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The framework of perturbative algebraic quantum field theory (pAQFT) is used to construct QFT models
on causal sets. We discuss various discretised wave operators, including a new proposal based on the idea
of a “preferred past,” which we also introduce, and show how they may be used to construct classical free
and interacting field theory models on a fixed causal set; additionally, we describe how the sensitivity of
observables to changes in the background causal set may be encapsulated in a relative Cauchy evolution.
These structures are used as the basis of a deformation quantization, using the methods of pAQFT. The SJ
state is defined and discussed as a particular quantum state on the free quantum theory. Finally, using the
framework of pAQFT, we construct interacting models for arbitrary interactions that are smooth functions
of the field configurations. This is the first construction of such a wide class of models achieved in QFT on
causal sets.
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I. INTRODUCTION

Presently, our understanding of nature is split into two
domains: one theory applies to quantum phenomena, and is
relevant on the small scale; and a very different theory
applies to gravity, space, and time, and is important for
large-scale phenomena. Quantum gravity seeks to unify
these two into one single description of nature. While many
attempts have been made, and various methods suggested,
the problem of finding the unified theory of quantum
gravity still remains open. One of the fundamental con-
ceptual problems that any such theory has to address is the
understanding of the nature of space-time at small scales
and the interplay of geometry and quantum phenomena.
This paper brings together two frameworks that have

been used to develop theories that combine quantum effects
and geometry. The first, causal set theory [1–3], is based on
the idea that the spacetime that we observe is not funda-
mental, but rather emergent from a discrete underlying
structure. It is conjectured that in the small scale, spacetime
is a discrete set of points and the only structure on this set is
a partial order relation, interpreted as the causal structure.
The second framework is that of algebraic quantum field

theory (AQFT) [4,5] (see [6] for a recent pedagogical
introduction), and its generalization to curved spacetimes:
locally covariant quantum field theory (LCQFT) [7,8] (see
also [9] for review) and perturbative algebraic quantum
field theory (pAQFT) [10–13] (see also [14] for review).

In LCQFT a model is defined by the assignment of
topological *-algebras (often C�-algebras) to globally
hyperbolic spacetimes and algebra morphisms to causal
embeddings of spacetimes. This assignment has to satisfy a
number of axioms that generalize the Haag-Kastler axioms.
In pAQFT, these topological *-algebras are formal power
series in ℏ and the coupling constant λ.
In this paper we apply LCQFT and pAQFT methods to

QFT on causal sets. This brings benefit to both causal set
theory and AQFT. In the first instance, the methods of
pAQFT have been successfully applied to construct inter-
acting QFT models in the continuum and now we use the
same framework to construct interacting QFT models on
causal sets. To our best knowledge, this is the first instance
where the general framework for introducing interaction in
causal set theories has been proposed.
On the AQFT side, studying the discrete models allows

one to avoid many of the technical difficulties related to UV
divergences and study in detail the purely algebraic aspects
of pAQFT and how the topology change affects LCQFT.
The main advantage of the algebraic framework is that

many of the concepts used in the continuum translate very
straightforwardly to the discrete case. For example, instead
of assigning algebras to spacetimes, we assign algebras to
causal sets. To follow the spirit of pAQFT, we start by
defining the classical field theory on a causal set and then
deform it using a simple formal deformation quantization
prescription. The problem of defining classical dynamics
on causal sets is, in our opinion, of interest on its own, since
the usual canonical formalism does not apply in this
situation. Instead, we use a variant of the Peierls prescrip-
tion [15] that allows us to introduce a Poisson bracket on
the space of observables. We also show how to introduce
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interactions in this framework (following [12]) using
classical Møller operators. This is covered in Sec. III.
For our constructions to work, we need to define, on a given
causal set, the retarded (or advanced) Green function for the
discretized field equation we consider. The retarded Green
function is also a starting point in the approach of [16]. We
discuss various choices for discretization of the wave
equation and for construction of Green functions. These
include one [1,17–19] which works well for sprinklings
(locally finite subsets of Lorentzian manifolds, constructed
by randomly selecting points from a given manifold using a
Poisson distribution) [1] and the continuum limit is
achieved by an averaging procedure.1 Another choice is
based on an additional “preferred past structure,” which we
introduce in this work. It works well on a regular diamond
lattice, for example.
After this paper was completed, our attention was

drawn to the interesting paper [21] in which discrete
d’Alembertians are formulated and the corresponding free
theories quantised using the broad methodology of [22].
The approach taken here is complementary in some
respects: Ref. [21] is concerned with causal sets equipped
with a slicing, which does not appear in our approach, but is
essential to the definition of the symplectic form given in
[21]. By contrast, we follow the spirit of Peierls covariant
definition of the Poisson bracket, leading to a quantization
that can be applied to interacting theories. Another inter-
esting contrast is that our use of “preferred past” structures
for one of the discrete d’Alembertians considered, is much
more local in nature than the global slicing structure of [21].
Nonetheless there are some very close parallels between the
resulting discrete equations.
The idea of augmenting causal sets with some extra

structure has a precedent in the works of Cortês and
Smolin [23,24], where elements of the causal set (events)
carry momentum and energy, transmitted along causal links
and conserved at each event. This is local in nature, but
seems to be very different from our idea of augmenting the
causal set with the preferred past structure. Nevertheless, it
would be interesting to look for parallels between our
approaches.
In Sec. III C, we discuss relative Cauchy evolution

(RCE) on causal sets. In [7] the RCE was introduced as
the way to characterize the dynamics in LCQFT, see [9] for
further developments, and [25] for an application to the
characterization of background independence in perturba-
tive quantum gravity. Relative Cauchy evolution measures
the response of the dynamics to a local modification of the
background spacetime (just as the stress-energy tensor in a
continuum theory is obtained as a functional derivative of

the action with respect to the metric). To define the RCE for
causal sets, we first identify distinguished regions, which
we call past and future infinity, using the notion of layers
[1]. Then we consider two finite causal sets whose future
and past infinity regions may be identified, so differences
between the sets are localized in between. The RCE
measures the response of the observables (classical or
quantum) to that small change of the background causal
set. In this work we study the RCE in the classical theory,
but the generalization to quantum theory should be
straightforward. We hope that RCE combined with ideas
about dynamical generation of causal sets [26] will allow us
to understand how the evolution of observables on a causal
set is related to the evolution of the causal set itself.
In Sec. IV we quantize the free theory using deformation

quantization. In particular, we construct the Weyl algebra
from the Poisson algebra of the classical theory and discuss
states. We also show how to recover the Hilbert space
representation of the Weyl algebra by considering the GNS
representation. For the latter, one needs to fix a state and a
possible choice in causal set theory is provided by the
Sorkin-Johnston (SJ) state [27,28]. This is a pure state
which, as we emphasise, is closely connected to a choice of
inner product on the space of off-shell linear observables
(in a finite causal set this is just RN , N ∈ N ¼ f1; 2;…g).
The original SJ state is related in this way to the standard
Euclidean inner product on RN .
However, if we want to take the continuum limit, it is

better to modify the inner product on the space of linear
observables, so that the state we obtain in the continuum is
Hadamard. As shown in [29], the continuum SJ state fails
to be Hadamard on a large class of globally hyperbolic
spacetimes (ultrastatic slabs). It was later proven in [30]
that modifying the inner product on the space of smooth
compactly supported functions by means of changing the
volume form on the underlying space-time results in the
construction of a class of Hadamard states, interpreted as
“softened” SJ states. This strategy for obtaining Hadamard
states was first suggested by Sorkin in [16], as an alter-
native to the construction by Brum and Fredenhagen [31].
The latter also produces a class of Hadamard states that can
be interpreted as “softened” SJ states; an analogous
construction for Dirac fields can be found in [32]. (More
discussion appears at the start of Sec. IV.)
The results mentioned above suggest that one should be

able to modify the inner product used for the construction
of the state in the discrete setting, in such a way that the
continuum limit would yield Hadamard state. We plan to
follow this line of research in our future work.
Last but not least, we close Sec. IV with the construction

of the quantum interacting algebra AVðCÞ, using the
framework of pAQFT. As mentioned before, this result
is of particular interest, since, to our best knowledge, this is
the first systematic construction of interacting causal set
quantum field theory models.

1Although the expectation value of the discretized field
equation converges in mean, the variances diverge unless further
nonlocal corrections are applied [1]; see [20] for quantizations of
such models.
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II. PRELIMINARIES

A. Causal sets

A feature common to many quantum gravity theories is
the idea that the fundamental structure of spacetime is
discrete, and the continuum that we observe is emergent
from this underlying structure. Causal sets originated as a
suggested space of histories of a “sum-over-histories”
approach to quantum theory, analogous to Feynman’s path
integral formulation. By discretizing spacetime it also
provides us with a regularization scheme to deal with
UV divergences in QFT. Causal set theory models space-
time as a discrete structure of points, which are linked by a
causal relation which respects the causal ordering of
continuum spacetimes. Further, the macroscopic volume
of a region of spacetime is proportional to the number of
elements in the causal set contained in the region. Here we
present an overview of the causal set theory.
The mathematical structure of causal sets is that of a

partially ordered set [3,33]. Thus, the standard continuum
structure of spacetime is replaced by ðC;≼Þ, a discrete set of
points C—with each point representing a spacetime event—
with a relation ≼ satisfying the axioms of:

x ≼ y ≼ z ⇒ x ≼ z; transitivity ð1Þ

x ≼ y and y ≼ x ⇒ x ¼ y; acyclicity ð2Þ

jIðx; yÞj < ∞; local finiteness ð3Þ

where

Iðx; yÞ ¼ fz ∈ Cjx ≼ z ≼ yg ð4Þ

is the set known as the causal interval (or Alexandrov set).
We write x ≺ y if x ≼ y and x ≠ y. The physical inter-
pretation of x ≼ y is that the event x is in the causal past of y
(allowing for equality). Some of the main building blocks
of the theory are defined as follows:
Definition II.1. A chain in a causal set ðC;≼Þ is a totally

ordered subset of C. A pair x; y ∈ C is a link, denoted
x ≺ �y, if x ≺ y and there is no w ∈ C such that x ≺ w ≺ y.
In particular, if x ≺ �y, then Iðx; yÞ ¼ fx; yg. A path is a
chain such that each pair of consecutive elements is a link.
Thus, a finite chain of length n is an ordered set of

elements

x1 ≺ x2 ≺ � � � ≺ xn−1 ≺ xn; ð5Þ

while a finite path of length n is an ordered set of elements
with

x1 ≺ �x2 ≺ � � � � ≺ �xn−1 ≺ �xn: ð6Þ

We will denote such path by ðx1;…; xnÞ. This is an
analogue of a causal curve.
In analogy with the continuum, it is convenient to

introduce the following notation.
Definition II.2. Given x ∈ C, we introduce the causal

past

J−ðxÞ ¼ fy ∈ Cjy ≼ xg

of x; for a subset A ⊂ C we write J−ðAÞ ¼ ∪x∈A J−ðxÞ. It is
also useful to define J−0 ðxÞ ¼ J−ðxÞnfxg and J−0 ðAÞ ¼
∪x∈A J−0 ðxÞ. Analogously, we also introduce the causal
future Jþ.
An interesting class of causal sets are those that can be

formed by taking a subset of points in a Lorentzian
manifold M ¼ ðM; gÞ, with a (subset of) the inherited
causal order. These are called embedded causal sets. For
example a regular diamond lattice can be embedded within
Minkowski spacetime.
The discussion of continuum limits can be facilitated by

considering causal sets equipped with a length scale,
forming triples ðC;≼;lÞ. If M ¼ ðM; gÞ is a time-oriented
D-dimensional Lorentzian manifold, a sequence ðCn;≼n;
lnÞ (n ∈ N) of embedded causal sets will be said to have
M as its continuum limit if, for all n,

Cn ⊂ Cnþ1; p ≼n q ⇒ p ≼nþ1 q; ð7Þ

C ≐ ⋃nCn is dense in M and, for all p; q ∈ C,

lim
n→∞

lD
n jICnðp; qÞj ¼ VolMðJþMðpÞ ∩ J−MðqÞÞ: ð8Þ

We emphasize that these continuum limits are to be
regarded as theoretical constructions: a universe that
actually is a causal set would be fundamentally discrete
with a continuum as an approximation at suitable scales.
Our continuum limits provide one way to control such
approximations.
In the causal set literature, one often considers randomly

chosen locally finite embedded causal subsets of a given
D-dimensional Lorentzian manifold M ¼ ðM; gÞ. There is
a specific choice of a measure—the Poisson measure—on
these subsets, so that, fixing a length scale l, the probability
that a randomly chosen C has n points in a volume V is

ProbðjC ∩ Vj ¼ nÞ ¼ ðρVÞne−ρV
n!

; ð9Þ

where ρ ¼ l−D is the fundamental density. In particular, the
expected number of points in a given spacetime volume V
obeys

lDEjC ∩ Vj ¼ VolMðVÞ: ð10Þ

Causal sets obtained in this way are called sprinklings. To
generate the link matrix in a sprinkling, we say that two
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elements p and q are linked if and only if their Alexandrov
neighborhood does not contain another element of the
sprinkling (see [3] for details).
Remark II.3.—It is important to note that a generic

embedded causal set χ∶ C ↪ M, does not inherit the local
structure of that spacetime, since there could be direct links
between points x; y ∈ C such that χðxÞ, χðyÞ ∈ M appear
widely separated with respect to the metric g.
For concrete computations, we typically label the ele-

ments of a causal set by natural numbers. One may always
choose a natural labeling which respects the ordering such
that if xn ≺ xm then n < m, n, m ∈ N [34]. We caution the
reader that, when we represent a field on a causal set by a
column vector ϕn of its values at xn, the elements at the top
of the vector correspond to the values of ϕ in the far past.
Once this labeling has been found, two adjacency matrices
can be constructed, both of which are lower triangular
matrices which vanish on the diagonal:
Definition II.4. The causal or chain matrix contains all

of the relations between any causally related spacetime
elements:

Cxy ¼
�
1; if y ≺ x

0; otherwise:
ð11Þ

The link matrix is given by

Lxy ¼
�
1; if y ≺ �x
0; otherwise

ð12Þ

where ≺ � was introduced in Definition II.1.

B. Causal set Cauchy surfaces

Here we consider natural analogues to the notion of a
Cauchy surface for causal sets. We start with maximal
antichains [35].
Definition II.5. An antichain is a collection of elements

Σ ⊂ C such that ∀ x; y ∈ Σ neither x ≺ y nor y ≺ x. A
maximal antichain is an antichain such that any element not
in it is related to it, which partitions the causal set as a union
of mutually disjoint subsets C ¼ Σ ∪ Jþ0 ðΣÞ ∪ J−0 ðΣÞ.

A maximal antichain can be regarded as a generalization
of an instantaneous time hypersurface. For our purposes it
will be more convenient to generalize the idea that a
Cauchy surface is a set on which initial data can be posed
for normally hyperbolic operators. For second order oper-
ators in the continuum, the initial data consists of the field
and its normal derivative; in the discrete setting the
derivative is replaced by a finite difference and it is
therefore convenient to replace maximal antichains by
thickened objects that we will call Cauchy slices.
We start by defining Cauchy slices identified as future/

past infinity. In a finite causal set—our main interest—one
can always find elements that have no future or no past. The
definition of past and future infinity is formulated in terms
of layers, as introduced in [1], which give a meaning to the
spacetime separation of two points by using the notion of
the causal interval (4) to find a “proximity measure” n
between two points:

nðx; yÞ ¼ jIðy; xÞj − 1: ð13Þ

Using this, the ith layer below x ∈ C, L−
i ðxÞ, can be

defined as:

L−
i ðxÞ ≐ fy ∈ C∣y ≺ x; nðx; yÞ ¼ ig: ð14Þ

One can also define dual layers using the reversed order:

Lþ
i ðxÞ ≐ fy ∈ C∣y≻x; nðy; xÞ ¼ ig; ð15Þ

Figure 1 illustrates how the layers are defined for a regular
lattice and a simple sprinkling.
The notion of future and past infinity is formalised as

follows.
Definition II.6 (Past and future infinity). For n ∈ N, the

n-layer past infinity C−
n is defined by

C−
n ≐ fx ∈ C∣L−

i ðxÞ ¼ ∅; ∀ i ≥ ng
¼ fx ∈ C∣nðx; yÞ < n; ∀ y ≺ xg: ð16Þ

FIG. 1. An illustration of how layers are defined on a regular diamond lattice (left) and a less symmetric causal set (right).
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Similarly, the n-layer future infinity is defined by

Cþ
n ≐ fx ∈ C∣Lþ

i ðxÞ ¼ ∅; ∀ i ≥ ng
¼ fx ∈ C∣nðy; xÞ < n; ∀ y≻xg: ð17Þ

As nðx; yÞ ≥ 1 for y ≺ x, one notes that C−
1 consists of all

points having no predecessor; similarly, Cþ
1 consists of

those with no successor. Further, if y ≺ x ∈ C−
n then all

z ≺ y obey nðy; zÞ < nðx; zÞ < n so also y ∈ C−
n , i.e., C−

n is
closed under taking predecessors, and Cþ

n is closed under
taking successors. It follows that these sets are causally
convex: that is, if p; q ∈ C�

n then Iðp; qÞ ⊂ C�
n .

It will be convenient to represent the past and future
infinities by diagonal matrices:

ðS�n Þxx ¼
�
1; if x ∈ C�

n

0; otherwise:
ð18Þ

We define a Cauchy slice in a general causal set as
follows: take any maximal antichain Σ and consider either
the n-layer past infinity region within JþðΣÞ or the n-layer
future infinity region within J−ðΣÞ. Note that our Cauchy
slices do not in general correspond to the “thickened
antichains” defined in [35] (we thank an anonymous referee
for an instructive counterexample).
For dynamics governed by second order differential

equations, we expect to need at least two layers in a
Cauchy slice to adequately specify the initial data.
Depending on the discretization of the d’Alembertian
employed, it may be necessary to include more layers.
This is the case, for example, for the discretized
d’Alembertian proposed in [1,18,19] [our Eq. (37)] and
discussed further below in Sec. III B 1.
Finally, another proximity measure between two points

is provided by the notion of a rank.
Definition II.7. Given x ∈ C, the rank of y ∈ C relative

to x, rkðx; yÞ, is defined as the minimal number of links in a
path from y to x (i.e., one less than the minimal length of
such a path). The rank is infinite if there is no path from y to
x and rkðx; xÞ ¼ 0.
Its relationship to the past and future infinity sets is

expressed by the following lemma.
Lemma II.8. Define R−

n to be the space of points that
have no points to their past of rank n or higher, i.e.,

R−
n ≐ fx ∈ Cjrkðx; yÞ < n; ∀ y ≺ xg: ð19Þ

Then we have

C−
n ⊂ R−

n ð20Þ

and for the special case n ¼ 2, we have C−
2 ¼ R−

2 .
Analogous results hold for Rþ

n and Cþ
n , where past is

replaced with future.

Proof.—First, note that if y ≺ x and rkðx; yÞ ≥ n then the
cardinality of the Alexandrov set Iðy; xÞ is at least nþ 1, so
y ∈ L−

i ðxÞ with i ≥ n, i.e., x ∉ C−
n . Now, turning this

argument around, if L−
i ðxÞ ¼ ∅ for all i ≥ n, then for all

y ≺ x we must have rkðx; yÞ < n, so x ∈ R−
n .

In the special case n ¼ 2, rkðx; yÞ < 2 for all y ≺ x
implies that in fact y ≺ �x, so Iðy; xÞ ¼ 2 and hence
y ∈ L−

1 ðxÞ. As this holds for all y ≺ x, we conclude
that x ∈ C−

2 . ▪

III. CLASSICAL FIELD THEORY ON A
FIXED CAUSAL SET

In this work, we take the algebraic viewpoint and
introduce the classical theory on a fixed causal set by
constructing an appropriate Poisson algebra. We focus on
the example of the real scalar field, starting with a
discussion of the relevant kinematical structures and then
discussing discretized d’Alembertian operators and their
Green functions in some detail. From there we move to a
discussion of a Peierls bracket and then to construct
algebras describing free and interacting field theories.

A. Kinematical structure

Definition III.1 (Real scalar field on a causal set). The
real scalar field on a causal set C of size N has a
configuration space EðCÞ consisting of maps ϕ∶ C → R,
with a vector space structure of pointwise operations. Given
a natural labelling of C by f1;…; Ng, we identify
EðCÞ ≅ RN , regarded as a space of column vectors. We
use the notation ϕi, i ¼ 1;…N for the components of field
ϕ, remembering that low values of the index correspond to
spacetime events in the “far past.”
If the causal set is equipped with a length scale, it

becomes possible to discuss dimensionful fields, saying
that ϕ has dimension d to mean dimensions of ½length�d. On
the basis that a length is a quantity whose numerical value
increases in inverse proportion to a decrease in the units of
length, a scalar field of dimension d on C should transform
under a change of length scale l ↦ λl by

ϕðpÞ ↦ λ−dϕðpÞ: ð21Þ

More generally, if ðC;≼;lÞ is embedded within ðC0;≼0;l0Þ,
a dimension d scalar field ϕ0 on C0 pulls back to a field on C
defined by

ϕðpÞ ¼ ðl0=lÞdϕ0ðpÞ: ð22Þ

We wish to consider a field theory on a causal set
that has a claim to be an analogue of the wave equation
on a continuum Lorentzian spacetime. It is therefore
necessary to be able to compare the continuum and
discrete situations. One way of doing this is through a
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suitable continuum limit. First, a dimension d scalar
field ϕ on a time-oriented Lorentzian spacetime M may
be pulled back to a function ϕCðpÞ ¼ l−dϕðpÞ on any
causal set ðC;≼;lÞ embedded in M. This viewpoint
allows us to work solely with numerical scalar fields on
causal sets.
Next, consider a situation in which M is the continuum

limit of a sequence of causal sets ðCn;≼n;lnÞ, as defined in
Sec. II A. We say that a sequence of functions ϕCn∶ Cn → R
has a continuum limit as a continuous dimension d field
ϕ∶ M → R if

ϕðpÞ ¼ lim
n→∞

ld
nϕCnðpÞ ð23Þ

for all p ∈ C ≐ ⋃nCn.
For example, we will shortly discuss discretized ana-

logues of the d’Alembertian, which changes dimensions by
two powers of length in the continuum. If the continuum
limit ϕ just described is twice continuously differentiable, a
family of discrete d’Alembert operators Pn on a sequence
of causal sets ðCn;≼n;lnÞ would therefore be expected to
obey

ld−2
n ðPnϕCnÞðpÞ ⟶ ð□ϕÞðpÞ ð24Þ

as n → ∞ for every p ∈ ⋃nCn.
Observables are defined similarly to the continuum case:
Definition III.2 (Causal set observables). Observables

on a causal set C are smooth maps from the configuration
space EðCÞ, to C, i.e., they are elements of C∞ðEðCÞ;CÞ≡
F ðCÞ. The space of observables is equipped with the
natural structures of addition

ðF þGÞðφÞ ¼ FðφÞ þGðφÞ

and multiplication

FGðφÞ ¼ FðφÞGðφÞ:

A special case is given by linear observables, defined, for
each f ∈ CN (jCj ¼ N), by

Φf∶ RN → C; ΦfðϕÞ ≐ fiϕi ≡ fTϕ; ð25Þ

where ϕ ∈ EðCÞ ≅ RN and we have used the Einstein
summation convention for repeating indices. The space
of linear observables is denoted by XðCÞ. This space has a
vector space structure, inherited from F ðCÞ, and this
structure is compatible with the addition on the labeling
space, i.e., Φg þ λΦh ¼ Φgþλh, for any λ ∈ C.
Remark III.3.—In the last expression of formula (25), we

made implicit use of the Euclidean metric on RN and the
induced inner product. This metric allows us to identify
elements of RN with observables and will be used to raise
and lower indices. To see how this is consistent with the

viewpoint on continuum limits and dimensions taken
earlier, consider ϕ; f that are smooth functions on D-
dimensional M that have supports intersecting compactly
(for simplicity) and have dimensions dϕ; df. Then one has

ΦfCðϕCÞ ¼ l−dϕ−df
X
p∈C

ϕðpÞfðpÞ; ð26Þ

so if we have a sequence of functions ϕCn∶ Cn → R and
fCn∶ Cn → C with continuum limits ϕ and f respectively,
then

lim
n→∞

ΦfCn
ðϕCnÞ ¼ l−dϕ−df−D lim

n→∞
lD

X
p∈Cn

ϕCnðpÞfCnðpÞ

¼ l−dϕ−df−D
Z
M
fðxÞϕðxÞdμgðxÞ: ð27Þ

Hence the continuum analog of the inner product is the
choice of a volume form ε on spacetime M ¼ ðM; gÞ
(take e.g., the invariant volume form dμg induced by the
Lorentzian metric), allowing one to identify f ∈ C∞c ðM;CÞ
with the observable

ΦfðφÞ ¼
Z
M
fðxÞφðxÞεðxÞ: ð28Þ

The consequences of choosing a different inner product
will be discussed in more detail in Sec. IVA.
Next we introduce the notation for functional derivatives.

The functional derivative of F ∈ F ðCÞ at point φ ∈ EðCÞ in
the direction of ψ ∈ EðCÞ is defined by:

hFð1ÞðφÞ;ψi ≐ lim
t→0

1

t
ðFðφþ tψÞ − FðφÞÞ; ð29Þ

where t ∈ R. We will also use the notation

Fð1ÞðφÞ≡ δF
δϕ

ðφÞ: ð30Þ

Note that since EðCÞ ≅ RN , the functional derivative δF
δϕ ðφÞ

at point φ is a linear C-valued functional on RN and
therefore can be identified with an element of CN and we
write its components as δF

δϕi
ðφÞ, i ¼ 1;…; N.

We introduce a product on XðCÞ, induced by the
component-wise multiplication of the smearing functions
g ∈ CN , or the Hadamard product:

Φg �Φh ≐ Φg�h; ð31Þ

where ðg � hÞi ¼ gihi, with no summation over the
repeated indices.
Another natural product on XðCÞ is the pointwise

product of observables, inherited from F ðCÞ:
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ðΦg ·ΦhÞðϕÞ ¼ ΦgðϕÞΦhðϕÞ;

which does not leave XðCÞ invariant. Let F regðCÞ denote
the subalgebra ofF ðCÞ generated by XðCÞwith respect to ·.
This is the analog of regular functionals in continuum
pAQFT. They form a �-algebra, where the � operation is
just the complex conjugation.

B. Classical dynamics

1. Discretized retarded wave equations

As in continuum QFT, we will construct the interacting
theory as a perturbation of a free field equation. The
starting-point is therefore a suitable discretization of the
continuum field equation

□ϕ ¼ f ð32Þ

to a causal set. Several possible causal set d’Alembertians
or “box operators” have been discussed previously
[1,18,19,36], and we will give a specific example below
as well as introducing a new type of box operator. We study
equations taking the form

Pϕ ¼ Kf ð33Þ

neglecting edge effects for the moment—they will be
discussed in Sec. III B 4. Here f;ϕ ∈ EðCÞ are the source
and solution respectively, while P and K are linear maps on
EðCÞ. The map K is newly introduced here, and can absorb
factors (it sometimes turns out to be more convenient to
discretize 1

2
□ rather than □) but also provides additional

freedom to determine the way in which a continuum source
is discretized.
Various requirements on P were set down in [36]. First,

in addition to linearity, P is required to be a retarded
operator, meaning that ðPϕÞp is a linear combination of ϕq

with q ≼ p. We also require that K be retarded in this sense
and that both operators are real. As will be seen, this
requirement ensures the causal nature of solutions to (33).
Second, the prescription for constructing P and K should
be independent of the way in which the causal set is labeled
—a covariance requirement. In [36] a requirement of
“neighborly democracy” is imposed, namely that all points
in the same layer below p contribute with equal weight to
ðPϕÞp; we will not impose this and indeed will introduce an
“undemocratic” example that may be defined on causal sets
with a preferred past structure. Our last general require-
ment is that each ðPϕÞp should have nontrivial dependence
on ϕp; in [36] it was assumed that the coefficient should be
independent of p, but one could certainly envisage pre-
scriptions in which the coefficient was variable and
determined by the statistics of the causal order, restricted
to the past of p.

In a natural labeling of the causal set, these requirements
ensure that P is in particular lower triangular and its
diagonal entries are all nonvanishing. Consequently, P is
invertible and it may easily be seen that P−1 is also a
retarded operator. Clearly the solution to (33) is then
ϕ ¼ Eþf, where

Eþ ≐ P−1K ð34Þ

defines the retarded Green operator. Note that the
composite of retarded operators is retarded. As in [16],
we define the advanced Green operator to be

E− ≐ ðEþÞT; ð35Þ

and the advanced-minus-retarded2 operator is the antisym-
metric matrix

E ¼ E− − Eþ ¼ ðEþÞT − Eþ: ð36Þ

By construction, ðE−fÞp is a linear combination (with real
coefficients) of fq with p ≼ q, and therefore an advanced
operator by analogy with previous definitions. We have
followed the existing literature by emphasising the retarded
equations and Green operators as the starting-point. It
would be possible, though less physically well motivated,
to base the discussion on advanced operators.
As a specific example, we recall the d’Alembertian

defined in [1] (we multiply by a factor of 1
2
and adapt to

our sign conventions)

ðPSϕÞp ≐ ϕp − 2

� X
q∈L−

1
ðpÞ
ϕq − 2

X
q∈L−

2
ðpÞ
ϕq þ

X
q∈L−

3
ðpÞ
ϕq

�
:

ð37Þ

Sorkin also included a factor of l−2, where l is the
fundamental length scale associated with the sprinkling,
which is not present here because of the way we treat
dimensionful fields. In matrix form,

ðPSÞpq ¼
8<:
1; p¼ q

−2;4;−2;p≠ q; nðp;qÞ ¼ 1;2;3 respectively

0; otherwise;

ð38Þ

and is lower-triangular in a natural labeling. In [1] the
continuum limit of the operator (37), averaged over
sprinklings into two-dimensional Minkowski space M2,

2This differs from the convention used e.g., in [12,14,37],
where the operator P in the continuum is −□, rather than □, so
that E� in those references are Green functions for −□ and E
ends up with the opposite sign.
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was shown to be the continuum d’Alembertian 1
2
▫.

Generalizations exist to d-dimensional spacetimes for
d > 2, but involve more layers and different coefficients,
to obtain the correct continuum limit for sprinklings into
Md [17–19].

2. Causal sets with a preferred past structure

As an alternative to the principle of neighborly democ-
racy, we propose a new type of discretized d’Alembertian
for causal sets, which will be investigated in more detail
elsewhere. It is based on a preferred past structure defined
as follows.
Definition III.4. Given a causal set C, a preferred

(2-step) past structure is a map Λ∶ CnC−
2 → C so that,

for each p ∈ CnC−
2 , the preferred past ΛðpÞ of p is a point

of rank 2 in the past of p. The corresponding preferred past
matrix is a lower triangular matrix with vanishing diagonal
entries, given by

Λxy ¼ δΛðxÞy ¼
�
1 if y ¼ ΛðxÞ;
0 otherwise:

ð39Þ

Wewill regard the causal interval betweenΛðpÞ and p as
an elementary nonatomic volume in the causal set.
Lemma II.8 shows that every point outside C−

2 has points
of rank 2 in its past. Therefore every causal set in which
every point has at most finitely many past-directed links
(and therefore at most finitely many points of rank 2 in its
past) admits (at least one) preferred 2-step past structure.
In general, there may exist more than one possible

preferred past structure, in which case a choice must be
made. Ideally, there should be some additional rule for
selecting Λ in a given causal set to restrict the choice. For
example, one could require that ΛðpÞ of p is a point with
maximal layer number (among all the points in the past of p
of rank 2). Consider the regular diamond lattice in M2, a
portion of which is illustrated in the left-hand part of Fig. 1.
The points of rank 2 below x are in the third row, and there
is a unique point with maximal layer number, i.e., the center
point in that row, belonging to the third layer below x;
therefore the “maximal layer rule” selects a unique pre-
ferred past structure in this example. For general sprin-
klings, it is not yet clear to us what rule is the most
appropriate one. Other possible rules for selecting Λ will be
investigated in our future work.
Using a preferred past structure, we may introduce a new

type of discretized retarded d’Alembertian. An example,
developed especially with two-dimensional continuum
spacetimes in mind, is given as follows:

ðPΛϕÞp ¼
(
ϕp − 2ð Mean

ΛðpÞ≺q≺p
ϕqÞ þ ϕΛðpÞ p ∉ C−

2

ϕp p ∈ C−
2 ;

ð40Þ

where

Meanq∈Uϕq ¼ jUj−1
X
q∈U

ϕq ð41Þ

is the arithmetic mean taken over a subset U ⊂ C. Here it is
necessary to treat points in C−

2 separately because they do
not have preferred pasts. Note that ðPΛϕÞp involves a sum
over points of at most rank 2 below p—to be precise, those
in the causal interval between p and its preferred past
ΛðpÞ—and that the coefficients associated with each
contributing point are determined by the rank relative to
p and so are independent of the way that the causal set is
labeled.
It is convenient to present PΛ as a matrix. To this end, we

define a lower triangular matrix Ω with vanishing diagonal
given by

Ωpq ¼
�
1 ΛðpÞ ≺ q ≺ p

0 otherwise;
ð42Þ

which encodes information about the causal intervals
associated with the preferred past structure, and also a
diagonal weight matrix W,

Wpp ¼
� ðPq ΩpqÞ−1 p ∉ C−

2

0 p ∈ C−
2 :

ð43Þ

The second case deals with edge effects to avoid an infinite
value. In fact its value will not matter. Then the discretized
operator may be written as

PΛ ¼ 1þ Λ − 2WΩ: ð44Þ

One reason for regarding PΛ as a causal set analogue of
half the d’Alembertian is that it produces a valid discre-
tization of the continuum operator 1

2
□ using regular

diamond lattices. Consider the lattice fðml
ffiffiffi
2

p
; nl

ffiffiffi
2

p Þ∶
m; n ∈ Zg embedded in M2, using ðu; vÞ-coordinates
related to the standard inertial Minkowski coordinates by
u ¼ t − x, v ¼ tþ x. The continuum metric and
d’Alembertian are ds2 ¼ du dv and □ ¼ 4∂u∂v. Each
lattice cell therefore has spacetime volume l2 (explaining
the factor of

ffiffiffi
2

p
above), so l is a natural length scale

associated with the lattice and indeed one has

l2jIðp; qÞj ∼ VolM2
ðJþM2

ðpÞ ∩ J−M2
ðqÞÞ; ð45Þ

when p and q are widely separated lattice points and J�M2
on

the right-hand side refer to the causal future/past of the
continuum spacetime. The sequence of such lattices with
lr ¼ l=r (r ∈ N) has M2 as its continuum limit, associat-
ing the length scale lr with each. We denote the corre-
sponding causal sets by ðCr;≼;lrÞ, with ordering p ≼ q in
all cases determined by the causal order of M2.
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Suppose, for simplicity, that ϕ is a smooth dimensionless scalar field on M2, which pulls back to causal set Cr by

restriction. Writing δr ¼ l
ffiffiffi
2

p
=r, and parametrizing points as in Fig. 2, we have

ðPCr;ΛϕCrÞðu; vÞ ¼ ϕðu; vÞ − ϕðu − δr; vÞ − ϕðu; v − δrÞ þ ϕðu − δr; v − δrÞ: ð46Þ

Taking Taylor series to second order,

ϕðu − δr; vÞ ¼ ϕðu; vÞ − δr∂uϕðu; vÞ þ
δ2r
2
∂2
uϕðu; vÞ þOðδ3rÞ

ϕðu; v − δrÞ ¼ ϕðu; vÞ − δr∂vϕðu; vÞ þ
δ2r
2
∂2
vϕðu; vÞ þOðδ3rÞ

ϕðu − δr; v − δrÞ ¼ ϕðu; vÞ − δrð∂uϕðu; vÞ þ ∂vϕðu; vÞÞ

þ δ2r
2
ð∂2

uϕðu; vÞ þ 2∂u∂vϕðu; vÞ þ ∂2
vϕðu; vÞÞ þOðδ3rÞ ð47Þ

with error terms uniform in r. Therefore,

ðPCr;ΛÞðu; vÞ ¼ δ2r∂u∂vϕðu; vÞ þOðδ3rÞ; ð48Þ

and it follows that

l−2
r ðPCr;ΛϕCrÞðu; vÞ ⟶ 2∂u∂vϕðu; vÞ ¼

1

2
ð□ϕÞðu; vÞ

ð49Þ

as r → ∞, which is the claimed continuum limit.
Given this result, a natural choice for K is to set

KΛ ¼ 1
2
1. However, this prescription is not the only

possibility and should be reconsidered near the past
boundary of the causal set if there is one. See further
comments below. We remark that Sorkin’s operator PS does
not have the continuum limit 1

2
□ on the regular lattice;

instead, it is adapted to sprinklings into M2.
The extent to which PΛ, or similar operators, approxi-

mate the d’Alembertian in higher dimensions on regular or
sprinkled lattices will be reported elsewhere. Our main
purpose in introducing it here is to illustrate the point that
there are discretised d’Alembertians that do not obey the
neighborly democracy principle, but are still naturally
associated with the causal set, augmented by a preferred

past structure. Our hope is that some generalization of this
ansatz could be applied in arbitrary dimensions in such a
way that the dimension itself is not an input (as in the
proposals [17–19]), but an emergent quantity. Typically,
there will be more than one possible preferred past
associated with a given causal set. One could remove
the element of choice by averaging PΛ over all such
possibilities.

3. Retarded Green function for PΛ on the
regular diamond lattice

The retarded Green function may be computed exactly
for PΛ on the regular diamond lattice in M2 for various
choices of operator K, which may help to illustrate the
additional freedom that it represents. The starting obser-
vations are that Ω precisely coincides with the link matrix
L, and that W ¼ 1

2
1. Thus we have

PΛ ¼ 1 − Lþ Λ: ð50Þ

Lemma III.5. For the regular diamond lattice, and
taking KΛ ¼ 1

2
1, the retarded and advanced Green func-

tions are

Eþ
Λ ¼ 1

2
ðPΛÞ−1 ¼

1

2
ð1 − Lþ ΛÞ−1 ¼ 1

2
ð1þ CÞ ð51Þ

E−
Λ ≐ ðEþ

ΛÞT ¼ 1

2
ð1þ CTÞ: ð52Þ

Proof.—Direct calculation gives

Λpq þ ½CΛ�pq ¼
�
1 q ∈ I−M2

ðpÞ
0 otherwise;

ð53Þ

because ½CΛ�pq ¼ 1 if and only if q ≺ ΛðpÞ. Similarly,
FIG. 2. Parametrization of points in a segment of a regular
diamond lattice, embedded into M2, where δr ¼ l

ffiffiffi
2

p
=r.
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Lpq þ ½CL�pq ¼

8>><>>:
2 q ∈ I−M2

ðpÞ
1 q ∈ _J−M2

ðpÞnfpg
0 otherwise;

ð54Þ

and one sees immediately that

ð1þ CÞð1 − Lþ ΛÞ ¼ Λþ CΛ − ðLþ CLÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
−C

þ 1þ C

¼ 1; ð55Þ

so ðPΛÞ−1 ¼ 1þ C, giving (51). The result for E−
Λ is

obvious. ▪
This result shows that ½Eþ

Λ �pq takes the value 1
2
if p ≼ q

and zero otherwise.
Let us now consider the continuum limit of these

operators as the mesh of the diamond lattice tends to zero.
Suppose f is a smooth compactly supported function onM2

of dimension ½L�−2 for simplicity, and pull it back to the
causal set Cr (as in Sec. III B 2) by ðfCrÞp ¼ l2fðpÞ. Then

ðEþ
Cr;ΛfCrÞp ¼ l2

r

2

X
q≼p

fðqÞ ð56Þ

On the other hand, the retarded Green function on M2 is
given by

Eþ
M2
ðt; x; t0; yÞ ¼ 1

2
θððt − t0Þ − jx − yjÞ

¼ 1

2
θðt − t0Þθððt − t0Þ2 − jx − yj2Þ; ð57Þ

where ðt; xÞ ∈ M2 is a point in 2D Minkowski spacetime
(with signature ðþ−Þ) and θ is the Heaviside step function.
Thus, for fixed ðt; xÞ, Eþ

M2
takes value 1

2
for ðt0; yÞ inside the

closed past lightcone of ðt; xÞ and vanishes otherwise. The
function Eþ

M2
f is dimensionless, and given by

ðEþ
M2
fÞðpÞ ¼ 1

2

Z
J−M2

ðpÞ
fðqÞdμgðqÞ: ð58Þ

It follows that

ðEþ
Cr;ΛfCrÞp → ðEþ

M2
fÞðpÞ ð59Þ

as r → ∞, because the spacetime volume of each diamond
½u; uþ δr� × ½v; vþ δr� is l2

r . This shows that our operator
Eþ
Λ is a valid discretization of the continuum retarded Green

function. Evidently the same will hold for the advanced
Green operator.
A different discretization of Eþ

M2
was considered by [38],

namely

½Eþ
DSX�pq ¼

1

2
Cpq; ð60Þ

which takes the value 1
2
when p ≺ q and vanishes other-

wise. This may be reproduced from our operator PΛ by
changing KΛ to

KDSX ¼ PΛE
þ
DSX ¼ 1

2
PΛC ¼ 1

2
ð1 − Lþ ΛÞC

¼ 1

2
ðL − ΛÞ: ð61Þ

Yet a further possibility would be to discretize Eþ
M2

by

Eþ
trap ¼

1

8
1þ 1

4
ðLþ CLÞ; ð62Þ

with components ½Eþ
trap�pq equal to 1

8
when p ¼ q, 1

4
for

q ∈ _J−M2
ðpÞnfpg, 1

2
for q ∈ I−M2

ðpÞ and vanishing other-

wise. Here _J−M2
ðpÞ is the boundary of the causal past

J−M2
ðpÞ. The discretization Eþ

trap, which amounts to discre-
tizing (58) using the trapezium rule in u; v coordinates,
corresponds to

Ktrap ¼
1

8
ð1þ Lþ ΛÞ: ð63Þ

These definitions have the same continuum limit, Eþ
M, but

correspond to different discretizations of the inhomo-
geneous wave equation. Consider the isolated diamond
in Fig. 3. Then:

(i) setting K ¼ 1
2
1 corresponds to sampling the value of

the test function f on the diamond by taking its value
only at the future-most point fp;

(ii) setting KDSX ¼ 1
2
Mþ samples f by taking

fq1 þ fq2 − fΛðpÞ;
(iii) setting Ktrap ¼ 1

8
ð1þ Lþ ΛÞ samples f by taking

1
4
ðfp þ fq1 þ fq2 þ fΛðpÞÞ.

This illustrates a basic fact that a continuum operator may
have many valid discretizations, and indicates the flexi-
bility introduced by the operator K.

4. Edge effects at past infinity
and the Cauchy problem

In causal sets with a past boundary, i.e., points with no
predecessors in the causal order, the form (33) of the wave

FIG. 3. An isolated diamond from a regular diamond lattice.
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equation given above should be reconsidered near to that
boundary. In fact we have already anticipated this in our
definition of PΛ, which treats points in C−

2 differently to
those in the bulk. In the same way, one might expect that
the operator PS might be modified for points inC−

3 , because
these points do not have layer-3 predecessors.
The simplest possibility to take the edge effects into

account is to first fix the discretized d’Alembertian operator
P outside C−

k (the k-step past infinity), for some fixed k,
using some discretization of the wave equation, and then set
ðPϕÞp ¼ ϕp for p ∈ C−

k . This is already the case with PΛ
for k ¼ 2, as defined by (40). As for the right-hand side of
the equation (33), the definition of KΛ should be modified
so that the diagonal elements of KΛ would be 1

2
except for

entries corresponding to points in C−
2 , where the value

would be 1. As P is then triangular with nonvanishing
diagonal elements, this prescription ensures that P remains
invertible. The values of ϕ on C−

k are then treated as
Cauchy data for the solution and we replace the wave
equation (33) by

Pϕ ¼ Kf þ ϕ−; ð64Þ

where ϕ− ¼ S−kϕ is the projection of ϕ onto past infinity,
[S−k was defined in (18)], and it is understood that the
source f should vanish in C−

k . Note that Kϕ− ¼ ϕ−, so one
also has Pϕ ¼ Kðf þ ϕ−Þ. Thus our prescription allows
the Cauchy data to be combined with the source in a natural
way. In these circumstances we will say that P has a k-layer
Cauchy problem. Recalling that Cauchy data for the scalar
field in the continuum consists of both values and normal
derivatives on a Cauchy surface, it is natural enough that
the Cauchy data on a causal set involves values taken on at
least two layers.
Given the assumptions made on P and K, the solution to

(64) is

ϕ ¼ Eþf þ Eþϕ−: ð65Þ

Two special cases are of interest. First, the situation in
which ϕ− ¼ 0, in which case ϕ ¼ Eþf, in line with the
continuum idea that the retarded Green function should
produce solutions vanishing in the far past. Second, if
f ¼ 0, ϕ ¼ Eþϕ− may be interpreted as the solution to the
sourcefree equation with Cauchy data ϕ−, which thus takes
the form

Pϕ ¼ ϕ− ð66Þ

and which will be called the homogeneous wave equation
in the sequel.
By definition, solutions to the homogeneous wave

equation are in bijection with the Cauchy data specified
on C−

k , which is just the space EðC−
k Þ. Therefore the

solution space is

Eþ
Sol ≐ EþEðC−

k Þ: ð67Þ

The space of such solutions will be denoted Eþ
Sol. A

particularly simple situation occurs if the solutions are
also in bijection with data on future infinity, in which case

αþ ¼ Sþk E
þjEðC−

k Þ ð68Þ

is an isomorphism αþ∶ EðC−
k Þ → EðCþ

k Þ that will be called
the Cauchy evolution. Of course, this requires among other
things that C�

k have equal cardinality.
As a slight digression we note that, in circumstances

where the Cauchy evolution is defined, we can use it to
compare the dynamics of the theory on two causal sets C
and C̃ whose k-layer past and future infinity regions are in
order-preserving isomorphism with each other, thus induc-
ing linear isomorphisms ι�∶ EðC�

k Þ → EðC̃�
k Þ. Writing αþ

and α̃þ for the two Cauchy evolutions, the relative Cauchy
evolution is a linear isomorphism on the solution space
Eþ
SolðCÞ defined by

rceðϕÞ ≐ Eþðι−Þ−1ðα̃þÞ−1ιþSþk ϕ; ð69Þ

which is an isomorphism; note that we also have the
identity

Sþk rceðϕÞ ¼ αþðι−Þ−1ðα̃þÞ−1ιþSþk ϕ ð70Þ

in which the comparison of αþ and α̃þ is apparent. Relative
Cauchy evolution provides a way of discussing the
response to changes in causal set geometry by reference
to solutions of the wave equation on the unperturbed causal
set. It was first introduced in [7], where it was formulated in
locally covariant QFT on continuum spacetimes, for per-
turbations in the background metric, localized between two
Cauchy surfaces. In that situation both backgrounds must
be globally hyperbolic and share the same Cauchy surface
topology (the Cauchy surfaces must be related by orienta-
tion-preserving diffeomorphism). By contrast, the causal
set framework would permit a perturbed causal set that
modelled a change of topology relative to the unperturbed
one, provided that suitable identifications can be made in
the past and future infinity regions.
When it is defined, the relative Cauchy evolution can be

pulled back to the map on observables, as follows. Consider
F ∈ Fþ

SolðCÞ, where Fþ
SolðCÞ denotes the space of func-

tionals on Eþ
Sol. Define

rceðFÞðϕÞ ≐ FðrceðϕÞÞ: ð71Þ

This map describes the change to the observableF resulting
from the perturbation to the underlying causal set.
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C. Peierls bracket

1. Tentative definition

The next step is to define a Poisson structure on the space
of observables on a fixed causal set. We do this using the
method of Peierls [15].
Using the commutator function (36) (in analogy to [15]),

we define the following bracket on C∞ðEðCÞ;CÞ

fF;Gg ¼
XN
i¼1

XN
j¼1

δF
δϕi

Eij δG
δϕj

; ð72Þ

where we used the Euclidean inner product to raise one of
the indices in Ei

j (compare with Remark III.3). To simplify
the notation, we will drop the summation symbols, and use
the condensed notation δF

δϕi
≡ F;i, so the formula above

becomes

fF;Gg ¼ F;iEijG;j ¼ ðFð1ÞÞTEGð1Þ; ð73Þ

using the index-free notation in the last expression. For
linear observables this reduces to

fFg; Fhg ¼ gTEh; ð74Þ

where Fg; Fh ∈ XðCÞ.
Proposition III.6. The bracket (72) is a Poisson

bracket, in particular, it satisfies the Jacobi identity: for
any F;G;H ∈ C∞ðEðCÞ;CÞ:

fF; fG;Hgg þ fG; fH;Fgg þ fH; fF;Ggg ¼ 0: ð75Þ

Proof.—The argument is standard but we give it for
completeness and for comparison with a later result. The
antisymmetry is obvious from the definition of E. It
remains to prove the Jacobi identity. Expanding (75) we
find:

F;i EijðG;k EklH;l Þ;j þG;i EijðH;k EklF;l Þ;j
þH;i EijðF;k EklF;l Þ;j ¼ 0 ð76Þ

of which the first term equals

F;i EijG;kj EklH;l þF;i EifG;k E;klj H;l

þ F;i EijG;j EklH;lj : ð77Þ

Due to the antisymmetry of E and because E is independent
of the field, all the terms in (76) cancel out, so the Jacobi
identity follows. ▪

2. Justification of the formula for the bracket

We now discuss a sense in which (72) corresponds to a
discrete version of the Peierls bracket [15], by showing that

it represents the difference between suitably defined
retarded and advanced responses of the field equation to
linear perturbations, supposing that the unperturbed equa-
tion has a k-layer Cauchy problem. In the original work of
Peierls [15] the idea is to define a covariant bracket, using
the Lagrangian formalism, by studying the response of a
given observable (say F) to a perturbation of the action by
another observable, G. One compares two situations:

(i) F is evaluated at the solution to the perturbed
problem, which coincides with the free solution in
the far past (retarded response) and

(ii) F is evaluated at the solution to the perturbed
problem, which coincides with the free solution in
the far future (advanced response)

The bracket of F and G is the linear term (in G) of the
difference between the retarded and the advanced response
of F to G.
We start with analyzing the situation, where we add a

source λg to the theory. Heuristically, this means adding a
linear functional λΦg to the action, where g is supported
outside C−

k and both λ and g are real. We will implement
this by a direct modification to the field equation. The idea
of Peierls is to study the effect of having such a perturbation
on the observables. Let ϕ be a solution to the nonperturbed
field equation (64) with Cauchy data ϕ− at C−

k and let ϕλ be
a solution to the perturbed equation

Pϕλ ¼ Kðf þ λgÞ þ ϕ−; ð78Þ

with the same Cauchy data. Now consider another linear
observable Φh with h real. The retarded response operator
Dþ

Φg
is, in direct analogy to [15], a transformation of

observables defined by

ðDþ
Φg
ΦhÞðϕÞ ¼ lim

λ→0

1

λ
ðΦhðϕλÞ −ΦhðϕÞÞ: ð79Þ

In this case, Eq. (78) gives

ðDþ
Φg
ΦhÞðϕÞ ¼ lim

λ→0

1

λ
hTðEþðf þ λgÞ − EþðfÞÞ

¼ hTEþg; ð80Þ

which is independent of the solution ϕ, i.e., Dþ
Φg
Φh is a

constant functional. Just as we defined the advanced Green
function to be the transpose of the retarded version, we now
define the advanced response by reversing the roles of the
perturbation and the observable used to test the response

D−
Φg
Φh ≐ Dþ

Φh
Φg: ð81Þ

With this definition,

ðD−
Φg
ΦhÞðϕÞ ¼ gTEþh ¼ hTðEþÞTg ¼ hTE−g; ð82Þ
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so the Peierls bracket is

fΦg;ΦhgPeiðϕÞ ¼ Dþ
Φg
Φh −D−

Φg
Φh ¼ hTðEþ − E−Þg

¼ gTEh; ð83Þ

in agreement with our definition (72).
Turning to nonlinear perturbations and nonlinear observ-

ables, let F ∈ C∞ðEðCÞ;CÞ (some examples appear at the
end of this subsection). Heuristically, perturbing the action
by λF has the effect of perturbing the field equation by
λ δF
δϕp

ðϕÞ. Taking (66) as the starting point, this suggests that
the interacting field equation should take the form3:

Pϕ ¼ λK

�
δF
δϕ

ðϕÞ
�
þ ϕ−; ð84Þ

where F is supported away from the past infinity C−
k . The

matrix K is there for consistency with linear perturbations
[compare with (78)]. This is an artifact of the way we
choose to discretize the interaction term. As for the notion
of support of F, we adopt the following definition

supp F ≐ fp ∈ Cj ∃ϕ ∈ EðCÞ; λ ∈ C s:t: Fðϕþ λδpÞ
≠ FðϕÞg: ð85Þ

where δpðqÞ ¼ δpq. This is a straightforward generalization
of the notion used in continuum. An obvious consequence
of this definition is that if p ∉ supp F, then δF

δϕp
ðϕÞ ¼ 0.

Conversely, we can express the support as

supp F ¼ ⋃
ϕ∈EðCÞ

supp
�
δF
δϕ

ðϕÞ
�
; ð86Þ

where suppðδFδϕ ðϕÞÞ consists of points p, for which δF
δϕp

ðϕÞ
is nonzero.
Let F;G ∈ C∞ðEðCÞ;CÞ be supported away from past

infinity. Then the retarded response for the discretized wave
equation (64) is

Dþ
F ðGÞ ¼ G;iðEþÞijF;j; ð87Þ

and defining D−
GðFÞ ¼ Dþ

F ðGÞ, as before, the bracket (72)
agrees with the Peierls construction.
Note that in general δF

δϕp
ðϕÞ can be very nonlocal, i.e., it

can depend on values of ϕ at points other than p. This
motivates the following definition:

Definition III.7. A functional F ∈ C∞ðEðCÞ;CÞ is
called local if δF

δϕp
ðϕÞ is a function of p and ϕðpÞ (only).

Linear functionals considered in the previous section are
obviously local. Other examples are local polynomials
which are finite sums of terms with the form

FðϕÞ ¼ ðϕ � � � � � ϕÞigi; ð88Þ

using the Hadamard product (31).

D. Free dynamics

Let us define the Poisson algebra assigned to a causal set
C as

PðCÞ ≐ ðF ; f:; :gÞ; ð89Þ

which is the causal set counterpart of the off-shell classical
algebra in continuum pAQFT (equations of motion are not
imposed). Typically, one would now quotient it by the ideal
generated by the equations of motion, to obtain the on-shell
algebra. The potential problem that arises in the causal set
context is that the retarded Green function is the inverse to
P but its transpose is not (unless in very special cases). As a
result, in general, EP ¼ ðE− − EþÞP ≠ 0, which means
that the Peierls bracket would not be well defined on the
quotient algebra.
Hence, instead of quotienting by the ideal generated by

the equations of motion, we propose to quotient PðCÞ by
the ideal generated by functionals F with the property

EijF;j ≡ 0; ð90Þ

denoting this quotient by P̃ðCÞ. Note that on P̃ðCÞ the
Poisson bracket f:; :g is nondegenerate.
To see how the above quotient is related to implementing

the dynamics, recall that in continuum we have the exact
sequence [39]:

0 → DðMÞ⟶P DðMÞ⟶E EscðMÞ⟶P EscðMÞ; ð91Þ

where M is a globally hyperbolic spacetime, P is a
normally hyperbolic operator, DðMÞ and EscðMÞ are space
of functions with compact and spatially compact support,
respectively. We also know that the space of linear
observables is isomorphic to DðMÞ by means of

DðMÞ ∋ h ↦ Φh; ΦhðϕÞ ¼
Z

ϕðxÞhðxÞdμg ð92Þ

Hence quotienting the algebra of regular functionals by the
ideal generated by elements of the form ΦPf, f ∈ DðMÞ is
the same as quotienting by the ideal generated by linear
observables Φh with the property h ∈ kerE.

3Note that since Pϕ is heuristically minus the variation of the
free action, in order to implement the interaction, we have to
subtract the variation of F on the left-hand side (or add it on the
right-hand side). This differs from the usual convention used in
[12,14,37], where P ¼ −□, rather than P ¼ □, as we assume in
the present work.
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This result extends to more singular functionals by
continuity. Clearly, our condition (90) is the causal set
analogue of quotienting by the kernel of E. This condition
is also the natural generalization of the condition proposed
in [16] for linear observables. Sorkin argues that the kernel
of E in the causal set situation is typically very small. There
are many very small eigenvalues of E, but only a few of
them are exactly 0. This leads Sorkin to conclude that the
equations of motion on a causal set can be implemented
only in approximate sense [16]. We hope to address this
point in future work.

E. Interacting theory

Next we want to introduce the interaction. We will use
the framework proposed in [12] and further developed
in [37].

1. Interacting and linearized interacting
equations of motion

Let V ∈ C∞ðEðCÞ;CÞ, where jCj ¼ N and let λ be the
coupling constant. We work perturbatively, so the space of
observables is now extended to include formal power series
in the coupling constant λ, i.e., it becomes F ðCÞ½½λ��. The
interacting field equations are given by (84), which we can
also write as

Pϕ − λKðVð1ÞðϕÞÞ ¼ ϕ−: ð93Þ

The interacting field equations linearized about ϕ ∈ EðCÞ,
are

Pψ − λKVð2ÞðϕÞψ ¼ ψ−: ð94Þ

where Vð2ÞðϕÞ is an N × N matrix with components

ðVð2ÞðϕÞÞij ¼ V;ijðϕÞ: ð95Þ

2. Interacting Poisson bracket

The prescription for the Poisson bracket of the interact-
ing theory with the interaction λV is given by

fG;HgλV ≐ G;iEλVðϕÞijH;j; ð96Þ
where EλVðϕÞ ¼ ðEþ

λVðϕÞÞT − Eþ
λVðϕÞ, and Eþ

λVðϕÞ is the
retarded Green function for the interacting linearized field
equations (94). Starting from the free Green function Eþ,
we construct the interacting one using the Neumann series:

Eþ
λV ¼ Eþ þ

X∞
n¼1

λnEþðVð2ÞEþÞn: ð97Þ

Proposition III.8. The bracket (96) is a Poisson
bracket, in particular, it satisfies the Jacobi identity: for
any F;G;H ∈ C∞ðEðCÞ;CÞ, one has

fF; fG;Hgg þ fG; fH;Fgg þ fH; fF;Ggg ¼ 0: ð98Þ

Proof.—The proof is analogous to that of
Proposition III.6. The only difference is in the proof of
the Jacobi identity. Expanding the first term in (98), we
obtain

F;iEil
λVG;jlE

jk
λVH;k þ F;iEil

λVG;j ðEλVÞjk;l H;k

þ F;iEil
λVG;jE

jk
λVH;kl: ð99Þ

Due to the antisymmetry of EλV , only the central term of the
expansion of each bracket remains as the others cancel
across all three expanded brackets. The derivatives of the
retarded Green function are

ðEþ
λVÞjk;l ¼ λðEþ

λVÞjmV;lmnðEþ
λVÞnk; ð100Þ

where V is the interaction term. Inserting this into (99) and
expanding each EλV ¼ ðEþ

λVÞT − Eþ
λV , we obtain twelve

terms altogether. These cancel in pairs due to the anti-
symmetry of EλV and the fact that V;lmn is symmetrical with
respect to its indices (see the Appendix B of [40] for more
details of the proof). ▪
We can also introduce the retarded Møller map, which

maps solutions to free discretized retarded field equations
to solutions to interacting field equations: (84)

rλVðϕÞ ¼ ϕþ λEþVð1ÞðrλVðϕÞÞ: ð101Þ

Its inverse is given by

r−1
λVðϕÞ ¼ ϕ − λEþVð1ÞðϕÞ: ð102Þ

The retarded Møller map on configurations induces the
corresponding map on observables,

ðrλVFÞðϕÞ ≐ F∘rλVðϕÞ; ð103Þ

where F ∈ F ðCÞ½½λ��. Analogously to the continuum case,
the Peierls bracket (96) satisfies:

fF;GgλV ¼ r−1λVfrλVF; rλVGg: ð104Þ

IV. QUANTUM THEORY

So far, we have constructed a Poisson algebra of
observables for the free and interacting classical field
theory on a causal set. We now pass to the quantum theory
using the method of deformation quantization, following
ideas applied in the context of continuum field theory by
[11,13,41]. The main idea behind this approach is to phrase
the problem of quantization as the mathematical problem of
finding a noncommutative ℏ-dependent product ⋆ℏ, such
that, given a Poisson algebra (with a commutative product ·
and Poisson bracket f:; :g):

DABLE-HEATH, FEWSTER, REJZNER, and WOODS PHYS. REV. D 101, 065013 (2020)

065013-14



F⋆ℏG⟶
ℏ→0

F ·G;

1

iℏ
ðF⋆ℏG −G⋆ℏFÞ⟶ℏ→0 fF;Gg:

In our case, F and G are smooth functions on the
configuration space EðCÞ. Furthermore, the ⋆ℏ product is
required to be of the form:

F⋆ℏG ¼
X∞
n¼0

ℏnBnðF;GÞ; ð105Þ

where Bn are differential operators on EðCÞ. For simplicity,
we focus on finite causal sets, so that for a causal set of size
N, EðCÞ ≅ RN and the differential calculus on it is well
understood. We can then express

BnðF;GÞ ¼
XN
i1¼1

…
XN
jn¼1

δnF
δϕi1…δϕin

ðBnÞi1;…;in;j1;…;jn

×
δnG

δϕj1…δϕjn

: ð106Þ

The higher orders in ℏ present in (105) distinguish this
approach from the Dirac quantization, so one avoids
contradiction with the Groenewald-van Hove no-go theo-
rem [42,43].
Deformation quantization has the advantage that the

construction of the algebra of observables can be done
completely abstractly, without the need for existence
of a distinguished state (e.g., a vacuum) and without
invoking Fock space methods. At a later stage, one can
then seek suitable states on the abstract algebra and use
these to form Hilbert space representations by the GNS
construction.
The choice of states has both a mathematical and a

physical aspect. There is a precise mathematical defini-
tion of a state, as a positive normalized linear functional
on a �-algebra (and this can be extended to algebras of
formal power series, as will be described below).
However not all such linear functionals need qualify
as physically relevant. For QFT in continuum curved
spacetimes it is known that it is not possible to single out
a unique distinguished state that is locally and covariantly
determined by the geometry, assuming certain additional
physically motivated assumptions—see [44] for a formal
proof and [45] for a review. Nonetheless, there are
circumstances in which a distinguished global state (or
distinguished “in” and “out” states) with good properties
(specifically, the Hadamard condition) may be determined
[46–48]. One proposal for a global geometrically deter-
mined state, arising from the causal set program, is the
Sorkin-Johnston (SJ) state [27,49]. In the continuum this
is known to have certain problems; in particular, it
generally fails to be Hadamard [29,50]. Nonetheless,

SJ states retain interest as a specific construction of a
state where particular examples are otherwise sparse;
furthermore, there are softened versions [30–32] of the SJ
construction in which the Hadamard property is restored
at the price of losing uniqueness.
As the definition of Hadamard states centres on the

UV behavior of their n-point functions, it may seem that
these problems are vitiated in discrete spacetimes. This is
not quite so, because ideally one would like to under-
stand the class of states that can have Hadamard
continuum limits; and if the causal set has infinitely
many elements then there is still the possibility that
different states could yield inequivalent representations of
the CCR algebra. The situation is of course better still in
the case of finite causal sets, our main focus, where the
Stone-von Neumann theorem ensures that all sufficiently
regular representations are unitarily equivalent up to
multiplicity. In this situation any pure state will lead
to the same Hilbert space representation. Therefore the SJ
state is a valid starting point for a more refined
discussion. As we will show, it is mathematically simple
to describe, and closely related to our choice of the
Euclidean inner product in Sec. III A. Alternative inner
products produce states that may be seen as precursors of
the softened SJ states of [30–32]. See Remark IV.3 for
some further comments.
A great advantage of the algebraic viewpoint is that it is

much more straightforward to introduce interactions than in
constructions based on Fock space. Applying the ideas of
[11,37,51], we will show how to pass to the interacting
theory, using further deformation of the noncommutative
product ⋆ℏ.

A. Construction of the quantum algebra

1. Exponential products

Deformation quantization of the classical theory starts
with the free theory, i.e., a linearized wave equation (66)
and its retarded Green function Eþ. From this we obtain E
and the Peierls bracket. Let us for the moment restrict
ourselves to the subspace of F ðCÞ that consists of smooth
functionals F with the property that there exists N ∈ N
such that FðnÞðφÞ ¼ 0 for all n > N, φ ∈ EðCÞ. We call
such functionals polynomial and denote the corresponding
vector space by F polðCÞ. This space can be equipped with
various types of noncommutative product, of which we will
describe two. First, the Moyal–Weyl product is

F⋆G ≐ m∘e1
2
iℏDEðF ⊗ GÞ; ð107Þ

where F;G ∈ F polðCÞ, m is the multiplication on F polðCÞ
induced by pointwise multiplication of functionals in
F polðCÞ and for a given N × N matrix M,
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DM ≐ Mij
δ

δϕi

δ

δϕj
≡

�
M;

δ

δϕ
⊗

δ

δϕ

�
; ð108Þ

maps F polðCÞ⊗2 → F polðCÞ⊗2. With the appropriate choice
of units, ℏ is just a number and can be set equal to 1. We
obtain a noncommutative algebra AðCÞ ≐ ðF polðCÞ;⋆Þ,
which, as in the classical case, is the analogue of the
continuum off-shell algebra. Second, the Wick product is
defined by

F⋆HG ≐ m∘eℏDW ðF ⊗ GÞ; ð109Þ

where

W ¼ i
2
EþH; ð110Þ

is a complex Hermitian matrix that has the physical
interpretation of the two-point function of a quasifree state
on AðCÞ. Denote AHðCÞ ≐ ðF polðCÞ;⋆HÞ.
We require W to have the following properties, which

then constrain H:
(W1) E ¼ 2ImW, i.e.,H ¼ ReH (recall that E is real

by definition).
(W2) W is a positive definite matrix, meaning that

f†Wf ≥ 0, where f† is the Hermitian conjugate
of f ∈ CN .

(W3) kerW ⊂ kerE (a proxy for W solving the
equations of motion)

This is almost the same as in the continuum, but modifying
the condition thatW solves the equations of motion. This is
related to the general difficulty with going on-shell dis-
cussed before.
Remark IV.1.—Note that both ⋆ and ⋆H are of the

form (105) with ðBnÞi1;…;in;j1;…;jn ¼ ði=2ÞnEi1j1…Einjn for
the former and ðBnÞi1;…;in;j1;…;jn ¼ Wi1j1…Winjn for the
latter.
Physically, passing from ⋆ to ⋆H corresponds to

normal-ordering with respect to the quasifree state deter-
mined by W. In deformation quantization, the products ⋆
and ⋆H are regarded as equivalent, because they are related
by a gauge transformation αH∶ AðCÞ → AHðCÞ, which is
given by

αH ≐ e
ℏ
2
DH ; ð111Þ

where

DHðFÞ ≐ HijF;ij ≡
�
H;

δ2F
δϕ2

�
;

More explicitly, we can write

F⋆HG ¼ αHðα−1H F⋆α−1H GÞ; ð112Þ

and we identify α−1H ðFÞ≡ ∶F∶H as the normal (Wick)
ordering operation. Applying α−1H to a local functional F ∈
F locðMÞ in continuum is analogous to normal ordering
using the point-splitting prescription.
Example IV.2 (Minkowski spacetime).—Consider the

example of continuum free scalar field theory on
Minkowski spacetime M. Let Φf, Φg be smeared fields,
as defined by (28). For the Klein-Gordon operator
P ¼ □þm2, there exist the unique retarded and
advanced Green functions E� and their difference is
the commutator function E ¼ E− − Eþ. With the star
product taken to be ⋆H, for any choice of the symmetric
part H, we have

½Φf;Φf0 �⋆H
¼ Φf⋆HΦf0 −Φf0⋆HΦf ¼ iℏhE; f ⊗ f0i:

Formally, we can consider Φx ≐ ΦðδxÞ, where δx is the
Dirac delta supported at some x ∈ M, and we find:

½Φx;Φy�⋆H
¼ iℏEðx; yÞ:

Now fix an inertial coordinate system and consider the
t ¼ 0 Cauchy surface. Let x and y denote spacelike
vectors on this surface. From properties of E follows that:

½Φð0;xÞ;Φð0;yÞ�⋆ ¼ Δð0;x; 0; yÞ ¼ 0

½Φð0;xÞ; _Φð0;yÞ�⋆ ¼ ∂y0Δð0;x; 0; yÞ ¼ iℏδðx − yÞ;

where dot denotes the time derivative. These are the
standard equal-time commutation relations, so we have
recovered the usual formulas from the deformation
quantization approach.
In order to find a specific choice ofW, we will follow the

ideas of [27,49] and take W as the Sorkin-Johnston (SJ)
two-point function. We recall, that according to [16],
W is the unique N × N matrix satisfying the following
properties:

(SJ1) W − W̄ ¼ iE, where bar denotes the complex
conjugation,

(SJ2) W ≥ 0,
(SJ3) W̄W ¼ 0.

It was shown in [16] that the unique W satisfying the
axioms above is given by

W ¼ 1

2
ðiEþ

ffiffiffiffiffiffiffiffiffi
−E2

p
Þ; ð113Þ

where the square root is the unique positive semidefinite
square root of the positive semidefinite matrix ðiEÞ2 ¼
ðiEÞðiEÞ†.
Remark IV.3.—Note that we have made implicit use of

the Euclidean inner product in order to identify the
2-point function with a matrix. As already indicated in
Remark III.3, this choice is to some extent arbitrary and
could be changed. Since (SJ3) crucially depends on this
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choice, a different auxiliary inner product would produce a
different 2-point function and hence a different state. The
significance of this fact becomes acute in the continuum.
Consider the real scalar field on ðM; gÞ withM ¼ ð−τ; τÞ ×
Σ being an ultrastatic slab spacetime. Choosing the inner
product on C∞c ðM;RÞ to be the one induced by the volume
form dμg implies that the unique W solving (SJ1)-(SJ3) is
the 2-point function of the SJ state which is known not to be
Hadamard in general [29,50]. However, replacing dμg by
1
ρ dμg produces Wρ, which is a 2-point function of a
Hadamard state, if ρ is an appropriately chosen smooth
function on the interval ð−τ; τÞ, tending to zero at both
endpoints (see [30] for details).

2. Formal power series

Going beyond the polynomial observables requires some
caution, since the power series defining the star product
might not converge. One possibility is to consider analytic
functions (e.g., exponentials, as discussed in the next
section) or to extend the framework to allow also formal
power series. The latter is actually necessary if we want to
introduce interactions (see Sec. IV D).
Let F ðCÞ½½ℏ�� denote the vector space consisting of

formal power series in the formal parameter ℏ, with
coefficients in F ðCÞ. Formulas (107) and (109) can be
easily adapted to this setting, but now we interpret ℏ as a
formal parameter rather than a number. The resulting
algebras will be denoted by Aℏ ≐ ðF ðCÞ½½ℏ��;⋆Þ and
Aℏ

H ≐ ðF ðCÞ½½ℏ��;⋆HÞ, respectively.

B. Weyl algebra

The algebra of observables AðCÞ introduced in the
previous section can be equipped with a topology that
makes it into a topological unital �-algebra. Such algebras
are typically represented in Hilbert spaces by unbounded
operators. If we want to work with bounded operators
instead, a suitable candidate for the algebra of observables
is provided by the Weyl algebra, defined by exponentiating
linear functionals. In this section we treat ℏ as a number,
rather than a formal parameter.
Recall that elements of RN are identified with linear real

observables on a causal set C of size N by means of (25).
The Poisson bracket f:; :g on the space of observables is
given by (72), so for g; h ∈ RN we have

fΦg;Φhg ¼ hg; Ehi ≐ σðg; hÞ: ð114Þ

Definition IV.4. Each linear real observable Φg,
g ∈ RN , defines a Weyl functional WðgÞ ∈ C∞ðEðCÞ;CÞ
by WðgÞ ¼ eiΦg.
Proposition IV.5. The Weyl functionals satisfy the

Weyl commutation relations

WðgÞ⋆Wðg̃Þ ¼ e−
iℏ
2
σðg;g̃ÞWðgþ g̃Þ; ð115Þ

with respect to the star product, and WðgÞ� ¼ Wð−gÞ.
Proof.—This is a simple computation. The functional

derivative of the operators in the direction of an arbitrary
field in the configuration space h ∈ EðCÞ is

hðWðgÞÞð1ÞðϕÞ; hi ¼ d
dλ

exp

�
i
XN
j¼1

giðϕj þ λhjÞ
�				

λ¼0

¼
�
i
XN
j¼1

gjhj

�
WðgÞðϕÞ ð116Þ

hence:

hðWðgÞÞðnÞðϕÞ; h⊗ni ¼
�
i
XN
j¼1

gjhj

�n

WðgÞðϕÞ: ð117Þ

Therefore, the following formula is obtained from the star product:

WðgÞ⋆Wðg̃Þ ¼
X∞
n¼0

ℏn

n!

�
ðWðgÞÞðnÞ;

�
iE
2

�
⊗n

ðWðg̃ÞÞðnÞ
�

¼
X∞
n¼0

�
iℏ
2

�
n ð−1Þn

n!

�XN
i;j¼1

giEijg̃j

�n

Wðgþ g̃Þ

¼ exp

�
−
iℏ
2

XN
i;j¼1

giEijg̃j

�
Wðgþ g̃Þ

¼ e−
iℏ
2
fFg;Fg̃gWðgþ g̃Þ ¼ e−

iℏ
2
σðg;g̃ÞWðgþ g̃Þ; ð118Þ

as required. ▪

ALGEBRAIC CLASSICAL AND QUANTUM FIELD THEORY ON … PHYS. REV. D 101, 065013 (2020)

065013-17



We may now introduce the Weyl C�-algebra for the free
scalar field on a causal set C. For details see for example
[[52], Sec. 8.3.5] or [[53], Sec. 14.2]. Consider the non-
separable Hilbert space H ¼ L2ðRN; dμÞ of square inte-
grable functions with the counting measure μ on RN . This
can also be identified with l2ðRNÞ, the space of square-
summable sequences indexed over RN, because any
element of H may be writtenX

g∈RN

cgeg; with
X
g∈RN

jcgj2 < ∞; ð119Þ

where feggg∈RN is the orthonormal basis for H given
by ðegÞh ¼ δgh. The representation of Weyl generators is
given by

ðπðWðhÞÞaÞg ≐ e−
iℏ
2
σðg;hÞagþh; ð120Þ

for any a ∈ l2ðRNÞ. One may easily check that the Weyl
relations are fulfilled, by explicit computation. Using this
representation, we define a C�-norm k:k on the generators
(by taking the corresponding operator norm as operators on
H). We are now ready to define the Weyl C�-algebra.
Definition IV.6. The Weyl C�-algebra is generated by

the operators fWðgÞgg∈RN and completed with respect to
the C�-norm k:k

C. States and the GNS representation

Within the framework of algebraic quantum theory, a
physical system is described by the algebra of observables
associated with it. The abstract algebra may be linked to the
standard formulation of quantum theory by means of a
Hilbert space representation. If we start with a C�-algebra,
we can represent it by bounded operators. For a general
topological unital �-algebra, we have to work with
unbounded operators as well.
Choosing a Hilbert space representation is equivalent to

choosing an algebraic state, by virtue of the Gelfand-
Naimark-Segal (GNS) construction.
Definition IV.7. Let A be a topological unital

�-algebra, then an algebraic state is a linear functional
ω∶ A → C such that:

ωða�aÞ ≥ 0 ∀ a ∈ A; ωð1Þ ¼ 1: ð121Þ

Theorem IV.8 (GNS). Let ω be a state on a unital
�-algebra A. Then there exists a representation π of the
algebra by linear operators on a dense subspace K of some
Hilbert space H and a unit vector Ω ∈ K, such that

ωðAÞ ¼ ðΩ; πðAÞΩÞ; ð122Þ

and K ¼ fπðAÞΩ; A ∈ Ag.

For the details of the proof, which is constructive and
builds the Hilbert space from the algebra, see for example
[[14], Sec. 2.1.3] or [[6], Sec. 2.3]. Let us now record some
general facts about states in the pAQFT framework.
First, we establish that evaluation at the zero vector is a

state on AHðCÞ. The corresponding result in the continuum
case is known, but to the best of our knowledge there is no
complete proof written down anywhere in the literature, so
for completeness we provide it here as well.
Definition IV.9. Let M ¼ ðM; gÞ be a globally hyper-

bolic manifold, E ≐ C∞ðM;RÞ, DC
n ≐ C∞ðMn;CÞ. Define

the space of regular polynomials F polðMÞ as the space of
functionals on E of the form:

FðφÞ ¼ F0 þ
XN
k¼1

hφ⊗k; fki; ð123Þ

where F0 ∈ C, φ ∈ E, fk ∈ DC
k and h:; :i denotes the usual

pairing induced by integrating with the invariant volume
form dμg over the whole Mk.
Proposition IV.10. Let AHðMÞ ¼ ðF polðMÞ;⋆HÞ for

some choice of a Hadamard function (by that we mean
a bi-distribution satisfying the continuum version of (W1)-
(W3), see [14] for the precise definition)W ¼ i

2
EþH. Set

ℏ ¼ 1. The functional given by evaluation at zero

ω0ðFÞ ≐ Fð0Þ; F ∈ AHðMÞ; ð124Þ

is a quasifree Hadamard state on AHðMÞ with 2-point
function W.
Proof.—Take F as in (123) and write (it is useful to keep

ℏ explicit at this stage)

ω0ðF�⋆HFÞ ¼
X∞
n¼0

ℏn

n!
hðFðnÞð0ÞÞ�;W⊗nFðnÞð0Þi

¼ jF0j2 þ
XN
k¼1

ℏkk!hf̄k; wkfki; ð125Þ

where wk is a distribution in D0
n defined by the following

distributional kernel:

wkðx1;…; xk; y1;…; ykÞ
≐ ððΦx1 ;…ΦxkÞ�⋆HðΦy1 ;…ΦykÞÞð0Þ; ð126Þ

where Φx is the evaluation functional at x ∈ M, i.e., for
φ ∈ E: ΦxðφÞ ≐ φðxÞ.
Hence for the positivity of ω0 it is sufficient to show that

all wk, k ∈ N are positive type, i.e., wðF̄; FÞ ≥ 0. We
proceed by induction. First, note that for k ¼ 1 we have
w1 ¼ W, which is by assumption positive type. We need to
prove the induction step, i.e., assuming wn−1 is positive
definite, we want to show that wn is positive type.
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Our proof is similar to the one used in [52] for states on
the Weyl algebra, but is more general. First we recall the
Schur product theorem about positive semidefinite matri-
ces: if A ≥ 0 and B ≥ 0 (A, B are positive semidefinite),

then their Hadamard product A � B is also positive
semidefinite.
Let x≡ ðx1;…; xnÞ, y≡ ðy1;…; ynÞ. We express

wn as

wnðx; yÞ ¼
Xn
i;j¼1

ðΦ�
xi⋆HΦyjÞð0ÞððΦx1 · � � � · cΦxi · � � � ·ΦxnÞ�⋆HðΦy1 · � � � · cΦyj · � � � ·ΦynÞÞð0Þ; ð127Þ

where ˆ indicates that the given symbol is omitted. Let f ¼ f1 ·… · fn ∈ Dn, where fi ∈ D, i ¼ 1;…; n. Using (127) we
obtain

hf̄; wnfi ¼
Xn
i;j¼1

aijbij; ð128Þ

where

aij ≡ hf̄i;Wfji;
bij ≡ hðf1 ·… · f̂i ·… · fnÞ�; wn−1ðf1 ·… · f̂j ·… · fnÞi ð129Þ

Define n × n matrices A≡ ½aij� and B≡ ½bij�. These are
both positive semidefinite. To see this, we consider λ ∈ Cn

and define

f̃λ ≐
Xn
i¼1

λifi; f̂λ ≐
Xn
i¼1

λif1 ·… · f̂i ·… · fn: ð130Þ

It follows that

λ†Aλ ¼ h ¯̃fλ;Wf̃λi ≥ 0; ð131Þ

since W is positive semidefinite, and

λ†Bλ ¼ h ¯̂fλ; wn−1f̂λi ≥ 0; ð132Þ

using the assumption in the induction step. By Schur
product theorem the Hadamard product A � B is also
positive semidefinite and we note that

hf̄; wnfi ¼ λ†1ðA � BÞλ1; ð133Þ

where λ1 ¼ ð1;…; 1Þ, so we conclude that

hf̄; wnfi ≥ 0; ð134Þ

which proves the induction step.
It remains to show that ω0 is a quasifree state. This,

however, is straightforward, since for f1;…; f2k ∈ D the
correlation function is given by

ω0ðΦf1⋆H � � �⋆HΦf2kÞ ¼
X
G∈G2k

Y
e∈G

WðfsðeÞ; ftðeÞÞ; ð135Þ

where fi ∈ D, i ¼ 1;…; 2k, G2k is the set of directed
graphs with vertices labeled 1;…; 2n, such that each vertex
is met by exactly one edge and the source and target of each
edge obey sðeÞ < tðeÞ.
Correlation functions of an odd number of fields vanish,

since all uncontracted factors of φ give zero after the
evaluation. ▪
Remark IV.11.—We could replace F polðMÞ with a

larger space of functionals, e.g., the microcausal func-
tionals [10]. The proof is then exactly the same, but the test
function spaces Dn are replaced by appropriate spaces of
distributions satisfying given wavefront set conditions.
Let us now state the discrete version of the

Proposition IV.10. Again, we set ℏ ¼ 1.
Proposition IV.12. The functional given by evaluation

at zero

ω0ðFÞ ≐ Fð0Þ; F ∈ AHðCÞ; ð136Þ

is a quasifree state on AHðCÞ, with 2-point func-
tion W ¼ i

2
EþH.

Corollary IV.13. The functional given by

ωH;0ðFÞ ≐ αHðFÞð0Þ ð137Þ

is a state on AðCÞ and if we takeW ¼ i
2
EþH to be that of

the SJ state, then

ωH;0 ¼ ωSJ: ð138Þ
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Proof.—The 2-point function of ωH;0 is given by

ωH;0ðΦf⋆ΦgÞ ¼ ðΦf⋆HΦgÞð0Þ ¼ W ¼
�
i
2
EþH

�
:

ð139Þ

▪
In particular, for Weyl generators, we obtain

ωH;0ðWðgÞÞ ¼ e−
ℏ
2
hg;Hgi; ð140Þ

so H is the covariance of the state ωH;0.
As stated at the beginning of this section, passing

between A and AH can be understood as normal ordering.
Hence, on one hand we can work with normal-ordered
quantities α−1H ðFÞ≡ ∶F∶H, ∶G∶H within the algebra A or
with original functionals F;G within the algebra AH.
Correlation functions are then computed using the rule:

ωH;0ð∶F∶H⋆∶G∶HÞ ¼ ω0ðF⋆HGÞ ¼ ðF⋆HGÞð0Þ: ð141Þ

Let us now discuss the generalization to the situation,
where F polðCÞ is replaced with the space F ðCÞ½½ℏ�� of
formal power series.
We need the notion of states on the formal power series

algebraAℏ ¼ ðF ½½ℏ��;⋆Þ. Condition (121) has to be under-
stood in the sense of the formal power series. For A ¼P∞

n¼0 ℏ
nAn and ω ¼ P∞

n¼0 ℏ
nωn, the normalization con-

dition is that ωð1Þ ¼ ω0ð1Þ ¼ 1. We have

ωðA�AÞ ¼ ω0ðA�
0A0Þ þ ℏðω0ðA�

1A0 þ A�
0A1Þ þ ω1ðA�

0A0ÞÞ
þ � � � ; ð142Þ

and, by definition, positivity for a formal power series
means that the lowest nonvanishing term has to be
positive (see [54]), so if ω0ðA�

0A0Þ ≠ 0, then we require
ω0ðA�

0A0Þ ≥ 0, i.e., ω0 is a state in the usual sense.
Alternatively, one could use the stronger notion of pos-
itivity, proposed in [55], where one says that a formal
power series b ¼ P∞

n¼0 ℏbn is non-negative, if there exists
a series c ¼ P∞

n¼0 ℏcn, such that b ¼ c�c. This does not
make any difference for what follows.

D. Interacting theory

1. Motivating the approach

We finish this section with the construction of the
interacting theory for a given interaction V ∈ F ðCÞ. We
use the framework of perturbative AQFT [11,14,51], where
the interacting fields are constructed with the use of
quantum Møller operators. The motivation comes from
the interaction picture in quantum mechanics. Consider the
continuum theory of the scalar field on Minkowski space-
time with the free Hamiltonain H0 and let the interaction
Hamiltonian begiven by −

R
Σ ∶LIð0;xÞ∶dσ, where the

integration goes over some fixed Cauchy surface and
∶LI∶ is the normal-ordered Lagrangian density.
Heuristically, we would like to be able to use Dyson’s

formula for interacting fields, which reads:

φIðxÞ ¼ Uðx0; sÞ−1φðxÞUðx0; sÞ
¼ Uðt; sÞ−1Uðt; x0ÞφðxÞUðx0; sÞ; ð143Þ

where φðxÞ is the free field, φIðxÞ is the interacting field
and the interacting time evolution operator is given by:

UIðt; sÞ ¼ 1þ
X∞
n¼1

inλn

n!

Z
ð½s;t�×R3Þn

Tð∶LIðx1Þ∶…∶LIðxnÞ∶Þd4x1…d4xn; ð144Þ

where λ is the coupling constant, T denotes time-ordering
and ∶LI∶ is an operator-valued function given by

LIðxÞ ¼ eiH0x0∶LIð0;xÞ∶e−iH0x0 ;

Unfortunately, there are many problems with the above
idea, already in Minkowski spacetime:

(i) Typical Lagrangian densities, e.g., ∶LIðxÞ∶ ¼
∶φðxÞ4∶ cannot be restricted to a Cauchy surface
as operator-valued distributions. This is the source of
the UV problem. On causal sets, the major problem
with such quantities is the lack of a good analog of a
Cauchy surface.

(ii) There is a problem with taking the adiabatic limit, as
the integral of the Lagrangian density over x does
not exist if Σ is noncompact.

(iii) The overall sum might not converge.
In pAQFT, the first two problems are addressed as follows:
quantities likeLIð0;xÞ are replaced by smeared ones, of the
form: V ≡ R

M fðxÞLIðxÞd4x, where f ∈ DðMÞ plays the
role of the adiabatic cutoff. Note that the expression we use
is now fully covariant, so there is no need for singling out a
Cauchy surface. The normal ordering is achieved by fixing
a Hadamard function W ¼ i

2
EþH and using the corre-

sponding ⋆H product in the free theory. Finally, the time-
ordered products corresponding to the above choice of a
Hadamard function have to be constructed. In continuum,
this is achieved through the Epstein-Glaser renormalization
[56], but on causal sets we are able to use a more direct
method, as shown below. The problem with overall con-
vergence cannot be addressed with our methods, so we will
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work with formal power series in ℏ. As an intermediate
step, we will also use formal power series in the coupling
constant λ.
In pAQFT time-ordered products are not just formal

expressions, but they stem from a binary product · T , so that:

T

�Z
M
f1ðxÞLIðxÞd4x � � �

Z
M
fnðxÞLIðxÞd4x

�
≔

Z
M
f1ðxÞLIðxÞd4x · T � � � · T

Z
M
fnðxÞLIðxÞd4x: ð145Þ

Constructing · T will be one of the main tasks in the
following section.

2. S-matrix and interacting fields

We start with the algebraAðCÞ, constructed in Sec. IVA 2,
but we introduce a new formal parameter λ, which plays the
role of the coupling constant. In this section Aℏ;λðCÞ≡
ðF ðCÞ½½ℏ; λ��;⋆Þ. We fix a Hadamard functionW ¼ i

2
EþH

and denote Aℏ;λ
H ðCÞ≡ ðF ðCÞ½½ℏ; λ��;⋆HÞ. On this algebra

there is a distinguished state given by evaluation at 0, i.e.,

ω0ðFÞ ≐ Fð0Þ: ð146Þ

Different choices of W lead to different, but isomorphic
algebras [all of them isomorphic to Aℏ;λðCÞ], each one with
its own distinguished state, given by evaluation at 0. In each
case, the 2-point function of this state is by definition W.
Since Aℏ;λðCÞ and Aℏ;λ

H ðCÞ are related through the
isomorphism αH, we obtain a family of states on
Aℏ;λðCÞ labeled by H, i.e.,:

ωH;0ðFÞ ¼ αHðFÞð0Þ:

The 2-point functions of these states are given by:

αHðΦf⋆ΦgÞð0Þ ¼ ðΦf⋆HΦgÞð0Þ ¼ fTWg:

If W satisfies (SJ1)-(SJ3), then ωH;0 is the SJ state
on Aℏ;λðCÞ.
Now we are ready to introduce time-ordered products.

To this end, we will need the Feynman propagator. In our
framework, there is a “Feynman-like” propagator for
every choice of W, so it is a state-dependent notion. We
define it as

ΔF ¼ i
2
ðEþ þ E−Þ þH; ð147Þ

whereH is the symmetric part of the 2-point functionW. In
what follows, we will keep H fixed and refer to ΔF simply
as the Feynman propagator.

Given ΔF, we define the time-ordered product · T by

F · T G ≐ m∘eℏ
2
DΔF ðF ⊗ GÞ

¼
X∞
n¼0

ℏn

n!
F;i1���inðΔFÞi1j1 � � � ðΔFÞinjnG;j1���jn : ð148Þ

We can also write it as

F · T G ¼ T ðT −1F · T −1GÞ;

where the product on the right-hand side is the usual
pointwise product of functionals in F ðCÞ½½ℏ; λ�� and the
operator T is given by

T ≐ e
ℏ
2
DΔF :

Remark IV.14.—On Minkowski spacetime, the operator
T formally corresponds to a path integral involving a
“Gaussian measure” with covariance iℏΔF, i.e.,

T FðφÞ ¼formal
Z

Fðφ − ϕÞdμiℏΔFðϕÞ: ð149Þ

Therefore, one can think of the pAQFT formalism as a way
to make path integrals and other formulas used in pertur-
bative QFT rigorous. We hope that this statement can be
made more precise in the context of causal sets, where the
path integral has better chances of being well defined.
Using the time-ordered product, we introduce the formal

S-matrix for the interaction V and coupling constant λ. It is
given by

SðλVÞ ≐ e
i
ℏλV
T ¼

X∞
n¼0

λnin

ℏnn!
V ·T … ·T V|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

n

: ð150Þ

Next, we define the interacting fields. For a classical
observable F ∈ F ðCÞ, the corresponding quantum inter-
acting field is given by RλVðFÞ, where RλV is the retarded
quantum Møller operator defined by

RλVðFÞ ≐ −iℏ
d
dμ

SðλVÞ−1⋆HSðλV þ μFÞjμ¼0

¼ ðei
ℏλV
T Þ−1⋆Hðe

i
ℏλV
T ·T FÞ: ð151Þ

Note the analogy of this formula to the Dyson series
mentioned in Sec. IV D 1 as the motivation for the pAQFT
approach.
We can also use the Møller operator to deform the free

star product and obtain the interacting one, using the
formula:

F⋆H;intG ≐ R−1
λV ðRλVðFÞ⋆HRλVðGÞÞ: ð152Þ
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This way we obtain the interacting algebra Aint
H ðCÞ ≐

ðF ðCÞ½½ℏ; λ��;⋆H;intÞ. Given a state ω on the free algebra,
we can construct the state ωint on Aint

H ðCÞ using the
pullback:

ωintðFÞ ≐ ω∘RλVðFÞ; ð153Þ

where F ∈ F ðCÞ½½ℏ; λ��. The natural choice of a state in this
context is ω0 for the free theory. Next, we want to choose
observables. The first natural candidate is the smeared
interacting field itself, i.e.,

Φint
f ≐ RλVðΦfÞ

The n-point correlation function of smeared interacting
fields is given by:

ωint
n ðg1;…; gnÞ
≐ ω0ðΦint

g1 ⋆H…⋆HΦint
gn Þ

¼ ðRλVðΦg1Þ⋆H…⋆HRλVðΦg1ÞÞð0Þ: ð154Þ

Note that the product we used is the product of the free
theory, since, following the philosophy of the interaction
picture, interacting fields are constructed within the free
field algebra.
Alternatively, we can write the above correlation func-

tion as

ωint
n ðg1;…; gnÞ
¼ ω0∘RλV∘R−1

λV ðRλVðΦg1Þ⋆H…⋆HRλVðΦgnÞÞ
¼ ωintðΦg1⋆H;int…⋆H;intΦgnÞ: ð155Þ

Here we did not modify the observables, but changed the
product and changed the state. Other natural observables to
consider include all the local polynomials (88).
Remark IV.15.—In the pAQFT setting there are two

equivalent ways of treating the interacting theory. On the
one hand, one can work with the algebra Aℏ;λ

H ðCÞ ¼
ðF ðCÞ½½ℏ; λ��;⋆HÞ and identify physical observables with
elements of this algebra by means of RλV . For example,
take Φf, as above. Inside Aℏ;λ

H ðCÞ the free quantum
observable corresponding to this object is just Φf, while
the interacting observable is identified as Φint

f ¼ RλVðΦfÞ.
For computing the correlation functions we use the product
⋆H and the state ω0 (given by evaluation at ϕ ¼ 0).
On the other hand, we can model interacting fields using

Aint
H ðCÞ ¼ ðF ðCÞ½½ℏ; λ��;⋆H;intÞ. In this case, the interacting

observable corresponding to Φf is just Φf, but for
computing the correlation functions we use the product
⋆H;int and the state ωint.
Note that in one approach we work with complicated

observables, but a simple product and a simple state, while
in the other approach we have simple observables, but the

product and the state become complicated. The crucial
difference between the two approaches is how we identify
physical objects (e.g., the linear field) with elements of
F ½½ℏ; λ��, which is the underlying vector space in both
algebras Aℏ;λ

H ðCÞ and Aint
H ðCÞ.

Remark IV.16.—Note that in QFT on causal sets there is
a natural UV regularization due to the existence of
fundamental length scale. Since the theory is defined on
discrete sets, none of the problems that appear in con-
tinuum, due to singularities of the Feynman propagator,
occur here. Hence there is no need for renormalization.
However, one has to be careful when taking the continuum
limit, since the UV divergences could again occur, if not
taken care of properly. We hope to address this issue in our
future work.
Alternative formulas for RλV and ⋆int, in terms of

Feynman-like diagrams, have been derived in [37]. Even
though [37] is formulated for the continuum case, the
results are algebraic in nature, so apply also to causal sets
(see the Appendix for explicit formulas and more detail). In
the same work, it has also been shown that

RλVðFÞjℏ¼0 ¼ rλVðFÞ; ð156Þ

and

1

iℏ
½F;G�⋆H;int

jℏ¼0 ¼ fF;GgλV: ð157Þ

With these formulas at hand, one can now implement any
interacting theory in numerical simulations, provided the
free theory is known. This opens up perspectives for more
examples of interesting causal set field theories, where the
influence of adding different interaction terms can be tested
and compared with the continuum.

V. CONCLUSIONS AND OUTLOOK

In this paper we have shown how to construct a large
class of QFT models on causal sets, using methods of
perturbative algebraic quantum field theory (pAQFT). For
the purpose of defining the free classical theory (the starting
point of our construction) we discussed a number of
discretized d’Alembert operators and their retarded
Green functions. We have also proposed a new ansatz
for a class of such discretized wave operators, which uses
the notion of preferred past structure. The latter is an
additional structure augmenting those of a causal set.
However, we hope that in our future research we will
understand better how to obtain this structure more intrinsi-
cally. In particular, we want to determine, using numerical
simulations, how much choice there is in typical sprin-
klings in the definition of a preferred past structure. The
element of choice can be removed altogether by defining a
discrete d’Alembertian that is the average of PΛ over all
possible preferred past structures Λ. We also hope to be
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able to generalize the ansatz (40) so that the dimension of
spacetime itself is not an input (as in [17–19]), but an
emergent quantity.
The quantization scheme we have proposed works for a

very general class of interactions and can be used to test
ideas of both causal set theory and pAQFT in new ways. In
particular, one can study how approximating the continuum
works for interacting theories. One can also investigate
how our method of introducing interactions using pAQFT
framework relates to the more traditional approach using
path integrals. On finite causal sets both approaches can be
studied by numerical as well as analytical methods, which
is typically not the case in continuum QFT.
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APPENDIX: INTERACTING STAR PRODUCT
IN TERMS OF GRAPHS

For the convenience of the reader, in this section we
summarize the results of [37] concerning formulas for ⋆H;int
and RλV in terms of graphs.
Definition A.1. Let GðnÞ denote the set of directed

graphs with n vertices labeled 1;…; n (and possibly
unlabeled vertices with valency ≥ 1) and

G ≐ ⋃
n∈N

GðnÞ: ðA1Þ

For γ ∈ G: eðγÞ is the number of edges; vðγÞ is the
number of unlabeled vertices; AutðγÞ is the group of
automorphisms.
Definition A.2. A graph γ ∈ GðnÞ determines an n-ary

multidifferential operator, γ⃗, on functionals as follows:
(i) An edge represents E−ðx; yÞ with the direction from

y to x—i.e., such that this is only nonvanishing when
the edge points from the future to the past;

(ii) if the labeled vertex j has valency r, this represents
the order r functional derivative of the jth argument;

(iii) likewise, an unlabeled vertex of valency r repre-
sents −VðrÞ.

Definition A.3. G3ðnÞ ⊂ GðnÞ is the set of graphs
such that:

(i) Every unlabeled vertex has at least one ingoing edge
and one outgoing edge;

(ii) there are no directed cycles;
(iii) for 1 ≤ j < k ≤ n, there does not exist any directed

path from j to k.
In particular, this implies that 1 is a sink (has only

ingoing edges) and n is a source (has only outgoing edges).
Let ⋆T ;int be the product on the space of observables

F ðCÞ½½ℏ��, defined analogously to (152), but where ·T is
replaced by · and ⋆ is replaced by ⋆T given by

ðF⋆T GÞðφÞ ¼
X∞
n¼0

ð−iℏÞn
n!

hFðnÞðφÞ; ðE−Þ⊗nGðnÞðφÞi:

ðA2Þ
We can think of it as the version of the interacting star
product where the identification between classical and
quantum observables (i.e., normal ordering) has been done
using the T map, rather than α−1H . With the notation above,
in [37] it was shown that:
Theorem A.4.

F⋆T ;intG ¼
X

γ∈G3ð2Þ

ð−iℏÞeðγÞ−vðγÞð−λÞvðγÞ
jAutðγÞj γ⃗ðF;GÞ ðA3Þ

Next, we give the formula for the interacting star pro-
duct in the more standard formulation, where classical
observables are identified with quantum ones by means of
normal ordering (i.e., by applying the map α−1H , defined in
Sec. IVA)
Definition A.5. G6ðnÞ is the set of (isomorphism

classes4) of graphs with directed and undirected edges
and labeled vertices 1;…; n such that:

(i) Each unlabeled vertex is at least 3-valent, with at
least one ingoing and one outgoing edge;

(ii) there exist no directed cycles;
(iii) for 1 ≤ j < k ≤ n, there does not exist a directed

path from j to k.
Definition A.6. A graph γ ∈ G6ðnÞ defines an n-ary

multidifferential operator, γ
↠
, as follows:

(i) A directed edge represents E−
λV ;

(ii) an undirected edge represents ΔF;
(iii) the vertex j represents a derivative of the jth

argument;
(iv) an unlabeled vertex represents a derivative of −S, the

total action (equivalently, this is just the derivative
of −V, since unlabeled vertices are at least 3-valent).

Definition A.7. G7ðnÞ ⊂ G6ðnÞ is the subset of graphs
with no loops at labeled vertices (i.e., no edge begins and
ends at the same labeled vertex). G8ðnÞ ⊂ G6ðnÞ is the
subset of graphs with no loops.

4The definition of isomorphism classes is a bit more involved
technically and not essential for the current application. We refer
the reader to [37] for details.
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Theorem A.8.

F⋆H;intG ¼
X

γ∈G7ð2Þ

ð−iÞvðγÞþdðγÞℏeðγÞ−vðγÞ

jAutγj γ
↠ðF;GÞ ðA4Þ

where dðγÞ is the number of directed edges. In particular,
this is a finite sum at each order in ℏ.
Finally, we give also the explicit formulas for the

retarded Møller map itself.
Definition A.9. G11ð1Þ is the set of isomorphism classes

of graphs with directed and undirected edges and a labeled
vertex 1, such that

(i) Every unlabeled vertex has at least one incom-
ing edge;

(ii) 1 is a source;
(iii) there are no directed cycles;
(iv) there are no loops.
With this, for the given interaction V, the interacting

observable corresponding to F is

RλVðFÞ¼
X

γ∈G11ð1Þ

ð−iÞdðγÞ−vðγÞð−λÞvðγÞℏeðγÞ−vðγÞ

jAutðγÞj γ⃗ðFÞ ðA5Þ

where undirected edges represent ΔF, unlabeled
vertices correspond to derivatives of −λV and dðγÞ is
the number of directed edges. As before, we can also
give a nonperturbative (in λ) formula, where we sum up
the contributions containing E− to obtain an expression
that depends only on the full interacting Green func-
tion E−

λV .
Definition A.10. G12ð1Þ ⊂ G11ð1Þ is the subset of

graphs such that no unlabeled vertex has one incoming
edge, one outgoing edge, and no unlabeled edge.
Any graph in G11ð1Þ can be obtained by adding

vertices along directed edges of a graph in G12ð1Þ. In
this way, the formula for the Møller map can be
reexpressed as

RH;λVðFÞ ¼
X

γ∈G12ð1Þ

ð−iÞvðγÞþdðγÞℏeðγÞ−vðγÞ

jAutðγÞj γ
↠ðFÞ; ðA6Þ

where directed edges represent E−
λV , undirected edges

represent ΔF, and unlabeled vertices represent derivatives
of −λV.
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