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An equivalence is demonstrated, by an explicit first order quantum calculation, between the Minkowski
photon emission rate in the inertial frame for an accelerating charge moving on a Rindler trajectory with
additional transverse drift motion and the combined Rindler photon emission and absorption rate of the
same charge in the Rindler frame in the presence of the Davies-Unruh thermal bath. The equivalence also
extends, for the Bremsstrahlung emitted by the same charge as calculated using the machinery of classical
electrodynamics. The equivalence is shown to also hold for the case of accelerating charges moving on a
Rindler trajectory with additional arbitrary transverse motion. Our results generalize those of Higuchi et al.
(1992) and of Cozzella et al. (2017) for accelerated trajectories with circular transverse motion. Related
issues and experimental implications are discussed.
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I. INTRODUCTION

The Unruh effect is one of the most interesting pre-
dictions of quantum field theory when observer dependent
relativistic motions are taken into account. It is well known
that an accelerated detector with constant proper acceler-
ation a in Minkowski vacuum detects a thermal bath of
particles at temperature, TU ¼ ℏa=2πckB [1]. The physics
of the Unruh effect in accelerated frames offers insights into
those for Hawking radiation in curved spacetime. A direct
experimental confirmation of the Unruh effect is difficult to
achieve in practice since the magnitude of the constant
acceleration required to observe the Unruh radiation, say
at temperature 1 K, is of the order of 1020 m=s2 [2].
Numerous experimental proposals whose outcomes can be
indirectly explained due to the existence of the Unruh effect
have been proposed in the literature such as the electron
depolarization in storage rings [3], decay of accelerated
protons [4], interaction of ultraintense lasers with electrons
[5] etc. (see also [2] and references therein).
Within the framework of classical field theory, by

suitably defining a classical particle number as the energy
associated with a timelike Killing field divided by fre-
quency, the number of Minkowski particles emitted by a
source moving on an arbitrary trajectory was shown to be
related to the number of Rindler particles emitted by the
same source but with an additional thermally weighted
factor to account for the presence of the Unruh bath in the
Rindler frame [6]. Even though the Unruh temperature has
a purely quantum origin, the quantity ℏω=kBTU ¼ 2πcω=a
which appears in the weight factor is classical. In a quantum

treatment up to linear order perturbations, the Minkowski
photons emission rate by a uniformly accelerated point
charge moving in a flat space-time as seen by the inertial
observer in Minkowski vacuum state equals the emission
(including absorption) rate of zero frequency Rindler
photons in a thermal bath, with temperature being the
Unruh temperature, when viewed from the corresponding
Rindler frame of the point charge [7,8]. The classical
Larmor radiation of the uniformly accelerated point charge
is built from zero energy Rindler modes and relates to the
classical retarded solution obtained from the field expect-
ation value in the coherent state as seen by inertial
observers in the asymptotic future [9]. Also see referen-
ces [10–12] for related work on the relation between the
classical and quantum counterparts in the context of the
Unruh effect.
In a recent proposal by Cozzella et al. [13], this

correspondence between the first order quantum emission
rate in the inertial and Rindler frames (with an appropriate
thermally weighted factor) as well as with the classical
Larmor radiation was shown to hold for a point charge
moving on a uniformly linearly accelerated trajectory but
with an additional circular motion in the remaining two
transverse directions. In particular, the rate of emission of
photons with Minkowski frequencies in the inertial frame,
when the charge is linearly coupled to the electromagnetic
field in the Minkowski vacuum state turns out to be
proportional to the emission (and absorption) rate of
photons with Rindler frequencies in the coaccelerated
Rindler frame, provided the charge is immersed in a
thermal bath with Unruh temperature. The benefit of
additional circular motion in the transverse directions, in
this case, causes even the nonzero Rindler frequencies to
contribute in the upward and downward transitions. A key
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observation made by Unruh and Wald in [14] vis-a-vis, the
absorption of Rindler particles in the accelerated frame
causing the emission of Minkowski particles in the inertial
frame, is crucial to understand the correct thermal weight
factor appearing in the quantum calculation in the Rindler
frame. For the same trajectory, a classical electrodynamics
calculation of the spectrum of Larmor radiation by the
charge in the transverse directions also matches with that of
the first order perturbative quantum treatment, provided
one adopts a prescribed regularization procedure. Using
these correspondences, Cozzella et al. [13] claim that the
existence of the classical radiation then indirectly proves,
through virtual confirmation, the existence of Unruh
radiation and further propose an experimental setup to
detect this classical radiation. The challenges involved to
perform the experiment are discussed in [15].
One could then ask how robust is this correspondence for

trajectories other than the special trajectories assumed in
the previous work mentioned above. Does the claim of
virtual confirmation of the Unruh effect hold for a more
general motion of the point charge thus relaxing some of
the more taxing requirements of the experimental setup. We
address these issues in the present work.
In Sec. II, we first investigate the case of point charge

moving with uniform linear acceleration in the t-z plane,
where t, z are the usual Minkowski coordinates, and
additionally with a drift velocity along one of the transverse
coordinates x. We show, by an explicit calculation, the said
correspondence under investigation holds between the
emission rate in the inertial frame and in the Rindler frame
(in the presence of the Davies-Unruh bath) as well as the
spectrum of Larmor radiation expected from classical
electrodynamics. In Sec. III, we generalize our results
for trajectories having Rindler motion in the t-z plane and
an arbitrary motion in the remaining transverse directions.
The conclusions are discussed in Sec. IV.
The signature adopted is ðþ;−;−;−Þ and the natural

units, kB ¼ c ¼ G ¼ ℏ ¼ 1 are used throughout the paper.

II. RINDLER WITH TRANSVERSE DRIFT

In this section, we analyze the quantum and classical
radiation by a point charge coupled to the electromagnetic
field on a trajectory having uniform linear acceleration in
the t-z plane, where t, z are the usual Minkowski coor-
dinates, and additionally with a drift velocity v along one of
the transverse coordinates x.
The trajectory can also be defined in terms of the

conformal Rindler coordinates ðλ; ξ; x; yÞ covering the right
wedge of the Minkowski spacetime in which the Rindler
metric takes the form

ds2 ¼ e2aξðdλ2 − dξ2Þ − dx2 − dy2; ð2:1Þ

where λ is the usual Rindler time coordinate, the accel-
eration four vector is along the ξ direction and a is the

proper acceleration of the comoving Rindler observer who
is at rest at ξ ¼ 0 ¼ x ¼ y. The Rindler coordinates ðλ; ξÞ
are related to Minkowski coordinates ðt; zÞ by,

t ¼ a−1eaξ sinhðaλÞ; z ¼ a−1eaξ coshðaλÞ; ð2:2Þ

Note the transverse coordinates x and y are same for both
Minkowski and Rindler frame. For a point charge q drifting
in the x-direction with a constant velocity v in the Rindler
frame, its worldline is described as ξ ¼ y ¼ 0 and x ¼ vλ.
The four velocity of the charge q in terms of the Rindler
coordinates is then

uμR ¼ γð1; 0; v; 0Þ ð2:3Þ

with the normalization constant being γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
.

Then using the transformations given by Eq. (2.2), the
four velocity can be written in terms of the Minkowski
coordinates ðt; z; x; yÞ as

uμM ¼ γðcoshðaλÞ; sinhðaλÞ; v; 0Þ ð2:4Þ

where λ ¼ γτ along the trajectory and γ is still the same
normalization constant as defined inEq. (2.3). It is a function
of only the drift velocity parameter v in the x direction
through γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
. The instantaneous velocity vz

along the z direction is vz ¼ uzM=u
t
M ¼ tanh γaτ with the

range −1 < vz < þ1 for −∞ < τ < ∞. The instantaneous
velocity vz of the charge in the z direction is relativistic in the
large jτj regime for the motion to be restricted in the (right)
Rindler wedge and one could further choose the drift
velocity v in the x direction to lie anywhere in the range
−1 < v < þ1. The results derived in this Sec. II and in
Sec. III are valid for the complete range of the velocities in
the z and transverse direction.
The acceleration four vector for the trajectory in Eq. (2.4)

turns out to be,

aμM ¼ γ2ða sinhðaλÞ; a coshðaλÞ; 0; 0Þ; ð2:5Þ

with the corresponding magnitude of four acceleration
vector being equal to jaj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gμνa
μ
Ma

ν
M

p ¼ aγ2. One can
note as a consistency check, the expressions in Eq. (2.4)
and Eq. (2.5) reduce to those in the usual Rindler case when
v is set to zero.
Having defined the trajectory of interest, we proceed to

evaluate the quantumemission rates of photons inRindler and
Minkowski frames and also the classical radiation emitted by
the accelerating charge using classical electrodynamics.

A. Quantum calculation in Rindler frame

We consider a point charge q to move on the classical
Rindler trajectory with an additional transverse drift as
described by Eq. (2.3) and coupled to the background
quantized electromagnetic field in the Davies-Unruh bath.
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The conserved four current vector for the point charge in
the Rindler frame is defined as

jμR ¼ q
uμR
u0R

δðξÞδðx − vλÞδðyÞ ð2:6Þ

with the four velocity uμR as in Eq. (2.3). The Lagrangian
density for the background electromagnetic field is given by

L ¼ −
ffiffiffiffiffiffi
−g

p �
1

4
FμνFμν þ

1

2α
ð∇μAμÞ2

�
ð2:7Þ

which leads to the field equation ∇μ∇μAν ¼ 0, working in
Feynman gauge α ¼ 1. Out of the four independent mode

solutions of the field equation, Aðl;ω;k⊥Þ
μ , two are pure gauge

modes labeled by l ¼ 0, 3 while the remaining two
physical modes are not pure gauge and labeled by
l ¼ 1, 2 satisfy the Lorenz gauge condition, ∇μAμ ¼ 0

[2,7]. The two physical modes for the Rindler metric in
Eq. (2.1) can be expressed as

Að1;ω;k⊥Þ
μ ðxνÞ ¼ 1

2π2k⊥

�
sinhðπω=aÞ

a

�
1=2

× ð0; 0; kyfðω;k⊥Þ;−kxfðω;k⊥ÞÞ ð2:8Þ

Að2;ω;k⊥Þ
μ ðxνÞ ¼ 1

2π2k⊥

�
sinhðπω=aÞ

a

�
1=2

× ð∂ξfðω;k⊥Þ;−iωfðω;k⊥Þ; 0; 0Þ ð2:9Þ

where,ω is the frequency of Rindler photon,k⊥ is transverse
momentum vector with magnitude k⊥¼ðkx2þky2Þ1=2 and
the function fðω;k⊥Þ defined as

fðω;k⊥Þ ¼ Kiω=a

�
k⊥
a
eaξ

�
exp ½iðkxxþ kyy − ωλÞ� ð2:10Þ

where KνðzÞ is the modified Bessel function [16]. The
quantized electromagnetic field operator can then be
expressed as

ÂμðxνÞ¼
Z

∞

−∞
dkx

Z
∞

−∞
dky

Z
∞

0

dω
X3
l¼0

ðaðiÞAðiÞ
μ ðxνÞþH:c:Þ

ð2:11Þ

where the label (i) represents ðiÞ≡ ðl;ω;k⊥Þ and (a†ðiÞ; aðiÞ)
are the corresponding creation and annihilation operators
respectively satisfying the commutation relations,

½aðl;ω;k⊥Þ;a
†
ðl0;ω0;k0⊥Þ� ¼ δll0δðω − ω0Þδðk⊥ − k0⊥Þ ð2:12Þ

for l and l0 corresponding to only the physical modes.
The interaction between the charged particle and the

electromagnetic field can now be described by the
Lagrangian density,

Lint ¼
ffiffiffiffiffiffi
−g

p
jμRÂμ: ð2:13Þ

Now, to lowest order in perturbation, the amplitude for
absorption of a Rindler photon to the Rindler vacuum where
the photon is described by the single photon state
jl;ω;k⊥iR ¼ a†ðl;ω;k⊥Þj0iR is

Aabs
ðl;ω;k⊥Þ ¼ i

Z
d4x

ffiffiffiffiffiffi
−g

p
jμRRh0jÂμjl;ω;k⊥iR: ð2:14Þ

Here, the Rindler vacuum j0iR is taken to be the state
annihilated by all annihilation operators aðiÞ, that is defined
as aðl;ω;k⊥Þj0iR ¼ 0. Then for the four current vector jμR in
Eq. (2.6) for the case of Rindler trajectory with a transverse
drift, the absorption amplitudes for the physical modes
l ¼ 1, 2 are obtained to be,

Aabs
ð1;ω;k⊥Þ ¼ i

Z
d4x

ffiffiffiffiffiffi
−g

p
jxRA

ð1;ω;k⊥Þ
x ð2:15Þ

¼ iq
π

�
sinhðπω=aÞ

a

�
1=2

�
vky
k⊥

�

× Kiω=a

�
k⊥
a

�
δðω − kxvÞ ð2:16Þ

Aabs
ð2;ω;k⊥Þ ¼ i

Z
d4x

ffiffiffiffiffiffi
−g

p
jλRA

ð2;ω;k⊥Þ
λ ð2:17Þ

¼ iq
π

�
sinhðπω=aÞ

a

�
1=2

K0
iω=a

�
k⊥
a

�

× δðω − kxvÞ ð2:18Þ

where, prime denotes the derivative with respect to the
argument of Bessel function.
We shall assume that the state of the quantized electro-

magnetic field is the Minkowski vacuum state or equiv-
alently the Davies-Unruh thermal bath in the Rindler wedge
with temperature T ¼ a=2π. In such a case, the probability
of absorption is additionally weighed by the thermal factor
1=½exp ðω=TÞ − 1� corresponding to the number of photons
already present in the background thermal bath, for each
Rindler photon frequency ω. Thus the total rate of absorp-
tion of Rindler photons is then

Pabs
R ¼

X
l¼1;2

Z
∞

−∞
dkx

Z
∞

−∞
dky

Z
∞

0

dω
jAabs

ðl;ω;k⊥Þj2
Δτ

�
1

eω=T −1

�

ð2:19Þ

where Δτ is the total proper time interval of Rindler
observer during which the interaction remains switched
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on. Since we also have, jAabs
ðl;ω;k⊥Þj ¼ jAemi

ðl;ω;k⊥Þj, the total

emission rate of Rindler photons is found by a similar
procedure to be

Pemi
R ¼

X
l¼1;2

Z
∞

−∞
dkx

Z
∞

−∞
dky

×
Z

∞

0

dω
jAabs

ðl;ω;k⊥Þj2
Δτ

�
1þ 1

eω=T − 1

�
ð2:20Þ

where the factor of unity in the last term in the bracket
corresponds to spontaneous emission. Thus the total rate
which includes the emission rate as well as the absorption
rate is given by,

Ptotal
R ¼

X
l¼1;2

Z
∞

−∞
dkx

Z
∞

−∞
dky

Z
∞

0

dω
jAabs

ðl;ω;k⊥Þj2
Δτ

coth

�
ω

2T

�

ð2:21Þ
The emission and absorption rates in Eq. (2.20) and (2.19)
are added to arrive at the cothðω=2TÞ factor in the total rate
Ptotal
R . Such a reasoning, as elaborated in [7,13], is based on

Unruh and Wald’s observation in [14] that the absorption of
Rindler particles in the presence of the background Davies-
Unruh bath in the accelerated frame is seen by the inertial
observer as the emission of Minkowski particles in the
inertial frame.
In the expression of Ptotal

R in Eq. (2.21), the amplitude of
absorption is proportional to δðω − kxvÞ and one can
simply evaluate the integral over ω. The Rindler photon
energy ω can only have non-negative values in range
½0;∞Þ, which restricts kx to be non-negative since we
can choose v to be positive (a particular direction of drift
which in this case is the positive x direction). Thus, the total
rate is obtained as,

Ptotal
R ¼ q2

2π3a

Z
∞

−∞
dkx

Z
∞

−∞
dkyΘðkxÞsinh

�
πkxv
a

�
coth

�
kxv
2T

�

×

�
jK0

ikxv=a
ðk⊥=aÞj2þ

�
vky
k⊥

�
2

jKikxv=aðk⊥=aÞj2
�

ð2:22Þ
where, ΘðkxÞ is the Heaviside step function and we have
identified Δτ ¼ 2πδð0Þ as per the regularisation procedure
adopted in [7,13]. In the above expression, we now set the
temperature T of the background bath to be equal to the
Unruh bath temperature TU ¼ a=2π to finally get

Ptotal
R ¼ q2

2π3a

Z
∞

0

dkx

Z
∞

−∞
dky cosh

�
πkxv
a

�

×

�
jK0

ikxv=a
ðk⊥=aÞj2 þ

�
vky
k⊥

�
2

jKikxv=aðk⊥=aÞj2
�

ð2:23Þ

Substituting v ¼ 0, one can check the consistency of the
above expression with the total rate obtained in the case of
the zero frequency modes in [7].

B. Quantum calculation in Minkowski frame

In this subsection, we calculate the emission rate in the
inertial frame for the same point charge q as described by
the trajectory in Eq. (2.3) and coupled to the background
quantized electromagnetic field in the Minkowski vacuum
state. In terms of the Minkowski coordinates, the corre-
sponding conserved four vector current is

jμM ¼ q
uμM
u0M

δðz − a−1 coshðaλÞÞδðx − vλÞδðyÞ: ð2:24Þ

The quantized electromagnetic field in the inertial frame is
expressed in terms of the standard Minkowski plane wave
mode solutions and given by [8],

ÂμðxÞ ¼
Z

d3k
2k0ð2πÞ3

X4
l¼1

½aðlÞϵðlÞμ e−ikνx
ν þ H:c:� ð2:25Þ

where k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ k2⊥

p
is the energy of Minkowski photon

and ϵðlÞμ are polarization vectors. As in the Rindler frame
case, we label the two pure gauge modes out of the four
independent mode solutions by l ¼ 0, 3, and the two
physical modes by l ¼ 1, 2. The two physical modes satisfy
the Lorenz gauge condition, ∇μAμ ¼ 0. Accordingly the

polarizationvectors ϵðlÞμ are chosen in aCartesian frame such
that kμ ¼ ðjkj; 0; 0; jkjÞ as in [8].
The amplitude of emission of a single Minkowski photon

with momentum k and polarization l to the background
Minkowski vacuum state can be computed as

Aem
ðl;kÞ ¼ i

Z
d4xjμMðxÞMhk;ljÂμðxÞj0iM: ð2:26Þ

Hence the rate of emission of photons with transverse
momentum k⊥ then becomes,

Pem
M;k⊥ ¼ 1

Δτ

X2
l¼1

Z
∞

−∞

dkz
2k0ð2πÞ3

jAem
ðl;kÞj2 ð2:27Þ

¼ −1
Δτ

Z
∞

−∞

dkz
2k0ð2πÞ3

Z
d4x

×
Z

d4x0jμðxÞjμðx0Þeik0ðt−t0Þ−ik·ðx−x0Þ ð2:28Þ

where, we have dropped the subscript M of the current jμM
in the above expression for calculational simplicity.
Substituting the current jμ from Eq. (2.24) and performing
the spatial integrals, we get,
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Pem
M;k⊥ ¼

−q2

2Δτ

Z
∞

−∞

dkz
2k0ð2πÞ3

Z
∞

−∞
dσ

×
Z

∞

−∞
dρðcoshðaσÞ−v2Þe−ikxvσ

×exp

�
2i
a
sinh

�
aσ
2

��
k0cosh

�
aρ
2

�
−kzsinh

�
aρ
2

���

ð2:29Þ

where, σ ¼ λ − λ0 and ρ ¼ λþ λ0. To evaluate the above
integral, we proceed in a similar way to [8]. We define new
variables k̄0 and k̄z by using the following transformations,

k̄0 ¼ k0 coshðaρ=2Þ − kz sinhðaρ=2Þ ð2:30Þ

k̄z ¼ kz coshðaρ=2Þ − k0 sinhðaρ=2Þ ð2:31Þ

with k̄0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̄z2 þ k2⊥

q
, which essentially boosts back the

momentum variables. Doing so, essentially makes the
integral independent of ρ and we can factor out infinite
integral

R
∞
−∞ dðλþ λ0Þ=2 ¼ R

∞
−∞ dρ=2 by identifyingR

∞
−∞ dρ=2 ¼ Δτ, the total proper time interval as the
Minkowski regularisation adopted in [8]. The resulting
simplified expression is

Pem
M;k⊥ ¼ −q2

Z
∞

−∞

dk̄z
2k̄0ð2πÞ3

Z
∞

−∞
dσðcoshðaσÞ − v2Þe−ikxvσ

× exp

�
2ik̄0
a

sinh

�
aσ
2

��
: ð2:32Þ

We next define new variables Sþ and S− as per the
following relations

S� ¼ k̄0 þ k̄z
k⊥

e�aσ=2: ð2:33Þ

In terms of these variables, one can express the integral as

Pem
M;k⊥ ¼ −q2

4að2πÞ3
Z

∞

0

dSþ

×
Z

∞

0

dS−

�
1

S2þ
þ 1

S2−
−

2v2

SþS−

��
Sþ
S−

�
−ikxv=a

× exp

�
ik⊥
2a

�
Sþ −

1

Sþ

��
exp

�
−ik⊥
2a

�
S− −

1

S−

��
:

ð2:34Þ

Using the integral representation of modified Bessel
function [16] and their recurrence relations,

Z
∞

0

tν−1 exp

�
ix
2

�
t −

z2

t

��
dt ¼ 2zνeiπν=2KνðxzÞ ð2:35Þ

the integrals are evaluated to get the emission rate for fixed
transverse momenta kx and ky to be

Pem
M;k⊥ ¼ q2

4π3a
exp

�
πkxv
a

��
jK0

ikxv=a
ðk⊥=aÞj2

þ
�
vky
k⊥

�
2

jKikxv=aðk⊥=aÞj2
�
: ð2:36Þ

Hence total emission rate is written by integrating over all
the transverse modes to get

Pem
M ¼ q2

2π3a

Z
∞

0

dkx

Z
∞

−∞
dky cosh

�
πkxv
a

�

×

�
jK0

ikxv=a
ðk⊥=aÞj2 þ

�
vky
k⊥

�
2

jKikxv=aðk⊥=aÞj2
�

ð2:37Þ

which is equivalent to the total rate computed in the
Rindler frame in the presence of the Davies-Unruh bath
in Eq. (2.23) as expected.

C. Radiation using classical electrodynamics

In this subsection, we perform a simple classical electro-
dynamics calculation involving the spectral angular distri-
butionof radiation froman accelerating charge on theRindler
trajectory with transverse drift. The number of emitted
photons, each of energy k0, is given by the expression

NM ¼
Z

∞

0

dk0
k0

Z
π

0

sin θ dθ
Z

2π

0

dϕ Iðk0; θ;ϕÞ ð2:38Þ

where, Iðk0; θ;ϕÞ is the spectral angular distributionwhich is
the energy emitted through classical radiation by the accel-
erating charge for a particular frequency k0 in a particular
direction θ;ϕ. Then changing the variables ðk0; θ;ϕÞ from
spherical coordinates to the Cartesian ones ðkx; ky; kzÞ and
noting that the volume element changes as dk0dðcos θÞdϕ ¼
k−20 dkxdkydkz with k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q
, the total number

of emitted photons with the fixed transverse momenta kx, ky
can be written as,

NM;k⊥ ¼
Z

∞

−∞

dkz
k30

Iðkx; ky; kzÞ: ð2:39Þ

We shall demonstrate below that the photon number
NM;k⊥ is proportional to the total emission rate Pem

M;k⊥
obtained through the quantum calculation in the inertial
frame as expressed in Eq. (2.36). For an accelerated point
charge q, the spectral angular distribution Iðk0; θ;ϕÞ using
standard classical electrodynamics is given by [17],
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Iðk0; θ;ϕÞ ¼
q2k20
4π2

jF̄ðk0; θ;ϕÞj2 ð2:40Þ

where the function F̄ðk0; θ;ϕÞ is defined as

F̄ðk0; θ;ϕÞ ¼ r̂ ×
Z

∞

−∞
dλ

dr̄q
dλ

exp ½−ik0r̂ · r̄qðλÞ þ ik0tðλÞ�

ð2:41Þ

where, r̂ ¼ k̄=k0 is the unit vector pointing in the observed
direction and r̄q ¼ vλîþ a−1 coshðaλÞk̂, is the trajectory, in
the spatial Cartesian coordinates, of the charge q having
Rindler motion with additional transverse drift and the
Minkowski time co-ordinate tðλÞ ¼ a−1 sinhðaλÞ is
expressed in terms of other parameter λ (which coincides
with the Rindler time coordinate). Substituting the trajec-
tory in the above expression, we get,

F̄ðkx; ky; kzÞ

¼
Z

∞

−∞
dλ

�
ky sinhðaλÞ

k0
îþ

�
kzv
k0

−
kx sinhðaλÞ

k0

�
ĵ−

kyv

k0
k̂

�

× exp

�
ik0 sinhðaλÞ

a
−
ikz coshðaλÞ

a
− ikxvλ

�
: ð2:42Þ

Using the integral representation of Bessel function as given
in Eq. (2.35), the integral in above expression can be
simplified to arrive at the following form for jF̄ðkx; ky; kzÞj2,

jF̄ðkx; ky; kzÞj2

¼ 4

a2
exp

�
πkxv
a

�

×

�
jK0

ikxv=a
ðk⊥=aÞj2 þ

�
vky
k⊥

�
2

jKikxv=aðk⊥=aÞj2
�
:

ð2:43Þ

Using the above expression in Eq. (2.40), the number of
emitted photonsNM;k⊥ with the fixed transverse momentum
k⊥ in Eq. (2.39) is found to be

NM;k⊥ ¼ q2

π2a2
exp

�
πkxv
a

�

×

�
jK0

ikxv=a
ðk⊥=aÞj2 þ

�
vky
k⊥

�
2

jKikxv=aðk⊥=aÞj2
�

×
Z

∞

−∞

dkz
ðk2⊥ þ k2zÞ1=2

: ð2:44Þ

One can note here that the number of emitted photons with a
fixed transverse momentum NM;k⊥ is proportional to the
quantum emission rate with a fixed transverse momentum
Pem
M;k⊥ given by Eq. (2.36) in the inertial frame with a

divergent proportionality constant.

We can next identify the divergent integral over kz with
the infinite amount of time Δτ, the charge is assumed to be
accelerating for [13]. In such a case, the number of photons
emitted with a fixed k⊥ will be infinite. The total number of
emitted photons is then expressed as

NM;k⊥ ¼ q2

π2a
Δτ exp

�
πkxv
a

�

×

�
jK0

ikxv=a
ðk⊥=aÞj2 þ

�
vky
k⊥

�
2

jKikxv=aðk⊥=aÞj2
�

ð2:45Þ

¼ 4πΔτPem
M;k⊥ ð2:46Þ

and is proportional to the emission rate computed in the
inertial frame in Eq. (2.36) with proportionality constant
equal to 4πΔτ.

III. RINDLER WITH ARBITRARY
TRANSVERSE MOTION

In this section, we generalize the results derived in the
previous section for Rindler trajectories having an addi-
tional arbitrary transverse motion.
Below, we describe the trajectory of the point charge q.

We consider the charge to have the usual Rindler motion in
t-z plane while having an arbitrary motion in transverse
directions x and y. We again define the trajectory first in
terms of the conformal coordinates with the Rindler metric
in the right Rindler wedge,

ds2 ¼ e2aξðdλ2 − dξ2Þ − dx2 − dy2; ð3:1Þ

where λ is the usual Rindler time co-ordinate, a is the
proper acceleration of the co-moving Rindler observer at
rest at ξ ¼ 0 ¼ x ¼ y and whose acceleration four vector is
along the ξ direction.
We define the class of trajectories with Rindler motion in

the λ-ξ plane, ξðλÞ ¼ 0 and arbitrary motion in the trans-
verse directions with xðλÞ and yðλÞ by the four velocity
vector,

ũμR ¼ γð1; 0; uxðλÞ; uyðλÞÞ ¼ γuμR ð3:2Þ

where the normalization factor γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2x − u2y

q
is, in

general, not a constant. Thus the proper time τ along the
trajectory considered may not be proportional to the
Rindler time coordinate λ as in the earlier case and satisfies
dλ=dτ ¼ γ. In terms of the Minkowski coordinates in the
inertial frame, the corresponding four velocity reads as,

ũμM ¼ γðcoshðaλÞ; sinhðaλÞ; uxðλÞ; uyðλÞÞ ¼ γuμM: ð3:3Þ
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The magnitude of proper acceleration for this trajectory is,
jaj2¼γ4ða2þa2xþa2yÞ−3γ6ðuxaxþuyayÞ2, where aðx;yÞ ¼
duðx;yÞ=dλ. Thus the proper acceleration for these trajecto-
ries is in general proper time dependent.
The transverse components of the four velocity are, in

general, arbitrary smooth functions of λ. In the special case,
when ux ¼ sinhðaλÞ, the charge will also undergo a
corresponding Rindler motion in the t-x plane. Then,
due to the explicit symmetry in the motion of the charge
in the z and x directions, one could also perform an explicit
calculation of the quantum rates in the rest frame of the
Rindler motion in the t-x plane [instead of the rest frame of
the Rindler motion in the t-z plane as chosen in Eq. (3.1)],
with z now being one of the transverse directions. The roles
of z and x would be simply exchanged. In such a case, one
would again have an Unruh effect due to the Rindler motion
in the t-x plane which allows to define the background
thermal state for a quantum calculation. The conclusions
regarding the equivalence in the corresponding rates in
this case will be exactly same as those obtained in the
sections below.
With the trajectory defined, we now proceed to obtain

the expressions for the photon emission rates in the inertial
frame and Rindler frame with a thermal bath and also the
bremsstrahlung using classical electrodynamics.

A. Quantum calculation in the Minkowski frame

In this subsection, we calculate the emission rate in the
inertial frame for a point charge q as described by the
trajectory in Eq. (3.3) and coupled to the background
quantised electromagnetic field in the Minkowski vacuum
state. In terms of the Minkowski coordinates, the corre-
sponding conserved four vector current is

jμM¼q
ũμM
ũ0M

δðz−a−1coshðaλÞÞδðx−xðλÞÞδðy−yðλÞÞ ð3:4Þ

¼q
uμM
u0M

δðz−a−1coshðaλÞÞδðx−xðλÞÞδðy−yðλÞÞ ð3:5Þ

The rate of emission of photons with a fixed transverse
momentum k⊥ as measured in an inertial frame is then
given by Eq. (2.28). Substituting the four current jμ from
Eq. (3.5) in Eq. (2.28) and performing the spatial integrals,
we get,

Ptotal
M;k⊥ ¼ −q2

Δτ

Z
∞

−∞

dk̄z
2k̄0ð2πÞ3

Z
∞

−∞
dλ

Z
∞

−∞
dλ0½uμMðλÞuMμðλ0Þ�

× e−ik⊥·ðx⊥−x0⊥Þ exp
�
2ik̄0
a

sinh

�
aσ
2

��
ð3:6Þ

where, x⊥ ≡ ðxðλÞ; yðλÞÞ and k̄0 is as defined in Eq. (2.30)
with σ ¼ λ − λ0 and ρ ¼ λþ λ0. The overall emission rate,
then can be obtained to be,

Ptotal
M ¼

Z
∞

−∞
dkx

Z
∞

−∞
dkyPtotal

M;k⊥ ð3:7Þ

¼−q2

Δτ

Z
∞

−∞
dkx

Z
∞

−∞
dky

×
Z

∞

−∞

dk̄z
2k̄0ð2πÞ3

Z
∞

−∞
dλ

Z
∞

−∞
dλ0

×

�
½uμðλÞuμðλ0Þ�e−ik⊥·ðx⊥−x0⊥Þexp

�
2ik̄0
a

sinh

�
aσ
2

���
:

ð3:8Þ
Here we have dropped the label M for the four velocity uμM
for notational simplicity. From here onwards uμ shall
represent the Minkowski four velocity as specified in
Eq. (3.3) unless otherwise stated. Now, we proceed to
get the expression for the total rate for a Rindler detector.

B. Quantum calculation in the Rindler frame

In this subsection, we calculate the emission rate in the
Rindler frame for a point charge q moving on the Rindler
trajectory with additional arbitrary transverse motion as
described by Eq. (3.2) and coupled to the background
quantized electromagnetic field in the Davies-Unruh bath.
The conserved four current vector jμR for the point charge in
the Rindler frame is defined as

jμR ¼ q
ũμR
ũ0R

δðξÞδðx − xðλÞÞδðy − yðλÞÞ ð3:9Þ

¼ q
uμR
u0R

δðξÞδðx − xðλÞÞδðy − yðλÞÞ: ð3:10Þ

For the above four current, the amplitude of absorption of a
single Rindler photon as defined by Eq. (2.14) can be
computed by using the mode solutions in Rindler frame,
Eq. (2.8) and Eq. (2.9). The amplitudes of absorption
corresponding to the two physical modes l ¼ 1, 2, then
turn out to be,

Aabs
ð1;ω;k⊥Þ ¼ i

Z
d4x

ffiffiffiffiffiffi
−g

p
jμRA

ð1;ω;k⊥Þ
μ ð3:11Þ

¼ iq
2π2k⊥

�
sinhðπω=aÞ

a

�
1=2

Kiω=a

�
k⊥
a

�

×
Z

∞

−∞
dλ½uxðλÞky−uyðλÞkx�eik⊥·x⊥ðλÞ−iωλ ð3:12Þ

Aabs
ð2;ω;k⊥Þ ¼ i

Z
d4x

ffiffiffiffiffiffi
−g

p
jμRA

ð2;ω;k⊥Þ
μ ð3:13Þ

¼ iq
2π2

�
sinhðπω=aÞ

a

�
1=2

K0
iω=a

�
k⊥
a

�

×
Z

∞

−∞
dλ eik⊥·x⊥ðλÞ−iωλ ð3:14Þ
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As in the special case discussed in Sec. II A, the rate Ptotal
R;k⊥

for Rindler photons with fixed transverse momentum k⊥ in
the Rindler frame with a background thermal bath at Unruh
temperature, TU ¼ a=2π is

Ptotal
R;k⊥ ¼

X
l¼1;2

Z
∞

0

dω
jAabs

ðl;ω;k⊥Þj2
Δτ

coth

�
πω

a

�
: ð3:15Þ

Now, we write the total rate corresponding to the polar-
izations l ¼ 1 and l ¼ 2 separately as,

Ptotal
1 ¼ q2

Δτ

Z
∞

−∞
dλ

Z
∞

−∞
dλ0½uxky − uykx�½u0xky − u0ykx�

×
eik⊥·ðx⊥−x0⊥Þ

4π4k2⊥a

Z
∞

0

dω e−iωðλ−λ0Þ cosh
�
πω

a

�

×

�
Kiω=a

�
k⊥
a

��
2

ð3:16Þ

Ptotal
2 ¼ q2

Δτ

Z
∞

−∞
dλ

Z
∞

−∞
dλ0

eik⊥·ðx⊥−x0⊥Þ

4π4a

×
Z

∞

0

dω e−iωðλ−λ0Þ cosh
�
πω

a

��
K0

iω=a

�
k⊥
a

��
2

ð3:17Þ

where, u0x, u0y, and x0⊥ are functions of λ0 whereas the prime
over the Bessel function K denotes the derivative with
respect to its argument. Now to obtain the total rate
completely in terms of the variables in inertial frames, as
in Eq. (3.8), we first eliminate the Rindler photon frequency
ω from above expressions by performing the ω integrals.
These integrations lead to the Bessel functions of second
kind YnðzÞ. Then writing these Bessel functions in their
integral representations and changing the variable of
integration to k̄z, we arrive at the expression of the rate
of emission of photons in inertial frame as given in
Eq. (3.8). The detailed calculation is shown below:
The integral over ω in Eq. (3.16) can be simply evaluated

to be,

Z
∞

0

dω e−iωσ cosh

�
πω

a

��
Kiω=a

�
k⊥
a

��
2

¼ −
π2a
4

Y0

�
2k⊥
a

sinhðaσ=2Þ
�

ð3:18Þ

where, σ ¼ λ − λ0 and YnðxÞ is the Bessel function of
second kind [16]. Now using the relation,

½K0
νðzÞ�2 ¼

1

2

�
d2

dz2
½KνðzÞ�2 þ

1

z
d
dz

½KνðzÞ�2

− 2

�
1þ ν2

z2

�
½KνðzÞ�2

�
ð3:19Þ

the integral over ω in Eq. (3.17) can be obtained to be,
Z

∞

0

dω e−iωσ cosh

�
πω

a

��
K0

iω=a

�
k⊥
a

��
2

¼ π2a
8

coshðaσÞY0

�
2k⊥
a

sinhðaσ=2Þ
�

þ π2a
8

Y2

�
2k⊥
a

sinhðaσ=2Þ
�

ð3:20Þ

Substituting Eq. (3.18) and (3.20) in Eq. (3.16) and (3.17),
the rate Ptotal

R;k⊥ of Rindler photons with fixed transverse
momentum k⊥ becomes,

Ptotal
R;k⊥ ¼ q2

32π2Δτ

Z
∞

−∞
dλ

Z
∞

−∞
dλ0eik⊥·ðx⊥−x0⊥Þ

×

�
coshðaσÞY0ðzÞ þ Y2ðzÞ

−
2

k2⊥
½uxky − uykx�½u0xky − u0ykx�Y0ðzÞ

�
ð3:21Þ

where z ¼ 2k⊥ sinhðaσ=2Þ=a. Now we write Y0ðzÞ as an
integral using the integral representation of the Bessel
function [16],

YνðxÞ ¼ −
2

π

Z
∞

0

cos

�
x cosh t −

νπ

2

�
coshðνtÞdt

½jReðνÞj < 1� ð3:22Þ
and using the series expansion for the derivative of Bessel
function,

YðkÞ
ν ðxÞ ¼ 1

2k

Xk
n¼0

ð−1Þn
�
k
n

�
Yν−kþ2nðxÞ ð3:23Þ

we express Y2ðxÞ in terms of Y0ðxÞ as,

Y2ðxÞ ¼ Y0ðxÞ þ 2
d2

dx2
Y0ðxÞ: ð3:24Þ

Then identifying cosh t as k̄0=k⊥, where k̄0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̄z2 þ k2⊥

q
,

with k̄0 given by Eq. (2.30) and the corresponding k̄z given
by Eq. (2.31), we get the Bessel functions Y0ðzÞ and Y2ðzÞ
as the following integrals with k̄z as integration variable.

Y0

�
2k⊥
a

sinhðaσ=2Þ
�
¼ −1

π

Z
∞

−∞
cos

�
2k̄0
a

sinhðaσ=2Þ
�
dk̄z
k̄0

ð3:25Þ

Y2

�
2k⊥
a

sinhðaσ=2Þ
�

¼ 1

π

Z
∞

−∞
cos

�
2k̄0
a

sinhðaσ=2Þ
��

k̄z2þ k̄02

k2⊥

�
dk̄z
k̄0

ð3:26Þ
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Substituting these integral representations of Y0ðzÞ and
Y2ðzÞ in Eq. (3.21), we get for the rate Ptotal

R;k⊥ ,

Ptotal
R;k⊥ ¼ q2

32π3k2⊥Δτ

Z
∞

−∞
dλ

Z
∞

−∞
dλ0eik⊥·ðx⊥−x0⊥Þ

×
Z

∞

−∞

dk̄z
k̄0

cos

�
2k̄0
a

sinhðaσ=2Þ
�

× ½−k2⊥ coshðaσÞ þ k̄z2 þ k̄02

þ 2½uxky − uykx�½u0xky − u0ykx��: ð3:27Þ

Now, as the current jμ is conserved, i.e., ∂μjμ ¼ 0, one can
write for its Fourier transform,

Z
d4x

ffiffiffiffiffiffi
−g

p
eikνx

ν
jμðxÞkμ ¼ 0: ð3:28Þ

In the Minkowski frame for the current given by Eq. (3.5),
this equation simplifies to

Z
∞

−∞
dλ eik⊥·ðx⊥−x0⊥Þ exp

�
2ik̄0
a

sinhðaσ=2Þ
�
uμðλÞkμ ¼ 0:

ð3:29Þ

The above constraint on uμðλÞwith the definitions of k̄0 and
k̄z simplifies the expression of total rate with the term in the
bracket reducing to −2k2⊥uμðλÞuμðλ0Þ. The total rate is then
given by,

Ptotal
R;k⊥ ¼ q2

Δτ

Z
∞

−∞

dk̄z
ð2πÞ32k̄0

Z
∞

−∞
dλ

Z
∞

−∞
dλ0½−uμðλÞuμðλ0Þ�

× eik⊥·ðx⊥−x0⊥Þ cos
�
2k̄0
a

sinhðaσ=2Þ
�

ð3:30Þ

The overall rate is then given by integrating over the
transverse momenta kx and ky. Using the symmetry in λ and
λ0 in the above expression and interchanging the limits of
the kx, ky integrals, it can be expressed as

Ptotal
R ¼

Z
∞

−∞
dkx

Z
∞

−∞
dkyPtotal

R;k⊥

¼ −q2

Δτ

Z
∞

−∞
dkx

Z
∞

−∞
dky

Z
∞

−∞

dk̄z
ð2πÞ32k̄0

Z
∞

−∞
dλ

Z
∞

−∞
dλ0½uμðλÞuμðλ0Þ� cos ðk⊥ · ðx⊥ − x0⊥ÞÞ exp

�
2ik̄0
a

sinhðaσ=2Þ
�

¼ −q2

Δτ

Z
∞

−∞
dkx

Z
∞

−∞
dky

Z
∞

−∞

dk̄z
ð2πÞ32k̄0

Z
∞

−∞
dλ

Z
∞

−∞
dλ0½uμðλÞuμðλ0Þ�eik⊥·ðx⊥−x0⊥Þ exp

�
2ik̄0
a

sinhðaσ=2Þ
�

ð3:31Þ

which matches with the expression of emission rate
obtained in inertial frame in Eq. (3.8). We proceed to
calculate the number of emitted photons with the classical
framework in the next section.

C. Radiation using classical electrodynamics

In this subsection, we perform a straightforward classical
electrodynamics calculation involving the spectral angular
distribution of radiation from an accelerating charge on the
Rindler trajectory with arbitrary transverse motion as
described by Eq. (3.2).
The expression for number of emitted Minkowski

photons presented in Eq. (2.38) is, in general, valid for

any arbitrary trajectory of charge q. The vector F̄ðkx; ky; kzÞ
defined in Eq. (2.41), then can be reexpressed as,

Flðkx; ky; kzÞ

¼ ϵlmnr̂m

Z
∞

−∞
dλ

�
drq
dλ

�
n
exp ð−ik0½r̂ · r̄qðλÞ − tðλÞ�Þ

ð3:32Þ

where, ϵlmn is the completely antisymmetric Levi-Civita
symbol in three dimensions. Then for the magnitude of
vector F̄ðkx; ky; kzÞ, we get

jF̄ðkx; ky; kzÞj2 ¼ δalFaFl�

¼ δalϵ
abcϵlmnr̂br̂m

Z
∞

−∞
dλ

Z
∞

−∞
dλ0

�
dr̄qðλÞ
dλ

�
c

�
dr̄qðλ0Þ
dλ0

�
n
exp ð−ik0½r̂ · ðr̄qðλÞ − r̄qðλ0ÞÞ − ðtðλÞ − tðλ0ÞÞ�Þ

¼
Z

∞

−∞
dλ

Z
∞

−∞
dλ0 exp ð−ik0½r̂ · ðr̄qðλÞ − r̄qðλ0ÞÞ − ðtðλÞ − tðλ0ÞÞ�Þ

×

�
ðr̂ · r̂Þ

�
dr̄qðλÞ
dλ

·
dr̄qðλ0Þ
dλ0

�
−
�
r̂ ·

dr̄qðλÞ
dλ

��
r̂ ·

dr̄qðλ0Þ
dλ0

��
ð3:33Þ
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Here we have used the identity, δalϵ
abcϵlmn ¼

ðδbmδcn − δbnδcmÞ to arrive at the final equality. Now,
using the constraint on uμ as defined in Eq. (3.29) and
the definition of unit direction vector r̂ ¼ k̄=k0, the term
ðdr̄q=dλÞ · r̂ can be replaced by ðdt=dλÞ. The magnitude
jF̄ðkx; ky; kzÞj2 then becomes,

jF̄ðkx;ky;kzÞj2

¼
Z

∞

−∞
dλ

Z
∞

−∞
dλ0

×expð−i½k̄ · ðr̄qðλÞ− r̄qðλ0ÞÞ−k0ðtðλÞ− tðλ0ÞÞ�Þ

×
�
dr̄qðλÞ
dλ

·
dr̄qðλ0Þ
dλ0

−
dtðλÞ
dλ

dtðλ0Þ
dλ0

�
ð3:34Þ

Now, substituting the trajectory, r̄qðλÞ ¼ xðλÞîþ yðλÞĵþ
a−1 coshðaλÞk̂, with the time co-ordinate as tðλÞ ¼
a−1 sinhðaλÞ, we get,

jF̄ðkx;ky;kzÞj2¼
Z

∞

−∞
dλ

Z
∞

−∞
dλ0½−uμðλÞuμðλ0Þ�e−ik⊥·ðx⊥−x0⊥Þ

×exp
�
2ik̄0
a

sinh
�
aσ
2

��
ð3:35Þ

where k̄0 is as defined in Eq. (2.30). With this expression
for jF̄ðkx; ky; kzÞj2, the total number of emitted photons NM

is obtained to be,

NM ¼
Z

∞

−∞
dkx

Z
∞

−∞
dky

Z
∞

−∞

dkz
k0

q2

4π2
jF̄ðkx; ky; kzÞj2

¼ −q2

4π2

Z
∞

−∞

dkz
k0

Z
∞

−∞
dλ

Z
∞

−∞
dλ0½uμðλÞuμðλ0Þ�e−ik⊥·ðx⊥−x0⊥Þ exp

�
2ik̄0
a

sinh

�
aσ
2

��

¼ 4πð−q2Þ
Z

∞

−∞
dkx

Z
∞

−∞
dky

Z
∞

−∞

dkz
ð2πÞ32k0

Z
∞

−∞
dλ

Z
∞

−∞
dλ0½uμðλÞuμðλ0Þ�e−ik⊥·ðx⊥−x0⊥Þ exp

�
2ik̄0
a

sinh

�
aσ
2

��
: ð3:36Þ

With a comparison of the above expression with Eq. (3.31),
one can simply write the number of emitted photons in
terms of total rate of a Rindler detector as,

NM ¼ 4πΔτPtotal
R ð3:37Þ

As discussed in the previous Sec. II C, the proportionality
constant is 4πΔτ, which will be finite for a charge
accelerating for a finite time.

IV. DISCUSSION

An equivalence is demonstrated, by an explicit quantum
calculation till linear order in perturbations, between the
Minkowski photon emission rate, in the inertial frame, for
an accelerating charge moving on a Rindler trajectory with
additional arbitrary transverse motion and the combined
Rindler photon emission and absorption rate of the same
charge in the Rindler frame in the presence of the Davies-
Unruh bath. The equivalence also extends, between the
Bremsstrahlung emitted by the same charge as calculated
using the machinery of classical electrodynamics and the
expectation values from the quantum calculations men-
tioned above.
Two immediate observations follow: (i) as noted in [13],

the presence of the Unruh bath in the Rindler frame is
utmost necessary for the quantum calculation to match with
the classical one or with the quantum calculation in the
inertial frame. The particular cosh ðω=2TÞ factor in

Eqs. (2.21) and (3.15) which arises through the combined
emission and absorption rate is crucial for the equivalence
to work. The cosh ðω=2TÞ factor is universal in the sense
that it is common for all trajectories under consideration
and does not require any fudging. In retrospect, it reaffirms
earlier observations that absorption of Rindler particles in
the Rindler frame appears to the inertial observer as
emission of Minkowski particles in the inertial frame.
Additionally, one needs to clarify that even though the
Unruh effect is purely quantum in its origin, the said
equivalence works due to the cancellation of the ℏ in the
thermal Planckian factor (leading to the cosh ðω=2TÞ
factor) since both the photon energies and Unruh temper-
ature are linearly proportional to ℏ. Any other value of the
thermal bath temperature chosen shall not suffice. In fact,
once the choice is made, the form of classical mode
solutions in the Minkowski and Rindler frames are suffi-
cient (mathematically) to arrive at the results. This strongly
suggests that the Unruh effect is necessary to explain
certain classical features of electromagnetic radiation when
two different frames are involved. (ii) The correspondence
principle in quantum mechanics holds for many particle
systems in the limit when the number of particles involved
are large. In the present scenario, the charge is taken to be
classical and moving on a well defined trajectory. It is
however coupled to the quantized electromagnetic field. In
linear order perturbation theory, only a single photon
excitation or deexcitation is admissible, although it holds
true for every (continuum of) energy eigenstates of the
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quantized Maxwell fields. In principle, the point charge
does excite an infinite number of photons of the whole
frequency spectrum due to its motion and hence one could
argue that the large particle limit is inherently built into the
case under investigation. Then, it should be no surprise that
quantum calculation in inertial frame or the Rindler frame
agrees with that of Larmor radiation using classical
electrodynamics. However, it would be interesting to go
further than the first order approximation to analyze the
quantum effects of the Davies-Unruh effect beyond the
classicality of Maxwell’s equations. It would be interesting
to test the equivalence for a more broad class of trajectories
wherein additional motion along the special direction ξ is
also allowed.

In terms of experimental prospects, our results have
generalized the proposal of Cozzella et al. [13] for the
virtual confirmation of the Unruh effect using classical
Bremsstrahlung. The requirement of circular motion in the
transverse directions could be relaxed depending on exper-
imental setup constraints etc. or any slight deviation from
the circularity will not affect the main conclusions of
the proposal since the equivalence is shown to hold for
arbitrary transverse motion.
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