generated by an external force FðuÞ which
originates from a fluctuation in the medium where the
impurities are living and which is of the form of a delta
function,9 i.e.,

FðuÞ ¼ miv0δðu − u0Þ: ð132Þ

The equation for XðuÞ given by (122) should then be
replaced by

miX00ðuÞ ¼ FðuÞ − λOðuÞ: ð133Þ

The full system exists in the equilibrium configuration for
u < u0. At u ¼ u0, the impulse generated by FðuÞ will
impart a finite velocity X0ðu0Þ ¼ v0 thus infusing energy
into the system. The total energyHtot given by (129) will be
conserved for u > u0 when FðuÞ vanishes. Setting the
initial temperature to β−1 ¼ 1=ð2πÞ as before by utilizing
scaling symmetry and mi ¼ 1 for convenience, the time
evolution will be determined by the parameters v0 and the
hard-soft coupling λ.
We can solve for τðuÞ and OðuÞ following our algorithm

as detailed in Sec. III B. The only difference is that unlike
before the source XðuÞwill not be a predetermined function
but should be coevolved according to (133). As noted
before, we are free to choose our initial SLð2; RÞ frame
because an overall time-independent SLð2; RÞ transforma-
tion of the full solution of tðuÞ [and therefore τðuÞ] has no
physical effect on the observables. Therefore, we choose
the initial SLð2; RÞ charges and also τðuÞ according to
(118). Additionally, in the detailed seven step algorithm
described in Sec. III B, we simply add a new step between
the sixth and seventh: we update XðuÞ using the known
X0ðuÞ at the previous instant and update X0ðuÞ according to
(133) using OðuÞ at the present instant at each time step.
For concreteness, we will set the scaling dimension Δ of O
to be 5=4. Wewill also assume that v0 > 0 because wewant
to investigate how far the impurity can be pushed from the
center of the confining force.
Furthermore, it is not difficult to see that the sign of λ is

not relevant in our model. Note that the action of the bulk
scalar field is quadratic. Since the source of the bulk scalar
is JðuÞ ¼ λXðuÞ, it follows that the response OðuÞ will be
odd in λ. Furthermore the interaction term λXðuÞOðuÞ, the
confining force λOðuÞ in (122), etc. are then even in λ. We
can therefore choose λ > 0 without loss of generality.7Note in order to have the right dimensionsMðuÞ should really

be MðuÞc2IR in (129) where cIR is the effective velocity for causal
propagation in the infrared sector and is not necessarily the speed
of light. We use the natural units cIR ¼ 1 here.

8If XðuÞ ≠ 0, it will generate OðuÞ via the Klein-Gordon
equation for the dual bulk scalar field.

9It has been shown in [36] that under similar circumstances the
delta function limit where the width of a narrow Gaussian
vanishes keeping the impulse fixed can be taken smoothly in
numerical holography.
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B. Nonequilibrium phase transitions

We explore the semiholographic model described above
numerically by varying the initial velocity v0 and the hard-
soft coupling λ. For the following discussion, we will split
the total conserved energy Htot in (129) into (i) the kinetic
energy of the particleHkin as defined in (123), (ii) the black
hole mass term Hsch ¼ −1=2MðuÞ and (iii) the hard-soft
interaction energy Hint ¼ −λðΔ − 1ÞXO ¼ −λ=4XO.
As far as we have investigated, we find that for any value

of v0 and λ, the mass of the hole MðuÞ increases (i.e., Hsch
decreases), and the interaction energy Hint is positive at
early time. It then follows from total energy conservation
that the particle kinetic energy Hkin increases initially, i.e.,
the particle undergoes acceleration. Remarkably, the mass
of the black holeMðuÞ always goes to zero at very late time
and the total energy is fully transferred either to the particle
kinetic energy Hkin or to the interaction energy Hint which
reduces to a self-consistent confining potential energy.
Furthermore, the particle always decelerates at late time.

When the final total energy transfer goes to its kinetic
energy, it reaches a terminal velocity vf which is less than
its initial velocity v0. Energy conservation implies that

1

2
miv2f ¼ 1

2
miv2i −

1

2
Mo; ð134Þ

wheremi is the mass of the particle (impurity) andM0 is the
initial black holemass. The above relation simply equates the
initial and final total energies and determines vf. (Note that
the initial interaction energy is zero because the particle starts
from the centerX ¼ 0 initially.)When the final transfer of the
total energy goes to the interaction energy Hint, the particle
comes to a full stop as its kinetic energy vanishes.
Which of these two final outcomes is realized simply

follows from the observation that after sufficiently long time,
the interaction energy Hint is always negative. Therefore, it
either goes to zero from belowwhen the final outcome is that
the total energy is transferred to the particle kinetic energy or
saturates to a negative constant if the final outcome is
otherwise. The first outcome is possible if and only if the
total energy is positive since the kinetic energy is always
positive. In the other case, the total energy has to be negative.
Since the initial interaction energy is zero as noted above, the
total (conserved) energy Htot is simply given by

Htot ¼
1

2
miv20 −

1

2
M0 ð135Þ

as the sum of initial values of the kinetic energy and Hsch.
The final outcome of transfer of total energy to the kinetic
energy Hkin then happens when Htot > 0 i.e., for10

v0 >

ffiffiffiffiffiffiffi
M0

mi

s
: ð136Þ

The other final outcome of transfer of total energy to the
potential energy Hint occurs when

v0 <

ffiffiffiffiffiffiffi
M0

mi

s
: ð137Þ

When v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0=mi

p
(i.e., Htot ¼ 0), both Hint and Hkin

vanish at late time along with Hsch. We will say more about
this special case later.
A closer look at the bulk solution reveals a more

interesting phase transition which depends on whether
the mass of the black hole MðuÞ always stays positive
throughout the time evolution, or whether it undergoes one
or more oscillations before it finally goes to zero. The first
case occurs for

v0 > vcðλÞ >
ffiffiffiffiffiffiffi
M0

mi

s
ð138Þ

implying that in this phase the total energy always goes
to the kinetic energy of the particle which therefore
never stops. For v0 < vcðλÞ, the final outcome can then
be either attainment of a terminal velocity or full

stopping depending on whether v0 >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0=mi

p
or other-

wise. The crucial point is that for v0 > vcðλÞ, the mass
of the black hole always remains positive and eventually
vanishes at late time while for v0 < vcðλÞ the mass of the
black hole becomes zero in finite time. In the latter case,
the black hole mass then becomes negative and the
magnitude diminishes monotonically at late time, or the
mass then oscillates about zero at least once before
vanishing at late time.
It is somewhat surprising that although in the pure

holographic case the final mass of the black hole is greater
than its initial mass as we have reported before, in the
semiholographic case the final mass at very long time is
always zero. A similar phenomenon of disappearing horizon
has been observed before in [29].11 In semiholography, the
late-time behavior is not controlled by the quasinormal
modes of the individual systems since the actual collective
modes are hybrid excitations of both systems (see [15] for a
detailed exposition of collective modes in the case of a two10Note that both sectors can have different fundamental speeds

of causal propagation, with cIR < cUV. The nonrelativistic limit
for the boundary dynamics apply when the particle speed is much
less than cUV. Note that below and elsewhere

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0=mi

p
should

actually be
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0=mi

p
cIR. If cIR ¼ cUV, then our model applies

only if M0 ≪ mi.

11The interpretation of this result was attributed to work being
done by the black hole rather than on it, see also [37]. In our case,
a similar interpretation is naturally obtained via the virtue of total
energy conservation.
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fluid system).12 This is why the long-term behavior of a
semiholographic system can be very different from that of a
purely holographic system.
However in higher dimensions, a similar simulation

shows that if the boundary fields do not have many degrees
of freedom and only scalar hard-soft couplings are present,
the black hole sucks up all the energy depleting the

boundary sources [16]. The case of JT gravity is peculiar
and we also note that it cannot be embedded in a higher
dimensional setup as the dilaton does not couple to matter
directly.

1. An illustrative example of phase one behavior

Here we will study the case of v0 ¼ 2.0 for λ ¼ 0.4 as
an example of phase one behavior. In this example, the
mass of the black hole is positive definite and it vanishes
at long time. So Hsch is negative definite and it goes to
zero from below. Plots of Hkin, HschðuÞ and HintðuÞ are
shown in Fig. 5(a). Indeed one observes that Hsch and
Hint both vanish at long time while Hkin stabilizes
conserving total energy. It is instructive to study the
time dependence of the (gravitational) SLð2; RÞ charges
as shown in Fig. 5(b)—all of them diverge at long time
although the Casimir, which is proportional to the black
hole mass, goes to zero. We show below that the late-
time behavior of the SLð2; RÞ charges is captured via an
SLð2; RÞ invariant exponent from which we can recover
the knowledge of the initial conditions for the particle at
the boundary.
We also plot XðuÞ and XthðτðuÞÞ in Fig. 6(a), OðuÞ in

Fig. 6(b) and OthðτðuÞÞ in Fig. 6(c). We find that XðuÞ
attains a terminal velocity i.e., grows linearly at late
time although remarkably the physical response OðuÞ
determining the string tension in the confining force
vanishes fast enough so that the product XðuÞOðuÞ and
hence Hint also vanishes. In contrast, neither XthðτðuÞÞ
nor OthðτðuÞÞ decays at late time, but Hint is propor-
tional to τ0XthOth and in this picture its decay is ensured
by the behavior of τ0. Also note that OðuÞ stays positive
after some initial time so that the force on the impurity
[see Eq. (122)] is indeed confining in the long run and
the interaction energy Hint goes to zero from below as
previously claimed.
The bulk metric which corresponds to the observer’s

time takes the form (51) in the ingoing Eddington-
Finkelstein coordinates r and u with MðuÞ ¼ −2HschðuÞ.
The profile of the dilaton Φðr; uÞ can be readily obtained
following the method of Sec. II E (see also the discussion
on the alternative numerical algorithm in Sec. III B). The
dilaton remains finite in the entire physical patch covered
by the ðr; uÞ coordinates as far as we have studied.13 It turns
out that the dilaton vanishes at a locus in the interior. One
may think that the locus where the dilaton vanishes could
also be a singularity since the effective Newton’s constant
diverges there. We do not think this to be the case in our
model of JT gravity. Since the dilaton does not couple to
matter and gravity has no bulk propagating mode, the
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FIG. 5. The plots for energies and SLð2; RÞ charges for v0 ¼
2.0 and λ ¼ 0.4. (a) Plot of energies as function of time: Note that
the total energy Htot ¼ Hkin þHint þHSch is conserved after the
initial impulse and is finally transferred to Hkin, the particle
kinetic energy. The mass of the black hole M ¼ −2Hsch remains
positive and decays to zero eventually. (b) Plot of the SLð2; RÞ
charges as a function of time in the first phase. Although all of
them diverge at late time, their Casimir (and thus the black
hole mass) vanishes.

12Also note that quasinormal mode in holography results
from imposing both the Dirichlet boundary condition at
asymptotia and the infalling boundary condition at the
horizon. In semiholography, the Dirichlet boundary condition
is not imposed. Instead it is specified by the dynamics of the
self-consistent source. Therefore, the late-time behavior
should not be determined by the usual quasinormal mode.
In fact, if the quasinormal mode governed the late-time
behavior, then OðuÞ could not have vanished when XðuÞ
grows linearly at late time in the case of the first phase. Then
Hint also could not have decayed at late time in the first
phase as observed.

13In order to understand the behavior at r ¼ ∞, it is instructive
to change to ρ, τ coordinates where it gets mapped to ρ ¼ −τ02=τ00
according to (53). Referring to Fig. 7(a) we note that −τ02=τ00 > 0
always.
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vanishing of Φ does not lead to any singular propagator.
There are of course physical fluctuations of the
Schwarzian part of the action (leading to so-called
boundary gravitons) but its prefactor is the constant ϕ̄r
and it is well behaved even if Φ vanishes in the interior.

Furthermore, the bulk mutter fluctuations couple to these
boundary gravitons only.14

It is interesting to ask how the physical patch covered by
the r, u coordinates fit in the Poincaré patch covered by the
Fefferman-Graham coordinates. We readily find that
r ¼ ∞ is within the Poincaré patch. Referring to
Eqs. (53) and (55) we find that r ¼ ∞ maps to

z ¼ GðuÞ;

GðuÞ ¼ 1

2

�
tanh

�
τðuÞ
2

þ arctanh

�
−
τ0ðuÞ2
τ00ðuÞ

��

− tanh

�
τðuÞ
2

��
: ð139Þ

As evident from Fig. 7(a), τðuÞ saturates to a constant at
large time while τ0, τ00 and τ000 decay to zero quite similarly
to the case of the pure holographic quench. Also, τ0 is
always positive (otherwise the map to the time of the fixed
temperature state would not have been causal), τ00 is always
negative, and finally τ02=τ00 is always negative and decays to
zero at large time as well [see Fig. 7(b)]. As a result,GðuÞ is
always finite and vanishes at very long time [see Fig. 7(c)].
Therefore, r ¼ ∞ eventually reaches the boundary.
Our solution raises an interesting question: given that the

black hole evaporates classically without producing any
pathology in the classical gravitational fields, how can we
recover the information of the initial conditions from the
asymptotic late-time behavior. As evident from Fig. 5(b),
all SLð2; RÞ charges diverge at late time while their Casimir
vanishes. We can fit the late-time behavior to an exponen-
tial proportional to expðauÞ extremely well (with an
adjusted R square ¼ 0.99). It turns out that all SLð2; RÞ
charges (and thus any linear combination of them) grow
exponentially with the same exponent a. This indeed
implies that the Casimir (proportional to Q2 −QþQ−)
vanishes at late time. We conclude that the exponent a
is SLð2; RÞ invariant and an observable.15 The initial
conditions are labeled by two parameters: (i) the velocity
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FIG. 6. The plots of sources and responses for v0 ¼ 2 and
λ ¼ 0.4. (a) Plot of XðuÞ and XthðτðuÞÞ as functions of time. Note
XðuÞ eventually reaches linear growth regime implying that the
particle reaches a terminal velocity. XthðτðuÞÞ, the source con-
formally mapped to a black hole of unit mass, saturates to a
constant. (b) Plot of OðuÞ as a function of time. The eventual
rapid decay of OðuÞ ensures that Hint α XðuÞOðuÞvanishes at
long time. (c) Plot of OthðτðuÞÞ: Note as XthðτðuÞÞ saturates,
OthðτðuÞÞ grows with time. However, the rapid decay of 0 ensures
that Hint α τ0ðuÞXthðτðuÞÞOthðτðuÞÞ also decays in this frame.

14Note the same could also be said if the dilaton diverges at a
locus in the bulk because an infalling particle which does not
couple to the dilaton will not see this singularity. Pathologies, if
any, will only be visible by the time-reparametrization function.
As far as we are aware, all our solutions are nonpathological and
also such singularities are absent in the physical patch.

15Note that we can measure τðuÞ up to an overall time-
independent SLð2; RÞ transformation simply via a probe coupling
to an operator Õ of the NAdS2 holographic theory. The retarded
two-point function of Õ can be obtained from the linear response
by varying the moment of probing in each repeat of the experi-
ment—this yields τðuÞ via the conformal map of this propagator
to a thermal state with β ¼ 2π. Irrespective of the initial SLð2; RÞ
frame which can be changed via time-independent SLð2; RÞ
transformation on τðuÞ, any linear combination of the late-time
SLð2; RÞ charges will exponentially diverge as expðauÞ with the
same invariant exponent a.
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v0 and (ii) the initial mass of the black hole. The total
conserved energy determines vf, the terminal velocity of
the particle as discussed above. We can then expect that the
initial conditions can be recovered completely from the

exponent a. This is indeed the case as shown in Fig. 8
where we have plotted how a changes with v0 for a fixed
unit initial mass of the black hole. The plot suggests that a
grows monotonically with v0. It will be interesting to study
the sensitivity of the final state to initial conditions in this
context. We leave this for the future.

2. Illustrative examples of phase two behavior

The second phase appears for v0 < vcðλÞ. In this case the
mass of the black hole changes sign after finite time before
vanishing asymptotically. The total energy is transferred
fully to the kinetic energy of the particle or to the confining
potential energy depending on whether the total energy is
positive or negative, respectively. We first study the
representative case of v0 ¼ 0.9 and λ ¼ 0.4 when the total
conserved energy is negative. In this case, the mass of the
black hole indeed becomes zero after finite time and then
becomes negative (i.e., Hsch becomes positive) before
vanishing at long time as shown in Fig. 9(a). The kinetic
energy of the particle goes to zero at late time implying that
the particle comes to a full stop after traveling a finite
distance, and the total energy gets transferred instead to
Hint, the self-consistent confining potential energy. The
gravitational SLð2; RÞ charges saturate to constant values in
the far future as shown in Fig. 9(b). We observe that
although the SLð2; RÞ charges behave differently from the
previously discussed example, τ, τ0, τ00, τ000 and G behave
similarly as functions of u.
We readily observe from Fig. 10(a) that XðuÞ saturates to

a finite value at large time implying full stopping. Also
OðuÞ saturates to a finite value at long time [see Fig. 10(b)]
so that indeed Hint ¼ −ðλ=4ÞXO can also become a
constant at long time. On the other handOthðτðuÞÞ diverges
[see Fig. 10(c)] but since τ0 decays faster, it is consistent
with the product Hint ¼ −ðλ=4Þτ0XthOth going to a con-
stant. Note that OðuÞ is positive at long time and the final
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FIG. 8. a, the exponent for late-time growth of SLð2; RÞ
charges as a function of v0 for λ ¼ 0.4 and fixed unit initial
mass of the black hole. Note that a grows monotonically with v0.
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FIG. 7. Here v0 ¼ 2.0 and λ ¼ 0.4. (a) Plots of τ; τ0; τ00 and τ000
vs u. Due to our choice of initial SLð2; RÞ frame, τ0 ¼ 1 (so τ is
linear in u) for u < 0 (before the kick), while τ00 ¼ τ000 ¼ 0.
Note τ saturates at late time, while all its derivatives vanish. (b)
τ02=τ00 as a function of time. Clearly τ02 decays faster than τ00 with
time. Also τ02=τ00 is always negative since τ00 is so. (c) GðuÞ as a
function of time. The dilaton singularity at r ¼ ∞ maps to z ¼
GðuÞ (see text). This implies that the singularity is far from the
Poincare horizon z ¼ ∞ except at initial time.
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value of confining potential energy is negative as claimed
before.
The case of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0=mi

p
< v0 < vcðλÞ, when the total

conserved energy is positive, is slightly more complicated.
Let us study what happens with λ ¼ 0.5. The case of v0 ¼
2.0 corresponds to the first phase and is similar to what has
been discussed above. When v0 ¼ 1.1, the final transfer of
energy still goes to the kinetic energy of the particle
because we choose

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0=mi

p ¼ 1.0, but Hsch crosses zero
twice before finally vanishing from below as illustrated in
Fig. 12 (see the inset plot). Therefore, for an intermediate
time period the black hole mass is negative.
Our results suggest that for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mi=m0

p
< v0 < vcðλÞ

corresponding to values of v0 for which the total
energy should be transferred finally to the particle kinetic
energy, the mass MðuÞ crosses zero an even number of
times before finally vanishing from above. The case of
v0 ¼ 1.1 just mentioned is illustrated further in Fig. 11. For
v0 <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mi=m0

p
, our results are consistent with odd number

of zero crossings of MðuÞ before its final disappearance.
Interestingly, the case of v0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mi=m0

p
, where Hint, Hkin

and MðuÞ all disappear finally corresponds to a single zero
crossing of MðuÞ. However, we warn the reader that since
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FIG. 10. The plots of sources and responses for v0 ¼ 1.4 and
λ ¼ 0.4. (a) Plot of XðuÞ and XthðτðuÞÞ: Both of them saturate to
constant values at late time. The particle stops at a finite distance
from the origin. (b) Plot of OðuÞ: OðuÞ saturates to a constant
value at late time so that Hint α XðuÞOðuÞ also saturates to a
constant. (c) Plot of OthðτðuÞÞ: Note OthðτðuÞÞ diverges at late
time since XthðτðuÞÞ saturates to a constant value. However,
Hint α τ0ðuÞXthðτðuÞÞOthðτðuÞÞ also saturates to a constant in
this frame because the decay of τ0 compensates for the growth of
OthðτðuÞÞ.
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FIG. 9. The plots for energies and SLð2; RÞ charges for v0 ¼
0.9 and λ ¼ 0.4. (a) Plot of energies as function of time: Note that
the total energy Htot is conserved after initial kick and is finally
transferred toHint, the confining potential energy. The mass of the
black hole M ¼ −2Hsch becomes negative after finite time and
then eventually vanishes at long time. (b) Plot of SLð2; RÞ
charges as a function of time. Note that they saturate to finite
values.
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the amplitude of the oscillation of MðuÞ reduces signifi-
cantly after each zero crossing of MðuÞ, it is not easy to
establish the number of zero crossings definitely numeri-
cally as this will require higher precision and also longer
time simulations. The nature of phase transition between
the two phases merits a detailed study. The order parameter
of this transition is simply the inverse of the crossing time
which is the smallest value u� when Mðu�Þ ¼ 0. Since
MðuÞ never crosses the origin and is positive definite at any
finite value of u for v0 > vcðλÞ, the order parameter
vanishes in the first phase. In the second phase, the order
parameter is finite leading to the vanishing of the black hole
mass at u ¼ u� as discussed above. However, in order to
study the phase transition carefully, we need to simulate the
full system for very long time for v0 close to vc which is a
significant numerical challenge as mentioned above. We
leave this for the future.
In all cases we have studied, the dilaton is well behaved

in the entire physical patch covered by the r and u
coordinates.

C. Remarks on the second law

The eventual vanishing of the black hole mass which is
extracted completely in the form of the particle’s kinetic or
potential energy naturally begets the question of consis-
tency with the second law of thermodynamics. In fact, we
have discussed in Sec. II E that JT gravity possesses a
second law formally and in case of the holographic quench
we have explicitly verified the monotonic growth of
entropy interpolating between the thermal limits at early
and late times, which implies that the final black hole mass
should be greater than the initial value.
In order to track the second law, we first need to find an

appropriate smooth null curve (geodesic). In the case of the
holographic quench, this curvewas the event horizon, which
interpolates between initial and final thermal horizons. In the
present case, it is not possible to define such an event horizon
within the physical patch because the system never thermal-
izes (so a future boundary condition is meaningless) or the
mass of the black hole becomes negative. Instead we can
define a dynamical horizonwhich can be readily stated in the
ρ and τ coordinates of the black holewith fixedmassM ¼ 1,
whichmaps to the physical r andu coordinates via (53). This
choice is simply the horizon of theM ¼ 1 black hole given
by ρ ¼ 1which maps to the horizon of the physical varying
mass black hole solution given by (51) via

r ¼ 1

τ0ðuÞð1þ τ00ðuÞ
τ02ðuÞÞ

: ð140Þ

This dynamical horizon is causal since τðuÞ is causal as well.
Also it coincides with the initial thermal horizon at r ¼ 1.
Therefore, following our earlier discussion, the initial value
of the dilaton on the horizon can reproduce the initial thermal
entropy.
Remarkably, as shown in Fig. 13, we find that the

dynamical horizon rðuÞ runs away to infinity almost at the
same time as the black hole mass stops increasing mono-
tonically as can be observed by comparing with Fig. 12.
Clearly, it is not possible to formulate the second law
beyond this limiting value of u. This is irrespective of
whether the system is in the first or the second phase, i.e.,
whether the black hole mass vanishes with or without
crossing zero after the horizon runs away to r ¼ ∞.16

We note that the r and u coordinates are actually a double
cover of the physical patch simply because r → −r keeps the
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FIG. 12. Different phases for λ ¼ 0.5 as can be seen from the
behavior of MðuÞ ¼ −2HschðuÞ for various choices of initial
velocities. The inset plot shows that multiple crossings of zero is
possible for MðuÞ when the total conserved energy is positive.
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FIG. 11. The four energies in the case of v0 ¼ 1.1 and λ ¼ 0.5.
The double crossing of Hsch about zero is hard to discern here, so
one can refer to the inset plot in Fig. 12. The final transfer of
energy goes to the kinetic energy of the particle.

16It turns out that in case of the holographic quench, the
dynamical horizon (140) runs away to infinity in finite time as
well. However, we can utilize the event horizon that cannot be
meaningfully defined in the semiholographic case. This runaway
behavior in the holographic case can be associated to the
formation of SLð2; RÞ hair, which is the relative SLð2; RÞ frame
rotation between the initial and final thermal states (it is an
observable as mentioned before). This is similar to the semi-
holographic case where the runaway is associated to subsequent
approach to a quantum attractor that can be characterized by an
SLð2; RÞ invariant exponent as discussed below.
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metric (51) invariant. This other sheet, where r is negative, is
actually not physical—the dilaton is complex here. As
shown in Fig. 13, after the horizon runs away to r ¼ ∞,
it reemerges in this nonphysical patch. It is also important to
note that since the states of the theory belong to the coset
space Diff=SLð2; RÞ, it is important to choose bulk coor-
dinates which coincide with the physical time u at the
boundary. Therefore the horizon should be studied in the
ingoing Eddington-Finkelstein r and u coordinates (and not
the ρ and τ coordinates of the fixed unit mass black hole).
It has been shown in [15] that in semiholographic setups

there exists a second law for the full system provided there
exists entropy currents in each individual (perturbative and
holographic) subsystems. In the special case where only one
highly energetic degree of freedom is coupled to a large
holographic system as in [16], the holographic system alone
captures the second law as expected from equipartition of
energy. This is true for higher dimensional holographic
setups as demonstrated in [16] but not in the present case.
Althoughwe are unable to provide a quantitative argument as
of yet, we can readily see that the origin of this discrepancy
lies in entanglement between the two sectors, which if taken
into account properly shouldbe able to rescue the second law.
As discussed in Sec. IV B 1, the initial conditions of the

particle can be recovered from the SLð2; RÞ invariant
exponent a governing the growth of the gravitational bulk
SLð2; RÞ charges and the total conserved energy.17

Therefore the information of 1 degree of freedom is not
lost, but rather encoded in the macroscopic behavior of the
much larger holographic system. This indicates a form of
macroscopic entanglement which allows information
in a tiny system (of measure zero) to be visible in terms
of the macroscopic coarse-grained dynamics of the larger
system. It is well known from quantum information theory
that entanglement contributes to the second law and can
account for the apparently bizarre reverse flow of heat
from a cold to a hot body which have large initial mutual
entanglement [38]. The growth of entanglement can
account for the second law most likely in our case.
Quantitatively this could be perhaps understood from the
solution in the unphysical sheet (where the horizon is at a
negative value of r). We will leave a more precise
formulation for the future.
Finally, our model is somewhat novel in the context of

semiholography because the total entropy is not just the
sum of the two individual entropies in this case (as expected
from classical statistical mechanics, see [15] for details) but
also involves the crucial contribution from entanglement
between the two subsystems especially in the limit when
the holographic subsystem has larger number of degrees of
freedom.

V. CONCLUSIONS

In this work we have developed a concrete algorithm for
constructing solutions of JT gravity coupled to noncon-
formal matter and have constructed explicit bulk solutions
corresponding to time-dependent irrelevant deformations in
the dual theory. We find that such perturbations act like
pumps increasing the mass of the black hole as expected.
We also construct a nongeometric semiholographic

string model for trapped strongly interacting impurities.
The NAdS2 holographic theory depicts the mutual strong
interactions of the localized impurities. It couples to the
position of one displaced impurity which thus acts as a self-
consistent source of an irrelevant operator dual to a bulk
field. This operator in turn gives rise to a confining force on
the impurity. The model has a total conserved energy. The
impurity gets displaced from the confining center due to a
kick from the thermal medium. We have studied how it
moves in response to such an impulse.
Keeping the mutual coupling λ fixed, we find two

distinct phases. In the first phase occurring for higher
initial velocity v0 > vcðλÞ, the impurity extracts all energy
from the bulk and finally the total energy gets transferred to
its kinetic energy with a terminal velocity smaller than the
initial velocity. Furthermore, the mass of the bulk black
hole remains always positive vanishing from above.
Although the black hole mass vanishes, the solution does
not reach vacuum. The SLð2; RÞ charges grow exponen-
tially (although the Casimir tends to vanish) and the dilaton
has nontrivial time dependence. If v0 < vcðλÞ, the total
energy is transferred either to the particle kinetic energy if
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FIG. 13. The behavior of the horizon rðuÞ given by (140) for
λ ¼ 0.5, and different initial velocities of the particle, namely 2.0
and 0.8. In the former, the system is in the first phase and in the
latter, it is in the other phase. Note that the initial horizons
coincide because we start with the same black hole mass. The
horizon runs away to infinity irrespective of whether the black
hole mass becomes negative or not. Also it happens roughly when
the black hole mass stops increasing monotonically as evident
from comparison with Fig. 12. After this the horizon emerges on
the other (unphysical) sheet (see text).

17Of course this is in the case when the system is in the first
phase. In the other case when the SLð2; RÞ charges stabilize in the
far future, the knowledge of the initial velocity of the particle can
be retrieved from the relative rotation between the initial and final
SLð2; RÞ frames which is an observable.
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the total conserved energy is positive, or otherwise to the
self-consistent confining potential energy in which case the
particle comes to a full stop.
In reality, the impulse kicking the impurity initially from

the center should originate from the thermal medium so v0
should be on average of the order of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=mi

p
where mi

is the mass of the impurity. If
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=mi

p
> vcðλÞ, then the

dynamics is as in the first phase. Therefore, impurities can
travel long distances while remaining correlated with each
other and attaining terminal velocities less than

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=mi

p
at long time.
The key feature of NAdS2 semiholographic systems

(with a total conserved energy) that we find here is that the
black hole can lose its mass to the dynamical source at the
boundary or to the mutual self-consistent potential energy
over a large period of time. Furthermore, the solutions are
nonpathological. As opposed to higher dimensional setups,
here the information about the impurity can be recovered
from the macroscopic parameter determining the long-term
attractor behavior of the larger holographic system, namely
the SLð2; RÞ invariant exponent governing the growth of
the bulk SLð2; RÞ charges when v0 > vcðλÞ. This implies
that in order to understand the second law we need to take
into account entanglement between the impurity and
coarse-grained degrees of freedom of the holographic
system.
Considering a chain or a lattice of such NAdS2 holo-

graphic systems, we can answer many interesting questions

at the interface of quantum information and many-body
dynamics. In the future, it will be interesting to probe
existence of possible bounds on the response of the final
state to changes in initial conditions, investigate possibility
of chaotic behavior far away from equilibrium and see if we
can utilize such systems for quantum tasks such as quantum
error correction.
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