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We show that the topological degree of a Skyrmion field is the same as the Hopf charge of the field under
the Hopf map and thus equals the linking number of the preimages of two points on the 2-sphere under the
Hopf map. We further interpret two particular points on the 2-sphere as vortex zeros and the linking of these
zero lines follows from the latter theorem. Finally we conjecture that the topological degree of the
Skyrmion can be interpreted as the product of winding numbers of vortices corresponding to the zero lines,
summing over clusters of vortices.
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I. INTRODUCTION

Skyrmions are topological solitons [1] of the texture
type, i.e., they are maps from one-point compactified
3-space, X¼R3 ∪ f∞g≃S3 to a target space N ¼ S3 with
a nonvanishing topological degree π3ðS3Þ ¼ Z ∋ B ≠ 0.
Usually the map is constructed using an SU(2) matrix U,
where the nonlinear sigma model constraint is detU ¼ 1,
which forces the 4 components to live on a 3-sphere of
unit radius. It is also possible to write the SU(2) matrix as
an O(4) vector of unit length. In this paper, however, it
proves convenient to write the SU(2) field as two complex
scalar fields, ψ1;2, living on the complexified 1-sphere
(jψ1j2 þ jψ2j2 ¼ 1). The convenience is two-fold. First of
all, we would like to associate the zero lines of each
complex scalar field with (deformed) vortex rings. Second,
it proves convenient for our calculations as we will be using
the Hopf map, which is naturally written in terms of two
complex scalar fields.
First we prove a theoremwhich shows that under theHopf

map, the map ψ∶ R3 ∪ f∞g ≃ S3 → S3 of degree B will
necessarily have Hopf charge Q ¼ B. This statement is
known in the literature [1,2] and has been used several times
to generate initial conditions for Hopfions [3,4] in a different
model, called the Faddeev-Skyrme model [5], which maps
R3 to S2 and thus naturally possesses a Hopf charge.

Nevertheless, we have not found the theorem written
down in the literature, and thus we shall give it here and
supply a proof.1

The implication of the theorem is that 2 distinct regular
points under the projection of a Skyrme map to the 2-sphere
have preimages in 3-space with linking numberQ ¼ B. We
further make the interpretation of two antipodal points
on the 2-sphere being vortex zeros. So far all is done with
rigor. Finally, we conjecture that we can interpret the
topological degree of a Skyrmion map as the product of
winding numbers of two vortex lines, summing over clusters
of wound vortices.
This paper is organized as follows. In Sec. II, after giving

the maps, we present our theorem, corollary and conjecture.
In Sec. III, we illustrate the theorem and conjecture with
examples of a toroidal vortex and rational map Skyrmions.
Section IV is devoted to discussion and outlook.

II. THE MAPS

A. Theorem and conjecture

We begin with considering a map from U∶ X → N
where X ¼ R3 ∪ f∞g ≃ S3 the one-point compactified
3-dimensional configuration space and N ¼ S3 is the target
space, which we take to be the 3-sphere in this paper. Each
space has an associated metric, that is ðX; gÞ and ðN; hÞ.
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1Reference [6] restricts trU ¼ 0, and thus maps R3 → S2 and
not R3 → S3; therefore we do not consider the calculation of the
Hopf charge there as a general proof. Similarly, Ref. [7] finds an
interpolation between the Skyrme model and the Faddeev-
Skyrme model and states that the baryon charge equals the
Hopf charge when the model is restricted to the Faddeev-Skyrme
model, i.e., R3 → S2. We do not make such restriction in this
paper.
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The map U is characterized by the third homotopy group,
B ∈ π3ðS3Þ ¼ Z with B the topological degree, which is
usually called the baryon number.
Next, we will consider the Hopf map H∶ S3 → S2,

which is due to the Hopf fibration S1 ↪ S3→
H
S2. The

explicit form of the Hopf map is

Haðψ; ψ̄Þ ¼ ψ†τaψ; a ¼ 1; 2; 3; ð2:1Þ

with ψ living on the complexified 1-sphere:

ψ ¼
�
ψ1

ψ2

�
; ψ1;2 ∈ C; ð2:2Þ

ψ†ψ ¼ jψ1j2 þ jψ2j2 ¼ 1; ð2:3Þ

which is exactly a real 3-sphere and τa are the Pauli SU(2)
matrices. The topological charge of the Hopf map is

Q ∈ π3ðS2Þ; ð2:4Þ

but it is not the degree of the mapping as it is a mapping
between spaces of different dimensions.
The map U∶ X → N ¼ S3 is given by

UðxÞ ¼ ðψ −iτ2ψ̄ Þ ¼
�
ψ1 −ψ̄2

ψ2 ψ̄1

�
; ð2:5Þ

which thus maps R3 ∪ f∞g ¼ X → S3, due to the con-
straint (2.3). The degree of the mapping U from X to N can
be calculated as the pullback of the normalized volume
form on N, ΩN by U:

B ¼
Z
X
U�ΩN

¼ −
1

24π2

Z
X
trðU†∂iUU†∂jUU†∂kUÞdxi ∧ dxj ∧ dxk

¼ 1

4π2

Z
X
ðψ†∂iψÞð∂jψ†∂kψÞdxi ∧ dxj ∧ dxk: ð2:6Þ

Finally, we are interested in the map ϕ≡H∘U∶ X→ S2,
which is the composite map of U and H. This takes a field
configuration on X, maps it with degree B to N and then
to S2.
The Hopf charge (or Hopf index) of the above described

map, ϕ, is given by [5,8],

Q ¼ −
1

4π2

Z
X
A ∧ F; ð2:7Þ

where the field-strength tensor in terms of the coordinates
on S2 is [5,8],

F ¼ 1

4
ϕ · ∂iϕ × ∂jϕdxi ∧ dxj; ð2:8Þ

and A is a corresponding gauge field F ¼ dA. However, it
is not possible to write a local expression for the Chern-
Simon action (2.7) in terms of the coordinates, ϕ, on S2,
because it vanishes identically, as well known.
Theorem 1. AmapU∶R3 ∪ f∞g→ S3 with topological

degree B under the Hopf mapH∶ S3 → S2 has Hopf charge
Q ¼ B and thus distinct regular points on S2 under the
composite mapH ∘U∶ R3 ∪ f∞g → S2 have preimages on
R3 ∪ f∞g that are linked Q ¼ B times.
Proof.—We calculate the field-strength tensor (2.8) in

terms of the coordinates on S3 via the Hopf map (2.1) as

F ¼ 1

4
ϵabcðψ†τaψÞ∂iðψ†τbψÞ∂jðψ†τcψÞdxi ∧ dxj

¼ iðψ2ψ̄2∂iψ1∂jψ̄1 − ψ2ψ̄1∂iψ1∂jψ̄2 þ ψ1ψ̄1∂iψ2∂jψ̄2

− ψ1ψ̄2∂iψ2∂jψ̄1Þdxi ∧ dxj

¼ −i∂iψ†∂jψdxi ∧ dxj; ð2:9Þ

where we have used the constraint (2.3). The above-
calculated field-strength tensor can also readily be obtained
from the following gauge field

A ¼ −
i
2
ðψ†∂iψ − ∂iψ†ψÞdxi: ð2:10Þ

We can now explicitly evaluate the Hopf charge (2.7) with
the field-strength tensor (2.9) and the corresponding gauge
field (2.10) and a simple calculation shows that it reduces to

Q ¼ 1

4π2

Z
X
ðψ†∂iψÞð∂jψ†∂kψÞdxi ∧ dxj ∧ dxk; ð2:11Þ

which is exactly the same as the baryon charge (2.6). Since
the baryon numberB (2.6) and the Hopf chargeQ (2.11) are
given by the same integral expressions, thenB ¼ Q follows.
The final step is to use the fact that preimages of two distinct
regular points on S2 are linkedQ ¼ B times under the Hopf
map (2.1) and hence theorem 1 follows. ▪
Now, if we pick any two regular (constant) points

on S2 as

ϕ1 ∈ S2; ϕ2 ∈ S2; ð2:12Þ

their preimages under the Hopf map composed with U, i.e.,
ϕ ¼ H ∘U, have linking number Q ¼ B. Since this holds
for any two regular points, it also holds for the following
case: Take the two points on S2 to be

ϕ1 ¼ Hðψ1; ψ̄1Þ ¼ ð0; 0;−1ÞT;
ϕ2 ¼ Hðψ2; ψ̄2Þ ¼ ð0; 0; 1ÞT; ð2:13Þ
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with

ψ1 ¼
�
0

1

�
; ψ2 ¼

�
1

0

�
: ð2:14Þ

Any two regular points will have linking number Q ¼ B;
however, in order to interpret the preimages of the two
points on S2 as two vortex lines, we further need to require
orthogonality

ψ†
1ψ2 ¼ 0; ð2:15Þ

which obviously holds for the two points in Eq. (2.14).
Clearly it is possible that either both the points (2.13) or

one of them are not regular points. Since the canonical
mapping may not correspond to regular points under the
Hopf map, we propose to rotate the 2-sphere until two
regular points are found: ϕM ¼ Mϕ∶ X → S2 as

ϕM ¼ MHðψ; ψ̄Þ: ð2:16Þ

The most general rotation of the 2-sphere can be done with
three Euler angles and the following parametrization

Mαβγ ¼ MzðγÞMxðβÞMzðαÞ; ð2:17Þ

MzðαÞ ¼

0
B@

cos α sin α 0

− sin α cos α 0

0 0 1

1
CA;

MxðβÞ ¼

0
B@

1 0 0

0 cos β sin β

0 − sin β cos β

1
CA: ð2:18Þ

A particularly useful rotation brings the north and south
poles to the equator of the 2-sphere:

M0π
2
γ ¼

0
B@

cos γ 0 sin γ

− sin γ 0 cos γ

0 −1 0

1
CA; ð2:19Þ

which yields a 1-parameter family of rotations of the north
and south poles to the equator with angle γ ∈ ½0; 2πÞ:

ϕ
M0π

2
γ

1;2 ¼ M0π
2
γϕ1;2 ¼ ∓

0
B@

sin γ

cos γ

0

1
CA; ð2:20Þ

where the upper sign corresponds to ϕ1 and the lower
sign ϕ2.
Another useful rotation is

M0β0 ¼ MxðβÞ; ð2:21Þ

which yields a slightly different 1-parameter family of
rotations

ϕ
M0β0

1;2 ¼ M0β0ϕ1;2 ¼∓
0
B@

0

sin β

cos β

1
CA; ð2:22Þ

where again the upper sign corresponds to ϕ1 and the lower
sign ϕ2.
If we now take the parametrization of ψ

ψ ¼
�
eiχ cos f

eiϑ sin f

�
; ð2:23Þ

we may interpret the two points, ψ1 and ψ2, of Eq. (2.14) as
the vortex zeros of the fields ψ1 and ψ2, respectively, see
Eq. (2.2). The composite map ϕ∶ X → S2 of Eq. (2.23)
thus reads

ϕ ¼

0
B@

sin 2f cosðϑ − χÞ
sin 2f sinðϑ − χÞ

cos 2f

1
CA; ð2:24Þ

from which it is clear that the two points ϕ1;2 ∈ S2 of
Eq. (2.13) indeed are independent of ϑ and χ as they
correspond to f ¼ π

2
and f ¼ 0, respectively. These two

vortex zeroes are canonically mapped to the south and
north poles, respectively. Using now the rotated map ϕM0π

2
γ

of Eq. (2.20), the vortex (2.23) is mapped to

ϕM0π
2
γ ¼

0
B@
sin γ cos2fþ cosγ sin2f cosðϑ− χÞ
cos γ cos2f− sin γ sin2f cosðϑ− χÞ

− sin2f sinðϑ− χÞ

1
CA; ð2:25Þ

which at f ¼ π
2
; 0 equals Eq. (2.20) by construction.

Corollary 1. Two vortex lines (zeros), ψ1 and ψ2 of
ψ ∈ X ¼ R3 ∪ f∞g are mapped to two distinct points on
S2 under the Hopf map H ∘U∶ X → S2 and hence their
preimages in X are linked Q ¼ B times due to theorem 1.
We may take a map U∶ X → N with topological degree

B, project it onto S2 with H and select two regular points
under the latter mapping

ϕ
M0π

2
γ

1;2 ¼ H ∘U; ð2:26Þ

where we have performed a rotation using Eq. (2.20) and
chosen an appropriate value for γ such that the mapping is
regular. Now due to the Corollary 1, we can follow the way
back to X with the inverse mappings and interpret the two
points as vortex lines

x1;2ðτ;lÞ ¼ ðH ∘UÞ−1ðϕM0π
2
γ

1;2 Þ; ð2:27Þ
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which yields two vortex lines with some parametrization τ
and we have included an index l in case the preimages
separate into several clusters.
We are now ready to make the following conjecture.
Conjecture 1. A map U∶ R3 ∪ f∞g ¼ X → S3 having

degree B (2.6) can be interpreted as two vortices in ψ1 and
ψ2 of ψ ∈ S3 which in each cluster topologically have
winding numbers pl and ql, respectively. Then due to
Corollary 1, the linking number Q (2.11) is

P
l plql and

due to theorem 1, B ¼ Q ¼Pl plql.

B. The rational map

Wewill now considerU to be in a class of maps, where it
is a radial suspension in R3 and the tangent directions are
described by rational maps between Riemann spheres. The
rational map Ansatz is given by

U ¼ exp ðifðrÞn · τÞ; ð2:28Þ

with

n ¼
�

Rþ R̄
1þ jRj2 ;

iðR̄ − RÞ
1þ jRj2 ;

1 − jRj2
1þ jRj2

�
; ð2:29Þ

where R ¼ RðzÞ is a holomorphic function of the Riemann
sphere coordinate z ¼ eiϕ tan θ

2
and ðr; θ;ϕÞ are standard

spherical coordinates in R3.
Using Eq. (2.5), we get

ψ ¼ 1

1þ jRj2
�
eif þ jRj2e−if

i2R sin f

�
; ð2:30Þ

which we map to the 2-sphere using H of Eq. (2.1),
yielding

ϕ¼ 1

ð1þjRj2Þ2

×

0
B@
−2ℑðRÞð1þjRj2Þsin2fþ4ℜðRÞð1− jRj2Þsin2f
2ℜðRÞð1þjRj2Þsin2fþ4ℑðRÞð1− jRj2Þsin2f

4jRj2 cos2fþð1− jRj2Þ2

1
CA:

ð2:31Þ

It is easy to check that the above ϕ is a real-valued 3-vector
of unit norm, thus living on S2. One can also readily verify
that f ¼ π

2
; 0 correspond to ϕ1;2, respectively.

III. EXAMPLES

A. Toroidal vortex

Let us consider a simple example inspired by Ref. [9–13]
where a vortex ring is twisted P times, yielding baryon
number P:

ψ ¼
 
cos fðrÞ þ i sin fðrÞ cos θ

sin fðrÞ sin θeiPϕ
!
: ð3:1Þ

The energy functional that gives rise to toroidal vortices is
given by [9]

E½ψ� ¼ kdψk2L2ðXÞ þ
1

4
kψ�dμk2L2ðXÞ þ

Z
X
�VðψÞ;

VðψÞ ¼ m2

2
ð1 − jψ1j2Þ; ð3:2Þ

where μ is the Maurer-Cartan form on N [SU(2)] and
the second term is the norm-squared of the pullback
of the exterior derivative of the Maurer-Cartan form on
N by ψ. m is a positive constant which must be large
enough m > mcrit. Finally � denotes the Hodge dual
such that �1 gives the volume form (and in this case on X).
The baryon charge density isosurface is shown in Fig. 1,
which is taken from Ref. [12] where further details can be
found. It is easy to check that the topological degree (2.6)
is given by

B ¼ −
P
π

Z
π

0

sin θdθ
Z

∞

0

sin2fðrÞ∂rfðrÞdr

¼ −
P
2π

½2fðrÞ − sin 2fðrÞ�fð∞Þ
fð0Þ

¼ P; ð3:3Þ

where we have used the boundary conditions fð0Þ ¼ π
and fð∞Þ ¼ 0.

FIG. 1. Vortex ring with P ¼ 3 twists. Figure taken from
Ref. [12].
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Under the map (2.1) we have

ϕ ¼

0
B@

sin θ cosPϕ sin 2fðrÞ þ sin 2θ sinPϕsin2fðrÞ
sin θ sinPϕ sin 2fðrÞ − sin 2θ cosPϕsin2fðrÞ

sin2θ cos 2fðrÞ þ cos2θ

1
CA:

ð3:4Þ

An obvious choice would be to pick the two points ϕ1;2 of
Eq. (2.13) on the 2-sphere, yielding

cos2f ¼ cos2θ ¼ 0; ðϕ ¼ ϕ1;ψ1 ¼ 0Þ ð3:5Þ

sin2fsin2θ ¼ 0; ðϕ ¼ ϕ2;ψ2 ¼ 0Þ: ð3:6Þ

Let us start with the latter equation; sin f ¼ 0 corresponds
to the vacuum at r → ∞ and the origin where f ¼ π. Hence
in the interior of R3nf0g, sin f ≠ 0 and thus sin θ ¼ 0

corresponds to the x3 axis. We call it a “vacuum vortex,”
specified by ψ2 ¼ 0. On X ≃ S3 this is topologically a circle
(S1) going from the north pole of the 3-sphere (the vacuum)
from x3 ¼ −∞ to the origin x ¼ 0 which is the south pole
of the 3-sphere, and then toward x3 → þ∞ back to north
pole. The former equation has two conditions yielding θ ¼
π
2
and fðrÞ ¼ π

2
, which is a circle in the ðx1; x2Þ-plane,

representing a ring-shaped “physical” vortex specified by
ψ1 ¼ 0. This obviously yields a linking number equal to 1.
Although this is a natural interpretation of where the two
vortices might be in this field configuration, ϕ2 is not a
regular point of the mapping when P > 1.
In order tomove away from the point where theP vortices

linking the “vacuum vortex” are degenerate, we pick two
points on the 2-sphere after a rotation by an angle β:

ϕ
M0β0

1;2 ; ð3:7Þ

withMαβγ given by Eq. (2.17) and ϕ1;2 given by Eq. (2.13).
The expression is not particularly illuminating, so we will
just plot the preimages of the two points on the rotated
2-sphere in fig. 2.
Plotting the preimage of one of the points on the 2-sphere

amounts to finding the solutions to the inverse map

x ¼ ϕ−1ðϕaÞ; ð3:8Þ

with ϕa a chosen point on S2 ∋ ϕa ¼ ϕðxÞ. In practice,
the solution to this problem is a hairline and not easy to
see on a 3-dimensional graph, so we plot instead a surface
that corresponds to 1% of the neighborhood around ϕa.
In particular, if we want to plot x ¼ ϕ−1ðð0; 0;−1ÞÞ, we
instead plot the surface ϕ−1ðða; b;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2 − b2

p
ÞÞ withffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

¼ 0.01.
Figure 2(a) shows the unrotated degenerate case, where

the vacuum vortex with winding number 3 is coincident—
this thus corresponds to a point on the 2-sphere which is not
regular under the Hopf map (2.1). In Fig. 2(b) we have
increased β to β ¼ π

6
and we have moved away from the

degeneracy of the vacuum vortex. Now we can clearly see
that the vortex ring, which is the black circle depicted in
Fig. 2(a), is linked 3 times with the vacuum vortex (red).
Note that both preimages are themselves not knots, but
indeed unknots.
A comment in store is about the black line, i.e., the

vortex ring itself in Fig. 2. In Fig. 2(a) the preimage shows
the center of the vortex and what one normally would
associate with the position of the vortex; unfortunately the
antipodal point on the 2-sphere under the Hopf map is not
regular, as mentioned above. Once we rotate the two points,
ϕ1;2, keeping them antipodal on the 2-sphere, we also move
the vortex point itself and the preimage runs P times around
the vortex center line on fixed level sets of the vortex field.

FIG. 2. The toroidal vortex (black) with P ¼ 3 twists and its vacuum vortex (red) at rotation angles β ¼ 0; π
6
; π
2
. The angle β ¼ 0

corresponds to no rotation and shows the degeneracy of the vacuum vortex which is due to the north pole on the 2-sphere not being a
regular point under the Hopf map.
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At the β ¼ π
2
rotation, we have rotated all the way to the

equator, which corresponds to γ ¼ 0 of Eq. (2.20). Here the
vortex line and the vacuum vortex becomes identical,
except that one is rotated by π=P ¼ π=3 with respect to
the other.
This example thus confirms conjecture 1 with the vortex

ring having q ¼ 1 and the vacuum vortex having p ¼ 3,
yielding B ¼ Q ¼ pq ¼ 3.
Before moving on to the next example, let us make one

more comment. The energy (3.2) is an example where the
potential term is asymmetric in ψ1 and ψ2, so the physical
vortex zeros correspond to ψ1 ¼ 0 and the vacuum vortex
zeros to ψ2 ¼ 0. Instead, we could consider the potential
term which is symmetric in ψ1 and ψ2 [10–13]

VðψÞ ¼ �m2

8
½1 − ðψ†σ3ψÞ2� ¼ �m2

2
jψ1j2jψ2j2: ð3:9Þ

For the positive sign, there are two vacua: ψ ¼ ðeiα; 0Þ and
ð0; eiαÞ [10–13], while for the negative sign the vacuum is:
S1 × S1, jψ1j2 ¼ jψ2j2 ¼ 1=2. In the former case, the
situation is similar to that of the potential (3.2) admitting
physical vortex zeros and vacuum vortex zeros, while in
the latter case both zeros can be physical vortices. This
potential is motivated by two-component Bose-Einstein
condensates (BEC) [14], and we called the model the
BEC-Skyrme model, see Appendix A of Ref. [11] for a
more precise correspondence. In fact, a Skyrmion in two-
component BECs was constructed as a link of two kinds
of vortices [15–17].

B. Rational map Skyrmions

We will now illustrate theorem 1 and conjecture 1 using
the rational map approximation to Skyrmion solutions [18].
The energy functional is now simply given by

E½ψ� ¼ kdψk2L2ðXÞ þ
1

4
kψ�dμk2L2ðXÞ; ð3:10Þ

see the previous subsection for an explanation. Inserting the
rational map Ansatz (2.28) yields

E½f;R� ¼
Z

∞

0

�
f02þ2Bsin2fðf02þ1ÞþI ½R�sin

4f
r4

�
r2dr;

ð3:11Þ

with

I ½R� ¼ 1

4π
kR�ΩNk2L2ðS2Þ; ð3:12Þ

where the only way the rational map enters the energy
functional is through this integral which is the norm-
squared of the pullback of the area form on N by R, and
B is the degree of the rational map R.

We will thus utilize the map (2.31) with RðzÞ being the
rational map of degree B. Plotting the points (2.13)
corresponds to a vortex (which is the antivacuum of the
Skyrmion) and the vacuum vortex (which contains the
vacuum). In all cases, except the B ¼ 1 case, the vacuum
vortex does not correspond to a regular point under the map
(2.31) and hence the preimages degenerate, making it
impossible to count the linking number—which indeed
is in accord with theorem 1. For certain B, even the vortex
(the antivacuum) does not correspond to a regular point
under the mapping. Therefore, we turn to (two) antipodal
points on the 2-sphere, which do correspond to regular
points under the map (2.31) by rotating the 2-sphere using
Eqs. (2.20), (2.22) and the linking numbers thus exactly
equal the baryon numbers of the solitons.
In order to facilitate the visualization of the preimages of

the soliton solutions in terms of Skyrmion maps, it will
prove helpful to plot a fixed level set of the baryon charge
density so as to get a frame of reference for the preimages.
The baryon charge density is given by

B ¼ �ψ�ΩN; ð3:13Þ
which is a 0-form (scalar quantity) and is calculated as the
Hodge dual on X of the pullback of the normalized volume
form on N by the map ψ.
We are now ready to present the results of various

preimages of the points ϕ
M0π

2
γ

1;2 and ϕ
M0β0

1;2 for rational map
Skyrmions with B ¼ 1; 2;…; 8. We will display the degen-
erate points ϕ1;2 just for reference.
The rational map Skyrmion with topological degree 1 is

given by the spherically symmetric rational map [18]

R1ðzÞ ¼ z: ð3:14Þ
Figure 3 shows the preimages of ϕ1;2 and again after a
rotation using the rotation matrix M0π

2
π
4
of eq. (2.20) has

FIG. 3. Links for the B ¼ 1 Skyrmion. (a) A link between the
vortex ring (yellow) and the vacuum vortex (magenta). (b) A link
between the vortex (yellow) and the vacuum vortex (blue) which
is a closed loop. The gray isosurface is the baryon charge density
illustrating the shape of the Skyrmion.
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been applied. In this case, and only in this case, ϕ1;2 are
regular points under the mapping (2.31). The vacuum
vortex (magenta) in Fig. 3(a) goes from x3 ¼ −∞ to
x3 ¼ ∞, which are identified by the one-point compacti-
fication and hence it is a vortex ring, linking the other
vortex ring (yellow) exactly once, as expected.
In order to see what happens to the preimages once the

rotation of the 2-sphere has been applied, we show ϕ
M0π

2
π
4

1;2 in
Fig. 3(b). The two points are still antipodal on the 2-sphere
in order to lend the interpretation as “vortices,” but it is
clear that the vortex (yellow) is slightly shifted and the
vacuum vortex (blue) is now closing in the bulk of R3.
Topologically it is the same thing of course and since
both points are regular, they both give linking number
Q ¼ B ¼ 1 as theorem 1 states and the interpretation as
vortex links according to conjecture 1 is also clear.
The rational map Skyrmion with topological degree 2 is

given by the axially symmetric rational map [18]

R2ðzÞ ¼ z2: ð3:15Þ

Figure 4 shows preimages of ϕ1;2 and again after a rotation
by β ¼ π

6
and β ¼ π

2
. The vacuum vortex (magenta) in

Fig. 4(a) is degenerate and this is because the point on the
2-sphere is not a regular point under the mapping (2.31),
as mentioned already. Rotating the points, keeping them
mutually antipodal, the preimages of Fig. 4(b) are perfectly
linked twice and in Fig. 4(c) the vacuum vortex becomes
identical with the vortex, albeit with a π=2 rotation with
respect to the latter. This example confirms conjecture 1
with the vortex ring having q ¼ 1 and the vacuum vortex
having p ¼ 2, yielding B ¼ Q ¼ pq ¼ 2.
The next soliton is the rational map Skyrmion of

topological degree 3. The rational map is given by [18]

R3ðzÞ ¼
i
ffiffiffi
3

p
z2 − 1

zðz2 − i
ffiffiffi
3

p Þ ; ð3:16Þ

and possesses tetrahedral symmetry. Figure 5 shows
preimages of ϕ1;2 as well as two rotations by β ¼ π

6
and

by γ ¼ π
4
. The vacuum vortex (magenta) in Fig. 5(a) is still

degenerate as mentioned above. There is now evidence for

FIG. 4. Links for the B ¼ 2 Skyrmion. (a) A link between the vortex ring (yellow) and the vacuum vortex (magenta) which is
degenerate. (b,c) Nondegenerate links between the vortex and vacuum vortex, which are both closed loops. The gray isosurface is the
baryon charge density illustrating the shape of the Skyrmion.

FIG. 5. Links for the B ¼ 3 Skyrmion. (a) A link between the vortex ring (yellow) and the vacuum vortex (magenta) which is
degenerate. (b,c) Nondegenerate links between the vortex and vacuum vortex, which are both closed loops. The gray isosurface is the
baryon charge density illustrating the shape of the Skyrmion.
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the vacuum vortex of rational map Skyrmions to be B
intersecting (infinite) lines coming from and returning to
∂R3. After a suitable rotation as shown in Fig. 5(b,c) the
linking number of two antipodal points on the 2-sphere is
now equal to three, as promised. This example confirms
conjecture 1 with the vortex ring having q ¼ 1 and the
vacuum vortex having p ¼ 3, yielding B ¼ Q ¼ pq ¼ 3.
The B ¼ 4 Skyrmion has octahedral symmetry, which is

the dual symmetry of the cube, and the rational map with
such symmetry reads [18]

R4ðzÞ ¼
z4 þ i2

ffiffiffi
3

p
z2 þ 1

z4 − i2
ffiffiffi
3

p
z2 þ 1

: ð3:17Þ

Figure 6 shows preimages of ϕ1;2 as well as two rotations
thereof, by β ¼ π

6
and by β ¼ 3π

2
. As for all B > 1, the

vacuum vortex (magenta) in Fig. 6 is degenerate, but this
time also the vortex or antivacuum (yellow) is degenerate
with merging points of the curves at each face of the cube.
Rotating the vortex points by β ¼ π

6
and by β ¼ 3π

2
, see

Fig. 6(b,c), yields regular points on the 2-sphere under the
mapping and the links are clear. This time, however, the
linking number is split into two disjoint clusters of links

and the total linking number is given by q1 ¼ 1, p1 ¼ 2,
q2 ¼ 1, p2 ¼ 2 and hence B ¼ Q ¼P2

l¼1 plql ¼ 4, as
promised. This example confirms conjecture 1 and this time
with 2 clusters adding up to the total linking number.
An interesting note is that one can see the structure of the

B ¼ 4 cubic Skyrmion being composed by two tori, with
one of them flipped with respect to the other.
The B ¼ 5 Skyrmion has dihedral (D2d) symmetry and

the corresponding rational map is [18]

R5ðzÞ ¼
zðz4 þ bz2 þ aÞ
az4 − bz2 þ 1

; ð3:18Þ

which contains enhancedD4 symmetry if b ¼ 0 and further
enhancement to octahedral (Oh) symmetry if a ¼ −5, see
Ref. [18]. The choice of the parameters is now for the first
B not fixed by choosing the highest symmetry, because
there is a lower value of I [Eq. (3.12)] for different values
of a, b. In particular, a ¼ 3.07 and b ¼ 3.94 minimizes
I [18].
Figure 7 shows preimages of ϕ1;2 as well as two rotations

thereof by β ¼ π
2
and by γ ¼ π

4
. Only the vacuum vortex

(magenta) is degenerate in the canonical frame, see
Fig. 7(a). The easiest linking number is found in Fig. 7(c),

FIG. 6. Links for the B ¼ 4 Skyrmion. (a) A link between the vortex ring (yellow) and the vacuum vortex (magenta), which are both
degenerate. (b,c) Nondegenerate links between the vortices and vacuum vortices, which are both closed loops. The gray isosurface is the
baryon charge density illustrating the shape of the Skyrmion.
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where the vortex (yellow) is linked twice with a vacuum
vortex (blue) (bottom of the figure) and thrice with another
vacuum vortex (blue) (top of the figure). This yields q ¼ 1,
p ¼ 5, yielding B ¼ Q ¼ pq ¼ 5, as expected. The reason
for counting five windings for the vacuum vortex is that
there is (from the vortex point of view) no difference between
a doubly wound vacuum vortex and two separate singly
wound vacuum vortices linking the vortex. Hence, from the
vortex point of view, there is a winding-5 vacuum vortex
that has split into two clusters (which is irrelevant for the
counting). Of course, we would have taken the opposite
point of view, reversing the roles of the two preimages.
This would lead to q1 ¼ 2, p1 ¼ 1, q2 ¼ 3, p2 ¼ 1 and
now B ¼ Q ¼P2

l¼1 plql ¼ 5.
Turning to the counting of the linking number in

Fig. 7(b), the situation is slightly complicated by the fact
that the two clusters are linked. Taking the viewpoint of the
red vortices, we have q1 ¼ 1, p1 ¼ 2, q2 ¼ 1, p2 ¼ 3 and
B ¼ Q ¼ 5 as promised. If we swap the roles of the two
preimages, we of course get the same answer.
This is the first nontrivial example in the class of rational

map Skyrmions and it still confirms conjecture 1.
The B ¼ 6 Skyrmion has D4d dihedral symmetry, which

is generated by the rational map [18]

R6ðzÞ ¼
z4 þ ia

z2ðiaz4 þ 1Þ ; ð3:19Þ

with a ∈ R. This is the first B for which symmetry does not
fix the parameters of the rational map. Minimization of I
[Eq. (3.12)] yields a ¼ 0.16 [18].
Figure 8 shows preimages of ϕ1;2 as well as of a rotation

of them by β ¼ 3π
2
. The vacuum vortex (magenta) in

fig. 8(a) is still degenerate as promised, but after a swift
β rotation, the mapping of the vortex points is regular. After
a bit of disentangling, it is clear that the vacuum vortex

(white) links the vortex (black) six times in Fig. 8(b),
corresponding to q ¼ 1, p ¼ 6 and B ¼ Q ¼ pq ¼ 6.
The B ¼ 7 Skyrmion is the most symmetric of them

all and possesses icosahedral symmetry, which fixes the
rational map as [18]

R7ðzÞ ¼
z5 þ 3

z2ð3z5 þ 1Þ : ð3:20Þ

Figure 9 shows preimages of ϕ1;2 as well as of rotations
thereof by β ¼ π

6
and by β ¼ π

2
. In the canonical frame, both

vortices are degenerate. After rotating by β ¼ π
6
the map-

ping is regular and the vortex (dark red) links three vacuum
vortices (light red) two, three, and two times, respectively,
yielding q ¼ 1, p ¼ 7, B ¼ Q ¼ pq ¼ 7. The counting
goes slightly different if we continue the rotation of the
2-sphere to β ¼ π

2
where both vortices have turned into

FIG. 7. Links for the B ¼ 5 Skyrmion. (a) A link between the vortex ring (yellow) and the vacuum vortex (magenta) which is
degenerate. (b,c) Nondegenerate links between the vortices and vacuum vortices, which are both closed loops. The gray isosurface is the
baryon charge density illustrating the shape of the Skyrmion.

FIG. 8. Links for the B ¼ 6 Skyrmion. (a) A link between
the vortex rings (yellow) and the vacuum vortex (magenta)
which is degenerate. (b) Nondegenerate links between the vortex
and vacuum vortex, which are both closed loops. The gray
isosurface is the baryon charge density illustrating the shape of
the Skyrmion.
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3 rings. If we take the point of view of the red vortices, the
winding numbers are q1 ¼ 1, p1 ¼ 2, q2 ¼ 1, p2 ¼ 3,
q3 ¼ 1, p3 ¼ 2. Notice, however, that the clusters them-
selves are linked and therefore the number of vacuum
vortices is not 7 but 3.
The last Skyrmion here is the B ¼ 8 Skyrmion, which

has D6d symmetry in the massless theory (3.10), in
contradistinction from the solution of the massive theory
which is composed by two cubes [19]. The rational map for
the fullerenelike Skyrmion with D6d symmetry has the
corresponding rational map [18]

R8ðzÞ ¼
z6 − a

z2ðaz6 þ 1Þ ; ð3:21Þ

with a ∈ R. The minimization of I of Eq. (3.12) yields
a ¼ 0.14 [18].
Figure 10 shows preimages of ϕ1;2 as well as of rotations

thereof by β ¼ π
2
and by γ ¼ π

4
. As expected by now, the

vacuum vortex in Fig. 10(a) is degenerate. In Fig. 10(b) the
vacuum vortex (cyan) and the vortex (red) are linked eight
times and the counting is simply q ¼ 1, p ¼ 8, and thus
B ¼ Q ¼ pq ¼ 8. Rotating by π=4 around the equator of
the 2-sphere, yields different preimages. Now there are
three vortices (yellow), see Fig. 10(c), that link the vacuum
vortex (blue) and they link the vacuum vortex two, four and
two times, respectively. The counting now goes like
q1 ¼ 1, p1 ¼ 2, q2 ¼ 1, p2 ¼ 4, q3 ¼ 1, p3 ¼ 2 and thus
we have B ¼ Q ¼P3

l¼1 plql ¼ 8 again, as promised.

IV. DISCUSSION AND OUTLOOK

In this paper, we have proved theorem 1 which states that
the degree of a Skyrme field is the same as the linking
number of two preimages of two distinct regular points on
the 2-sphere of said field under the Hopf map. We further
conjecture that the 2 linked lines may be interpreted as

vortices in the original O(4) field. Note that such an
interpretation is impossible in the Faddeev-Skyrme model
which is based on O(3) fields in R3, although they do
possess Hopf charge and knots.

FIG. 9. Links for the B ¼ 7 Skyrmion. (a) A link between the vortex ring (yellow) and the vacuum vortex (magenta), which are both
degenerate. (b,c) Nondegenerate links between the vortices and vacuum vortices, which are both closed loops. The gray isosurface is the
baryon charge density illustrating the shape of the Skyrmion.

FIG. 10. Links for the B ¼ 8 Skyrmion. (a) A link between the
vortex rings (yellow) and the vacuum vortex (magenta) which is
degenerate. (b,c) Nondegenerate links between the vortices
and vacuum vortices, which are both closed loops. The gray
isosurface is the baryon charge density illustrating the shape
of the Skyrmion.
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We illustrated the conjecture and hence the theorem with
two examples: a toroidal vortex, which is simply an axially
symmetric Skyrmion with topological degree P (energeti-
cally stabilized by a certain potential, see Ref. [9]); and
with the eight first rational map Skyrmions of Ref. [18].
The toroidal vortex or the P-wound axially symmetric

Skyrmion is in fact the motivation for conjecture 1 and
naturally it works well. The rational map Skyrmions, on the
other hand, are a nontrivial check on the conjecture and so
far it has passed the checks.
One should note that all the preimages that we studied in

this paper are themselves unknots, viz. they are topologi-
cally equivalent to circles. So we have only checked the
conjecture 1 with various numbers of linked unknots. It is
possible that the conjecture needs refinement in more
complicated situations where the preimage itself become
links or a knot or even linked knots, which then by the
nature of the game will be linked with the other preimage.
Although B ¼ Q holds by theorem 1, the conjecture may
receive corrections of the form, schematically

B ¼ Q ¼
X

unknots

pqþ
X
links

Flinksðp; qÞ þ
X
knots

Fknotsðp; qÞ

þ
X

linked knots

Flinked knotsðp; qÞ; ð4:1Þ

where we have suppressed cluster indices. We leave this for
future studies.
LordKelvin imagined that atoms are described by knots of

vortices [20]. With theorem 1 we can say that nuclei are not
knots, but contain links of vortices via a certain projection.
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