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Path integral quantization of a spinning particle

Jerzy Kowalski-Glikman

Institute for Theoretical Physics, University of Wroctaw, pl. M. Borna 9, 50-204 Wroctaw, Poland
and National Centre for Nuclear Research, Pasteura 7, 02-093 Warsaw, Poland

Giacomo Rosati
Institute for Theoretical Physics, University of Wroctaw, pl. M. Borna 9, 50-204 Wroctaw, Poland

® (Received 14 January 2020; accepted 20 February 2020; published 12 March 2020)

Following the idea of Alekseev and Shatashvili, we derive the path integral quantization of a modified
relativistic particle action that results in the Feynman propagator of a free field with arbitrary spin.
This propagator can be associated with the Duffin, Kemmer, and Petiau (DKP) form of a free field theory.
We show explicitly that the obtained DKP propagator is equivalent to the standard one, for spins O and 1.
We argue that this equivalence holds also for higher spins.
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I. INTRODUCTION

Spin is a subtle and elusive concept. On the one hand,
one would think that it should be very easy to describe.
Indeed, like the momentum carried by a particle is an
eigenvalue of the translation operator, spin can be described
as an eigenvalue of the operators associated with rotations
(usually taken to be the z-component of angular momentum
and the angular momentum squared). One would think that
it is pretty easy then to find a description of a classical
relativistic particle with spin and then to quantize it, so as to
obtain the free theory of a field with spin. But this is not the
case. There are many attempts to formulate a classical spin
theory, both in terms of commuting and anticommuting
classical variables, that after quantization produce the
expected quantum fields with spin, reviewed, for example,
in [1]. Among the commutative models, a particularly
interesting one was formulated by Balachandran et al
[2,3], who assumed that the configuration space of a
spinning particle should be identified with the Poincaré
group. This construction was later found very fruitful, for
example, in the case of particles coupled to gravity in three
[4] and four [5] spacetime dimensions. Some other
approaches are reviewed in the recent paper [6].

A particularly convenient approach to quantization is
path integral. It is well known that when one uses the path
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integral to describe the quantum transition amplitude of a
relativistic particle, one gets as a result a scalar (Feynman)
propagator of the form (p? — m? + ie)~'. This is perfectly
consistent with the result of canonical quantization, in
which case the classical first-class constraint p> — m? = 0
becomes, after quantization, according to Dirac procedure,
the Klein-Gordon equation (o + m?)¢ = 0.

The question arises if one can find the “spinning”
relativistic particle action such that, after plugging it into
the path integral, one gets as a result the Dirac propagator
(p—m+ie)~! in the case of spin-1/2 and appropriate
expressions for higher spins. Clearly, this requires two
kinds of modifications of the standard relativistic particle
action. First, contrary to the scalar propagator, Dirac
propagator has a term linear in momentum. Second, the
path integral should produce the right representation of
Dirac y matrices from some classical data. It is the aim of
the present paper to describe such construction in details.
In our approach, we follow the scheme proposed some time
ago by Alekseev and Shatashvili' [7], which, in turn, was
motivated by the construction proposed by Polyakov in [9].

To this aim in Sec. II, after presenting the standard scalar
path integral, we observe that the Dirac form of the
propagator can be obtained if we start with a relativistic
particle action in which the first-class constraint becomes
linear in momenta. Parallel to that, we notice that an
analogous approach can be phrased in terms of the Duffin,
Kemmer, and Petiau (DKP) formalism for a field theory
with spin-0 and spin-1. We first show how for a scalar
(spin-0) field, the second order formalism can be naturally
associated with the first order DKP formulation. In Sec. III,

'For a different approach leading to similar results as the ones
in [7], see also [8].
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we construct the spinning particle path integral, obtaining
the general expression for the propagator. This section
relies on some more technical results, which are described
in details in appendices. In Sec. IV, we complete the explicit
construction of the propagator for spin-0, spin-1/2, and
spin-1, and we prove that the so obtained DKP propagators
are equivalent to the standard ones. We do not attempt to
extend our construction to spins higher than 1 explicitly,
although there are little doubts that such a generalization
can be done. Unfortunately, the technical difficulty of the
formalism grows rapidly with growing spin, as the equa-
tions defining the higher-spin analogs of Dirac y matrices
are getting more and more complicated. Section V is
devoted to conclusions and discussion of open problems.

II. THE SCALAR PATH INTEGRAL

Consider the standard, free, scalar relativistic particle
moving in four-dimensional spacetime, between the space-
time point with coordinates x; and the one with coordinates
X,. The transition amplitude from the initial state (in| =
(x;| to the final one |out) = |x,) is given by the path
integrall2 for the trajectories beginning at x; and ending
in x,,

Gan) = [ D)D) PN () i)
)

where the action S is

5= / de(pi — N (p? — m2)), 2)

and D(N (7)/Diff) denotes the measure on the Lagrange
multiplier N up to worldline reparametrization, under which
it transforms as a one-dimensional metric determinant.
Now, we integrate over x(z). In order to do that, we must
first rewrite it in the form that conveniently takes into
account the boundary conditions,
x(7) = x4+ (o —x)r+y(z). y(0)=y(1)=0. (3)
Clearly, D(x(z)) = D(y(z)). Now, we can integrate by
parts the action (2) and then integrate over y(z) obtaining

G(xy,x1) = / D(p(7))D(N (z)/Diff)5( p)eira—1)

X exp <—i(p2 —m?) [ dr/\/>.

’In this paper, we denote the four-dimensional indices by
u=0,1,2,3, raised and lowered by the 4D Minkowski metric
N = diag(1,—1,—1,—1); u- v and »* are shorthand for u*v
and v, V¥, respectively, while u - v = Z?:l U;v;.

4)

u

Noticing now that §(p) enforces the momenta to be
z-independent, so that D(p(z))8(p) = d*p, and that

1
LE/ dtN >0
0

is the gauge invariant information carried by N 3. we can
express the path integral (4) as

G()C2,xl) = /d4p Am dL ei/’(xz_xl)e_iL(FZ—mz—ie)

i
= | d*p——"5—o
/ ppz—mz—ie

where we added the —ie term to regularize the integral,
as usual. The Fourier transform of the transition ampli-
tude (5) is the (Feynman) propagator of the quantum
scalar field.

The approach outlined above cannot be directly
applied to the case of fields with higher spin. For
example, in the case of spin-1/2 field, the propagator
is the inverse of an expression linear in momentum,
(p —m)~!, instead of the inverse of quadratic expression,
(p*=m?)7!, as in (5). It was not long after Dirac’s
formulation of a theory of spin 1/2-fields, when a similar
(unified) formulation for fields of spin-0 and spin-1 was
put forward by DKP [11-13]. While the details of the
DKP theory needed for our analysis will be discussed in
Sec. IV, let us present here a brief introduction to this
approach for the scalar (spin-0) fields.

The very reason behind the p> — m? term in the scalar
field propagator is the form of scalar field equations that
follow from the Lagrangian,

eip(xz—xl)’

(5)

(6)

In order to get the DKP propagator, inverse proportional to
momentum (instead of its square), we must rewrite the
Lagrangian (6) in the form linear in spacetime derivatives,
similar to the form of Dirac Lagrangian. This can be
achieved by turning from the second order formulation
(with second order derivatives) to the first order one, in
which the field ¢ and its derivatives J¢ are treated as
independent field components of a multicomponent field,

(7)

For a real scalar field ¢" = ¢, the DKP Lagrangian takes
the form,4

L = 8,00"$ — m>¢>.

Y= (”@”1?”2? 3, ¢)T

It is essential at this point that V, being the one-dimensional
Euclidean metric, is positive. See [10] for the recent detailed
discussion on this issue.

Here, we adopt a specific representation for the # matrices
presented in Appendix D, and we refer to Sec. IV for details.
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Loke = 5 9P 0uy =5 (0 0) 'y — mipy

ZZ

— majat — mg?, (8)

)0, — 90, (n) — m,))

where f# are the so-called DKP f matrices, playing, for
the spin-0 and spin-1 theories, a role analogous to that of
Dirac y matrices for spin-1/2, and the adjoint field i are
defined as

T i

W=y = (”gs TR T _”; ') ©)

with 119 = 255 — 1o 1.
Varying the DKP Lagrangian with respect to 7, and ,

we obtain the expression for the conjugate momenta

l l

T, = Znﬂuau(pﬂ ﬂ:;; - _%nﬂyaqu’ (10)
which, substituted into the DKP Lagrangian, gives back,
after the identification ¢ = \/m¢, the quadratic Lagrangian
(6). This shows that the two Lagrangians are equivalent
(both classically and quantum mechanically), and one
concludes that, for free fields, the DKP formalism is
nothing but using the first order Lagrangian.

It follows that the DKP Lagrangian leads to the quantum
propagator of the form

1

G(p) :m,

It is expected that an analogous construction can be made
for higher spins. In that case, the propagators for higher
spins will have the same form, but with appropriately
chosen matrices replacing the  matrices of spin-0/spin-1
theory.

A natural question arises as if it is possible to obtain this
propagator from the path integral with some form of the
particle action, as it was in the case of the scalar field above
(5). The answer is positive, and in the next section we
present the explicit construction.

III. THE SPINNING PARTICLE PATH INTEGRAL

In this section, we will discuss how the path integral for
spinning particle can be written in the form proposed by
Alekseev and Shatashvili [7], whose construction is, in
turn, a generalization of the one of Polyakov [9]. We will
omit the more technical aspects of the argument, presenting
them in details in the appendix, stressing here the moti-
vations and the meaning of the final result.

Our starting point is the path integral (4) in momentum
representation,

(7)/Diff) exp< /ldrj\/'(pz—mZ)).

/ PN
(12)

Our goal is to generalize the form of (12) so as to make it
describe a particle of an arbitrary spin.

We start with the observation that the action in (12) can
be rewritten as
N(p*=m?*) =mN(p-p/m—m)=N'(po—-m), (13)
where we introduced a new variable v that replaces p/m.
The variable v is, of course, nothing but the four velocity,
satisfying v = 1 and therefore belonging to the three-
dimensional pseudosphere PS>.

Let us stop for a moment to contemplate on the meaning
of (13). We replaced the second order constraint of the
particle action p?—m?> =0 with the first order one
pv—m =0. The former leads to the standard scalar
propagator (5), and it is natural to expect that the latter
will lead to the DKP one (11) if we force the path integral to
replace v with the DKP matrices . Now, the f matrices,
similarly to the Dirac matrices, are defined to satisfy
(among others) the requirement that their commutator
has the form

[ﬁ[l’ﬁl/] = Puw» (14)

where S, generate Lorentz transformations [14] U ~ 1 +
1S,

Since the commutator (14) must come as a result of
quantization of a classical theory, the kinetic term (sym-
plectic form) of the latter should be such that the associated
Poisson bracket has the form

{U/uvz/} :j;w’ (15)
where, again, j are Lorentz generators, satisfying 80(3, 1)

algebra. After quantization (as we will show below), the
associated quantum operators satisfy the commutators,

[0 0] = 01 (16)
and one gets (14) after identifying

b Sp =80 =il (17)

By

W

It turns out that in order to get the correct properties for the
p (as well as for the Dirac matrices y, see, for instance, [15],
Ch. 5.4), the operators #, must be generators of Clifford
algebra Cl; ;. Their operators }'W generate the 80(3,1)
Lorentz algebra, and one can show that together ¥, and }'W
generate the 80(3, 2) Lie algebra, the anti—de Sitter algebra.
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In turn, the matrices f3, (or y,) and S,,, obtained by the
substitution (17), generate the 80(4, 1) de Sitter algebra.

Now, since in the Poisson-Lie theory, there is a one-to-
one correspondence between commutators of the algebra
and the Poisson structure on the dual algebra, it is natural to
identify v with elements of the Lie algebra 80(3,2)* “dual”
to the one spanned by the generators of 30(3,2). Let us
discuss in details how this comes about.

We start from the 80(3,2) Lie algebra, generated by the
antisymmetric matrices (A,B =0,1,2,3,4),

(MAB)CD = _(MBA)CD = 55’73:5 - 51C;77AE,

nAB:dlag(ls_ly_la_ly 1) (18)

and defined by the Lie brackets

Mg, Mcp) = napMpc +npcMap — HacMpp — 15pM ac-
(19)

With the redefinition Y, = M4, J,, =M, (u,v=0,

1,2,3), the 80(3,2) algebra takes the form

[T;u Tb] = Juw [Jpw Tp] = Tu’]ﬂp - Tﬂ”t/ﬂ’

[J;w’ Jpo‘] = 77#/)]1/6 + nva‘]ﬂp - n/m']vp - nyp‘]/w' (20)

An arbitrary element X of the dual algebra 30(3,2)* is
spanned by the generators { T#, J#*} (J* = —j*), dual to
{Y,.J,,} in the sense that (see Appendix A) (Y*,Y,) =&},
(T, J ) = 8484 — 8435, (Y, J,5) = (J*,T,) = 0, and it
has the form (j,, = —j,,)

S
X =0, 1"+ EJWJ””. (21)
Using the definitions presented in Appendix A, one can

check that the coadjoint orbit of v = v, Y* under the action
of the Lorentz subgroup is exactly the pseudosphere PS°.
The orbits are characterized by the values (cy, ¢,) of the
two polynomials of v,, j,, invariant under the coadjoint
action of SO(3,2), corresponding to the two Casimirs of
80(3,2),

|
Cl = D”UM +§]I4y‘]’lv’

1 ..
C,=W3-W-W+ Z(eijk]jk]i0)27 (22)
with
Wo =5 € jw0i- W = =3 €ijxJ k0o + €ijej jovi- (23)

The action in the path integral should therefore consist of
two pieces. The first is given by (13), and the second is an

action S to be defined so as to impose the condition (15),
and which leads to its quantization. It is given by [16]

S:/a),

where @ = (X(g),dgg™"), g being an element of SO(3,2),
is the Liouville form associated with Kirillov symplectic
two form, discussed in details in Appendix A. This action
leads to the following expressions for the Poisson brackets
of the dynamical variables:

(24)

{Uw UZ/} = j;u/’ {jﬂl/’ Up} = l)l/rl[l[) - Uﬂnypv

{jmnjpa} = ”ypjva + nmyjﬂp - rl}lﬁjl/p - ”upj/w' (25)
This is exactly what we want, because after quantization the
first equation above will become the defining equation for
the # matrices of the DKP formalism.

The final form of the momentum space propagator is
therefore

Gp) = / " dL / DX (). (1))

X exp <imL - i/OL dtp - u(t)> exp (iS(v, j)),
(26)

L

S(v.j) = A dt o (u(1). j(1)). (27)
It is shown in the Appendix B that the term exp (iS(v, j))
“quantizes" the values of the invariant polynomials in
{v,.j,} defining the orbits, so that the corresponding
operators {,, }”y} belong to an irreducible representation
{x(0,).7(j,,)} of 80(3,2) (or, through the substitution
S, = i],, to an irreducible representation {7 (%,), 7(S,,) }
of 80(4,1)). In other words, the path integral in (26)

computes, for given boundary conditions, the correlation
function

/D(v(l),j(t))exp <imL - i/OL dt p -v(t))

« exp (iS(v, j)) = <i exp (i/OLp - @dt) ’J> (28)

between states |i) belonging to a particular representation
of the 80(4,1) algebra, corresponding to the particular
choice of integral orbit. In the formula (28), 9, is the
quantum operator corresponding to v,, and, depending on
the spin representation |i), it is given by a Dirac y matrix
(for spin-1/2) or a DKP f matrix for spin-0 or spin-1, and,
presumably, to matrix representations for higher spins.
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In particular, these matrices must satisfy (14), and we will
show now that this is indeed the case.

Let us denote by [, = {v,.j, } the coordinates on the
dual Lie algebra 80(3, 2)*, so that the Poisson brackets (25)
can be written concisely in terms of the 80(3,2) structure
constant f,,¢ defined by (20) as {l,,1,} = fu.,°. The
transformation

la - la + fabcéblc (29)

is a symmetry of the classical action, and the resulting Ward
identity reads (see Appendix C for details)

8t<i|fl\a(t),l\a1 (t1> o ia,,(tn)|j>
= iZfaakb<i|2b(t)zal(tl) o 'W' : '2a,,(tn)|j>5(t - tk)7
k

(30)

where{,—kétk—} indicates that the particular term is missing.
In order to derive the equal time commutators (ETC)
for the corresponding field operators, we can apply the
Bjorken-Johnson-Low (BJL) procedure to the correlation
function, stating that the 1/p, term in the matrix element

of the two-point function, at large p,, determines the
commutator,

Jim g [ a0l (00, 1)) = 61T )01
&)

where [,.1, ] is the ETC between field operators corre-
sponding to [,, [,, . Integrating the left-hand side in the last
expression by parts, we rewrite it as

i lim
Po—

drem =0 Sl (0, ()l (32)

where we neglected boundary terms. From (30), the last
expression is equal to

dteip"([_tl)fualb<iﬁh(t) |]>5(t - tl)

== lim foq,"(ill,(11)])). (33)
so that from (31) one gets
[,l\av ,l\b] = ifabcic’ ’ (34)

or, expanding in terms of the operators f)}

A

[];uu ﬁp] - i<ﬁv’7yp - ﬁy”lv/))7

[.];un .]/Jo‘] = i(”ﬂp}va + nun}up - ”yﬂjup - nup.;ﬂtr)' (35)

A

[ﬁw Dl/] = i}pw

Finally, using the substitution (17), we can rewrite the
commutators as

[ﬁw ﬁv] = Sﬂl/’ [Sm/’ ﬁp] = ﬁﬂﬂy/} - ﬁzxnﬂpa
[Sﬂw Spa] = ”ﬂagw) + ”y/)g;m - ”ﬂ[)SU(T - 771/03/,1/)- (36)

This is nothing but the Lie algebra (with real structure
constants) 80(4, 1) of SO(4,1), which proves that, after
computing the path integral in the formula (28), the
operators D, can be taken to be a matrix of a particular
representation of the 30(4, 1) algebra. We will show in the
next session how, depending on the specific 80(4,1)
representation, one gets in this way the Dirac (spin-1/2)
or the DKP (spin-0 or spin-1) propagator (and presumably
the propagator for higher spins as well).

To complete the derivation, we need yet another property
of the correlation function (28) derived in Appendix C,

(i

Now, we can integrate (37) over L to find the momentum
space propagator,
j > (38)

IV. THE PROPAGATOR FOR DIFFERENT SPINS

exp (ip, o0 ) 1) = lexp(iLp-0)i. (37)

i

Gii(p) = <i

p-0—m—ie

Depending on the specific choice of representation for
the 80(4, 1) generators, expression (38) gives the propa-
gator for different spin values in the first order formalism.
As shown in Appendix B, the spinning term exp (i [ ),
upon appropriate choice of coadjoint orbits, decomposes
the path integral into matrix elements between states
belonging to the finite dimensional representations of
SO(4,1) labeled by the highest weights of the irreducible
representations of the maximally compact subgroup
SO(4) ~ SU(2) ® SU(2), parametrized by a set of ordered
integer or half-integer numbers,’

>The characterization of these finite dimensional representa-
tions is carried out in Appendix B. The classification of
irreducible unitary (infinite dimensional) representations of
SO(4,1) induced from the maximal compact subgroup was
accomplished in [17] following the method developed in
[18,19], exploiting the relation between representations of the
group and of its Lie algebra. The analogous characterization for
the Euclidean case, leading to (finite dimensional) irreps of SO
(5), is carried out in [20].
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(P.q): p2q20. (39)

Following the argument worked out in [21] for the
Euclidean case, we can define the algebras B%) arising
from the 80(4, 1) matrix representations 7, ,(9,) defined in
Appendix B, satisfying the commutation relations, follow-
ing from (36),

[[ﬁw ﬁu]’ ﬁp] = ﬁynup - ﬁunﬂp' (40)

and, for k > p, the equation [following from (B11)]

<a,, - (5,@ + izi:(sm>m1]> =0. (41

Different values of k then correspond to different spin
sectors.
For k = 1/2, one has a four-dimensional 7(

k

I1

m=—k

11
3+3) repre-

sentation (see Appendix B) of B corresponding to the
Dirac algebra. Indeed, Eq. (41) becomes 92 = —117,,,, and
defining y, = 20,, we find from (40) that

Yulv + Yulu = 2’1;11/- (42)

Plugging this to (38), we get the spin—% propagator,

G(p) x— (=2
p—m\  p*—m*)

(43)

It appears that the spin—% propagator has its usual form
expressed in terms of p momenta.

For k = 1, the matrices f, (no summation) satisfy the
relations that define the DKP algebra [11-13],

ﬂuﬂpﬂy + ﬂuﬂpﬁﬂ = ﬂ/,tnl/p + ﬂy”ﬂp-

The derivation of Eq. (44) is carried out in Appendix D. In
this case, one has three irreducible representations (see
Appendix B), the trivial one-dimensional z(0, 0), the five-
dimensional 7(1,0), and the ten-dimensional 7z(1,1).
Several results (see, for instance, [14] and [22]) have been
obtained showing that for these two latter irreducible
representations the DKP field equations reduce, respec-
tively, to the equations of motion for a spin-0 scalar field
(the Klein-Gordon equation) and for a spin-1 vector field
(the Proca equations). However, to our knowledge, the
reduction of the propagator to the standard expressions for
the spin-0 and spin-1 fields have not been treated thor-
oughly, and we devote next section to this task.

(44)

A. The propagator for spin-0 and spin-1
Let us start noticing that it follows from (38) that the

propagator in momentum space is (apart from the term ie)
the inverse of the matrix p —m, where we denote

7= pJp, e,

G(p)=(#—-ml)". (45)

Using the properties (44) of the DKP matrices, one can
prove that (see, for instance, [23])

L (ppm)
G(p) = - <4p2 - 1]). (46)
Indeed, from (44),
= pup,p BB = pup,p B = pp*. (47)

Then,

PP+ ml)(f—ml) = (pf° —m?p) = p(p* —m?), (48)

and it follows

Gp)(p—m1) = (p=(p=m1)) =1.  (49)

We consider first the five-dimensional representation
7(1,0) describing the spin-0 sector. The field equations for
spin-0 are obtained with the help of a projection operator
[14],

P = —piBiB3s3, (50)

so that the field

Yo
i
)
V3
Wy

(51)

decomposes into the vector field VW = Ppty and the
scalar one ® = Py. Indeed, one can show that ® and
V¥ transform, respectively, as a (pseudo)-scalar and a
(pseudo)-vector under Lorentz transformations, where
infinitesimal transformations are generators by S, =

w;uﬂu} as (wm/ = _a)ﬂl/)7

U~1+ %w"”Sﬂu. (52)
Moreover, one can show that upon imposing the DKP
equation for the free field y, the components of y are not
independent, and that one can define (see Appendix D) a
specific representation of the f* such that yw, = ¢ and
v, = 0,¢, making explicit the fact that y describes in this
case the scalar ¢ and its derivatives 0,¢.

We can obtain the propagator for the scalar field S(p) by
projecting the propagator (46) on the scalar field sector
with P,
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S(p) = L PG(p)P". (53)

m

so that S(p) is defined by the matrix element in (the mass
factor is for dimensional reasons)

OPG(p)P'® = mdS(p)®. (54)
As discussed in Appendix B, since we are in Lorentzian
metric, the f, and f; matrices must have opposite hermi-
ticity, and in particular in our notations we have that f is
Hermitian and f; anti-Hermitian: ﬁg = Bo, ﬂ; = —p;.

In DKP theory, the adjoint field is given by 7 = w5,
where 7, is the operator,

77;4 :2ﬁ;24_77ﬂ/,w (55)
such that B}, = 10,1y and ® =y, P*. Noticing also that

from the defining properties of the # matrices (44), setting
1 = v in (44), follow the relations

ﬁﬂﬂl/ﬂﬂ = ﬂy’/[/wv (56)
one finds that
PﬂPT = p"73/3,473T =0. (57)

Using again (44) [setting v = p # u in (44)], we find the
relations
/));4/}% +ﬁ3/}ﬂ = ﬁynw U F U, (58)

and multiplying last relation by f, from the left and from
the right, we find

BiB: = BB (59)

From last relation, the hermiticity of f’s and (56), we also
find that

Pi=P,  P2=P, (60)
while using (59) and (56), it follows
PR = Py (61)
From last relations, we find
PypP' = pPP! = p?. (62)

Plugging (57) and (62) together with (46) in (54), we finally
obtain

%qBPG(p)PTcp ~Lép <M - 11)7)@

m2 P —m?
- 1
= (I)p2 7 oD, (63)
so that
1
8(}7) = p2 — 2 (64)

The DKP propagator, projected on the scalar field sector,
has the standard form.

We can repeat a similar procedure to derive the pro-
pagator for the spin-1 representation. In this case, the
projection operators are

Rﬂ :ﬂ%ﬂ%ﬂ%(ﬂﬂﬁo_ny0)7 (65)

where now the f matrices are to be taken in the ten-
dimensional irreducible representation (we give an explicit
realization in Appendix D). The beta matrices maintain
the same hermiticity of the scalar case, and one can show
that R,y transforms, under the infinitesimal Lorentz
transformation (52), like a (pseudo)vector while R,y =
R,pyy like a (pseudo)tensor. Upon imposing the DKP
equation for y, one can then show that R, is proportional
to the strength tensor of the vector field R,y (see, for
instance, [14] and [22]). We define then the vector field .Aﬂ
and its adjoint as

Aﬂ =Ruw, "Ztﬂ = _’/77?':! = _’//TWORTa (66)

with 7, given by (55). It is possible to show that with this
definition the fields A, and A, transform, respectively,

with covariant and contravariant indexes. Thus, we may
identify

A=A

U

(67)
Q. flﬂAﬂ = A, A" transforms as a (pseudo)scalar). The

spin-1 propagator S*(p) for the vector field is then
obtained by projection

RﬂG<P)RI (68)

3=

as the matrix element in

Y ARG(PRIA, =mAS™(p)A,  (69)
MV

We can use the properties of the f matrices (56), (58), and
(59) to find the following relations:
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R,RS =Ry,  RyR,=R,
Rﬂﬂ/)ﬂo’ = n/)nRﬂ - nmpr'

T
RuB,RY =0,
(70)

Using these relations, it follows that

R, PRI =0,
R PR = PPR,RI — pup'R,R. (71)
and finally
1 -
EAﬂR”G(p)RZAD
1 PP+ m) ¥
s (ﬁ —1)RA,
1 - + s
- mz(P2 - m2) A” (mzRﬂRU - pﬂppRﬂRl/)Al/
1 _
= m*(p* — m?) Aﬂ(mzéﬂb — puP")RoA,
1 . p;tpv
= AM p2 _ m2 <}7ﬂ _ m2 >Ay, (72)

where we used the above relations together with Ry.A, =
RoRw =R,y =A,. Thus, the spin-1 propagator reduces
to the standard propagator in unitary gauge,
WV
§(p) = =
m

(73)

V. CONCLUSIONS

In this paper, following the idea of Alekseev and
Shatashvili of adding to the first order action the
Kirillov presymplectic form, which forces the path integral
to select a particular representation of the de Sitter group,
we derive the DKP propagator for fields of spin-0 and
spin-1 (as well as the Dirac propagator for spin-1/2) in the
path integral formalism. We then show that the obtained
DKP propagators are equivalent to the standard ones.

There are several interesting problems that could be
addressed in follow-up investigations. First, although it
seems pretty obvious that an analogous construction should
work for spins higher than 1, it would be illuminating to do
it explicitly.

Second, the construction presented here can, presum-
ably, be extended to the case of k-deformation (in the sense
of x-Poincaré Hopf symmetries) [24-27], a scenario that
has attracted much interest especially in relation with
quantum gravity phenomenology. In this case, momentum
space is not the ordinary flat (Minkowskian) momentum
space, but it is described as a curved manifold (specifically
the group AN3, corresponding to half of de Sitter space, see
[27]), whose scale of curvature 1/k is taken to be propor-
tional to the (inverse) Planck energy (1/ Ey ~ 1071 GeV).

As (four-dimensional) x-momentum space can be also
described in terms of flat embedding “momentum coor-
dinates” in five dimensions, with some additional constraint
enforcing physical momenta to live on the de Sitter
hyperboloid, one can think of extending the formalism
described in this paper, which is not restricted to four-
dimensional momentum space, exploiting the use of
embedding coordinates. The construction of a Dirac
(spin-1/2) action with k-Poincaré symmetries has been
already addressed in some previous works (see, for
instance, [25,28-30]). It would be interesting to compare
the spin-1/2 propagator for k-momentum space resulting
from our approach with previous results. Moreover, if
working, our construction would allow in principle to study
higher-spin propagators for k-momentum space, setting the
stage for constructing a higher-spin field theory action
based on x-deformed symmetries.
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APPENDIX A: THE ACTION FUNCTIONAL
ON THE ORBITS

We here discuss the construction of the action (24)
needed to implement the spin degrees of freedom in the
path integral. We refer the reader to the characterization
outlined, for instance, in [31], based on the Kirillov
symplectic form [32]. Consider a (matrix) Lie group G.
Let g be Lie algebra of G and ¢* its dual Lie algebra: for a
basis {e,} of g and {&“} of g*, the duality relations are
canonically given by (&%, e,) = 7. The coadjoint repre-
sentation of G is defined by

(Ad*(9)X.u) = (X. Ad(g)™"u),
(ad*(u)X, v) = —(X, ad(u)v),

where Ad(g)u = gug™',
where ad(u)b = [u, v],
(A1)

where g € G, X € g%, u,v € g. Let us parametrize the
orbits by group variables fixing the point X, so that a

generic point on the orbit is
X(g) = Ad*(9)Xo. (A2)

In the basis {e, } and {&“}, we will write a generic point on
the orbit as X = [,é“. Define the action

S—/a),

Y(9) =dgg™' €g.

o = (X(9).Y(9)). (A3)
with

(A4)
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Here Y = dgg~! is the Maurer-Cartan form on the group. It
is possible to show that the following equivalent equations
are satisfied:

dX = ad*(Y)X, (A5)

dla = fabCYblcv (A6)

where X = [,é%, and Y = Y%¢,, and f,,¢ are the structure
constant of the Lie algebra® gle,. e,] = fu, e.. Let us first
show the equivalence of Egs. (A6) and (AS),

dl, = (dX, e,) = (ad*(Y)X, e,) = (X, [¢q, Y])

= lcYb<éc’ [ea» eh]> = lcYbfabd<écv ed> = fachblc'
(A7)

Let us now prove Eq. (AS),

<dX’ ea> = d<Ad*(g)XO7 ea> = <XO’ g_leadg + dg_]eag>
= (Ad*(9)Xo, [e,. dgg™']) = —(X.ad(Y)e,)

= (ad"(Y)X, e,). (A8)
where we used definition (A2) and dl1=d(g7'g)=
dg~'g+ g 'dg=0, from which follows dg~' =—¢~'dgg".
Equation (AS) [or (A6)] ensures that the action (A3)
generates on the orbit the canonical two-form,
Q=—do=(X,YAY), (A9)
where dQ is closed on the orbit. The last equation can be
rewritten explicitly as

Q= —dow = (X,,g7'dg A g~'dg)

= (X,dgg™" A dgg™), (A10)
where the Maurer-Cartan equation d(gdg™') = —gdg™" A
gdg~" has been used. One can show that the Poisson
brackets of the restriction of the linear functions on the orbit
reproduce the algebraic commutation relation. Defining the
linear functions u(X) = (X, u), where on the rh.s. u =
ue, (so that u(X) = u“l,), we get

{u(X). v(X)} = Q(u,v) = (X, [Y(u), Y(v)])

= u'v"(X, e, €p]) = fap‘u'v’le,  (All)
where we used that the Maurer-Cartan form evaluated on an
element of the basis of the Lie algebra gives Y(e,) = e,. It
follows in particular, for u* = o}, that on the orbit,

{lavlb} :fabclc“ (A]Z)

Here, [-,-] denotes obviously the Lie bracket.

APPENDIX B: COADJUST ORBITS
AND IRREPS FOR SO®4,1)

1. Integral orbits for SO(3,2)

In the spirit of geometric quantization (see, for instance,
[33,34]), the orbit method [32] can be used to quantize the
values of some parameters labeling the orbits of the action
of the group on its dual Lie algebra. This mechanism can be
realized [7,16] by the requirement for the action exponen-
tial exp (iS(Z)) to be single valued, so that the path integral
is well defined. Indeed, the one-form w is singular, and the
action S = f  is multivalued, and the requirement of
uniqueness of the expression exp (iS(¢)) over closed path
leads to integral orbits.

In our specific case, starting from the 80(3,2) algebra
(20), so that a generic element can be parametrized as
u=0o"Y,+3J, (G* =—-j), we can fix the orbits
considering the action of the Lorentz subgroup SO(3,1)
generated by J,,. Rewriting the generators as R; =
—Jeixd jx and P; = Y;, we can rewrite the 80(3,1) sub-
algebra as
[Ri.R;] = €;jxRx.

[Rl,P]] = €ijkPk’ [Pl,Pj} = _eiijk’

(B1)

so that an element of the $0(3, 1) subalgebra is ug,(3 1) =
rFR; + p'P;, with r' = —¢l j/*, p' = . Reparametrizing
(see [15], Ch. 5.6) an element of 80(3,1) as ugy3,1) =
a'A; + b'B;, with A; =3 (R; + iP;), B, =5 (R; — iP;), s0
that @’ = r' + ip’, b’ = r' —ip', the algebra splits into a
direct sum of two mutually commuting complex (conju-
gate) 3u(2): 80(3,1)~3u(2)c ® 8u(2)c ~8l(2,C) ®
8[(2,C). Thus, we have reduced the problem to fixing
the orbits of the two SI(2,C) subgroups of SO(3,1).
Finally, we notice that each of the two SI(2,C) admits
SU(2) as (maximal) compact subgroup, and we can use it
to fix the orbits for each of the two copies.

Representing the SU(2) generators in terms of Pauli
matrices, A;, B, = —{o,,

_<O 1) _<O —i) _<1 0)
61_ 1 O ’ 62_ l O ’ 63_ O _1 )

(B2)

for each SU(2) copy we can parametrize an element of the
group by Euler angles as

i i i
gsu(z) = €Xp _563)( €Xp _50'29 exp —503(]5 ,

(B3)

with
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€ [0,2x), € [0, x], ¢ €10,2z). (B4)
On each copy, the Maurer-Cartan connection Ygy) =

lelj(z)dgsu(z) can be evaluated to

— sin ydf + cos ¢ sin Od¢
Yi = | cosydd+singsinfdp |,

sU@) (BS)
dy + cos 0d¢

where Y = YA, or Y = Y'B,. The orbits can be chosen
fixing the value of the coordinates in g (28 = a;Al,

b =Db,A" along the (real) z direction ((A’, A = 6’
(B’,Bj) = 5}), Re(a;) = (0,0, m), Re( )= (0 0, n)
and we thus find, respectively, the action (s = m or n),

/COSU(z) —y/d¢+s/cos€d¢,

where we renamed the azimuthal angle y = y'¢ for some
constant y’ and y = y’s. The action is multivalued as it
counts the windings around the axis passing through the
poles @ = 0, & of the sphere, where the one-form cos 8d¢ is
singular. For infinitesimal closed contours around the poles
0 = 0, z, the action gives the value 2z(y + s), so that, if
y £ s is an integer, the action exp (i [ @) does not con-
tribute to the path integral, which is then well defined. We
can choose y = 0 for s integer and y = % for s semi-integer.
Thus, the condition for single valuedness of exp (i [ w)
translates into the condition of “quantization” of the values
of s = (m,n), which take only integer or semi-integer
values (£1,¢5,).

(B6)

2. Discrete series and finite dimensional
representations of SO(4,1)

With this choice of orbits, after quantization [see
Eq. (35)], the elements I, = (0, ju,) = (0, ],,) of the
dual algebra belong to one of the irreducible unitary
representations of 30(3,2) induced by the (real structure)
decomposition 81(2) @ 8u(2). Finally, after the substitu-
tion (17) (3'”,, = i}',w), the (matrix) operators 9, and S,,
belong to one of the irreducible unitary representations of
80(4, 1), seen as a Lie algebra with real structure constants,
Eq. (36), induced by the maximal compact subgroup
SO(4) ~ SU(2) & SU(2). The classification of such rep-
resentations has been carried out in [17] perfecting an
approach developed previously in [18,19] relating the
group representation to the representation of its Lie algebra
generators. In particular, it is shown that the discrete series
representation zj ; of SO(4,1) can be obtained in this way
(see also [35]). The discrete series 7 ; is labeled by
two integers or semi-integers values (p, g) related to the
SO(4) =~ ( ) ® SU(2) labels by p = infy, z))er X
(1 +6,), g=inf(, ¢yer(f) = ¢,), where T is the set

of values (¢1,7,) which occur in the reduction 7 5[50

of the representation to SO(4), and p=1,1,3,2, ..
g=p.p—1,...,Lor .. The Hilbert space of the

representation is the infinite’ direct sum H = ¢, ¢,)er
Hy, ¢, of the subspaces H,, ,, invariant under 7 ;(SO(4)).
Each representation 75 ; is characterized by a different
value of the two Casimir invariants of the 8o(4,1) Lie
algebra corresponding to the ones in (22) of 80(3,2),

Cy = 04D, — 5 8,, 5"

I
2
@2 = W W-W - (eijkgjkgi0)27 (B7)

4>|»~

G _ 1. . & 7 _ 1. & & o
where WO = §€iijiji’ W= —§€iijij() + eiijjOUk'
Indeed, for a given 75, C; and C, are scalar operators
taking the values [17]

mp4(Ca) = (B3)
Thus, the orbit quantization method exhibited in the
previous section, singling out integer or semi-integer values
(¢1,¢,), selects the values of the invariant polynomials C;
and C, of [, = (v,. ji, ), defining the orbits, which occur in
the irreducible representations of SO(4,1), and in particular
in the discrete series.

Apart from the irreducible unitary (infinite dimensional)
representations, one can obtain finite dimensional, nonuni-
tary representations that can be understood as a “Wick
rotation” of the irreducible unitary representations of SO(5)
discussed, for instance, in [20]. In this case, the generators
can be represented through finite dimensional (mixed
Hermitian and anti-Hermitian) matrices, and we will use
these representations to construct the projection operators
for the different spin sectors of the propagator. Denoting
such finite dimensional representations with z, ,, they are
labeled now by p = max (¢, + ¢,) and ¢ = max (¢, — ¢,),
whose ranges are such that p and ¢ are all integers or all
semi-integers and p > ¢ > 0, while, for given (p, q), | +
¢, and ¢; — ¢, range, respectively, from g to p and from
—q 1o g by steps of 1 (thus, £}, , range from 0 to 1 (p + q)
by steps of 2). The r, , are characterized by the values of
the Casimir operators,

7,4C) = p(p+3)+aqlg+1),
7,4(C2) = (p+ 1)(p +2)q(qg + 1),

and their dimension is given by the formula

(B9)

"Since SO(4,1) is noncompact, irreducible unitary representa-
tions are infinite dimensional.
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P m(1,1)

1

FIG. 1. The lowest order z(p, g) representations of SO(4,1) in
terms of SO(4) ~ SU(2) ® SU(2) labels. The dots indicate the
(¢1,¢,) values within each representation.

2¢+1)2p+3)(p+q+2)(p—q+1).
(B10)

d(p.q) =

AN =

The range of the highest weights (¢, ¢,) for the lowest
order representations z, , is depicted in Fig. 1 in terms
of the allowed (7,¢,) values. From the formula (B10),
we find that they have, respectively, the dimensions
d(3.3) =4, d(1,0) =5, and d(1,1) = 10, reflecting the
decomposition in terms of their restriction to SO(4):
7(1.3) ~ D(.0) @ D(0.3), x(1.0)~ D(.0) @ D(0.) @

D(0,0), z(1,1) - D(1,0) & D(0,1) & D( , )

The matrices that form the =, , representation can be
considered to be obtained by Wick rotation from the SO(5)
matrices derived in [20]. To better characterize this defi-
nition, consider first the defining five-dimensional repre-
sentation of SO(4,1) matrices. They are the matrices
preserving the bilinear form given by the five-dimensional
Lorentzian metric 70> = (+,—,—,—,—), so that the gen-
erators are matrices M 45 such that M%, = —®) M, 53
and are related with the 80(5) (skew-symmetric) matrices

Mg by Myup = —nsM g We can set then (Myg) g, =

’75&51)(5& - ’75;51)<5AL and (Map)g;, = —(ax0pL — OpKdaL),
and the 80(4,1) commutation rules [Myg, Mcp|=
napMpc + npcMap = nacMpp —nppMac, as well as
the 80(5) ones for Mg, are satisfied. On passing from
80(5) to 30(4,1) matrices, one can easily see that the
matrices M, become symmetric (and Hermitian), while
the remaining ones stay skew symmetric (and anti-
Hermitian). In particular, if 1 are the (imaginary) eigen-
values of the M, 5, from the spectral theorem, the effect of
the map on the eigenvalues is 1 — A = il for the matrices
M, while for the remaining M, (i = 1,2, 3; A # 0) they
stay the same. With this in mind, we can generalize this
definition of Wick rotation to representations of any
dimensions: one can always choose the matrix generators
M4 to be Hermitian and the M, (A # 0) anti-Hermitian,
and, when going from SO(5) to SO(4,1) matrix genera-
tors, the eigenvalues of the M()A(E{ﬂp’q(ﬁo),ﬂp’q(S‘Oi)})
components acquire an extra i factor.

%One can check explicitly that this is indeed true for the
examples in this paper.

We can then use almost the same argument of [21] to
establish the relation between the matrices M, =
7, 4(,) and their characteristic polynomial. We observe

first that each SO(5) matrix M ,p is unitary equivalent to
a member of a triplet of generators forming angular
momentum algebra. It thus follows, considering also the

discussion above, that M,y is equivalent to a direct
sum of diagonal block matrices, each one with elements
im with m=j,j—1, ,—j for p>j>0. It follows
from the Cailey-Hamilton theorem applied to the matrices
/\~/l,,4, and the above considerations, that in the irrep 7, ,
the generators 0, satisfy the minimal characteristic
equation,

(B11)

APPENDIX C: SOME PROPERTIES OF THE
CORRELATION FUNCTION

1. Ward identities

Under the transformation (29), the action (A3) S =
J (1) varies as

55 = [oxn) = [aenenviey = [ rucerye

- / £y YL, = — / £dl, = — / £00,1,di,

(C1)
where we used Eq. (A6). Notice also that the variation of [,
(29) is generated by the coadjoint action of the vector £ € g,

ea> = §b<X’ [em eb]> = fabC§b<X? ec>
= fabcéblc = 5111'

(ad*(£)X.
(C2)

We exploit now the invariance of the functional integral

5 [ DOLTe 00, (1)1t =0 (€3

under this transformation (under the coadjoint action (C2)

the measure is invariant). The term e’S(«) changes as
in (1), i.e.,

§eiS — —ielS / £40,1 (1) dt (C4)
while the terms [“(t;) change as
8Ly, (1) = £,, Fao8b1.(t /fa CEPL(1)5(t — t;)dt (C5)
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Then, we get from (C3),

/ D(1)es / dr(—i:aatzau)zal(m w0+ Y311 (>za1<r1>--~z‘ak<zk>~--zan<tn>)=o, (C6)

where l_al (t;) means that this term is missing from the product. From these relations, we obtain the Ward identities (30).

2. n-point correlation function

One can show that the n-point correlation function is given by the time ordered product of the field operators as

< |la1(tl) Z He i = lk+] | aj; "',l\a,»n .]>’ (C7)

{11 ln} k=

where on the r.h.s. 2(4 are matrix operators for a specific representation of 80(4, 1), and summation is over all permutations
{iy---i,} of the numbers (1 -- - n) (6(x) is the Heaviside step function). Indeed, the Ward identities (30) are satisfied, as can
be shown explicitly by deriving Eq. (C7). For instance, for n = 3, denoting 6;; = 6(¢; — t;) and 6;; = 6(t; — t;), and using
that 0/0x0(£x) = £5(+x),

A

0, (ilLy, (1)1, ()1, (83) ) = 812003 (i (1, . 1,110 1) + 03[,
+ 613(05 (i I[? lg,] a2|J> + 03 (i | [ iaz” )
= ifu122512<l| b(IZ) as (t3)|f> + lfa|a3513< |2 ( )2b(t3)|j>’

where we used the ETC (34), and in general (30) are verified. One can also check that the BJL limit is satisfied by (C7).
Indeed (see [36]), using the integral representation of the step function,

i o
0() = | dae—i , C8
() 271/ % atie (C8)

and (C7) for n = 2, Eq. (31) can be rewritten as

A

e i po [ dt [ e (e ] )+ el 1)

i 1 A 1 U
_ﬂp})linoopo/dt/dp epol ) ( 7 <l|ltllal|J>_ﬁ<l|lalla|-]>>‘ (CQ)

Taking the limit for py — oo, it becomes

i/df5(f—t1)<i|[7a,7al]|j> = i(il{las 1, )(11) 1) (C10)

Finally, we obtain the correlation function,

L ®_ n
(il exp (ip,, [Fo dr)w =) Pt p,,,,H / iy (i1 (1) (1) -9 (1))
0
—Zn,pﬂ]pm---pﬂnﬂf drkHe i) D 04
k=1

iy

n

I
Mg

l ol Al P
n—L Pu Py, - 'P/tn<l|’)”" S Din | )

o

= (ilexp (iLp - D) ). (C11)
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where we used Eq. (C7) relation,

n L n—1 L"
H/ d [T 00w = twi)) ==
k=1 J0 =1 n:

and the fact that the indices u, v, p, ... are saturated by the
symmetric terms p,p,p, - -, so that the sum over permu-
tations of indices iy, i,, ...i, gives another n! factor. On the
rh.s. of (Cl1), the 9* are matrices #(?*) in the given
80(4, 1) representation.

(C12)

APPENDIX D: MATRIX REPRESENTATION
FOR THE SPIN-1 SECTOR

1. The relation between Z =1 representation
of SO(4,1) and the DKP algebra

For k = 1 Eq. (41), p, = —id, gives
ﬁ;% = Thmﬁ,r (Dl)

Plugging this into (40), we obtain, for p = v and u # v,

ﬁyﬂlzz - zﬂuﬂﬂﬂu +ﬂ12/ﬂ;¢ = ﬂur]uu'
Multiplying from the right by f, and using (D1) follow
Multiplying from the right and left by g, follow, respec-

tively,
|

Po b=

I

- o O O O
o O O O O
o O O O O
oS O O o O
o O O O =
o O O o O

o o o O
o O O O O
o O O O O
o O O = O

pr =

%ﬂﬂﬂ% = 2ﬂvﬂﬂﬁv’7w

vy =2ﬂ2ﬁﬁ2}:>ﬁ”ﬂ”ﬁ”:0 ptv. (D3)
v uP vilvy vPuPv

so that (D2) becomes

BB + BB = Bt (D4)

U F .

Now, we take u # v # p in (40), multiply from the left
twice by f, and use (D3) and (D1) to get

/Buﬁyﬂp']uu +ﬁl2uﬁpﬁ;4ﬁv =0 2 FUF pP-

Finally, we use relation (D4) and obtain

ﬁvﬁyﬁp +ﬁpﬁﬂﬁy =0 H FUF p-

Relations (D1), (D4), and (D5) define the DKP (Duffin-
Kemmer-Petiau) algebra,

(D5)

ﬂﬂﬂpﬂy + ﬂyﬂpﬁﬂ = ﬂ/ﬂ/lvp + ﬂy”ﬂp' (D6)

2. Five-dimensional representation of DKP
matrices for spin-0

The DKP matrices (44) admit a five-dimensional irre-
ducible representation that carries the degrees of freedom of
a spin-0 field theory. We here report an explicit expression
for the matrices in this representation [14]. These are
given as

P =

o O O o O
o O O o O

o O o O
o O O O O
o O = O O
o O O o O
o O O o O
o O O O O

o o O O
o = O O O

(D7)

Notice that with this definition the spin-0 f matrices coincide with the defining representation for the generators
corresponding to the “momentum sector” of SO(4,1), i.e., f, = M4, where (Myg)x; = axOks — Npxdar, (Where here
nag = diag(1,—1,—1,—1,—1)). In this representation, the projection of the field is

Ty
A
=1 m
3

@

— ¢

(D8)
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3. Ten-dimensional representation of DKP matrices for spin-1

The ten-dimensional representations for the f matrices can be given as [22]

1

0 00 0 00 O OO
0 00 0 00 O O0UDO
000 0 0O O 00O

000 0 0O O

000 0 0O O O
000 0 00O

0
0
0
0
0
0
0
0
0

1 00 O
—1

0 000 0O
0 00 0 O0OO0OTP O

0

1

0 0

—1

000 0 0O O 00O

0 00 O

0 0 0 O
00 O 0O

1

—1

000 O 0O O 0O

0 0 O

b=

’

0
0

0

1

1

0 0 00O O0OO0OTP O

0 0 0O0OOOO0OO0OGO0OTO O

00 0 0 O0OO0OO0OO0OT OO0

00 00 O0OO0OO0OTO0OTO0OSO0

1
0
0

000 0O0OO0OGO0OTO 0O

000 O0O0O0OTO0OTO O

1

000 O0O0OO0OTO0OTOTO0OO 0

1

0

000 O0O0O0OTF O

0 0 0 0 0 0O
0 0 0 0 0 0 O
0 0 0 0 0 O
0 0 0 O

0 0 O

0
0
0
0

0
0
0
0

0
0

0 0 0 0 O
0 0 0 O

0
0
0
0

0
0
0
0

0
0
0
0

(D9)

1

0

0

1

0 0 O

1
0 0 0 0 0 0 O

0
0

0
0

0
0

00 00O

1

00 0 0 O0O0

0

—1

0
0
0

—1

0
0
0

0 0 0 0 0 0O
0 0 0 0 0 0O

0

ps =

’

1

0 0 0 0 O

0 0 O

0

1

00 O OO0 O0O0
00 O 1 0 0O
-1

0
0

00 0O

0 00
0

0

0

0 0 0 0 O
0 0 0 0 O
0 0 0 0 O

00
0
0 0 O

Po

Pr =

0 0

—1

0

With these representations, the field y is projected as

(D10)

000000000Aﬂ

Il
s
®
Il
Aﬂ
AN G R
Il
=

while

(D11)

P=(0 000000 0 0 nA,)

A, = -y'nR]

so that the scalar product is given by

(D12)

A0 = ALA, = AAR.

zAﬂAﬂ
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