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We study the compactification of the six-dimensional (6D) N ¼ ð2; 0Þ superconformal field theory on
the product of a Riemann surface with flux and a circle. On the one hand, this can be understood by first
reducing on the Riemann surface, giving rise to 4D N ¼ 1 and N ¼ 2 class S theories, which we then
reduce on S1 to get 3DN ¼ 2 andN ¼ 4 class S theories. On the other hand, we may first compactify on
S1 to get the 5D N ¼ 2 Yang-Mills theory. By studying its reduction on a Riemann surface, we obtain a
mirror dual description of 3D class S theories, generalizing the star-shaped quiver theories of Benini,
Tachikawa, and Xie. We comment on some global properties of the gauge group in these reductions and test
the dualities by computing various supersymmetric partition functions.
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I. INTRODUCTION

Studying quantum field theories (QFTs) on compact
spaces often leads to insights into complicated dynamics of
lower dimensional theories. For example, many dualities
between lower dimensional superconformal field theories
(SCFTs) can be deduced from dualities connecting higher
dimensional theories. A particular example is understand-
ing N ¼ 2 dualities in three-dimensional (3D) starting
from 4D N ¼ 1 dual theories compactified on a circle
[1–5]. Another example is the many insights derived in
recent years, following the seminal paper [6], about strong
coupling dynamics of 4DN ≥ 1 by understanding them as
compactifications of 6D SCFTs on Riemann surfaces. This
has led to improved understanding of dualities and the
emergence of symmetry in many examples of 4D SCFTs
(see, e.g., [7–12] and references therein). Importantly, the
6D SCFTs here do not have at the moment a useful
description in terms of fields and Lagrangians; see [13]
for a nice review.
When one considers compactifications of higher dimen-

sional quantum field theory, the resulting lower dimen-
sional model is typically not given just by the Kaluza-Klein
reduction of the higher dimensional fields with the same
types of interactions. One can understand the problem as
follows. In such a setup, there are two limits involved: first,
we have the computation of the path integral, and second,
we have a geometric parameter, the size of the compact part

of the geometry, which we take to be small. These two
limits need not commute. A concrete example of this is that
of taking 4D theories on a circle: the fact that some of the
4D symmetries are anomalous leads to novel interaction
terms in the effective 3D theory, which explicitly break the
anomalous symmetry [4,5]. Compactifying 3D theories to
2D leads to many complications of this sort [14], and
similarly for 4D models reduced to 2D [15,16], and it is
fair to say that such reductions are not understood well
enough.
In this paper, we will discuss some aspects of compac-

tifications of 6D SCFTs down to 3D. We will not consider
the compactifications on a generic 3D manifold, as was
done for example in [17–19], but rather on a geometry
which has the structure of (punctured) Riemann surface
times a circle. There are two ways to view such a
compactification. We can either first try to understand
the reduction on a circle down to 5D and then a subsequent
compactification to 3D, or first compactify to 4D and then
to 3D. The former way has the advantage that, although the
6D theories are not given in terms of Lagrangians, often
when compactified on a circle (possibly with holonomies
for various symmetries), they possess an effective 5D
description in terms of fields. This 5D description then
can be directly used to understand the further compacti-
fication down to 3D. This will still be a nontrivial task,
following the comments we made above; however, we will
be able to partially fix the 3D field content and action in
terms of the 5D Lagrangian and the flavor symmetry
background on the Riemann surface.
A useful set of tools in the analysis of dimensional

reduction in supersymmetric field theories have been the
supersymmetric partition functions on product manifolds.
In this case, we can understand the reduction from 5D to 3D
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using the S3b × Σg partition function, studied in [20], which
can be interpreted as the S3b partition function of the
dimensionally reduced theory. This partition function is
closely related to the twisted index studied in lower
dimensions [21–24], which has been used to study similar
reductions from 4D to 2D in [15].
On the other hand, the approach where we first com-

pactify to 4D often leads to theories which are rather
complicated and typically do not have known Lagrangian
descriptions. This makes it harder to understand the further
compactifications to 3D. In some well-behaved cases, we
can nevertheless study this reduction and the resulting 3D
models. We will then discuss how the two different orders
of compactification are related to each other. In particular,
this leads to two different dual descriptions of the 3D SCFT
obtained in the reduction.
Although we expect this procedure to apply to more

general 6D models, we will concretely discuss compacti-
fications of AN−1 (2,0) SCFT and give explicit details for
the A1 case, as here the 4D intermediate step is particularly
simple. For the cases preserving N ¼ 4 supersymmetry in
3D, the dual descriptions are the mirror dualities of [25],
which take the form of a “star-shaped quiver” with a central
SUðNÞ=ZN node. More generally, we may compactify with
a flux, n, for the Spð1ÞF 6D flavor symmetry on the
Riemann surface, which leads to an N ¼ 2 model in 3D,
and here we find simple dual descriptions with a number of
adjoint chiral multiplets for the central node which is linear
in the flux, n.
The paper is organized as follows. In Sec. II, we discuss

reductions on a Riemann surfaces with flux of general
N ¼ 1 5D SCFTs and in particular the maximally super-
symmetric (SYM), which is a circle reduction of the 6D
(2,0) theory. In Sec. III, we then analyze the reductions of
4D N ¼ 1 class S theories [6,26], which are obtained by
compactifying the (2,0) theory on a Riemann surface with
flux on a circle. Next, the two orders of the reduction
are compared in Sec. IV and the ensuing dualities are
discussed. In Sec. V, we discuss technical checks of the
dualities using various supersymmetric partition functions.
We comment on our results and possible generalizations in
Sec. VI. Appendix collects several useful properties of the
T½SUðNÞ� models.

II. REDUCTION OF 5D N = 1 GAUGE
THEORIES ON Σg

In this section, we describe some general aspects of the
reduction of a 5D N ¼ 1 gauge theory on a Riemann
surface, Σg, which in general gives rise to a 3D N ¼ 2

theory. We start by decomposing the fields into modes on
Σg and analyzing the resulting spectrum of fields in 3D. We
then analyze the same problem from the perspective of the
S3b × Σg partition function, computed in [20], and point out
some new features that arise in this analysis. After this

general analysis, we focus on the case of the 5D N ¼ 2
SYM theory, which will be our main example.

A. Modes on Σg

A general 5D N ¼ 1 gauge theory has an Spð1ÞR
R-symmetry and gauge and flavor symmetries, G and
GF. The matter content consists of a vector multiplet, V,
in the adjoint representation of G, and hypermultiplets, Hi,
which come in a pseudoreal representation, Ri ⊗ Si, of
G ×GF. The field content and representations of these
multiplets are as follows:

Multiplet Field SOð5ÞE Spð1ÞR G GF

V σ 1 1 Adj 1
Λ 4 2 Adj 1
Aμ 5 1 Adj 1

Hi Qi 1 2 Ri Si
Ψi 4 1 Ri Si

Here we impose reality conditions on Λ, Qi, and Ψi, which
each live in a tensor product of two pseudoreal representa-
tions. The group SOð5ÞE is the group of rotations of the 5D
Euclidean space.
We consider the theory on the spacetime R3 × Σg, and to

preserve supersymmetry we perform a partial topological
twist along Σg. This consists of introducing a background
R-symmetry gauge field in the Uð1ÞR maximal torus of
Spð1ÞR, which we identify with the spin connection on Σg.
In addition, we may introduce arbitrary GNO fluxes for
G ×GF, which take values in the coweight lattices of these
groups, and we denote these fluxes by (m;n). The
symmetry which is unbroken in 3D after this twist consists
of Uð1ÞR and the commutant of G and GF with the fluxes
that we turn on. In principle, we should consider the
contribution from all the dynamical gauge fluxes, m, but
we will argue that in favorable cases only the sector with
m ¼ 0 contributes, so for now we will specialize to
this case.
Let us start by decomposing these fields into modes on

Σg, each of which gives rise to a 3D field. First, we
decompose into representations of SOð3ÞE ×Uð1ÞΣg

⊂
SOð5ÞE, under which 4 → 2�1 and 5 → 30 ⊕ 1�2.
Recall that (left/right-handed) fermions on Σg are sections
of the line bundle Oð�ðg − 1ÞÞ, while one forms are
sections ofOð�2ðg − 1ÞÞ. Thus, before the twist, the fields
take values in the following sections of Σg:

Multiplet Field Bundle SOð3ÞE Uð1ÞR G GF

V σ Oð0Þ 1 0 Adj 1
Λ Oð�ðg − 1ÞÞ 2 −1 Adj 1
Aμ Oð0Þ 3 0 Adj 1
Az Oð2ðg − 1ÞÞ 1 0 Adj 1

Hi Qi Oð0Þ 1 1 Ri Si
Ψi Oðg − 1Þ 2 0 Ri Si
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Now, we consider the effect of the twist. First, we look at
the vector multiplet. Here only theUð1ÞR flux has an effect,
and after the twist the fields behave as follows:

Multiplet Field Bundle SOð3ÞE Uð1ÞR G GF

V σ Oð0Þ 1 0 Adj 1
Λ Oð0Þ 2 −1 Adj 1
Aμ Oð0Þ 3 0 Adj 1
Az Oð2ðg − 1ÞÞ 1 0 Adj 1
Λz Oð2ðg − 1ÞÞ 2 1 Adj 1

We see that ðσ;Λ; AμÞ contain the fields of a 3D N ¼ 2
vector multiplet. In principle, we obtain such a multiplet for
each mode on Σg; however, all of the nonholomorphic
modes will pair up into long multiplets and decouple from
BPS observables, and so we obtain a single 3D N ¼ 2
vector multiplet from the single (constant) zero mode of
Oð0Þ. In addition, ðAz;ΛzÞ transform like a one form on Σg,
and we expect g holomorphic zero modes for this bundle,
which leads to g 3D N ¼ 2 adjoint chiral multiplets.
Next, consider the hypermultiplet, Hi. Recall this sits in

a pseudoreal representation, Ri ⊗ Si, ofG ×GF, and so the
weights come in pairs, (ρ;ω) and ð−ρ;−ωÞ, and let us
consider the contribution from one such pair. Then these
fields get an additional contribution to their flux of �ωðnÞ.
The resulting field content after the twist is then as follows:

Multiplet Field Bundle SOð3ÞE Uð1ÞR G GF

Hi Qi Oðg − 1þ ωðnÞÞ 1 1 ρ ω
Ψi Oðg − 1þ ωðnÞÞ 2 0 ρ ω
Q̃i Oðg − 1 − ωðnÞÞ 1 1 −ρ −ω
Ψ̃i Oðg − 1 − ωðnÞÞ 2 0 −ρ −ω

Here, the number of holomorphic sections of these bundles
will depend on the precise metric and gauge connection we
choose; however, this number is constrained by the
Riemann-Roch index theorem, which states

dimH0ðΣg;OðnÞÞ − dimH0ðΣg;Oð2ðg − 1Þ − nÞÞ
¼ nþ 1 − g: ð1Þ

Thus, we find some number Nρ;ω of 3D N ¼ 2 chiral
multiplets transforming with weight (ρ;ω), and N−ρ;−ω
with weight ð−ρ;−ωÞ, subject to

Nρ;ω − N−ρ;−ω ¼ ωðnÞ: ð2Þ

Importantly, BPS observables, such as supersymmetric
partition functions, will depend only on this difference;
however, the precise field content cannot be determined by
this analysis.

To summarize the analysis above, we found that

5D N ¼ 1 vector multiplet

↓ compactification on Σg with flux n

3D N ¼ 2 vector multiplet þ
g× 3D N ¼ 2 adjoint chiral multiplets of R-charge zero

5D N ¼ 1 hyper multiplet with weight ðρ;ωÞ

↓ compactification on Σg with flux n

Nρ;ω × 3D N ¼ 2 chirals with weight ðρ;ωÞ
þN−ρ;−ω × 3D N ¼ 2 chirals with weight ð−ρ;−ωÞ
both with R-charge 1; and with Nρ;ω −N−ρ;−ω ¼ ωðnÞ:

ð3Þ

We emphasize that the above analysis was performed in
the zero gauge flux sector. We comment below on the
possibility of other gauge flux sectors contributing in 3D.

B. The S3b × Σg partition function

We can gain another perspective on the reduction by
studying the S3b × Σg partition function, computed in [20].
Let us fix a 5DN ¼ 1 theory with semisimple gauge group
G, and with matter in a representation R of the gauge and
flavor group, G × GF.

1 Then, from [20], the partition
function on S3b × Σg may be written as2

ZS3b×Σg
ðνÞn

¼ 1

jWGj
X
m∈ΛG

×
Z

due2πiγTrðumÞ Y
α∈AdðGÞ0

sbð−iQþ αðuÞÞ−αðmÞþ1−g

×
Y

ðρ;ωÞ∈R
sbðρðuÞ þ ωðνÞÞρðmÞþωðnÞHgZinstðu; νÞm;n:

Here sbðxÞ is the double sine function (see, e.g., [27]), u
and m parametrize the gauge vector multiplet, determining
the real scalar and flux through Σg, respectively, and these
parametrize the BPS locus we integrate over after applying
localization. Similarly, ν and n describe background vector

1One could also include a 5D Chern-Simons term, but we will
not consider this case here.

2We refer to [20] for more details and conventions.
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multiplets coupled to the flavor symmetry and are param-
eters of the partition function. In addition, we have defined
γ ¼ − 2πQ

g52
, where Q ¼ bþb−1

2
and g5 are the 5D gauge

coupling, and AdðGÞ0 refers to the nonzero roots of G.
The perturbative Hessian, H, is given by

H ¼ detab

�
γKab þ

X
ðρ;ωÞ∈R

ρaρb
s0bðρðuÞ þ ωðνÞÞ
sbðρðuÞ þ ωðνÞÞ

−
X

α∈AdðGÞ0

s0bð−iQþ αðuÞÞ
sbð−iQþ αðuÞÞ

�
: ð4Þ

Finally, Zinstðu; νÞm;n refers to the instanton contribution
to the partition function, which we do not write explic-
itly here.
This partition function has a similar structure to the S3

partition function [27–29] of a 3D N ¼ 2 gauge theory,
including the expected one-loop contributions of the
chiral and vector multiplets, expressed through the double
sine function, sbðxÞ. However, there are two important
differences. First, there is an infinite sum over flux sectors,
m, on Σg. We may tentatively interpret this as implying
the system is described by an infinite direct sum of 3D
N ¼ 2 theories. Similar direct sums have appeared in other
examples of dimensional reduction of gauge theories, e.g.,
in [14,30,31]. In addition, there are extra factors related to
the fermion zero modes and instanton contributions, which
are not straightforwardly interpreted in terms of the S3b
partition function of ordinary 3D N ¼ 2 gauge theories,
implying this would have to be a more exotic 3D N ¼ 2
theory.
Below, we will focus on a special case where the 3D

interpretation is more straightforward. There is a class of
5D gauge theories which are believed to have a UV
completion as a 6D N ¼ ð1; 0Þ SCFT. Specifically, there
is an emergent circle, whose radius is proportional to the
5D gauge coupling, β ∼ g5. In these cases, the partition
function above can be reinterpreted as the S3b × Σg × S1β
partition function of this 6D theory, or equivalently, as the
S3b × S1β partition function of the 4D theory obtained by
compactification on Σg. If we now consider the limit
β ∼ g5 → 0, we may interpret this as the dimensional
reduction of the 4D theory, which we expect to give an
ordinary 3D theory.
Several things happen in this limit of the partition

function above. First, and most importantly, we expect
that the instanton contribution drastically simplifies and can
be essentially ignored. In fact, we will argue below that it
contributes an overall factor which can be related to the
Cardy behavior of the 4D index as β → 0.
Next, note that for m ≠ 0, because of the e2πiγTrðumÞ

factor, and since γ ∼ β−1 is taken very large, the integrand is
rapidly oscillating in at least one direction in the complex u
plane, and so by the Riemann-Lebesgue lemma, we expect

its contribution to vanish as γ−1 is taken small. In addition,
we note that the first term in (4) is dominant, and so we may
approximate

H ≈ γrG ; ð5Þ

where rG is the rank of G. More precisely, these two
statements only follow provided the integrand is bounded at
infinity. But, as argued in Sec. 4.2.2 of [20], this is true
precisely for those 5D theories which have 6D uplifts.
With these assumptions, we may approximate

ZS3b×Σg
ðνÞn ≈

g5→0

γgrG

jWGj
Z

du
Y

α∈AdðGÞ0
sbð−iQþ αðuÞÞ1−g

×
Y

ðρ;ωÞ∈R
sbðρðuÞ þ ωðνÞÞωðnÞ: ð6Þ

In this form, the partition function looks very similar to the
S3b partition function of a certain 3D N ¼ 2 gauge theory.
In fact, we claim this theory is precisely the one wewere led
to by the analysis of the previous subsection.
To see this, note that the first product in the integrand can

be interpreted as the contribution of a 3D N ¼ 2 vector
multiplet, along with g adjoint chiral multiplets of R-charge
zero, as in (3). The latter contribute oppositely to the vector,
so their total contribution appears as a single factor raised
to the power 1 − g. To be precise, the adjoint chiral
multiplets have an additional contribution from the grG
Cartan elements, which do not depend on the gauge
variable, u. Since they also have R-charge zero, strictly
speaking their contribution diverges. However, we may
schematically identify this divergence with the γgrG pre-
factor, which is also diverging in this limit, and we note the
exponent matches the number of Cartan elements.
Next, we look at the second product in the integrand

in (6). Using the basic identity,

sbðuÞ ¼ sbð−uÞ−1; ð7Þ

we see that we may interpret this as the contribution of Nρ;ω
chiral multiplets of weights (ρ;ω) along with N−ρ;−ω of
weight ð−ρ;−ωÞ, provided that

Nρ;ω − N−ρ;−ω ¼ ωðnÞ; ð8Þ

precisely as in (4).
Thus, under the assumptions above which led us to argue

the partition function truncates to the zero flux sector, we
see the analysis of the previous subsection and that of the
S3b × Σg partition function lead to the same result.

1. Cardy scaling

From the results of [32], we expect the 3D reduction of
the 4D index to behave in the β → 0 limit as
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lim
β→0

Iðp; q; μiÞ ¼ exp

�
−

π

6β
ðQAR þAαναÞ

�
ZS3b

ðνiÞ;

where AR and Aα are the linear anomalies of the
R-symmetry and flavor symmetries, respectively. Thus,
while above we have found the expected finite piece, we
did not observe the divergent “Cardy scaling.” We expect
this contribution will arise from the instanton contribution
we have so far ignored. We will see this more explicitly
when we consider the 5D N ¼ 2 theory next.

C. Reduction of the 5D N = 2 SYM theory

Our main example in this paper will be the 5D N ¼ 2
Yang-Mills theory with gauge group G, which we will
usually take to be SUðNÞ. This has an Spð2ÞR symmetry,
but in the N ¼ 1 language used above, this decomposes to
Spð1ÞR × Spð1ÞF, with a single 5D N ¼ 1 vector multi-
plet and a 5D N ¼ 1 hypermultiplet in the representation
(Adj, 2) of G × Spð1ÞF.
Our main interest in this example is due to the fact that it

admits a UV completion as the 6D N ¼ ð2; 0Þ SCFT
compactified on a circle. Then the 3D reduction of this 5D
theory on Σg may be alternatively described in terms of first
compactifying the 6D SCFT on a Riemann surface with
flux n for the Spð1ÞF flavor symmetry, obtaining in general
a 4DN ¼ 1 class S theory [7,8,33] (see also [34–36]),3 and
then dimensionally reducing this on a circle. Comparing the
theories obtained by these two methods can then lead to
nontrivial three-dimensional dualities. We will return to the
4D class S theories and their reduction in the next section.

1. Reduction on Σg

When compactifying the 5D N ¼ 2 theory on Σg, we
may also include a flux, n ∈ Z, for the Spð1ÞF flavor
symmetry, and so we expect a family of theories labeled by
n and g. Let us first analyze this reduction in terms of the
modes on Σg, as in Sec. II A. We find the field content in 3D
shown in Table I. Here the numbers, l and l̃, of adjoint
chiral multiplets, Ψ and Ψ̃, cannot be determined individu-
ally, but satisfy

l − l̃ ¼ n: ð9Þ

Let us first consider an important special case, which is
n ¼ g − 1. This can be interpreted as performing the
topological twist on Σg using the R-symmetry,

Rþ ¼ Rþ F: ð10Þ

This is the same twist used to define 4D N ¼ 2 class S
theories, and so we expect the 3D theories obtained here to
be equivalent to their dimensional reduction. In this case, it
is natural to take the background gauge field equal to the
spin connection on Σg, and in this case the fields Ψ and Ψ̃
are sections of Oð2ðg − 1ÞÞ and Oð0Þ, respectively, which
can be identified with one forms and scalars. Then we are
justified in taking

l ¼ g; l̃ ¼ 1: ð11Þ
Then we see the fields can be organized into the field
content of 3D N ¼ 4 theory, namely,

ðV; Ψ̃1Þ → 3D N ¼ 4 vector multiplet;

ðΩa;ΨaÞ → g × 3D N ¼ 4 adjoint hypermultiplets: ð12Þ

Let us check if the symmetries act as expected for a 3D
N ¼ 4 theory, whose symmetry group is SLð2;RÞrot×
SUð2ÞH × SUð2ÞC. Decomposing the R-symmetry under
the Uð1ÞH ×Uð1ÞC maximal torus, and allowing also a
Uð1Þf flavor symmetry to act on the hypermultiplet, we see
the expected behavior is as follows:

N ¼ 4 N ¼ 2 Field SLð2;RÞrot Uð1ÞH Uð1ÞC Uð1Þf
Vector V σ 1 0 0 0

Λ 2 −1 −1 0
Aμ 3 0 0 0

Φ ϕ 1 0 2 0
ψϕ 2 −1 1 0

Hyper Q q 1 1 0 1
ψ 2 0 −1 1

Q̃ q̃ 1 1 0 −1
ψ̃ 2 0 −1 −1

On the other hand, we can consider the Uð1ÞR × Uð1ÞF
symmetry acting on the fields obtained from 5D. Here we
include also the charges under a Uð1Þf flavor symmetry,
which sits inside the UðgÞ symmetry acting on the fields
ðΩa;ΨaÞ, which is a hidden symmetry from the 5D point
of view.

TABLE I. Matter content of 3D reduction of 5D N ¼ 2 SYM.
Here V denotes a 3D N ¼ 2 vector multiplet and the remaining
multiplets are chiral multiplets, where the Uð1ÞR charge refers to
that of the scalar component.

Multiplet Number Uð1ÞR G Uð1ÞF
V 1 � � � Adj 0
Ωa g 0 Adj 0
Ψb l 1 Adj 1
Ψ̃c l̃ 1 Adj −1

3In the notation of [33], n ¼ p−q
2
, as discussed below.
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Multiplet Field SOð3ÞE Uð1ÞR Uð1ÞF Uð1Þf
V σ 1 0 0 0

Λ 2 −1 0 0
Aμ 3 0 0 0

Ωa Az 1 0 0 1
Λz 2 −1 0 1

Ψb Qz 1 1 1 −1
Ψz 2 0 1 −1

Ψ̃1 Q̃ 1 1 −1 0

Ψ̃ 2 0 −1 0

Then, we see the charges agree provided we identify

H ¼
�
Rþ F g ¼ 0

Rþ F þ f g > 0
; C ¼ R − F: ð13Þ

Interestingly, to identify these symmetries, we see that for
g > 0, we must admix a flavor symmetry which is hidden
from the 5D point of view. Note that this is very reminiscent
of Gaiotto-Witten “bad” theories having hidden IR sym-
metry [37].
As mentioned above, we may also interpret this theory as

the S1 reduction of a 4DN ¼ 2 class S theory, obtained by
compactifying the 6DN ¼ ð2; 0Þ theory on a Riemann sur-
face. The 3D reduction of the class S theory associated to a
Riemann surface has a dual description, found in [25], as a
so-called star-shaped quiver. In the present case, with no
flavor punctures, this is a 3D N ¼ 4 theory with g adjoint
hypermultiplets. This is precisely the description we have
found above, providing an alternative derivation of their
result.
Note that when we twist by the Uð1ÞRþ ⊂ Spð1ÞR ×

Spð1ÞF ⊂ Spð2ÞR symmetry in 5D, the commutant is an
SUð2Þ subgroup, with Cartan R− ¼ R − F, which, using
(13), we can identify with the SUð2ÞC symmetry. On the
other hand, if we consider this 5D theory as a 6D theory
compactified on a circle, this SUð2Þ commutant becomes
the SUð2ÞR symmetry of the resulting 4D N ¼ 2 class S
theory. In the usual convention, this SUð2ÞR symmetry
becomes, upon dimensional reduction, the SUð2ÞH sym-
metry of the resulting 3D N ¼ 4 class S theory. The fact
that it acts as an SUð2ÞC symmetry above reflects the fact
that this description should be considered a “mirror dual” of
the 3D N ¼ 4 class S theory.
For future reference, we will find it useful to define

N ¼ 2� Uð1Þr symmetry and Uð1Þt flavor symmetries as
follows:

r ¼ 1

2
ðH þ CÞ ¼

�R g ¼ 0

Rþ f
2

g > 0
;

T ¼ 1

2
ðC −HÞ ¼

�−F g ¼ 0

−F − f
2

g > 0
: ð14Þ

Here we have defined the Uð1Þt flavor symmetry with a
sign relative to the usual convention. This is in anticipation
of comparison to the dimensional reduction of 4D models,
where, given the previous paragraph, we expect the usual
Uð1Þt symmetry to map to the one with a flip of sign
defined above.
The above argument can be generalized for arbitrary

flux, n, for the Uð1ÞF symmetry, which will in general lead
to a 3D N ¼ 2 theory. These theories may alternatively be
obtained by dimensional reduction of 4D N ¼ 1 class S
theories associated to compactification on a Riemann
surface with flux [7,8,33], which we describe in more
detail in the next section. For general n, the matter content
can be summarized by Table I above, and we note the
charges are compatible with the superpotential

W ¼
X

ΩaΨbΨ̃c; ð15Þ

where the sum is over any subset of the allowed values
of the indices. For example, in the N ¼ 4 case, where
n ¼ g − 1, the superpotential in (15) may be taken as

W ¼
Xg
a¼1

ΩaΨ̃1Ψa; ð16Þ

which is the appropriate 3D N ¼ 4 superpotential. A
similar statement holds for the case n ¼ −ðg − 1Þ, with
the roles of Ψ and Ψ̃ exchanged.
Another interesting example is the case n ¼ 0. Then

l ¼ l̃, so the adjoint chiral multiplets come in l pairs, and,
although we cannot fix them individually, we can see that
each such pair forms a doublet of the SUð2ÞF symmetry,
which remains unbroken in this case. The 4D parents of
these theories are the so-called “Sicilian” 4D N ¼ 1
theories [7].
To summarize, we find that the 3D theory corresponding

to the compactification of the 6D N ¼ ð2; 0ÞAN−1 theory
on a Riemann surface of genus g and with flux n for the
Uð1ÞF ⊂ SUð2ÞF flavor symmetry is described by

suðNÞ gauge theory with g;l; and l̃

adjoint chirals of Uð1ÞF charge 0; 1 and − 1

where l − l̃ ¼ n: ð17Þ

In Sec. II D below. we will see that the global form of the
gauge group is naturally taken to be SUðNÞ=ZN ,

S3b × Σg partition function:

Let us now briefly reconsider the above analysis using
the S3b × Σg partition function. In this case, the perturbative
partition function is given by
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ZN¼2;pert
S3b×Σg

ðνÞn

¼ 1

jWGj
X
m∈ΛG

Z
due2πiγTrðumÞ Y

α∈AdðGÞ
sbðαðuÞ þ νÞαðmÞþn

×
Y

α∈AdðGÞ0
sbð−iQþ αðuÞÞ−αðmÞþ1−gHg: ð18Þ

Here ν and n are the mass and flux, respectively, for the
SUð2ÞF. Also, γ ¼ − 2πQ

g52
, where Q ¼ bþb−1

2
.

Now, we consider the limit g5 → 0, or equivalently,
γ → ∞. As above, in this limit, we expect to be justified in
considering only the perturbative contribution and the
m ¼ 0 term in the sum over fluxes, and we find

ZN¼2;pert
S3b×Σg

ðνÞn ≈
g5→0

γgrG

jWGj
Z

du
Y

α∈AdðGÞ
sbðαðuÞ þ νÞn

×
Y

α∈AdðGÞ0
sbð−iQþ αðuÞÞ1−g: ð19Þ

Let us first consider the case n ¼ g − 1 (n ¼ −ðg − 1Þ
is analogous), corresponding to reduction preserving 3D
N ¼ 4 supersymmetry. Then, we may write

ZN¼2;pert
S3b×Σg

ðνÞn¼g−1 ≈
γ→∞

γgrGsbðνÞrGðg−1Þ
jWGj

×
Z
du

Y
α∈AdðGÞ0

�
sbð−iQþ αðuÞÞ
sbðαðuÞ þ νÞ

�
1−g

:

ð20Þ
Let us compare this to the S3b partition function of the star-
shaped quiver of [7]. Here, we use the standard Uð1Þr and
Uð1Þt symmetries, as in (14), as well as the UðgÞ flavor
symmetry, and denote their fugacities by τ and μi,
i ¼ 1;…; g, respectively, giving

ZSSQ
S3b

ðμi; τÞ

¼ 1

jWGj
Z

du
Y

α∈AdðGÞ0
sbð−iQþ αðuÞÞ

×
Y

α∈AdðGÞ

�
sbðτ þ αðuÞÞ

Yg
i¼1

sb

�
iQ
2

−
τ

2
� μi þ αðuÞ

��
;

ð21Þ
where the first two factors in the integrand come from the
3DN ¼ 4 vector multiplet, and the remaining factors come
from the adjoint hypers. This UðgÞ symmetry is accidental
from the point of view of the 5D theory, and so the limit of
the 4D index does not give us access to the full symmetry,
but places us at a particular point in the space of real mass
parameters. In fact, following the analysis that led to (13),
one finds that we should identify

τ ¼ −ν; μi ¼
−iQþ ν

2
: ð22Þ

Then, we find

ZSSQ
S3b

¼ sbðνÞrGðg−1ÞsbðiQÞgrG

×
1

jWGj
Z

du
Y

α∈AdðGÞ0

�
sbð−iQþ αðuÞÞ
sbðνþ αðuÞÞ

�
1−g

: ð23Þ

This expression is somewhat formal for g > 0, as sbðxÞ has
a simple pole at x ¼ iQ. However, comparing to (20), we
see the finite pieces precisely agree, and the divergences
also formally match if we identify sbðiQÞ ∼ γ → ∞. A
similar analysis can be carried out for more general flux, n,
and we find the S3b partition function of the 3D N ¼ 2

theory described above.

2. Cardy scaling and the Schur limit

As mentioned above, we expect the instantons, which we
have so far ignored, will contribute the expected Cardy
scaling of the 4D index as β → 0, as in (9). First, to see
what result we expect, the anomaly polynomial of the
general 4DN ¼ 1 theory above was computed in [33], and
in particular,

TrR ¼ ðg − 1ÞrGð1þ zϵÞ; ð24Þ

where z ¼ n
ðg−1Þ and ϵ is the mixing parameter of the

R-symmetry with the Uð1Þt flavor symmetry. After
adapting to our notation, this leads to a predicted Cardy
scaling of

exp

�
−
πγ

12
ðN − 1Þððbþ b−1Þðg − 1Þ − 2iνnÞ

�
:

The S3b × Σg partition function of the N ¼ 2 SYM
theory admits a special limit with enhanced supersym-
metry, called the “Schur limit” in [20] due to its relation to
the Schur limit of the 4D index [38]. This corresponds to
setting

ν ¼ i
2
ðb − b−1Þ: ð25Þ

In this limit, the partition function greatly simplifies, and
one can compute the instanton contribution is given by

ZinstðνÞn ¼ ηðzÞðN−1Þðg−1þnÞηðz̄ÞðN−1Þðg−1−nÞ; ð26Þ

where

z ¼ e−2πbγ; z̄ ¼ e−2πb
−1γ: ð27Þ

Now, the limit γ → ∞ corresponds to taking both z and
z̄ to 0, and in this limit, we have
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ηðzÞ ≈ e−
πbγ
12 ; ηðz̄Þ ≈ e−

πb−1γ
12 ; γ → ∞: ð28Þ

Putting this together, we find a leading divergence of

exp

�
−
πγ

12
ðN − 1Þððbþ b−1Þðg − 1Þ þ ðb − b−1ÞnÞ

�
;

which agrees with (25) in this limit. It would be interesting
to extend this analysis to more general values of the flavor
fugacity.

3. Punctures

Above we derived a dual description for the 4D N ¼ 1
theory associated to the compactification of the 6D N ¼
ð2; 0Þ theory on a Riemann surface with flux, but with no
punctures. Let us briefly comment on extending the above
result to the case with punctures.
After reducing on the S1 factor, this corresponds to a

codimension 2 defect in the 5D N ¼ 2 SYM theory. Then,
as described in the context of 4D N ¼ 2 compactifications
in [25,39,40], this defect can be understood by coupling the
5D degrees of freedom to the 3D N ¼ 4 theory Tρ½G� of
[37], which describes a boundary condition of the 4DN ¼
4 theory. Then, after performing the reduction above, this
3D theory will be coupled to theG gauge group descending
from the 5D gauge group. The resulting theory will be a 3D
N ¼ 2 star-shaped quiver-type theory, generalizing the
N ¼ 4 star-shaped quiver of [25]. It would be interesting to
derive this also from the S3b × Σg partition function, but at
present it is not known how to introduce such codimension
2 defects in this observable. Instead, in Sec. IV, we will
describe how to incorporate punctures by starting with the
known N ¼ 4 star-shaped quiver of [25], which is known
to be dual to the reduction of N ¼ 2 class S theories, and
performing certain operations on both sides of the duality to
obtain more general N ¼ 2 dualities.

D. Global properties and higher form symmetries

One shortcoming of the above analysis is that, since we
work on R3 or S3b, we are not sensitive to issues related to
the global form of the 3D gauge group, e.g., whether it is
SUðNÞ or SUðNÞ=ZN. This can be understood by carefully
tracing the higher form symmetries of the 6D theory upon
compactification. Here we focus on the N ¼ ð2; 0Þ theory
for concreteness, but we expect similar issues to arise for
general N ¼ ð1; 0Þ SCFTs.
First, we recall that for a QFT with a q-form symmetry,

Γ, the partition function, Zω, depends on a choice of a
cocycle ω ∈ Hqþ1ðMd;ΓÞ, which one can think of as a
choice of background (qþ 1)-form gauge field coupled to
the symmetry. One may then gauge this symmetry by
summing over values of this background field, introducing
a “dual” background ðd − q − 1Þ-form gauge field, ω̃, for
the Pontryagin dual group, Γ̂,

Z̃ω̃ ¼ 1ffiffiffiffiffiffijΓjp X
ω∈Γ

eihω;ω̃iZω; ð29Þ

where we define the natural pairing hω; ω̃i ¼ R
Md

ω ∧ ω̃.
Performing this operation again returns us to the original
theory.
The 6D N ¼ ð2; 0Þ has a two-form symmetry; however,

it has some subtle properties which are related to the fact
that this is a relativeQFT [41,42].4 Let us take the theory of
some chosen ADE type, and let Γ be the corresponding
Abelian group (i.e., the center of the corresponding simply
connected Lie group). Then, as discussed in [42,45], we
cannot consider an arbitrary background in H3ðM6;ΓÞ, as
above, but must first decompose

H3ðM6;ΓÞ ≅ L ⊕ L̃; ð30Þ

where L; L̃ are Lagrangian subgroups, i.e., the natural
pairing on H3 vanishes on each subgroup. Now, the
partition function is replaced by a “partition vector.” For
one choice of basis, the components can be labeled by
element in L,

Zλ; λ ∈ L ⊂ H3ðM6;ΓÞ: ð31Þ

We may alternatively define

Z̃λ̃ ¼
1ffiffiffiffiffiffijLjp X

λ∈L
eihλ;λ̃iZλ: ð32Þ

We see the two choices are essentially related by the duality
mentioned above, so we might call this a “self-dual two-
form symmetry.” Note also that the partition function is not
well defined by itself, only after making some choice of L
and λ ∈ L.
Next, suppose we compactify a d-dimensional theory

with a q-form symmetry Γ on a manifold Cp. In general, we
expect the compactified theory to have a q-form symmetry
valued in H0ðCp;ΓÞ ≅ Γ, a (q − 1)-form symmetry valued
in H1ðCp;ΓÞ, and so on up to a (q − p)-form symmetry
valued in HpðCp;ΓÞ ≅ Γ. The operators which couple to
these new symmetries come from the q-dimensional
operators in the original theory partially wrapping the
compactified directions; however, some of these may
become very massive in the compactification limit, and
the corresponding symmetries will then act trivially.
Let us now see how this works when we compactify the

6D theory to 3D. Following the philosophy of this paper,
we will consider the two possible compactification orders,
going through 5D or 4D, and compare the results in
each case.

4See also [43,44] for related issues in the context of the 3D-3D
correspondence.
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1. Compactifying to 5D first

Here we expect to get the 5D N ¼ 2 SYM theory with
simply connected ADE group G. To be precise, the global
form of the gauge group depends on our choice of L. Note
that H3ðM5 × S1Þ is isomorphic to H3ðM5Þ ⊕ H2ðM5Þ,
and each term is a Lagrangian subgroup. Suppose we take
L to be the H3ðM5Þ subgroup. Then the 5D partition
function depends on a choice of ω ∈ H3ðM5Þ, which is the
same data as an ordinary two-form symmetry [43]. This is
precisely the G=Γ theory, which has such a two-form
magnetic Γ symmetry. On the other hand, if we choose L to
be H2ðM5Þ, we get the G gauge theory, with a one-form
electric Γ symmetry. Note that if the 6D two-form sym-
metry were an ordinary one, we would have both a one- and
two-form symmetry at the same time, but the self-duality
implies we get only one at a time, and in fact the two
choices are related by gauging. We can think of these
two choices as differing by whether we wrap the three-
dimensional two-form charge operators of the 6D theory
on the S1, when they become the two-dimensional charge
operators of the two-form magnetic symmetry in 5D, or
leave them unwrapped, leading to the one-form electric
symmetry charge operators.
Now, we compactify further on a Riemann surface, Σg.

Then we have seen we get a star-shaped quiver, and the
central node will just be the 5D gauge group. Let us first
consider the G=Γ gauge theory. Then the two-form sym-
metry decomposes into a 2,1 and 0-form symmetry in 3D,
but we claim only the 0-form symmetry survives in the low
energy theory, becoming the magnetic Γ symmetry of the
3D gauge theory. On the other hand, if we start with the G
gauge theory, we find only the one-form Γ symmetry
survives in 3D. These can also be seen directly from 6D as
the cases where we wrap the charge operators on the S1, in
the first case, or on the Σg, in the second.

2. Compactifying to 4D first

Alternatively, we can first compactify on Σg, obtaining a
4D class S theory. Then, we can write

H3ðM4 × ΣgÞ ¼ H1ðM4Þ ⊕ ðH1ðΣgÞ ⊗ H2ðM4ÞÞ
⊕ H3ðM4Þ:

Following [45], we may pick a Lagrangian subgroup, K, of
H1ðΣgÞ, and this choice determines the one-form symmetry
of the 4D theory, e.g., determining the global form of the
gauge group.5 In addition, we should choose L to include
either H1ðM4Þ, leading to a zero-form Γ symmetry, or
H3ðM4Þ, leading to a two-form Γ symmetry.

We claim the usual form of class S theories discussed in
the literature corresponds to the former choice, and in
particular, that these theories all come with a privileged Γ
zero-form symmetry. We will discuss the action of this
symmetry more explicitly in the next section when we
describe the 4D models in more detail. If desired, we may
gauge this symmetry to obtain a new theory with a two-
form symmetry, corresponding to the other choice of
subgroup. These two choices correspond to taking the
charge operators to be unwrapped, in the former case, or to
wrap Σg, in the latter.
Now, we compactify further to 3D. If we started with the

usual class S theory, with its zero-form symmetry, we
obtain a zero-form symmetry in 3D. We claim this is dual to
the star-shaped quiver with G=Γ gauge symmetry, as was
already observed in [46]. We can see that in both cases, the
6D charge operators are wrapping only the S1 we have
reduced on. On the other hand, if we start with the two-
form symmetry in 4D, it will reduce to 2,1 and 0 form
symmetries, but only the one-form symmetry survives, and
the theory is dual to the star-shaped quiver with G gauge
symmetry.
On the other hand, the reduction of the one-form

symmetry to 3D is more subtle. As a simple example, if
we started with a genus-one Riemann surface, this may
have either an electric or magnetic one-form symmetry
depending on our choice ofK above, leading to either theG
N ¼ 4 SYM theory, or the electromagnetic-dual G=Γ
theory. However, upon naive reduction to 3D, the former
theory has only a one-form symmetry, and the latter only a
zero-form magnetic symmetry, even though the 4D descrip-
tions are equivalent. This apparent contradiction, which
arises more generally whenever g > 0, is presumably
related to the fact that the naive reductions correspond
to “bad theories” in the terminology of [37]. It would be
interesting to understand this issue in more detail.

III. REDUCTION OF 4D CLASS S THEORIES

In this section, we arrive at an alternative description of
the 3D theories of the previous section. Namely, starting
from the 6D N ¼ ð2; 0Þ SCFT, we may compactify this on
a Riemann surface Σg with flux n for the Spð1ÞF ⊂ Spð2ÞR
symmetry to obtain a 4D N ¼ 1 theory. We may then
compactify this theory on a circle to obtain a 3D N ¼ 2
theory. We expect the theory we obtain in this way to be
equivalent to that obtained by first compactifying to 5D and
then 3D, as in the previous section, and in this way, we may
derive 3D dualities, which we consider in the following
section.

A. 4D models

The theories associated to compactifications of the 6D
N ¼ ð2; 0Þ theory on a punctured Riemann surface were
originally discussed in [6] in the N ¼ 2 case, and later

5For a genus g Riemann surface, there are g pairs of (a; b)
cycles, and one can choose K by choosing one of each of these,
which corresponds to taking G or G=Γ for each N ¼ 4 loop (in
an appropriate duality frame).
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generalizations to N ¼ 1 theories were described in
[7,8,33,34]. We focus on the theories of type AN−1. To
briefly summarize, the ingredients specifying the compac-
tifications are as follows:

(i) The genus, g, of the Riemann surface.
(ii) The number of punctures, s.
(iii) The Chern-degrees, p and q, of the two line bundles

describing the normal bundle of the M5 branes,
constrained by

pþ q ¼ 2ðg − 1Þ þ s: ð33Þ

In the language of the previous section, where we
took s ¼ 0, this corresponds to a Spð1ÞF flux n of

n ¼ p − q
2

: ð34Þ

(iv) For each of the s punctures, a choice of SUð2Þ
embedding, ρ, into SUðNÞ.

(v) Additionally, for each puncture, we choose a sign,
separating them into þ punctures and − punctures,
and let s� denote the number of each type.

These theories are typically non-Lagrangian in the sense
that there is no known simple Lagrangian describing the
fixed point SCFT. However, in the A1 case, we may
construct explicit Lagrangians for these models from
three types of building blocks, shown in Fig. 1. The basic
building block is a chiral field Qijk in trifundamental
irreducible representation of SUð2Þ × SUð2Þ × SUð2Þ.
This theory corresponds to a sphere with three positive
punctures. We assign to this chiral field charge 1

2
under the

Abelian global symmetryUð1Þt. We will also assign to it an
R-charge of R0 ¼ 3

4
for later convenience. This is not a

superconformal R-symmetry but is useful for various
computations. We also associate to the theory flux
n ¼ 1

2
. Two other building blocks are obtained by closing

the punctures [34]. We can obtain a theory corresponding to
two punctured sphere with flux one by flipping and then
closing one of the punctures. We can construct a moment
map operatorMi

j ¼ QilkQjlk, where indices are contracted
with the epsilon symbol, and we introduce a field Φ in the
adjoint representation of SUð2Þ coupled to the moment
map linearly, TrMΦ. Note that Φ has R0 charge þ 1

2
and

Uð1Þt charge −1. Next, we give nilpotent expectation value
toΦ. This breaks the SUð2Þ symmetry. In the IR, the theory
is a Wess-Zumino (WZ) model built from a bifundamental
chiral field of two SUð2Þ s and a flipper field. The
bifundamental field has charge −1 under the Uð1Þt sym-
metry and R-charge þ 1

2
, with the flipper fields having R-

charge þ 3
2
and Uð1Þt charge 2. We can further close an

additional puncture to obtain the theory corresponding to a
sphere with one puncture with flux 3

2
. Closing punctures

shifts the flux by þ 1
2
.

The procedure of flipping a puncture changes its sign.
We can close a puncture without flipping by giving
expectation value to the moment map. This will shift the
flux by − 1

2
. A general theory is obtained by gluing the

blocks together. Gluing can be done [8] either by gauging
diagonal SUð2Þ symmetry of two punctures of same sign
with introduction of adjoint field Φ coupled to the two
moment maps, or by gluing two punctures of opposite sign
turning on a superpotential coupling the two moment maps.
These two procedures are consistent with the above
definitions of signs of punctures.
We will discuss explicit examples of these Lagrangians

below, when we consider their dimensional reduction
to 3D.

B. General aspects of reduction to 3D

We wish to reduce the four-dimensional models on a
circle to three dimensions. There are several general com-
ments we want to discuss. First, as all the symmetries in
four dimensions preserved by superpotentials are not
anomalous in the theories we will consider, we do not
expect to generate any monopole superpotentials upon
reduction [4]. Second, we want to discuss the relation
between marginal and relevant operators in four and three
dimensions. If we have no Uð1Þ symmetries in four
dimensions and no accidental symmetries appearing upon
reduction, we expect that exactly marginal operators in
four dimensions become exactly marginal in three and the
same for relevant operators. However, in our setup, we do
have Uð1Þt symmetry. Upon reduction the superconformal
R-symmetry will be in general different. Thus, the rel-
evance of different operators might change. In particular, a

FIG. 1. The building blocks from four dimensions. The powers
of t denote charge under Uð1Þt, and R0 is the R-symmetry
assignment. The double arrow for the theory on the bottom
denotes having two fields of same charges. The x denotes a chiral
field flipping the SUð2Þ2 quadratic invariant built from the
bifundamental field.
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relevant operator can become marginal and a marginal
operator can become either irrelevant or relevant.
Let us discuss two examples. First, consider the model

corresponding to a tube with flux one. This is a Wess-
Zumino model with cubic interactions in four dimensions
and thus flows to a free theory. On the other hand, the
superpotential is relevant in three dimensions and the
model flows to interacting SCFT. Thus, we have an order
of limits issue. If we first flow to the SCFT in four
dimensions and then reduce to three, we get a free model.
If we first reduce on the circle with nonvanishing super-
potential and then flow, we get an interacting theory.
Another example is of giving mass to the adjoint chiral
fields Φ. If we build general models with three punctured
spheres with flux þ 1

2
, we get theories with flux g − 1þ s

2
,

with g being the genus and s the number of punctures
(which we take to be even). Upon giving masses to Φ we
flow to a theory corresponding to same number of
punctures and genus but with flux 0. These are different
models in four dimensions. The latter has quartic inter-
actions for the fields and has a large conformal manifold
not passing through zero coupling, with the former having
cubic interactions and a conformal manifold passing
through zero coupling. However, if we reduce the former
model to three dimensions, the superconformal R-sym-
metry assigns chargeþ1 to Φ andþ 1

2
to Q (see, e.g., [47]).

This means that a quadratic superpotential for Φ is
marginal, as well as the quartic Q4 and the cubic ΦQ2.
The first two have opposite charges underUð1Þt, and thus a
combination of them is an exactly marginal deformation
[48]. Thus, if we first reduce the model to three dimensions
and then deform by a mass term for the adjoint we stay on
the same conformal manifold. In particular, although the
two theories above are different in four dimensions they sit
on same conformal manifold in three dimensions. In
particular, the models corresponding to different value of
flux in four dimensions, 0 and g − 1þ s

2
, correspond to

same model in three dimensions.
On the other hand, because a marginal operator in four

dimensions can be relevant in three dimensions, two
theories residing on the same conformal manifold in four
dimensions can flow to different models in three. If we have
a conformal manifold in four dimensions, for example,
which passes through zero coupling, the zero coupling cusp
will flow to some conformal field theory (CFT) in three
dimensions, but then turning on an operator which is
marginal in four will be in general relevant in three
dimensions and we will flow to a different model. In
general, we expect that a conformal manifold in four
dimensions will reduce to different CFTs. The bulk of
the manifold flowing to same CFTand various cusps or loci
with enhanced symmetries flowing, possibly, to different
models. This is shown in Fig. 2.
These issues are important to us as we want to associate

three-dimensional models to Riemann surfaces with flux.

As we have understood now, we need to specify what we
exactly mean by flux in three dimensions. As far as
compactification from six dimension goes, the setup is
that we take the (2,0) theory on a Riemann surface times a
circle and flow to an effective theory in three dimensions
for which we then find a three-dimensional UV completion.
The tunable free parameters in this setup are the relative
sizes of the Riemann surface and the circle and the
holonomy for the Uð1Þt symmetry. If we consider punc-
tures, then we also have holonomies for puncture sym-
metries around the circle. The ambiguity we encounter is
related to the choice of these parameters. For special
choices, say first tuning the surface to be zero size and
then the circle to zero, we might get one answer while if we
keep the parameters generic and finite, flow to effective
three-dimensional theory and then find UV completion, the
answer can be different. In what follows, we will suggest
three-dimensional models for the latter setup.

IV. DUALITY

In the previous two sections we have discussed, the same
system, the 6D AN−1 N ¼ ð2; 0Þ SCFT compactified on
Σg × S1 with flux, from two different points of view,
leading to two different 3D descriptions. In this section,
we discuss the relation between these descriptions and
provide some checks that they are indeed equivalent. We
will denote the reduction first to 5D and then to 3D as
duality frame B and the reduction first to 4D and then to 3D
as duality frame A. To be concrete, we will concentrate on
the case of A1 (2,0) theory reductions as in this case all the
models have simple Lagrangians.

A. Genus zero compactifications with no punctures

Let us first consider the example of a sphere with no
punctures and flux n. The two dual descriptions are shown
in Fig. 3. The theory on side B is given by SUð2Þ=Z2 gauge

FIG. 2. Different points on same conformal manifold might
flow to different theories in three dimensions. Different models in
four dimensions might flow to same conformal manifold in three
dimensions.
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theory with n adjoints.6 There is no superpotential. On side
A of the duality, we build the models combining together
the blocks of Fig. 1. For flux n > 2 (we will comment on
n ¼ 2 soon), we obtain a model with n − 2 SUð2Þ gauge
groups depicted in Fig. 4(a). The superpotential is

W ¼
Xn−3
i¼1

ðQ2
iΦiΦiþ1 þQ2

i siÞ þQLΦ1QL þQ0
LΦ1Q0

LsL

þQLQ0
Ls

0
L þQRΦn−2QR þQ0

RΦn−2Q0
RsR

þQRQ0
Rs

0
R: ð35Þ

Note that the fields sL; s0L; sR, and s0R have the same
charges. This superpotential is the most general one
consistent with the charges of various fields. The charges
of the various fields appear in Fig. 1 with QL;R having R0

charge 3
4
, Q0

L;R charge 1
4
, and sL;R, s0L;R R0 charge 1. The R0

charge of the adjoint fields on side B is 1
2
, the t charge is −1,

and there is no superpotential. Several comments are in
order. The theory on side B has a manifest UðnÞ symmetry
which is not apparent on side A. This symmetry is
conjectured to emerge in the IR. Second, the theory on

side B has a manifest Z2 symmetry under which the
monopoles which have proper quantization for
SUð2Þ=Z2 but not SUð2Þ are charged. The symmetry is
manifest also on side A. Note that we build theories on side
A from n − 1 building blocks of Fig. 1, each containing
fields charged under the gauged symmetries and gauge
singlet fields. We can consider the Z2 symmetry under
which the fields transforming under gauged symmetries in
only one block are charged. This is exactly the Z2

symmetry we need to identify. Note that it does not matter
which block is chosen as different choices are related by
gauge transformations of the different SUð2Þ gauge sym-
metries. Using the Z2 center of the gauge groups, we can
redefine the block which is charged under the symmetry
and in more generality any odd number of blocks can
transform under the Z2 symmetry.
Let us discuss the map of operators. The basic operators

on side B of the duality are traces of quadratic combinations
of the adjoints. This is in the two index symmetric
representations of UðnÞ. On side A, the operators which
build this are the nþ 1 flip fields, n − 2 adjoint quadratic,
and there are 1

2
ðn − 2Þðn − 1Þ monopole operators. The

GNO charges are as follows. We have n − 2 gauge groups
with the first and last having different content than others.
The charges are, n − 2 basic monopoles ð0;…; 1;…Þ, the
monopole, ð1; 1; 1;…; 1Þ, monopoles of form
ð0 � � � ; 1;…; 1; � � �Þ excluding ð1; 0 � � � ; 0;…; 1Þ. There is
no obvious symmetry acting on these operators but we
claim they form the symmetric two index representation of
UðnÞ symmetry conjecturally emerging in the IR.
We can perform Z extremization to determine the

superconformal R-symmetry. The R-symmetry increases
with flux starting from slightly above 1=4 for n ¼ 2 and
approaching 1=2 as flux goes to infinity. For n > 2, there
are no operators below unitarity (for n ¼ 2 see below). In
particular, the cubic and quartic superpotentials that one
can turn on are relevant deformations. All operators are
above the unitarity bound. Let us now discuss a couple of
examples in more detail.

1. The case of n= 2

The case of n ¼ 2 is a bit special as it is not built by
gluing together building blocks of Fig. 1 but rather by
taking the sphere with one puncture and flux 3

2
of that

figure, flipping the puncture and closing it. The resulting
theory is a WZ model in Fig. 4(a). On side A, we thus have
the WZ model with six fields and superpotential,

(a) (b)

FIG. 4. Sphere with n ¼ 2. The theory on side (a) is a WZ
model with superpotential appearing in (36).

(a)

(b) (c)

FIG. 3. Three descriptions of sphere with flux n. (a) is the
quiver obtained by reducing on a circle the 4D theory of class S
corresponding to compactification on a sphere with flux n. Here
the fields si are flip fields as in Fig. 1, while sL and sR are chiral
fields coupling with superpotential as detailed in (35). (b) is the
mirror dual, the theory obtained by reducing the 5D maximally
supersymmetric Yang-Mills on a sphere with flux. Finally, (c) is
the reduction geometry. Here double circle denotes gauge group
SUð2Þ=Z2 while a circle the group SUð2Þ.

6The fact that the gauge group is SUð2Þ=Z2 and not SUð2Þ is
important for the duality [46]. The various partition functions one
can compute depend on the global structure of the gauge groups
and the difference between SUð2Þ=Z2 and SUð2Þ can be easily
detected leading to some discrepancies if the wrong choice is
made, as was first noticed in [49].
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W ¼ Q̃ΦQ̃þ s2TrΦ2: ð36Þ

As this is a WZ model with quartic superpotential, we need
to be careful whether it is interacting and indeed s goes
below unitarity bound. On side B, it is dual to a monopole
operator. On side B, we have supersymmetric quantum
chromodynamics with gauge group SUð2Þ=Z2 ¼ SOð3Þ
and two adjoint fields. The symmetry is Uð2Þ. This is the
only case where we can see explicitly the symmetry on
side A. The six fields are organized into adjoint, funda-
mental, and a singlet. There is a cubic superpotential
between the fundamental squared and the adjoint, as well
as quartic between adjoint squared and singlet squared.
This is the same duality as the well-known one between
SOðNÞ and SOðNf − N þ 2Þ with N ¼ 3 and Nf ¼ 2; see
[5] which is the SO version of Aharony duality [50].

2. The case of n= 3

Let us consider the special case of n ¼ 3. The theory has
the same matter content as SUð2Þ=Z2 N ¼ 8 SYM;
however, we do not turn on the cubic superpotential.
The dual model is just an SUð2Þ gauge theory with two
flavors and an adjoint coupled with a quartic superpotential
and four gauge singlet fields. We can consider the super-
symmetric index of the two dual frames [51–53]. The index
is given by

I ¼ TrS2ð−1Þ2J3q1
2
ðEþJ3Þ

YrankGF

i¼1

aqii : ð37Þ

Here J3 is the Cartan of the SOð3Þ Lorentz symmetry, E is
the scaling dimension, R is the R-charge, GF is the global
symmetry group, and qi are the charges under the Cartan of
GF. The trace is over states in radial quantization. States
contributing to the index satisfy E − J3 − R ¼ 0.
When computed in expansion in q at order q1, the index

captures the marginal operators minus the conserved
currents [54,55]. In particular, it then captures the number
of exactly marginal deformations by applying the pro-
cedure of [48]. The index of the two sides of the duality at
order q is given by

A∶ 1

B∶ 10 − 8 − 1: ð38Þ

On side B, we refine the index with SUð3Þ fugacities,
which we cannot do on side A as this symmetry is only
emergent in the IR. Here 8 stands for the character of the
adjoint representation of SUð3Þ and 10 for the character of
the three index symmetric representation. Note that this
implies that the theory has a conformal manifold which has
two complex dimensions. In description A, this is given by
the index at order q plus one, as at this order the index
counts marginal minus conserved current operators and the

Uð1Þt symmetry is not broken on the conformal manifold.
In description B, we have marginal operators in 10 of the
SUð3Þ symmetry group. We can perform the computation
of counting the dimension of the conformal manifold by
counting the number of holomorphic invariants [48] built
frommarginal couplings which for 10 is two. On conformal
manifold, thus the SUð3Þ symmetry is broken and the
dimension can be understood as 10 − 8 ¼ 2.7

In general, we can start on side B of the duality with flux
n and obtain any lower flux by giving masses to some of
the adjoint fields. On side A, this cannot be done as giving
mass to one of the adjoint will generate masses to all and
also linear superpotentials to the flip fields and some of the
monopoles. The SUðnÞ emerges in the IR and to be able to
give mass only to some of the operators related by the
symmetry we need to be at the fixed point.

B. Adding punctures and handles

Next, we discuss surfaces with punctures and handles.
Let us first discuss side A of the duality. When we add
punctures, we introduce a new ingredient into the field
theoretic construction. On side A, we consider quivers as
above but we also allow some of the links between gauge
groups to be trifundamental fields; see Fig. 1. Each such
field will have SUð2Þ flavor symmetry corresponding to a
puncture. We have several building blocks (see Fig. 1) and
we can construct same models using different blocks and
combining them in different order. Each block is associated
to some value of flux and as long as number of punctures
and the flux are the same two theories should correspond
to same IR CFT; see, for example, Fig. 4(b). Reducing
these models to three dimensions, we obtain “good”
theories in the nomenclature of [37]. Then to construct
theories corresponding to compactifications with handles in
four dimensions we just glue pairs of punctures together.
Gluing corresponds as before to gauging a diagonal
combination of puncture SUð2Þ symmetries and introduc-
tion of adjoint field Φ coupled through superpotentials to
moment maps. However, these theories upon reduction to
three dimensions are bad. In particular, their partition
functions do not converge. This is believed to be due to
the fact that the superconformal R-symmetry cannot be

7Let us here mention a cute observation. We can study the
theory here deformed by flipping the sextet of operators
TrΦfiΦjg. This is a relevant deformation. Interestingly doing
so we find that at order q we now have −2 × 8 − 1. This indicates
that the symmetry is enhanced to SUð3Þ × SUð3Þ ×Uð1Þt. In
particular, the second SUð3Þ comes from the monopoles of
SOð3Þ which are not properly quantized for SUð2Þ. This means
that the SUð2Þ theory does not have this enhancement. The
symmetry we see in the UV is the diagonal combination of the
symmetries. This enhancement of symmetry is very reminiscent
of the ones discussed in [56,57] in 4D where it was understood in
terms of reductions of 6D models. It would be interesting to
understand whether a similar type of explanation can be found
here.
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identified correctly from the UV description. This is not to
claim that theories corresponding to compactifications on
surfaces with handles have some intrinsic problem, just that
the direct reduction of the 4D theories is not a useful way to
discuss them. A well-known example of this is the N ¼ 8
SYM in 3D, a useful description of which is the ABJM CS/
matter theory [58]. The description B we will construct will
be good also in presence of handles. In particular, we will
be thus able to check dualities between side A and B only
for genus zero compactifications, albeit with any number of
punctures and any value of the flux.
To consider theories on side B, we need to discuss a new

building block, which is the well-studied T½SUð2Þ� theory,
which is a special case of the T½SUðNÞ� theory of Gaiotto
and Witten [37]. Let us start by reviewing some relevant
properties of this theory, focusing in particular on the
special case N ¼ 2. More useful observations about these
models are discussed in Appendix.

1. Properties of T[SU(N)]
The T½SUðNÞ� theory is a 3D N ¼ 4 model which

describes a domain wall interpolating between S-dual
instances of the 4D N ¼ 4 SYM theory [37]. It has
SUðNÞH × SUðNÞC flavor symmetry, where we have
identified the factors as the “Higgs” and “Coulomb”
symmetries, in addition to the Uð1Þt symmetry of the
N ¼ 2� algebra.
There are several known descriptions of this model

manifesting different subsets of the global symmetry; see
Appendix. In the N ¼ 2 case, this model has a description
as a Uð1Þ N ¼ 4 gauge theory with two charge one hyper-
multiplets. The model has manifest N ¼ 4 supersymmetry
and SUð2ÞH ×Uð1ÞC flavor symmetry.8 The Uð1ÞC sym-
metry is the topological symmetry coming from the gauge
Abelian symmetry and SUð2ÞH rotates the two hyper-
multiplets. It is conjectured that the Uð1ÞC symmetry
enhances to SUð2ÞC. Thus, the symmetry in the IR is
SUð2ÞH × SUð2ÞC and the model is self-dual under mirror
symmetry. That is one SUð2Þ rotates the Coulomb branch,
and the other the Higgs branch with the two branches
isomorphic. More generally, T½SUðNÞ� has a description
as a triangular quiver gauge theory, with gauge group
Uð1Þ ×Uð2Þ ×… ×UðN − 1Þ, with bifundamental hyper-
multiplets between adjacent gauge groups, and N flavors in
the final UðN − 1Þ gauge groups, leading to a manifest
Uð1ÞN−1

C × SUðNÞH flavor symmetry, which is enhanced in
the IR to SUðNÞH × SUðNÞC.
To discuss the structure of the flavor symmetry, it is

convenient to schematically write the partition function on
an unspecified manifold, coupling the flavor symmetries to
background vector multiplets VH, VC, and Vt, as

ZT½SUðNÞ�ðVH;VC;VtÞ: ð39Þ

Then this partition function is self-dual under mirror
symmetry, namely,

ZT½SUðNÞ�ðVH;VC;VtÞ ¼ ZT½SUðNÞ�ðVC;VH;−VtÞ: ð40Þ

In addition, following [59], it is convenient to define a
related theory called FT½SUðNÞ�, by “flipping” one of the
SUðNÞ flavor symmetries, say SUðNÞC. This means we
couple an adjoint chiral multiplet to the moment map for
this symmetry, which fixes this adjoint to have Uð1Þt
charge −1, and we denote this as

ZFT½SUðNÞ�ðVH;VC;VtÞ
¼ ZT½SUðNÞ�ðVH;VC;VtÞZadjðVC;−VtÞ: ð41Þ

Then the FT½SUðNÞ� theory is symmetric in its two flavor
symmetries, without performing a Uð1Þt conjugation, i.e.,

ZFT½SUðNÞ�ðVH;VC;VtÞ ¼ ZFT½SUðNÞ�ðVC;VH;VtÞ:

Note this is an independent identity from (40). It can be
rearranged into the following statement for the T½SUðNÞ�
theory:

ZadjðVH;VtÞZT½SUðNÞ�ðVH;VC;VtÞZadjðVC;−VtÞ
¼ ZT½SUðNÞ�ðVH;VC;−VtÞ: ð42Þ

This says that flipping both symmetries of T½SUðNÞ� gives
the same theory up to an overall Uð1Þt conjugation [59].
Equivalently, by (40), this is the same as exchanging the
two SUðNÞ background gauge fields.

2. N = 2 star-shaped quivers

Using the T½SUðNÞ� block, we can now state what is the
dual on side B of theory with flux n and s punctures. We
claim the dual of the general 3DN ¼ 2 class S theory, with
data as described in Sec. III A above, is given as follows
(specializing to the case of all maximal punctures, for
simplicity):

(i) A central gauge group SUðNÞ=ZN .
(ii) This gauge group has the following9:
l adjoint chirals, Ψ, of Uð1ÞF charge 1 and R-charge 1.
l̃ adjoint chirals, Ψ̃, ofUð1ÞF charge −1 and R-charge 1.
g adjoint chirals, Ω, which have zero charge under both
Uð1ÞF and Uð1ÞR.

8The SUð2ÞH × SUð2ÞC flavor symmetry in the N ¼ 2 case
should not be confused with the N ¼ 4 R-symmetry, which we
do not discuss in this subsection.

9We recall from (14) that Uð1ÞF is essentially the charge
conjugation of the symmetry Uð1Þt discussed in the 4D models
and their reduction above. More precisely, for g > 0, there is an
additional admixing with a hidden symmetry, but we will mostly
consider the case g ¼ 0 below.
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As in the case without punctures, we cannot in general
specify l; l̃ individually; however, we claim their differ-
ence satisfies10

l − l̃ ¼ p − q − sþ þ s−
2

: ð43Þ
This is because the above charges are consistent with
superpotential terms of the formΨΨ̃, which are mass terms.
(iii) For each puncture, we couple a T½SUðNÞ� theory to

this central gauge group. More precisely, for a
positive puncture, we couple this to the Higgs
symmetry of T½SUðNÞ�, leaving the Coulomb sym-
metry as a flavor symmetry, and for a negative
puncture we couple to the Coulomb symmetry,
leaving a Higgs flavor symmetry. For this reason,
we will identify the Coulomb and Higgs symmetries
of T½SUðNÞ� as corresponding to “positive” and
“negative” puncture flavor symmetries, respectively.

This is illustrated in Fig. 5 in the case N ¼ 2. Let us now
go through several consistency checks of this formula.
(1) Zero puncture case: In the case with zero punctures

and flux n, comparing to (17), and recalling
n ¼ p−q

2
, we see this reproduces our description

derived above by reduction from 5D as an
SUðNÞ=ZN gauge theory with adjoints of various
Uð1ÞF charges.

(2) 3DN ¼ 4 case: In the special case,

p ¼ 2ðg − 1Þ þ s; q ¼ 0; sþ ¼ s; s− ¼ 0;

ð44Þ

the theory has 3D N ¼ 4 supersymmetry. In this
case, there is a known star-shaped quiver (SSQ)
“mirror”11 dual description [25]. This is given by an
SUðNÞ=ZN central node with an adjoint chiral
multiplet of Uð1Þt charge 1 (in the N ¼ 4 vector
multiplet) and g adjoint hypermultiplets. The latter
naturally haveUð1Þt charge −1=2, but as in (13), we
admix this with the Uð1Þ flavor symmetry rotating
all of the hypers so that half of the adjoint chirals
have charge −1 and half have charge zero. Then, we
find g adjoint chirals with Uð1Þt charge zero, along
with l ¼ g of charge −1 and l̃ ¼ 1 of charge 1.
Recalling that T ¼ −F, we see this indeed agrees
with (43) in this case, which gives

l − l̃ ¼ g − 1: ð45Þ
These are all coupled to s copies of the T½SUðNÞ�
theory, which are oriented so that the “−” (Higgs)
symmetries are facing inward, as above.
There is another special case which gives anN ¼

4 theory, which is

p ¼ 0; q ¼ 2ðg − 1Þ þ s; sþ ¼ 0; s− ¼ s:

ð46Þ
Then, we see the description is much as above,
except that now

l − l̃ ¼ 1 − g; ð47Þ
so that we may take the adjoint chirals to have
opposite Uð1Þt charge. In addition, the T½SUðNÞ�
symmetries are now oriented so that their “þ”
(Coulomb) symmetries are facing inward, or equiv-
alently, using (40), the Higgs symmetry faces inward
but we apply a Uð1Þt conjugation. Then, using (42),
this is precisely the same theory as above up to an
overall Uð1Þt conjugation. This is indeed the ex-
pected result, as such a conjugation exchanges the
role of p and q and of þ and − punctures.

(3) Flipping punctures
The operation of flipping a puncture of þ type

(respectively, − type) corresponds to introducing a
new adjoint chiral multiplet of Uð1Þt charge −1
(respectively, þ1), which couples to the moment
map of that symmetry. Suppose, we flip a þ
puncture in the above description. From (42), if
we were to also flip the other puncture, this would
be the same as reversing the orientation of the

FIG. 5. Above is an abstract depiction of T½SUð2Þ�. The þ
and − refer, respectively, to the Coulomb and Higgs flavor
symmetries of the theories. On the bottom, the sphere with flux n.
The number of positive punctures is sþ and negative is s−.

10The fact that the RHS is an integer follows from the
restriction on p and q above. Explicitly, it can also be written
as g − 1 − qþ s− or 1 − gþ p − sþ.

11To avoid confusion, we work with a fixed definition of Uð1Þt
on both sides of the duality, rather than mapping it with a change
of sign as usual in such a mirror symmetry. Then the Uð1Þt
charges in the SSQ description will have opposite sign compared
to the usual conventions in the literature.
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T½SUðNÞ� theory. Then this operation has the effect
of reversing the T½SUðNÞ� leg and adding a charge
T ¼ −1, or F ¼ 1, adjoint chiral to the central gauge
node, which shifts

l − l̃ → l − l̃þ 1: ð48Þ
But this gives precisely the expected SSQ for this
new theory, which now has ðsþ; s−Þ → ðsþ − 1;
s− þ 1Þ. A similar argument applies to − punctures.

(4) Gluing punctures
Next, we consider the operation of gluing punc-

tures. For this, we first need to mention another
property of the T½SUðNÞ� theory. If we take two
consecutive copies and glue them with an N ¼ 2
vector multiplet, we find a “delta-function theory,”Z

Da2ZT½SUðNÞ�ða1; a2; τÞZT½SUðNÞ�ða2; a3; τÞ

¼ δða1 − a3Þ: ð49Þ
Here a delta-function theory is a formal functional of
the background fields which acts as a delta function
in the path integral, identifying the two gauge fields
when one of them is path integrated over. This
property of the T½SUðNÞ� theory is expected on
general grounds from its role as an S duality wall and
has been verified in certain supersymmetric partition
functions [46,49,60].
Now, suppose we have two SSQs, as above, and

we glue a þ puncture of one to a − puncture of the
other. The general rules for gluing class S theories
[7,33] tell us we should use an N ¼ 2 vector
multiplet, and then using (49), we see that the two
central nodes collapse to one, which contains all of
the T½SUðNÞ� legs and adjoint chiral multiplets of the
two original quivers. There are no additional adjoints
introduced into the central node. Thus, we find

lnew − l̃new ¼ lð1Þ − l̃ð1Þ þ lð2Þ − l̃ð2Þ: ð50Þ

This is indeed the expected result from (43), since the
values of p and q of the two quivers simply add, and
since we remove one þ and one − puncture in the
gluing, the difference sþ − s− in (43) does not
change.
If, on the other hand, we glue twoþ punctures, we

should now gauge using a 3D N ¼ 4 vector multi-
plet. Then, using (40) and (42), we find

Z
Da1ZT½SUðNÞ�ða1; a2; τÞ

× ZT½SUðNÞ�ða1; a3; τÞZadjða1;−τÞ
¼ δða2 − a3ÞZadjða2;−τÞ: ð51Þ

This says that if we gauge the two þ punctures
together with an N ¼ 4 vector multiplet (i.e., includ-
ing an additional adjoint chiral of Uð1Þt charge −1),
then we obtain a delta-function theory with an addi-
tional adjoint chiral multiplet of Uð1Þt charge −1.
Thus, we now find

lnew − l̃new ¼ lð1Þ − l̃ð1Þ þ lð2Þ − l̃ð2Þ þ 1: ð52Þ

Once again, this is the expected result, since now we
have reduced sþ by two. A similar statement holds for
gluing two − punctures.

V. PARTITION FUNCTION CHECKS

In this section, we outline several computations of super-
symmetric partition functions which lend further evidence
to many of the dualities and relations we discussed above.

A. Supersymmetric index

Let us detail some of the supersymmetric index checks of
the dualities presented above. The index is given by the
trace formula (37). The technology of computing it for
gauge theories has been developed in [51] and here we will
follow the notations of [5]. The index of a chiral superfield
is given by [46]

IRðz;m;qÞ ¼ ðq1−R
2 z−1Þm2

Y∞
i¼0

1 − ð−1Þmz−1q1
2
jmjþ1−R

2
þi

1 − ð−1Þmzq1
2
jmjþR

2
þi

:

ð53Þ

Here R is the R-charge, z is a fugacity for Uð1Þ symmetry
under which the superfield is charged, and m is the
magnetic flux for this symmetry through the S2. The index
of the T½SUð2Þ� model is then given by

Iðw;njz;m; q; tÞ

¼ I1ðt−1; 0; qÞ
X

l∈ZþϵðmÞ
w2l

I
dh
2πih

h2nI 1
4
ðt12ðhzÞ�1;

� ðlþmÞ; qÞI 1
4
ðt12ðh−1zÞ�1;�ðm − lÞ; qÞ: ð54Þ

Here we use the R0 R-symmetry, see Fig. 1, and
ϵðmÞ ¼ ð1 − ð−1Þ2mÞ=4. Then the index of a sphere with
sþ positive punctures, s− negative punctures, and flux n is
given by
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In;sþ;s−ðfwþ; w−; Fg; fnþ;n−g; G;q; tÞ

¼
X
m∈1

2
Z

I
dz
4πiz

ð1 − qjmjz�2Þq−jmjG
1−ð−1Þ2m

2

×
Yn−1
2
sþþ1

2
s−

i¼1

I 1
2
ðt−1z�2Fi;�2m; qÞI 1

2
ðt−1Fi; 0; qÞ

×
Ysþ
j¼1

Iðwþ
j ;n

þ
j jz;m; q; t−1Þ

Ys−
h¼1

Iðw−
j ;n

−
j jz;m; q; tÞ:

ð55Þ
Here ðw�;n�Þ are the fugacities and fluxes for the puncture
symmetries, fugacitiesFi are for SUðnÞ symmetry, andG is
the fugacity for the Z2 global symmetry. This index can be
checked to be equal, at least in expansion in q, to the index
computed in the dual frame using the building blocks of
Fig. 1. For example, for the case of no punctures and n ¼ 3,
the index of the dual isX
m∈Z

I
dz
4πiz

ð1 − qjmjz�2Þq−jmj

× I 1
2
ðt−1z�2;�2m; qÞI 1

2
ðt−1; 0; qÞ

× I 3
4
ðt12z�1G;�m; qÞI 1

4
ðt32z�1G;�m; qÞI1ðt−2; 0; qÞ2

× I 3
4
ðt12z�1;�m; qÞI 1

4
ðt32z�1;�m; qÞI1ðt−2; 0; qÞ2:

ð56Þ
Here the first two lines correspond to the single gauge node
and the last two lines to the two one punctured spheres we
glue together. The fugacityG appears only in one of the two
one punctured spheres. This index can be checked to be
equal to In¼3;0;0ðf∅;∅;1g;f∅;∅g;G;q;tÞ. Note that we
cannot match the SUðnÞ symmetry as this is emergent on
side A.

B. Topological index

Next, we consider the topological index, or Σg × S1

partition function. Here we take a topological twist
along Σg. We can use this index as a detailed check of
some of the dualities we propose. In particular, as it is
sensitive to global structure of the gauge group, it can
detect some of the global issues discussed in Sec. II D.
The topologically twisted index is defined and discussed

in [22–24]. Here we recall that for a gauge theory with
simply connected gauge group G, flavor symmetry GF,
and matter in representation R of G ×GF, we intro-
duce fugacities xa, a ¼ 1;…; rG, and νi, i ¼ 1;…; rGF

,
associated to the Cartan subalgebras of the gauge and flavor
groups, and write “Bethe equations,”12

Πa ≡ xkabb

Y
ðρ;ωÞ∈R

ð1 − xρνωÞ−ρa ¼ 1; a ¼ 1;…; rG; ð57Þ

where kab is the matrix of (bare) Chern-Simons levels for
G. The solutions, modulo Weyl symmetry, are in one-to-
one correspondence with the supersymmetric vacua of the
3D gauge theory on R2 × S1. Then the Σg × S1 partition
function is given by a sum over solutions to these equations
of certain insertions which add handles and flavor flux
on Σg.
When G is not simply connected, these equations are

slightly modified, as discussed in [61]. This will play an
important role when mapping discrete symmetries across
the duality, and we discuss this in some simple cases below.

1. Sphere with flux n

Let us consider the theory T 3D½Sn2 × S1� associated to
the sphere with flux n ≥ 2.13 Above we showed that this
theory has two dual description, the star-shaped quiver
description, which in this case is simply an SOð3Þ gauge
theory with n fundamental chiral multiplets, and an
SUð2Þn−2 linear quiver gauge theory. Here, we compare the
partition functions computed using these two descriptions.

2. Star-shaped quiver

We first consider the star-shaped quiver description. This
theory has either SUð2Þ or SOð3Þ gauge group, depending
on the choice of higher form symmetry structure, as
discussed in Sec. II D. In addition, there are n adjoint
chiral multiplets, with charges under Uð1ÞR and Uð1Þt
given in Table II. Here we note that the R-symmetry, R0, of
Sec. III A is related to the one obtained by reduction of the
6D Uð1ÞR ⊂ Spð1ÞR symmetry by

R0 ¼ Rþ 1

2
T: ð58Þ

However, for the purposes of computing the topological
index, wewill require all R-charges and flavor charges to be
integer quantized, and so we introduce new symmetries,

R̂ ¼ R0 þ 1

2
T ¼ Rþ T; T̂ ¼ 2T: ð59Þ

We denote the fugacity for the Uð1Þt̂ symmetry by τ.
Let us first write the Bethe equations in the case where

the group is SUð2Þ,

Π ¼
�
x2τ2 − 1

τ2 − x2

�
2n

¼ 1: ð60Þ

Here for simplicity we have not included background12Here, we use the so-called “Uð1Þ−1=2 quantization” for chiral
multiplets which preserves gauge invariance at the expense of
introducing a parity-breaking regulator that behaves like a “level
− 1

2
Chern-Simons (CS) term.” Below, we will implicitly shift the

effective CS terms by including appropriate bare CS terms.

13We recall the theory with n ¼ 0, 1 is ill-defined, and the
theory with n → −n can be obtained by a Uð1Þt charge
conjugation.
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gauge fields for the full UðnÞ flavor symmetry. This
equation has 4f solutions for x,

xa;� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2ζa

τ2 þ ζa

s
; ζ ¼ e

2πi
2n ; a ¼ 0;…; 2n − 1:

However, when x ¼ �1, corresponding to a ¼ 0, the
vacuum is lifted by fermion zero modes arising from
the gauginos. Moreover, the solutions with x → x−1, or
a → −a, are related by Weyl symmetry, and so correspond
to a single physical vacuum. Then, we find

SSUð2Þ
vac ¼ fxa;�; a ¼ 1;…;n − 1g ∪ fxn;þ ¼ i ∼ xn;−g;

where we note the solutions xn;� ¼ �i areWeyl equivalent,
and so give a single vacuum, for a total of 2n − 1 vacua.
Next, we consider the SOð3Þ version of the theory. The

modification of the Bethe equations for nonsimply con-
nected groups is described in [61]. In the present case, we
must identify states related by large SOð3Þ gauge trans-
formations, which act as x → −x. In addition, the Bethe
equations are modified to

�
−
τ2x2 − 1

τ2 − x2

�
n
¼ χ; ð61Þ

where χ ∈ f�1g is a fugacity for the ZJ
2 topological

symmetry of the SOð3Þ theory. Finally, in the state xn
above, there is an unbrokenZ2 gauge symmetry acting, and
this Z2 gauge theory contributes two physical states, which
come with ZJ

2 charges �1. To summarize, we have

SSOð3Þ;χ
vac ¼

8>>><
>>>:

fx2;x4;…;xn−2;x�ng neven;χ¼1;

fx1;x3;…;xn−1g neven;χ¼−1;
fx1;x3;…;xn−2;x�ng nodd;χ¼1;

fx2;x4;…;xn−1g nodd;χ¼−1.

ð62Þ

Here we dropped the subscript � on xa;�, as we now
identify these solutions, but included a superscript on xn
accounting for the two Z2 gauge theory states, with the
superscript giving their ZJ

2 charge.
Having understood the vacuum structure of the two

theories, let us discuss their partition functions. These are
written in terms of the handle-gluing operator and Uð1Þt̂
flux operator. Using the charges in Table II, we find

HSUð2Þ ¼ ðx − x−1Þ−2ððτ − τ−1x�2Þðτ − τ−1ÞÞnH
Πτ ¼ ððτ − τ−1x�2Þðτ − τ−1ÞÞ2n; ð63Þ

where the Hessian, H, is given by

H ¼ x
d logΠ
dx

¼ 4nðτ4 − 1Þ
ðτ2 − x2Þðτ2 − x−2Þ : ð64Þ

Plugging in the vacua above, we find

HSUð2Þðxa;�Þ ¼
4nðτ4 − 1Þ3ζa
τ6ð1− ζaÞ2

� ðτ2 − 1Þ3ðτ2 þ 1Þ2ζa
τ3ðτ2 þ ζaÞð1þ τ2ζaÞ

�
n−2

Πτðxa;�Þ ¼
� ðτ2 − 1Þ3ð1þ τ2Þ2ζa
τ3ðτ2 þ ζaÞð1þ τ2ζaÞ

�
2n
: ð65Þ

For the SOð3Þ theory, we find the same flux operator, but
the handle-gluing operators are related by [61]

HSOð3Þ ¼
� 1

4
HSUð2Þ trivial vacuum

HSUð2Þ Z2 gauge theory vacuum:
ð66Þ

Then the partition function on Σg × S1 withUð1Þt̂ fluxm
through Σg is given by

Z
Σg×S1

SUð2Þ ¼
X

x̂∈SSUð2Þ
vac

HSUð2Þðx̂Þg−1Πτðx̂Þm

Z
Σg×S1

S0ð3Þ;χ ¼
X

x̂∈SSOð3Þ;χ
vac

HSOð3Þðx̂Þg−1Πτðx̂Þm: ð67Þ

We will consider some simple examples when we compare
to the dual linear SUð2Þ quiver next. From the form of the
expressions above, it suffices to find a one-to-one map
between the vacua of the two theory and check that H and
Πτ match in dual vacua, which then implies the topological
index matches for all g and m.

3. SU(2) linear quiver

As discussed in the previous section, this can be
described by a linear SUð2Þ quiver gauge theory with
n − 2 gauge nodes. Adjacent nodes are connected by a
bifundamental chiral multiplet, and the two final nodes
contain two fundamental chirals. Each node also contains
an adjoint chiral multiplet. Finally, there are several singlet
fields and superpotential couplings.

4. n = 2 case

In this case, the theory is a Wess-Zumino model, with
superpotential given by (36). In addition to the Uð1Þt and
Uð1ÞR0 symmetries, in the case there is an explicit Uð2Þ
symmetry preserved, and the charges are shown in
Table III. In addition, this theory admits a discrete Z2

TABLE II. Charges for star-shaped quiver.

Field SOð3Þgauge Uð1Þt Uð1ÞR Uð1Þt̂ Uð1ÞR̂
ϕn
a¼1 3 −1 1 −2 0
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symmetry acting on Q and s, for which we introduce a
parameter χ ∈ f�1g. Then there is a single vacuum, and we
can immediately write down the handle-gluing and Uð1Þt̂
flux operators,

H ¼ ðτ2 − τ−2Þ3 Πτ ¼
ðτ2 − τ−2Þ12

ðτ−1 − χτÞ4ðτ−2 − χτ2Þ4 :

Let us compare this to the n ¼ 2 SSQ theory above. Here
we identify the ZJ

2 symmetry of that theory with the Z2

symmetry discussed above. In particular, for χ ¼ 1, we see
from (62) that the SSQ has a single solution, with a ¼ 2.
For χ ¼ −1, there is also a single solution, now with a ¼ 1.
Plugging in to (65), we may compare these to (68) and find
agreement.14

5. n = 3 case

Next, we consider the case n ¼ 3, which has a single
SUð2Þ gauge node with four fundamentals, an adjoint, and
some singlet fields, and with superpotential given by a
special case of (35). The charges are written in Table IV.
Letting x denote the SUð2Þ fugacity, the Bethe equations
are

Π ¼
�
x − τ

1 − xτ

�
2
�
x − τ3

1 − xτ3

�
2
�
x2 − τ−2

1 − x2τ−2

�
2

¼ ðx − τ3Þ2ðτxþ 1Þ2
ð1 − τ3xÞðxþ τÞ2 ¼ 1; ð68Þ

where in the second line we have canceled some factors
between the numerator and denominator. Because of these
cancellations, there are fewer solutions than for a theory
with the same matter content but no superpotential con-
straints. Specifically, there is a single solution, up to Weyl
invariance, at (in terms of y ¼ xþ x−1)

y ¼ −2ðτ þ τ−1Þ: ð69Þ

To treat this cancellation carefully, we introduce a
regulator, ϵ, which can be thought of as a fugacity for a
formal Uð1Þϵ symmetry which is incompatible with our
choice of superpotential. This modifies the Bethe
equations to

Π ¼ ðx − eϵτÞðx − e−ϵτÞ
ð1 − eϵxτÞð1 − e−ϵxτÞ

�
x − τ3

1 − xτ3

�
2
�
x2 − τ−2

1 − x2τ−2

�
2

¼ 1:

To make contact with our desired theory, we must then take
the limit ϵ → 0. For small but nonzero ϵ, we find three
vacua at

y ∈
�
−2ðτ þ τ−1Þ þOðϵÞ;

τ þ τ−1 � iffiffiffi
3

p ffiffiffi
ϵ

p ðτ − τ−1Þ þOðϵÞ
�
: ð70Þ

We recover the solution above, plus two additional sol-
utions, which approach y ¼ τ þ τ−1 (or x ¼ τ�) as we
remove the regulator.
Next we compute the handle-gluing and flux operators.

Using the charges in Table IV, the handle-gluing operator is
given by

H ¼ ðτ − τ−1Þðτ − τ−1x�2Þðτ2 − τ−2Þ4
ðx − x−1Þ2 H; ð71Þ

where the Hessian H is given by

H ¼ d logΠ
du

:

The behavior of H is smooth near the solution at
y ¼ −2ðτ þ τ−1Þ, and we find

Hjy→−2ðτþτ−1Þ ¼ 3
ðτ − τ−1Þ6ðτ þ τ−1Þ5

τ2 þ 1þ τ−2
: ð72Þ

For the other vacua, note that for x ≈ τ, we may approxi-
mate the Hessian as

H ≈ Cþ τ þ x
τ − x

þ 1

1 − eϵτx−1
−

1

1 − eϵτ−1x
: ð73Þ

TABLE III. Charges for n ¼ 2 linear quiver.

Field Uð2Þ Uð1Þt Uð1ÞR0 Uð1Þt̂ Uð1ÞR̂
Q̃ 2 1 1=2 2 1
Φ 3 −2 1 −4 0
s 1 2 0 4 1

TABLE IV. Charges for n ¼ 3 quiver.

Field SUð2Þ Uð1Þt Uð1ÞR0 Uð1Þt̂ Uð1ÞR̂
q2i¼1

2 1=2 3=4 1 1
q4i¼3

2 3=2 1=4 3 1
Φ 3 −1 1=2 −2 0
s4a¼1

1 −2 1 −4 0

14More precisely, we find precise matching for the eigenvalues
of the handle-gluing and flux operators, but the multiplicity of
these eigenvalues does not agree for χ ¼ 1, i.e., we find two states
on the SSQ side and only one on the WZ side. This discrepancy
may be due to an additional local action forZ2 background fields,
similar to that appearing in [62] in a similar context. We leave this
for future investigation.
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This has a pole as x approaches τ, which competes with a
zero in (71). After taking the ϵ → 0 limit carefully, we find
a finite result which is the same for the two vacua,

Hy→τþτ−1 ¼ 3ðτ − τ−1Þ4ðτ þ τ−1Þ5: ð74Þ

One can similarly compute the behavior of the Uð1Þt̂ flux
operator, and we find

Πτ ¼
( ðτ−τ−1Þ18ðτþτ−1Þ12

ðτ2þ1þτ−2Þ6 y → −2ðτ þ τ−1Þ;
ðτ − τ−1Þ6ðτ þ τ−1Þ12 y → τ þ τ−1:

Let us now compare to the n ¼ 3 case of the SSQ.
Taking first χ ¼ 1 there, we see there are now three vacua,
one ordinary vacuum, with a ¼ 1, and two ZJ

2 -charged
vacua. Plugging in to (65), we see that the vacuum at y ¼
−2ðτ þ τ−1Þ here precisely matches with the trivial vacuum
at a ¼ 1, while the two states approaching y ¼ τ þ τ−1

match with the Z2 gauge theory contributions at a ¼ 3.
We can also introduce the refinement by a Z2 symmetry

of this theory, which maps to the ZJ
2 topological symmetry

on the SSQ side. This can be taken to act on two of the
fundamental chirals, q1 and q3, and so, introducing a
fugacity χ ∈ f�1g, the Bethe equations are modified to

Π ¼ ðx − τÞðx − χτÞðx − τ3Þðx − χτ3Þ
ð1 − τxÞð1 − χτxÞð1 − τ3xÞð1 − χτ3xÞ

�
τ2x2 − 1

τ2 − x2

�
2

:

One may carry out the same regularization procedure as
above, now taking χ ¼ −1. This time one finds a regular
vacuum at y ¼ 0 and two degenerate vacua near
y ¼ −ðτ þ τ−1Þ. However, rather than having smooth
behavior as we remove the regulator, the flux and handle-
gluing operators now diverge in the degenerate vacuum.We
take this as an indication that these vacua do not contribute,
and so there is only one vacuum for χ ¼ −1. Comparing
to (62), we see this agrees with the SSQ side, and taking
the vacuum with a ¼ 2 there, we find precise agreement
for the handle-gluing and flux operators.
We emphasize that the topological index is sensitive to

the global form of the gauge group, and in all cases above it
was crucial that we took the SSQ gauge group to be SOð3Þ,
rather than SUð2Þ, both for the number of vacua to agree,
and for the handle-gluing operators to precisely match,
where we used the prescription of (66).

6. Sphere with one puncture and n= 3
2

For an example involving punctures, let us consider the
compactification on a sphere with flux n ¼ 3

2
and one

puncture. The 4D model has a description as a WZ model,
shown in Fig. 1, and the fields and charges are shown in
Table V. This theory has a single vacuum. Let us consider
the flavor flux operators for the Uð1Þt̂ and SUð2ÞF
symmetries, for which we use fugacities τ and μ,

respectively. In this case, the flux operators are given by

Πμ ¼
ðμ − τ3Þðμ − τÞ

ð1 − μτ3Þð1 − μτÞ ;

Πτ ¼
ðτ4 − 1Þ8

ð1 − μτ3Þð1 − μ−1τ3Þð1 − μτÞð1 − μ−1τÞ : ð75Þ

The dual theory is a star-shaped quiver with one
T½SUð2Þ� leg. From (43), we see we may take the central
node to have a single adjoint chiral multiplet,Ψ, withUð1Þt
charge −1. We find it convenient to use the dual description
of the T½SUð2Þ� theory as an SUð2Þk¼1 gauge theory with
two flavors, reviewed in Appendix (see Table VII for the
fields and charges), as this makes the SUð2Þ flavor
symmetry manifest in the Bethe equations. Then the theory
has SUð2Þ1 × SUð2Þ2 gauge symmetry, and the fields and
charges are shown in Table VI. The Bethe equations are
given by

Π1 ¼ x12
�
x12τ2 − 1

τ2 − x12

�
2 τx1 − x�2 μ

�

τ − x1x2�μ�
;

Π2 ¼ x2−2
τx2 − x�1 μ

�

τ − x2x1�μ�
:

Recall the central node of the SSQ must be taken as SOð3Þ.
Equivalently, we must gauge a suitable Z2 one-form
symmetry, and in the present case, one finds this acts on
the solutions as

ðx1; x2Þ → ð−x1;−x2Þ: ð76Þ

Then, after gauging this symmetry, one finds a single
solution, which can be conveniently written in terms of the
Weyl and Z2 one-form-invariant quantities y� ≡ y1y2�,
where yi ¼ xi þ xi−1, as

TABLE V. Charges for WZ describing sphere with n ¼ 3=2
and one puncture.

Field SUð2Þμ Uð1Þt Uð1Þt̂
q1 2 1=2 1
q2 2 3=2 3
s2a¼1

1 −1 −2

TABLE VI. Charges for SSQ for n ¼ 3=2 and one puncture.

Field SUð2Þ1 SUð2Þ2 SUð2Þμ Uð1Þt Uð1Þt̂
q 2 2 2 −1=2 −1
Ψ 3 1 1 −1 −2
Θ 1 1 3 1 2
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yþ ¼ ð1þ τ2Þðτ − μÞðτμ − 1Þðτ3 − μþ τ4μþ τ3μ2Þ
μðτ3 − μÞðτ3μ − 1Þ ;

y− ¼ μðτ2 þ 1Þ
τ3 − μþ τ4μþ τ3μ2

: ð77Þ

Plugging this solution into the expression for the flux
operators, given by

Πμ ¼ μ2
�

μ2 − τ

1 − τ2μ2

�
2 τμ − x�1 x2

�

τ − μx1�x2�
;

Πτ ¼
ðτ2 − x1�2Þ2
ð1 − τ2μ�2Þ2 ðτ − x1�x2�μ�Þ; ð78Þ

one finds precisely the result in (75).

VI. DISCUSSION AND COMMENTS

In this paper, we have discussed the compactifications of
the A1 (2,0) theory in six dimensions down to three
dimensions on a surface with flux times a circle. In
particular, the two orders of performing such a reduction
give dual theories in three dimensions. There are several
ways in which this discussion can be generalized. First, we
can consider the AN−1 (2,0) for N > 2. Here the 6D →
5D → 3D order of the reduction is completely analogous to
what we have done. However, the 6D → 4D → 3D is more
involved as the theories in 4D are, in general, currently
lacking a useful description in terms of Lagrangians
(however, see [63–66] for Lagrangian constructions in
some cases).
Another, more interesting, venue of generalization is to

compactifications of 6D theories with less supersymmetry.
There, at least in some cases, much has been understood
about the compactification from 6D and 4D, and thus it is
possible to use this to further compactify to 3D. However,
in these cases, the alternative 6D → 5D → 3D route has not
yet been explored in detail. In particular, a very interesting
question is whether a useful mirror duality can be derived
by following such a route. There are several subtleties with
such generalizations, however, which need to be addressed
carefully. First, such a route will be most useful if we have
an effective 5D gauge theory description. In general,
reducing on a circle a 6D SCFT will result in a strongly
coupled theory with no known such description, unless one
turns on in addition some holonomy for the global
symmetry around that circle. Note that for the (2,0) case,
no such holonomy was necessary. For example, by turning
on appropriate holonomies when compactifying on a circle,
6D (1,0) theories residing on M5 branes probing ADE
singularities result in ADE-shaped N ¼ 1 quiver gauge
theories in 5D. As we want to further reduce the theory on a
surface of vanishing size, there can be orders of limits
issues, i.e., scaling holonomies for the circle

compactification with the radius of the circle and scaling
the size of the surface, which should be treated carefully.
Another subtlety, in analogy to the 4D to 2D reductions

discussed in [15], involves understanding the effective
theory in 3D, even when the 5D Lagrangian does not
involve scaling any holonomies with the radius. For
example, considering minimal 6D SCFTs on a circle with
a twist for discrete symmetries sometimes give a 5D gauge
theory [11,67]. Compactifications of these 6D models
down to 4D are understood and thus are a natural venue
to try and extend the analysis of this paper. In the partition
function language, some subtleties that can arise concern
the fate of the nonzero dynamical flux sectors in the S3b ×
Σg compactification, as well as with the role of the 5D
Chern-Simons terms. A more detailed understanding of the
instanton corrections may also be important for under-
standing these cases. We leave this for future research.
Finally, let us mention that an indirect evidence in favor

of having a mirror symmetry description can be derived by
studying (limits of) the superconformal index of theories
obtained by compactifying the 6D theories to four dimen-
sions. For example, taking the (2,0) theory the index of
theories obtained in 4D can be written as correlator in a
topological quantum field theory (TQFT) [68] of the
Riemann surface with a schematic form of [69]

I ¼
X
λ

C2g−2þs
λ

Ys
j¼1

ψλðajÞ: ð79Þ

Here g is the genus of the surface and s is the number of
(maximal) punctures. The sum is over a certain set of
parameters λ; e.g., for the type AN−1 (2,0) theory, these
parametrize finite dimensional irreducible representations
of SUðNÞ. The quantity Cλ is a certain function of
fugacities coupled to the space-time and R-symmetries,
while ψλðajÞ also depend on the fugacities aj for the global
symmetry associated with jth puncture. Studying the 3D
limit of this index, which entails taking all the fugacities to
1, the index becomes an S3 partition function as discussed
in [1–4]. Moreover, very interestingly as was shown in [60]
(at least in certain limits of the fugacities), the quantities
ψλðaÞ become the S3 partition functions of the legs of the
star-shaped quiver whereas the discrete sum with the
functions Cλ becomes the integration coming from the
gauging of the central SUðNÞ=ZN node, including the
contribution of the adjoint fields. This can be viewed as an
indirect indication for the existence of the star-shaped
quiver mirror dual. Now, the same structure of the (limits)
of the index can be derived starting from more general 6D
theories; see, for example, [9] for the case of M5 branes
probing Zk singularities. Reducing this to three dimensions
will give a star-shaped structure for the relevant S3 partition
function, which would be very interesting to understand in
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terms of a partition function of a physical theory with a star-
shaped structure directly in three dimensions.
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APPENDIX: DUAL DESCRIPTION OF T[SU(N)]
In this Appendix, we collect some additional comments

about the T½SUðNÞ� theory. In addition to the description,
we discussed in the bulk of the paper, the T½SUð2Þ� theory
has a dual description [70] which has manifest SUð2Þ ×
SUð2Þ flavor symmetry but only N ¼ 2 supersymmetry
and no manifest time reversal symmetry. The dual is an
SUð2Þ gauge theory with Chern-Simons level one and four
fundamental fields coupled through superpotential involv-
ing gauge singlet fields. The superpotential breaks theUð4Þ
symmetry to SUð2Þ × SUð2Þ × Uð1Þ, with the two SUð2Þ
symmetries being the Coulomb and Higgs symmetries and
the Uð1Þ dual to the Cartan of the enhanced R-symmetry;
see Fig. 6. The fields and charges of the usual
T½SUð2Þ� description and this dual description are shown
in Table VII.
One can think of the N ¼ 2 description as follows. We

can start from the three punctured sphere, which is given by
a trifundamental of three SUð2Þ s associated with the
punctures, and gauge one of the SUð2Þ symmetries with
level one Chern-Simons term, as shown in Fig. 7. It is well
known [25] that the trifundamental theory is dual to a star-

shaped quiver with three copies of T½SUð2Þ� combined
together by gauging a diagonal SUð2Þ=Z2 symmetry with
N ¼ 4 gauging. Gauging SUð2Þ with level one Chern-
Simons term then in the dual theory corresponds to gauging
this symmetry for one of the T½SUð2Þ� s. It is easier to
perform this gauging in the mirror of T½SUð2Þ� which has
manifest SUð2Þ flavor symmetry. Using a known USpð2Þ
duality [50,71,72], this can be shown to be a topological
theory equivalent to a contact term for the other SUð2Þ with
level one, tensored with a decoupled Uð1Þ2 topological CS
theory (see also [44]), as in Fig. 8. This statement general-
izes to arbitrary T½SUðNÞ�. Then one can check that the
star-shaped quiver with two T½SUð2Þ� legs with level one
Chern-Simons term for the central node is actually equiv-
alent to T½SUð2Þ� theory with one of the puncture sym-
metries flipped, shown in Fig. 9. Flipping this symmetry
puts the two symmetries of T½SUð2Þ� on the same footing,
meaning the model is invariant under exchanging them [73]
without acting on other symmetry. Following [73], we
denote the theory with one of the SUð2Þ symmetries
coupled to adjoint flip chiral fields as FT½SUð2Þ�.

TABLE VII. Charges for the two dual descriptions of T½SUð2Þ�.
The top table describes the usual description asN ¼ 4 Uð1Þ with
Nf ¼ 2, and the bottom describes the SUð2Þk¼1 theory with
Nf ¼ 2, which includes an additional adjoint “flip field,” Θ. Here
we use the same Uð1Þt symmetry as in the main text, which is
related by a sign to the more standard convention in the literature,
and we recall SUð2ÞH;C are the Higgs and Coulomb flavor
symmetries, not to be confused with the R-symmetry.

Field SUð2ÞH Uð1ÞC ⊂ SUð2ÞC Uð1Þt Uð1Þgauge
q 2 0 −1=2 1
q̃ 2 0 −1=2 −1
Φ 1 0 1 0

Field SUð2ÞH SUð2ÞC Uð1Þt SUð2Þgauge
Q 2 2 −1=2 2
Θ 1 3 1 1
CS levels −1 −1 � � � 1

FIG. 6. The T½SUð2Þ� theory. First, we haveN ¼ 4 description
with emergent SUð2Þ symmetry and then we have an N ¼ 2
description with manifest SUð2Þ. The filled circles represent
UðNÞ groups, while the empty ones represent SUðNÞ. On the
bottom, there is a generalization to higher rank. Here we gauge
SUðNÞ symmetry with level one of the free three punctured
sphere corresponding to sphere with two maximal SUðNÞ and a
minimal Uð1Þ puncture. We have an example of enhanced
supersymmetry but not symmetry there.

FIG. 7. The construction of the dual of FT½SUðNÞ� theory by
gauging one of the puncture symmetries.
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Thus, if one believes the duality between the free
trifundamental chiral field and the star-shaped quiver one
derives the dual description with manifest symmetry. There
is also a geometric way to understand this statement
following the work of [21,74], and this can also be
embedded in a more general set of dualities following
[44]. The T½SUð2Þ� theory is the three-dimensional model
living on the duality wall of N ¼ 4 SUð2Þ gauge theory.
From the perspective of engineering such model from the
(2,0) theory, this corresponds to taking the six-dimensional
geometry to be four flat directions and a torus. The complex
structure of the torus corresponds to the holomorphic
coupling of the N ¼ 4 gauge theory and as we have a
duality wall we can think of the theory as having one of the
circles nontrivially fibered in one direction of the

four-dimensional space. Such fibrations were discussed
in [21] and the corresponding theories were argued to
correspond to adding a Chern-Simons level to the star-
shaped models. In fact, introducing Chern-Simons levels
when gauging symmetries of T½SUðNÞ� was argued to
correspond [37] to T transformation of the duality group,
then the above statement is equivalent to demanding
STST ¼ T−1S−1. This also explains why T½SUð2Þ� is
inherently three-dimensional model, as trying to make
one of the circles of the four-dimensional model not
compact will make it small across the domain wall.
These statements can be generalized to higher rank

groups. However, at the moment, we do not have a general
Lagrangian for three punctured sphere so these do not
provide a better description for the T½SUðNÞ� models.
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