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Following the idea of Alekseev and Shatashvili, we derive the path integral quantization of a modified
relativistic particle action that results in the Feynman propagator of a free field with arbitrary spin.
This propagator can be associated with the Duffin, Kemmer, and Petiau (DKP) form of a free field theory.
We show explicitly that the obtained DKP propagator is equivalent to the standard one, for spins 0 and 1.
We argue that this equivalence holds also for higher spins.
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I. INTRODUCTION

Spin is a subtle and elusive concept. On the one hand,
one would think that it should be very easy to describe.
Indeed, like the momentum carried by a particle is an
eigenvalue of the translation operator, spin can be described
as an eigenvalue of the operators associated with rotations
(usually taken to be the z-component of angular momentum
and the angular momentum squared). One would think that
it is pretty easy then to find a description of a classical
relativistic particle with spin and then to quantize it, so as to
obtain the free theory of a field with spin. But this is not the
case. There are many attempts to formulate a classical spin
theory, both in terms of commuting and anticommuting
classical variables, that after quantization produce the
expected quantum fields with spin, reviewed, for example,
in [1]. Among the commutative models, a particularly
interesting one was formulated by Balachandran et al.
[2,3], who assumed that the configuration space of a
spinning particle should be identified with the Poincaré
group. This construction was later found very fruitful, for
example, in the case of particles coupled to gravity in three
[4] and four [5] spacetime dimensions. Some other
approaches are reviewed in the recent paper [6].
A particularly convenient approach to quantization is

path integral. It is well known that when one uses the path

integral to describe the quantum transition amplitude of a
relativistic particle, one gets as a result a scalar (Feynman)
propagator of the form ðp2 −m2 þ iϵÞ−1. This is perfectly
consistent with the result of canonical quantization, in
which case the classical first-class constraint p2 −m2 ¼ 0
becomes, after quantization, according to Dirac procedure,
the Klein-Gordon equation ð▫þm2Þϕ ¼ 0.
The question arises if one can find the “spinning”

relativistic particle action such that, after plugging it into
the path integral, one gets as a result the Dirac propagator
ðp −mþ iϵÞ−1 in the case of spin-1=2 and appropriate
expressions for higher spins. Clearly, this requires two
kinds of modifications of the standard relativistic particle
action. First, contrary to the scalar propagator, Dirac
propagator has a term linear in momentum. Second, the
path integral should produce the right representation of
Dirac γ matrices from some classical data. It is the aim of
the present paper to describe such construction in details.
In our approach, we follow the scheme proposed some time
ago by Alekseev and Shatashvili1 [7], which, in turn, was
motivated by the construction proposed by Polyakov in [9].
To this aim in Sec. II, after presenting the standard scalar

path integral, we observe that the Dirac form of the
propagator can be obtained if we start with a relativistic
particle action in which the first-class constraint becomes
linear in momenta. Parallel to that, we notice that an
analogous approach can be phrased in terms of the Duffin,
Kemmer, and Petiau (DKP) formalism for a field theory
with spin-0 and spin-1. We first show how for a scalar
(spin-0) field, the second order formalism can be naturally
associated with the first order DKP formulation. In Sec. III,
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we construct the spinning particle path integral, obtaining
the general expression for the propagator. This section
relies on some more technical results, which are described
in details in appendices. In Sec. IV, we complete the explicit
construction of the propagator for spin-0, spin-1=2, and
spin-1, and we prove that the so obtained DKP propagators
are equivalent to the standard ones. We do not attempt to
extend our construction to spins higher than 1 explicitly,
although there are little doubts that such a generalization
can be done. Unfortunately, the technical difficulty of the
formalism grows rapidly with growing spin, as the equa-
tions defining the higher-spin analogs of Dirac γ matrices
are getting more and more complicated. Section V is
devoted to conclusions and discussion of open problems.

II. THE SCALAR PATH INTEGRAL

Consider the standard, free, scalar relativistic particle
moving in four-dimensional spacetime, between the space-
time point with coordinates x1 and the one with coordinates
x2. The transition amplitude from the initial state hinj ¼
hx1j to the final one jouti ¼ jx2i is given by the path
integral2 for the trajectories beginning at x1 and ending
in x2,

Gðx2; x1Þ ¼
Z

xð1Þ¼x2

xð0Þ¼x1

DðxðτÞÞDðpðτÞÞDðN ðτÞ=DiffÞeiS;

ð1Þ

where the action S is

S ¼
Z

1

0

dτðp_x −N ðp2 −m2ÞÞ; ð2Þ

and DðN ðτÞ=DiffÞ denotes the measure on the Lagrange
multiplierN up toworldline reparametrization, underwhich
it transforms as a one-dimensional metric determinant.
Now, we integrate over xðτÞ. In order to do that, we must

first rewrite it in the form that conveniently takes into
account the boundary conditions,

xðτÞ ¼ x1 þ ðx2 − x1Þτ þ yðτÞ; yð0Þ ¼ yð1Þ ¼ 0: ð3Þ

Clearly, DðxðτÞÞ ¼ DðyðτÞÞ. Now, we can integrate by
parts the action (2) and then integrate over yðτÞ obtaining

Gðx2; x1Þ ¼
Z

DðpðτÞÞDðN ðτÞ=DiffÞδð _pÞeipðx2−x1Þ

× exp
�
−iðp2 −m2Þ

Z
1

0

dτN
�
: ð4Þ

Noticing now that δð _pÞ enforces the momenta to be
τ-independent, so that DðpðτÞÞδð _pÞ ¼ d4p, and that

L≡
Z

1

0

dτN > 0

is the gauge invariant information carried by N 3; we can
express the path integral (4) as

Gðx2; x1Þ ¼
Z

d4p
Z

∞

0

dL eipðx2−x1Þe−iLðp2−m2−iϵÞ

¼
Z

d4p
i

p2 −m2 − iϵ
eipðx2−x1Þ; ð5Þ

where we added the −iϵ term to regularize the integral,
as usual. The Fourier transform of the transition ampli-
tude (5) is the (Feynman) propagator of the quantum
scalar field.
The approach outlined above cannot be directly

applied to the case of fields with higher spin. For
example, in the case of spin-1=2 field, the propagator
is the inverse of an expression linear in momentum,
ðp −mÞ−1, instead of the inverse of quadratic expression,
ðp2 −m2Þ−1, as in (5). It was not long after Dirac’s
formulation of a theory of spin 1=2-fields, when a similar
(unified) formulation for fields of spin-0 and spin-1 was
put forward by DKP [11–13]. While the details of the
DKP theory needed for our analysis will be discussed in
Sec. IV, let us present here a brief introduction to this
approach for the scalar (spin-0) fields.
The very reason behind the p2 −m2 term in the scalar

field propagator is the form of scalar field equations that
follow from the Lagrangian,

L ¼ ∂μϕ∂μϕ −m2ϕ2: ð6Þ

In order to get the DKP propagator, inverse proportional to
momentum (instead of its square), we must rewrite the
Lagrangian (6) in the form linear in spacetime derivatives,
similar to the form of Dirac Lagrangian. This can be
achieved by turning from the second order formulation
(with second order derivatives) to the first order one, in
which the field ϕ and its derivatives ∂ϕ are treated as
independent field components of a multicomponent field,

ψ ¼ ðπ0; π1; π2; π3;φÞT: ð7Þ

For a real scalar field φ† ¼ φ, the DKP Lagrangian takes
the form,4

2In this paper, we denote the four-dimensional indices by
μ ¼ 0; 1; 2; 3, raised and lowered by the 4D Minkowski metric
ημν ¼ diagð1;−1;−1;−1Þ; u · v and v2 are shorthand for uμvμ
and vμvμ, respectively, while u · v ¼ P

3
i¼1 uivi.

3It is essential at this point that N , being the one-dimensional
Euclidean metric, is positive. See [10] for the recent detailed
discussion on this issue.

4Here, we adopt a specific representation for the β matrices
presented in Appendix D, and we refer to Sec. IV for details.
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LDKP ¼
i
2
ψ̄βμ∂μψ −

i
2
ð∂μψ̄Þβμψ −mψ̄ψ

¼ i
2

X
μ

ððπ†μ − πμÞ∂μφ − φ∂μðπ†μ − πμÞÞ

−mπ†μπμ −mφ2; ð8Þ

where βμ are the so-called DKP β matrices, playing, for
the spin-0 and spin-1 theories, a role analogous to that of
Dirac γ matrices for spin-1=2, and the adjoint field ψ̄ are
defined as

ψ̄ ¼ ψ†η0 ¼ ðπ†0;−π†1;−π†2;−π†3;φ†Þ ð9Þ

with η0 ≡ 2β20 − η001.
Varying the DKP Lagrangian with respect to πμ and π†μ,

we obtain the expression for the conjugate momenta,

πμ ¼
i
m
ημν∂νφ; π†μ ¼ −

i
m
ημν∂νφ; ð10Þ

which, substituted into the DKP Lagrangian, gives back,
after the identification φ ¼ ffiffiffiffi

m
p

ϕ, the quadratic Lagrangian
(6). This shows that the two Lagrangians are equivalent
(both classically and quantum mechanically), and one
concludes that, for free fields, the DKP formalism is
nothing but using the first order Lagrangian.
It follows that the DKP Lagrangian leads to the quantum

propagator of the form

GðpÞ ¼ 1

=p −m1 − iϵ
; =p ¼ βμpμ: ð11Þ

It is expected that an analogous construction can be made
for higher spins. In that case, the propagators for higher
spins will have the same form, but with appropriately
chosen matrices replacing the β matrices of spin-0/spin-1
theory.
A natural question arises as if it is possible to obtain this

propagator from the path integral with some form of the
particle action, as it was in the case of the scalar field above
(5). The answer is positive, and in the next section we
present the explicit construction.

III. THE SPINNING PARTICLE PATH INTEGRAL

In this section, we will discuss how the path integral for
spinning particle can be written in the form proposed by
Alekseev and Shatashvili [7], whose construction is, in
turn, a generalization of the one of Polyakov [9]. We will
omit the more technical aspects of the argument, presenting
them in details in the appendix, stressing here the moti-
vations and the meaning of the final result.
Our starting point is the path integral (4) in momentum

representation,

GðpÞ ¼
Z

DðN ðτÞ=DiffÞ exp
�
−i

Z
1

0

dτN ðp2 −m2Þ
�
:

ð12Þ

Our goal is to generalize the form of (12) so as to make it
describe a particle of an arbitrary spin.
We start with the observation that the action in (12) can

be rewritten as

N ðp2 −m2Þ ¼ mN ðp · p=m −mÞ ¼ N 0ðpυ −mÞ; ð13Þ

where we introduced a new variable υ that replaces p=m.
The variable υ is, of course, nothing but the four velocity,
satisfying υ2 ¼ 1 and therefore belonging to the three-
dimensional pseudosphere PS3.
Let us stop for a moment to contemplate on the meaning

of (13). We replaced the second order constraint of the
particle action p2 −m2 ¼ 0 with the first order one
pυ −m ¼ 0. The former leads to the standard scalar
propagator (5), and it is natural to expect that the latter
will lead to the DKP one (11) if we force the path integral to
replace υ with the DKP matrices β. Now, the β matrices,
similarly to the Dirac matrices, are defined to satisfy
(among others) the requirement that their commutator
has the form

½βμ; βν� ¼ Sμν; ð14Þ

where Sμν generate Lorentz transformations [14] U ≃ 1þ
1
2
ωμνSμν.
Since the commutator (14) must come as a result of

quantization of a classical theory, the kinetic term (sym-
plectic form) of the latter should be such that the associated
Poisson bracket has the form

fυμ; υνg ¼ jμν; ð15Þ

where, again, j are Lorentz generators, satisfying soð3; 1Þ
algebra. After quantization (as we will show below), the
associated quantum operators satisfy the commutators,

½υ̂μ; υ̂ν� ¼ iĵμν; ð16Þ

and one gets (14) after identifying

βμ ≡ υ̂μ; Sμν ≡ Ŝμν ¼ iĵμν: ð17Þ

It turns out that in order to get the correct properties for the
β (as well as for the Dirac matrices γ, see, for instance, [15],
Ch. 5.4), the operators v̂μ must be generators of Clifford
algebra Cl3;1. Their operators ĵμν generate the soð3; 1Þ
Lorentz algebra, and one can show that together v̂μ and ĵμν
generate the soð3; 2Þ Lie algebra, the anti–de Sitter algebra.
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In turn, the matrices βμ (or γμ) and Sμν, obtained by the
substitution (17), generate the soð4; 1Þ de Sitter algebra.
Now, since in the Poisson-Lie theory, there is a one-to-

one correspondence between commutators of the algebra
and the Poisson structure on the dual algebra, it is natural to
identify υ with elements of the Lie algebra soð3; 2Þ� “dual”
to the one spanned by the generators of soð3; 2Þ. Let us
discuss in details how this comes about.
We start from the soð3; 2Þ Lie algebra, generated by the

antisymmetric matrices (A;B ¼ 0; 1; 2; 3; 4),

ðMABÞCD ¼ −ðMBAÞCD ¼ δCAηBE − δCBηAE;

ηAB ¼ diagð1;−1;−1;−1; 1Þ ð18Þ

and defined by the Lie brackets

½MAB;MCD� ¼ ηADMBC þ ηBCMAD − ηACMBD − ηBDMAC:

ð19Þ

With the redefinition ϒμ ¼ Mμ4, Jμν ¼ Mμν (μ; ν ¼ 0;
1; 2; 3), the soð3; 2Þ algebra takes the form

½ϒμ;ϒν� ¼ Jμν; ½Jμν;ϒρ� ¼ ϒνημρ −ϒμηνρ;

½Jμν; Jρσ� ¼ ημρJνσ þ ηνσJμρ − ημσJνρ − ηνρJμσ: ð20Þ

An arbitrary element X of the dual algebra soð3; 2Þ� is
spanned by the generators fϒ̃μ; J̃μνg (J̃νμ ¼ −j̃μν), dual to
fϒμ; Jμνg in the sense that (see Appendix A) hϒ̃μ;ϒνi¼δμν ,
hJ̃μν; Jρσi ¼ δμρδνσ − δνρδ

μ
σ , hϒ̃μ; Jρσi ¼ hJ̃μν;ϒνi ¼ 0, and it

has the form (jνμ ¼ −jμν)

X ¼ υμϒ̃
μ þ 1

2
jμνJ̃μν: ð21Þ

Using the definitions presented in Appendix A, one can
check that the coadjoint orbit of υ≡ υμϒ̃

μ under the action
of the Lorentz subgroup is exactly the pseudosphere PS3.
The orbits are characterized by the values ðc1; c2Þ of the
two polynomials of vμ, jμν invariant under the coadjoint
action of SO(3,2), corresponding to the two Casimirs of
soð3; 2Þ,

C1 ¼ υμυμ þ
1

2
jμνjμν;

C2 ¼ W2
0 −W ·W þ 1

4
ðϵijkjjkji0Þ2; ð22Þ

with

W0 ¼
1

2
ϵijkjjkυi; W ¼ −

1

2
ϵijkjjkυ0 þ ϵijkjj0υk: ð23Þ

The action in the path integral should therefore consist of
two pieces. The first is given by (13), and the second is an

action S to be defined so as to impose the condition (15),
and which leads to its quantization. It is given by [16]

S ¼
Z

ω; ð24Þ

where ω ¼ hXðgÞ; dgg−1i, g being an element of SO(3,2),
is the Liouville form associated with Kirillov symplectic
two form, discussed in details in Appendix A. This action
leads to the following expressions for the Poisson brackets
of the dynamical variables:

fυμ; υνg ¼ jμν; fjμν; υρg ¼ υνημρ − υμηνρ;

fjμν; jρσg ¼ ημρjνσ þ ηνσjμρ − ημσjνρ − ηνρjμσ: ð25Þ

This is exactly what we want, because after quantization the
first equation above will become the defining equation for
the β matrices of the DKP formalism.
The final form of the momentum space propagator is

therefore

GðpÞ ¼
Z

∞

0

dL
Z

DðϒðtÞ; JðtÞÞ

× exp

�
imL − i

Z
L

0

dt p · υðtÞ
�
exp ðiSðv; jÞÞ;

ð26Þ

Sðv; jÞ ¼
Z

L

0

dtωðvðtÞ; jðtÞÞ: ð27Þ

It is shown in the Appendix B that the term exp ðiSðv; jÞÞ
“quantizes" the values of the invariant polynomials in
fvμ; jμνg defining the orbits, so that the corresponding
operators fv̂μ; ĵμνg belong to an irreducible representation
fπðυ̂μÞ; πðĵμνÞg of soð3; 2Þ (or, through the substitution
Ŝμν ¼ iĵμν, to an irreducible representation fπðv̂μÞ; πðŜμνÞg
of soð4; 1Þ). In other words, the path integral in (26)
computes, for given boundary conditions, the correlation
function

Z
DðvðtÞ; jðtÞÞ exp

�
imL − i

Z
L

0

dt p · υðtÞ
�

× exp ðiSðv; jÞÞ ¼
�
i

���� exp
�
i
Z

L

0

p · v̂dt

�����j
�

ð28Þ

between states jii belonging to a particular representation
of the soð4; 1Þ algebra, corresponding to the particular
choice of integral orbit. In the formula (28), v̂μ is the
quantum operator corresponding to vμ, and, depending on
the spin representation jii, it is given by a Dirac γ matrix
(for spin-1=2) or a DKP β matrix for spin-0 or spin-1, and,
presumably, to matrix representations for higher spins.
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In particular, these matrices must satisfy (14), and we will
show now that this is indeed the case.
Let us denote by la ≡ fvμ; jμνg the coordinates on the

dual Lie algebra soð3; 2Þ�, so that the Poisson brackets (25)
can be written concisely in terms of the soð3; 2Þ structure
constant fabc defined by (20) as fla; lbg ¼ fabc. The
transformation

la → la þ fabcξblc ð29Þ

is a symmetry of the classical action, and the resultingWard
identity reads (see Appendix C for details)

∂thijl̂aðtÞl̂a1ðt1Þ � � � l̂anðtnÞjji
¼ i

X
k

faak
bhijl̂bðtÞl̂a1ðt1Þ � � ��̂lakðtkÞ � � � l̂anðtnÞjjiδðt − tkÞ;

ð30Þ

where�̂lakðtkÞ indicates that the particular term is missing.
In order to derive the equal time commutators (ETC)

for the corresponding field operators, we can apply the
Bjorken-Johnson-Low (BJL) procedure to the correlation
function, stating that the 1=p0 term in the matrix element
of the two-point function, at large p0, determines the
commutator,

lim
p0→∞

p0

Z
dteip0ðt−t1Þhijl̂aðtÞl̂a1ðt1Þjji ¼ ihij½l̂a; l̂a1 �ðt1Þjji;

ð31Þ

where ½l̂a; l̂a1 � is the ETC between field operators corre-
sponding to la; la1 . Integrating the left-hand side in the last
expression by parts, we rewrite it as

i lim
p0→∞

Z
dteip0ðt−t1Þ ∂∂t hijl̂aðtÞl̂a1ðt1Þjji; ð32Þ

where we neglected boundary terms. From (30), the last
expression is equal to

− lim
p0→∞

Z
dteip0ðt−t1Þfaa1

bhijl̂bðtÞjjiδðt − t1Þ

¼ − lim
p0→∞

faa1
bhijl̂bðt1Þjji; ð33Þ

so that from (31) one gets

½l̂a; l̂b� ¼ ifabcl̂c; ; ð34Þ

or, expanding in terms of the operators υ̂; ĵ,

½υ̂μ; υ̂ν� ¼ iĵμν; ½ĵμν; υ̂ρ� ¼ iðυ̂νημρ − υ̂μηνρÞ;
½ĵμν; ĵρσ� ¼ iðημρĵνσ þ ηνσ ĵμρ − ημσ ĵνρ − ηνρĵμσÞ: ð35Þ

Finally, using the substitution (17), we can rewrite the
commutators as

½υ̂μ; υ̂ν� ¼ Ŝμν; ½Ŝμν; υ̂ρ� ¼ υ̂μηνρ − υ̂νημρ;

½Ŝμν; Ŝρσ� ¼ ημσŜνρ þ ηνρŜμσ − ημρŜνσ − ηνσŜμρ: ð36Þ

This is nothing but the Lie algebra (with real structure
constants) soð4; 1Þ of SOð4; 1Þ, which proves that, after
computing the path integral in the formula (28), the
operators υ̂μ can be taken to be a matrix of a particular
representation of the soð4; 1Þ algebra. We will show in the
next session how, depending on the specific soð4; 1Þ
representation, one gets in this way the Dirac (spin-1=2)
or the DKP (spin-0 or spin-1) propagator (and presumably
the propagator for higher spins as well).
To complete the derivation, we need yet another property

of the correlation function (28) derived in Appendix C,

�
i

����exp
�
ipμ

Z
L

0

υ̂μðtÞdt
�����j

�
¼hijexpðiLp · υ̂Þjji: ð37Þ

Now, we can integrate (37) over L to find the momentum
space propagator,

GijðpÞ ¼
�
i

���� i
p · υ̂ −m − iϵ

����j
�
: ð38Þ

IV. THE PROPAGATOR FOR DIFFERENT SPINS

Depending on the specific choice of representation for
the soð4; 1Þ generators, expression (38) gives the propa-
gator for different spin values in the first order formalism.
As shown in Appendix B, the spinning term exp ði R ωÞ,
upon appropriate choice of coadjoint orbits, decomposes
the path integral into matrix elements between states
belonging to the finite dimensional representations of
SO(4,1) labeled by the highest weights of the irreducible
representations of the maximally compact subgroup
SOð4Þ ≃ SUð2Þ ⊗ SUð2Þ, parametrized by a set of ordered
integer or half-integer numbers,5

5The characterization of these finite dimensional representa-
tions is carried out in Appendix B. The classification of
irreducible unitary (infinite dimensional) representations of
SO(4,1) induced from the maximal compact subgroup was
accomplished in [17] following the method developed in
[18,19], exploiting the relation between representations of the
group and of its Lie algebra. The analogous characterization for
the Euclidean case, leading to (finite dimensional) irreps of SO
(5), is carried out in [20].

PATH INTEGRAL QUANTIZATION OF A SPINNING PARTICLE PHYS. REV. D 101, 065003 (2020)

065003-5



ðp; qÞ∶ p ≥ q ≥ 0: ð39Þ
Following the argument worked out in [21] for the

Euclidean case, we can define the algebras BðkÞ arising
from the soð4; 1Þmatrix representations πp;qðυ̂μÞ defined in
Appendix B, satisfying the commutation relations, follow-
ing from (36),

½½υ̂μ; υ̂ν�; υ̂ρ� ¼ υ̂μηνρ − υ̂νημρ: ð40Þ

and, for k ≥ p, the equation [following from (B11)]

Yk
m¼−k

�
υ̂μ −

�
δμ0 þ i

X
i

δμi

�
m1

�
¼ 0: ð41Þ

Different values of k then correspond to different spin
sectors.
For k ¼ 1=2, one has a four-dimensional πð1

2
; 1
2
Þ repre-

sentation (see Appendix B) of Bð1
2
Þ corresponding to the

Dirac algebra. Indeed, Eq. (41) becomes υ̂2μ ¼ − 1
4
ημμ, and

defining γμ ¼ 2υ̂μ, we find from (40) that

γμγν þ γνγμ ¼ 2ημν: ð42Þ

Plugging this to (38), we get the spin-1
2
propagator,

GðpÞ ∝ 1

pμγ
μ −m

�
¼ pμγ

μ þm

p2 −m2

�
: ð43Þ

It appears that the spin-1
2
propagator has its usual form

expressed in terms of p momenta.
For k ¼ 1, the matrices βμ (no summation) satisfy the

relations that define the DKP algebra [11–13],

βμβρβν þ βνβρβμ ¼ βμηνρ þ βνημρ: ð44Þ
The derivation of Eq. (44) is carried out in Appendix D. In
this case, one has three irreducible representations (see
Appendix B), the trivial one-dimensional πð0; 0Þ, the five-
dimensional πð1; 0Þ, and the ten-dimensional πð1; 1Þ.
Several results (see, for instance, [14] and [22]) have been
obtained showing that for these two latter irreducible
representations the DKP field equations reduce, respec-
tively, to the equations of motion for a spin-0 scalar field
(the Klein-Gordon equation) and for a spin-1 vector field
(the Proca equations). However, to our knowledge, the
reduction of the propagator to the standard expressions for
the spin-0 and spin-1 fields have not been treated thor-
oughly, and we devote next section to this task.

A. The propagator for spin-0 and spin-1

Let us start noticing that it follows from (38) that the
propagator in momentum space is (apart from the term iϵ)
the inverse of the matrix p −m, where we denote
p ¼ pμβ

μ, i.e.,

GðpÞ ¼ ð=p −m1Þ−1: ð45Þ

Using the properties (44) of the DKP matrices, one can
prove that (see, for instance, [23])

GðpÞ ¼ 1

m

�
=pð=pþmÞ
p2 −m2

− 1

�
: ð46Þ

Indeed, from (44),

=p3 ¼ pμpρpνβ
μβρβν ¼ pμpρpνβ

μηρν ¼ =pp2: ð47Þ

Then,

=pð=pþm1Þð=p −m1Þ ¼ ð=p3 −m2=pÞ ¼ =pðp2 −m2Þ; ð48Þ

and it follows

GðpÞð=p −m1Þ ¼ 1

m
ð=p − ð=p −m1ÞÞ ¼ 1: ð49Þ

We consider first the five-dimensional representation
πð1; 0Þ describing the spin-0 sector. The field equations for
spin-0 are obtained with the help of a projection operator
[14],

P ¼ −β20β21β22β23; ð50Þ

so that the field

ψ ¼

0
BBBBBB@

ψ0

ψ1

ψ2

ψ3

ψ4

1
CCCCCCA

ð51Þ

decomposes into the vector field Vμ ¼ Pβμψ and the
scalar one Φ ¼ Pψ . Indeed, one can show that Φ and
Vμ transform, respectively, as a (pseudo)-scalar and a
(pseudo)-vector under Lorentz transformations, where
infinitesimal transformations are generators by Sμν ¼
½βμ; βν� as (ωμν ¼ −ωμν),

U ≃ 1þ 1

2
ωμνSμν: ð52Þ

Moreover, one can show that upon imposing the DKP
equation for the free field ψ , the components of ψ are not
independent, and that one can define (see Appendix D) a
specific representation of the βμ such that ψ4 ¼ ϕ and
ψμ ¼ ∂μϕ, making explicit the fact that ψ describes in this
case the scalar ϕ and its derivatives ∂μϕ.
We can obtain the propagator for the scalar field SðpÞ by

projecting the propagator (46) on the scalar field sector
with P,
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SðpÞ≡ 1

m
PGðpÞP†; ð53Þ

so that SðpÞ is defined by the matrix element in (the mass
factor is for dimensional reasons)

Φ̄PGðpÞP†Φ ¼ mΦ̄SðpÞΦ: ð54Þ

As discussed in Appendix B, since we are in Lorentzian
metric, the β0 and βj matrices must have opposite hermi-
ticity, and in particular in our notations we have that β0 is
Hermitian and βj anti-Hermitian: β†0 ¼ β0, β

†
j ¼ −βj.

In DKP theory, the adjoint field is given by ψ̄ ¼ ψ†η0,
where ημ is the operator,

ημ ¼ 2β2μ − ημμ; ð55Þ

such that β†μ ¼ η0βμη0 and Φ̄ ¼ ψ†η0P†. Noticing also that
from the defining properties of the β matrices (44), setting
μ ¼ ν in (44), follow the relations

βμβνβμ ¼ βμημν; ð56Þ

one finds that

P=pP† ¼ pμPβμP† ¼ 0: ð57Þ

Using again (44) [setting ν ¼ ρ ≠ μ in (44)], we find the
relations

βμβ
2
ν þ β2νβμ ¼ βμηνν μ ≠ ν; ð58Þ

and multiplying last relation by βμ from the left and from
the right, we find

β2μβ
2
ν ¼ β2νβ

2
μ: ð59Þ

From last relation, the hermiticity of β’s and (56), we also
find that

P† ¼ P; P2 ¼ P; ð60Þ

while using (59) and (56), it follows

Pβμβν ¼ Pημν: ð61Þ

From last relations, we find

P=p=pP† ¼ p2PP† ¼ p2: ð62Þ

Plugging (57) and (62) together with (46) in (54), we finally
obtain

1

m
Φ̄PGðpÞP†Φ ¼ 1

m2
Φ̄P

�
=pð=pþmÞ
p2 −m2

− 1

�
P†Φ

¼ Φ̄
1

p2 −m2
Φ; ð63Þ

so that

SðpÞ ¼ 1

p2 −m2
: ð64Þ

The DKP propagator, projected on the scalar field sector,
has the standard form.
We can repeat a similar procedure to derive the pro-

pagator for the spin-1 representation. In this case, the
projection operators are

Rμ ¼ β21β
2
2β

2
3ðβμβ0 − ημ0Þ; ð65Þ

where now the β matrices are to be taken in the ten-
dimensional irreducible representation (we give an explicit
realization in Appendix D). The beta matrices maintain
the same hermiticity of the scalar case, and one can show
that Rμψ transforms, under the infinitesimal Lorentz
transformation (52), like a (pseudo)vector while Rμνψ ¼
Rμβνψ like a (pseudo)tensor. Upon imposing the DKP
equation for ψ, one can then show that Rμν is proportional
to the strength tensor of the vector field Rμψ (see, for
instance, [14] and [22]). We define then the vector field Aμ

and its adjoint as

Aμ ¼ Rμψ ; Āμ ¼ −ψ̄R†
μ ¼ −ψ†η0R

†
μ; ð66Þ

with η0 given by (55). It is possible to show that with this
definition the fields Aμ and Āμ transform, respectively,
with covariant and contravariant indexes. Thus, we may
identify

Aμ ¼ Āμ ð67Þ

(
P

μ ĀμAμ ¼ AμAμ transforms as a (pseudo)scalar). The
spin-1 propagator SμνðpÞ for the vector field is then
obtained by projection

Sμ
νðpÞ≡ 1

m
RμGðpÞR†

ν ð68Þ

as the matrix element in

X
μ;ν

ĀμRμGðpÞR†
νAν ¼ mAμSμνðpÞAν: ð69Þ

We can use the properties of the β matrices (56), (58), and
(59) to find the following relations:
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RμR
†
ν ¼ δνμR0; R0Rμ ¼ Rμ RμβρR

†
ν ¼ 0;

Rμβρβσ ¼ ηρσRμ − ημσRρ: ð70Þ

Using these relations, it follows that

Rμ=pR
†
ν ¼ 0;

Rμ=p=pR
†
ν ¼ p2RμR

†
ν − pμpρRρR

†
ν ð71Þ

and finally

1

m
ĀμRμGðpÞR†

νAν

¼ 1

m2
ĀμRμ

�
=pð=pþmÞ
p2 −m2

− 1

�
R†

νAν

¼ 1

m2ðp2 −m2Þ Āμðm2RμR
†
ν − pμpρRρR

†
νÞAν

¼ 1

m2ðp2 −m2Þ Āμðm2δμ
ν − pμpνÞR0Aν

¼ Aμ
1

p2 −m2

�
ημν −

pμpν

m2

�
Aν; ð72Þ

where we used the above relations together with R0Aμ¼
R0Rμψ ¼Rμψ ¼Aμ. Thus, the spin-1 propagator reduces
to the standard propagator in unitary gauge,

SμνðpÞ ¼ ημν −
pμpν

m2
: ð73Þ

V. CONCLUSIONS

In this paper, following the idea of Alekseev and
Shatashvili of adding to the first order action the
Kirillov presymplectic form, which forces the path integral
to select a particular representation of the de Sitter group,
we derive the DKP propagator for fields of spin-0 and
spin-1 (as well as the Dirac propagator for spin-1=2) in the
path integral formalism. We then show that the obtained
DKP propagators are equivalent to the standard ones.
There are several interesting problems that could be

addressed in follow-up investigations. First, although it
seems pretty obvious that an analogous construction should
work for spins higher than 1, it would be illuminating to do
it explicitly.
Second, the construction presented here can, presum-

ably, be extended to the case of κ-deformation (in the sense
of κ-Poincaré Hopf symmetries) [24–27], a scenario that
has attracted much interest especially in relation with
quantum gravity phenomenology. In this case, momentum
space is not the ordinary flat (Minkowskian) momentum
space, but it is described as a curved manifold (specifically
the group AN3, corresponding to half of de Sitter space, see
[27]), whose scale of curvature 1=κ is taken to be propor-
tional to the (inverse) Planck energy (1=Epl ∼ 10−19 GeV).

As (four-dimensional) κ-momentum space can be also
described in terms of flat embedding “momentum coor-
dinates” in five dimensions, with some additional constraint
enforcing physical momenta to live on the de Sitter
hyperboloid, one can think of extending the formalism
described in this paper, which is not restricted to four-
dimensional momentum space, exploiting the use of
embedding coordinates. The construction of a Dirac
(spin-1=2) action with κ-Poincaré symmetries has been
already addressed in some previous works (see, for
instance, [25,28–30]). It would be interesting to compare
the spin-1=2 propagator for κ-momentum space resulting
from our approach with previous results. Moreover, if
working, our construction would allow in principle to study
higher-spin propagators for κ-momentum space, setting the
stage for constructing a higher-spin field theory action
based on κ-deformed symmetries.
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APPENDIX A: THE ACTION FUNCTIONAL
ON THE ORBITS

We here discuss the construction of the action (24)
needed to implement the spin degrees of freedom in the
path integral. We refer the reader to the characterization
outlined, for instance, in [31], based on the Kirillov
symplectic form [32]. Consider a (matrix) Lie group G.
Let g be Lie algebra of G and g� its dual Lie algebra: for a
basis feag of g and fẽag of g�, the duality relations are
canonically given by hẽa; ebi ¼ δab. The coadjoint repre-
sentation of G is defined by

hAd�ðgÞX; ui ¼ hX;AdðgÞ−1ui; where AdðgÞu ¼ gug−1;

had�ðuÞX; vi ¼ −hX; adðuÞvi; where adðuÞb ¼ ½u; v�;
ðA1Þ

where g ∈ G, X ∈ g�, u; v ∈ g. Let us parametrize the
orbits by group variables fixing the point X0 so that a
generic point on the orbit is

XðgÞ ¼ Ad�ðgÞX0: ðA2Þ
In the basis feag and fẽag, we will write a generic point on
the orbit as X ¼ laẽa. Define the action

S ¼
Z

ω; ω ¼ hXðgÞ; YðgÞi; ðA3Þ

with

YðgÞ ¼ dgg−1 ∈ g: ðA4Þ
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Here Y ¼ dgg−1 is the Maurer-Cartan form on the group. It
is possible to show that the following equivalent equations
are satisfied:

dX ¼ ad�ðYÞX; ðA5Þ

dla ¼ fabcYblc; ðA6Þ

where X ¼ laẽa, and Y ¼ Yaea, and fabc are the structure
constant of the Lie algebra6 g½ea; eb� ¼ fabcec. Let us first
show the equivalence of Eqs. (A6) and (A5),

dla ¼ hdX; eai ¼ had�ðYÞX; eai ¼ hX; ½ea; Y�i
¼ lcYbhẽc; ½ea; eb�i ¼ lcYbfabdhẽc; edi ¼ fabcYblc:

ðA7Þ

Let us now prove Eq. (A5),

hdX; eai ¼ dhAd�ðgÞX0; eai ¼ hX0; g−1eadgþ dg−1eagi
¼ hAd�ðgÞX0; ½ea; dgg−1�i ¼ −hX; adðYÞeai
¼ had�ðYÞX; eai; ðA8Þ

where we used definition (A2) and d1¼dðg−1gÞ¼
dg−1gþg−1dg¼0, from which follows dg−1¼−g−1dgg−1.
Equation (A5) [or (A6)] ensures that the action (A3)

generates on the orbit the canonical two-form,

Ω ¼ −dω ¼ hX; Y ∧ Yi; ðA9Þ

where dΩ is closed on the orbit. The last equation can be
rewritten explicitly as

Ω ¼ −dω ¼ hX0; g−1dg ∧ g−1dgi
¼ hX; dgg−1 ∧ dgg−1i; ðA10Þ

where the Maurer-Cartan equation dðgdg−1Þ ¼ −gdg−1 ∧
gdg−1 has been used. One can show that the Poisson
brackets of the restriction of the linear functions on the orbit
reproduce the algebraic commutation relation. Defining the
linear functions uðXÞ ¼ hX; ui, where on the r.h.s. u ¼
uaea (so that uðXÞ ¼ uala), we get

fuðXÞ; vðXÞg ¼ Ωðu; vÞ ¼ hX; ½YðuÞ; YðvÞ�i
¼ uavbhX; ½ea; eb�i ¼ fabcuavblc; ðA11Þ

where we used that the Maurer-Cartan form evaluated on an
element of the basis of the Lie algebra gives YðeaÞ ¼ ea. It
follows in particular, for ua ¼ δab, that on the orbit,

fla; lbg ¼ fabclc: ðA12Þ

APPENDIX B: COADJUST ORBITS
AND IRREPS FOR SO(4,1)

1. Integral orbits for SO(3,2)

In the spirit of geometric quantization (see, for instance,
[33,34]), the orbit method [32] can be used to quantize the
values of some parameters labeling the orbits of the action
of the group on its dual Lie algebra. This mechanism can be
realized [7,16] by the requirement for the action exponen-
tial exp ðiSðlÞÞ to be single valued, so that the path integral
is well defined. Indeed, the one-form ω is singular, and the
action S ¼ R

ω is multivalued, and the requirement of
uniqueness of the expression exp ðiSðlÞÞ over closed path
leads to integral orbits.
In our specific case, starting from the soð3; 2Þ algebra

(20), so that a generic element can be parametrized as
u ¼ υ̃μϒμ þ 1

2
j̃μνJμν (j̃νμ ¼ −j̃μν), we can fix the orbits

considering the action of the Lorentz subgroup SO(3,1)
generated by Jμν. Rewriting the generators as Ri ¼
− 1

2
ϵijkJjk and Pi ¼ ϒi, we can rewrite the soð3; 1Þ sub-

algebra as

½Ri;Rj� ¼ ϵijkRk; ½Ri;Pj� ¼ ϵijkPk; ½Pi;Pj� ¼ −ϵijkRk;

ðB1Þ

so that an element of the soð3; 1Þ subalgebra is usoð3;1Þ ¼
riRi þ piPi, with ri ¼ −ϵijkj̃

jk, pi ¼ ṽi. Reparametrizing
(see [15], Ch. 5.6) an element of soð3; 1Þ as usoð3;1Þ ¼
aiAi þ biBi, with Ai ¼ 1

2
ðRi þ iPiÞ, Bi ¼ 1

2
ðRi − iPiÞ, so

that ai ¼ ri þ ipi, bi ¼ ri − ipi, the algebra splits into a
direct sum of two mutually commuting complex (conju-
gate) suð2Þ: soð3; 1Þ ≈ suð2ÞC ⊕ suð2ÞC ≈ slð2;CÞ ⊕
slð2;CÞ. Thus, we have reduced the problem to fixing
the orbits of the two Slð2;CÞ subgroups of SOð3; 1Þ.
Finally, we notice that each of the two Slð2;CÞ admits
SUð2Þ as (maximal) compact subgroup, and we can use it
to fix the orbits for each of the two copies.
Representing the SU(2) generators in terms of Pauli

matrices, Ai; Bi ≡ − i
2
σi,

σ1 ¼
�
0 1

1 0

�
; σ2 ¼

�
0 −i
i 0

�
; σ3 ¼

�
1 0

0 −1

�
;

ðB2Þ

for each SU(2) copy we can parametrize an element of the
group by Euler angles as

gSUð2Þ ¼ exp

�
−
i
2
σ3χ

�
exp

�
−
i
2
σ2θ

�
exp

�
−
i
2
σ3ϕ

�
;

ðB3Þ

with6Here, ½·; ·� denotes obviously the Lie bracket.
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χ ∈ ½0; 2πÞ; θ ∈ ½0; π�; ϕ ∈ ½0; 2πÞ: ðB4Þ

On each copy, the Maurer-Cartan connection YSUð2Þ ¼
g−1SUð2ÞdgSUð2Þ can be evaluated to

Yi
SUð2Þ ¼

0
B@

− sin χdθ þ cosϕ sin θdϕ

cos χdθ þ sinϕ sin θdϕ

dχ þ cos θdϕ

1
CA; ðB5Þ

where Y ¼ YiAi or Y ¼ YiBi. The orbits can be chosen
fixing the value of the coordinates in g�suð2Þã ¼ ãiÃ

i,

b̃ ¼ b̃iÃ
i along the (real) z direction (hÃi; Aji ¼ δij,

hB̃i; Bji ¼ δij), ReðãiÞ ¼ ð0; 0; mÞ, Reðb̃iÞ ¼ ð0; 0; nÞ,
and we thus find, respectively, the action (s ¼ m or n),

Z
ωSUð2Þ ¼ γ

Z
dϕþ s

Z
cos θdϕ; ðB6Þ

where we renamed the azimuthal angle χ ¼ γ0ϕ for some
constant γ0 and γ ¼ γ0s. The action is multivalued as it
counts the windings around the axis passing through the
poles θ ¼ 0; π of the sphere, where the one-form cos θdϕ is
singular. For infinitesimal closed contours around the poles
θ ¼ 0; π, the action gives the value 2πðγ � sÞ, so that, if
γ � s is an integer, the action exp ði R ωÞ does not con-
tribute to the path integral, which is then well defined. We
can choose γ ¼ 0 for s integer and γ ¼ 1

2
for s semi-integer.

Thus, the condition for single valuedness of exp ði R ωÞ
translates into the condition of “quantization” of the values
of s ¼ ðm; nÞ, which take only integer or semi-integer
values ðl1;l2Þ.

2. Discrete series and finite dimensional
representations of SO(4,1)

With this choice of orbits, after quantization [see
Eq. (35)], the elements la ≡ ðυμ; jμνÞ → ðυ̂μ; ĵμνÞ of the
dual algebra belong to one of the irreducible unitary
representations of soð3; 2Þ induced by the (real structure)
decomposition suð2Þ ⊕ suð2Þ. Finally, after the substitu-
tion (17) (Ŝμν ¼ iĵμν), the (matrix) operators v̂μ and Sμν
belong to one of the irreducible unitary representations of
soð4; 1Þ, seen as a Lie algebra with real structure constants,
Eq. (36), induced by the maximal compact subgroup
SOð4Þ ≈ SUð2Þ ⊕ SUð2Þ. The classification of such rep-
resentations has been carried out in [17] perfecting an
approach developed previously in [18,19] relating the
group representation to the representation of its Lie algebra
generators. In particular, it is shown that the discrete series
representation πp̃;q̃ of SO(4,1) can be obtained in this way
(see also [35]). The discrete series πp̃;q̃ is labeled by
two integers or semi-integers values ðp̃; q̃Þ related to the
SOð4Þ ≃ SUð2Þ ⊗ SUð2Þ labels by p̃ ¼ infðl1;l2Þ∈Γ ×
ðl1 þ l2Þ, q̃ ¼ infðl1;l2Þ∈Γðl1 − l2Þ, where Γ is the set

of values ðl1;l2Þ which occur in the reduction πp̃;q̃jSOð4Þ
of the representation to SO(4), and p̃ ¼ 1

2
; 1; 3

2
; 2;…,

q̃ ¼ p̃; p̃ − 1;…; 1 or 1
2
. The Hilbert space of the

representation is the infinite7 direct sum H ¼⊕ðl1;l2Þ∈Γ
Hl1;l2 of the subspacesHl1;l2 invariant under πp̃;q̃ðSOð4ÞÞ.
Each representation πp̃;q̃ is characterized by a different
value of the two Casimir invariants of the soð4; 1Þ Lie
algebra corresponding to the ones in (22) of soð3; 2Þ,

Ĉ1 ¼ υ̂μυ̂μ −
1

2
ŜμνŜ

μν;

Ĉ2 ¼ Ŵ2
0 − Ŵ · Ŵ −

1

4
ðϵijkŜjkŜi0Þ2; ðB7Þ

where Ŵ0 ¼ 1
2
ϵijkŜjkυ̂i, Ŵ ¼ − 1

2
ϵijkŜjkυ̂0 þ ϵijkŜj0υ̂k.

Indeed, for a given πp̃;q̃, Ĉ1 and Ĉ2 are scalar operators
taking the values [17]

πp̃;q̃ðĈ1Þ ¼ ðp̃Þðp̃þ 1Þ − 2þ ðq̃Þðq̃ − 1Þ;
πp̃;q̃ðĈ2Þ ¼ ðp̃Þðp̃þ 1Þðq̃Þðq̃ − 1Þ: ðB8Þ

Thus, the orbit quantization method exhibited in the
previous section, singling out integer or semi-integer values
ðl1;l2Þ, selects the values of the invariant polynomials C1
and C2 of la ≡ ðυμ; jμνÞ, defining the orbits, which occur in
the irreducible representations of SO(4,1), and in particular
in the discrete series.
Apart from the irreducible unitary (infinite dimensional)

representations, one can obtain finite dimensional, nonuni-
tary representations that can be understood as a “Wick
rotation” of the irreducible unitary representations of SO(5)
discussed, for instance, in [20]. In this case, the generators
can be represented through finite dimensional (mixed
Hermitian and anti-Hermitian) matrices, and we will use
these representations to construct the projection operators
for the different spin sectors of the propagator. Denoting
such finite dimensional representations with πp;q, they are
labeled now by p ¼ maxðl1 þ l2Þ and q ¼ maxðl1 − l2Þ,
whose ranges are such that p and q are all integers or all
semi-integers and p ≥ q ≥ 0, while, for given ðp; qÞ, l1 þ
l2 and l1 − l2 range, respectively, from q to p and from
−q to q by steps of 1 (thus, l1;l2 range from 0 to 1

2
ðpþ qÞ

by steps of 1
2
). The πp;q are characterized by the values of

the Casimir operators,

πp;qðĈ1Þ ¼ pðpþ 3Þ þ qðqþ 1Þ;
πp;qðĈ2Þ ¼ ðpþ 1Þðpþ 2Þqðqþ 1Þ; ðB9Þ

and their dimension is given by the formula

7Since SO(4,1) is noncompact, irreducible unitary representa-
tions are infinite dimensional.
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dðp; qÞ ¼ 1

6
ð2qþ 1Þð2pþ 3Þðpþ qþ 2Þðp − qþ 1Þ:

ðB10Þ

The range of the highest weights ðl1;l2Þ for the lowest
order representations πp;q is depicted in Fig. 1 in terms
of the allowed ðl1;l2Þ values. From the formula (B10),
we find that they have, respectively, the dimensions
dð1

2
; 1
2
Þ ¼ 4, dð1; 0Þ ¼ 5, and dð1; 1Þ ¼ 10, reflecting the

decomposition in terms of their restriction to SO(4):
πð1

2
; 1
2
Þ → Dð1

2
; 0Þ ⊕ Dð0; 1

2
Þ, πð1;0Þ→Dð1

2
;0Þ⊕Dð0;1

2
Þ⊕

Dð0;0Þ, πð1; 1Þ → Dð1; 0Þ ⊕ Dð0; 1Þ ⊕ Dð1
2
; 1
2
Þ.

The matrices that form the πp;q representation can be
considered to be obtained by Wick rotation from the SO(5)
matrices derived in [20]. To better characterize this defi-
nition, consider first the defining five-dimensional repre-
sentation of SO(4,1) matrices. They are the matrices
preserving the bilinear form given by the five-dimensional
Lorentzian metric ηð5Þ ≡ ðþ;−;−;−;−Þ, so that the gen-
erators are matricesMAB such thatMT

AB ¼ −ηð5ÞMABη
ð5Þ,

and are related with the soð5Þ (skew-symmetric) matrices

M̃AB by M̃AB ¼ −η5MAB. We can set then ðMABÞKL ¼
ηð5ÞAKδBL − ηð5ÞBKδAL and ðM̃ABÞKL ¼ −ðδAKδBL − δBKδALÞ,
and the soð4; 1Þ commutation rules ½MAB;MCD� ¼
ηADMBC þ ηBCMAD − ηACMBD − ηBDMAC, as well as
the soð5Þ ones for M̃AB, are satisfied. On passing from
soð5Þ to soð4; 1Þ matrices, one can easily see that the
matrices M0A become symmetric (and Hermitian), while
the remaining ones stay skew symmetric (and anti-
Hermitian). In particular, if λ̃ are the (imaginary) eigen-
values of the M̃AB, from the spectral theorem, the effect of
the map on the eigenvalues is λ̃ → λ ¼ iλ̃ for the matrices
M0A, while for the remainingMiA (i ¼ 1; 2; 3; A ≠ 0) they
stay the same. With this in mind, we can generalize this
definition of Wick rotation to representations of any
dimensions: one can always choose the matrix generators
M0A to be Hermitian and the MiA (A ≠ 0) anti-Hermitian,
and, when going from SO(5) to SO(4,1) matrix genera-
tors, the eigenvalues of the M0Að≡fπp;qðυ̂0Þ; πp;qðŜ0iÞgÞ
components acquire an extra i factor.8

We can then use almost the same argument of [21] to
establish the relation between the matrices Mμ4 ¼
πp;qðυ̂μÞ and their characteristic polynomial. We observe
first that each SO(5) matrix M̃AB is unitary equivalent to
a member of a triplet of generators forming angular
momentum algebra. It thus follows, considering also the
discussion above, that M̃AB is equivalent to a direct
sum of diagonal block matrices, each one with elements
im with m ¼ j; j − 1; ;−j for p ≥ j ≥ 0. It follows
from the Cailey-Hamilton theorem applied to the matrices
M̃μ4, and the above considerations, that in the irrep πp;q
the generators υ̂μ satisfy the minimal characteristic
equation,

Yp
m¼−p

�
υ̂μ −

�
δμ0 þ i

X
i

δμi

�
m1

�
¼ 0: ðB11Þ

APPENDIX C: SOME PROPERTIES OF THE
CORRELATION FUNCTION

1. Ward identities

Under the transformation (29), the action (A3) S ¼R
ωðlÞ varies as

δS ¼
Z

hδX; Yi ¼
Z

hfabcξblcẽa; Ydedi ¼
Z

fabcξblcYa

¼ −
Z

ξafabcYblc ¼ −
Z

ξadla ¼ −
Z

ξa∂tladt;

ðC1Þ

where we used Eq. (A6). Notice also that the variation of la
(29) is generated by the coadjoint action of the vector ξ ∈ g,

had�ðξÞX; eai ¼ ξbhX; ½ea; eb�i ¼ fabcξbhX; eci
¼ fabcξblc ¼ δla: ðC2Þ

We exploit now the invariance of the functional integral

δ

Z
DðlÞ

Y
i

eiSðlÞla1ðt1Þ � � � lanðtnÞ ¼ 0 ðC3Þ

under this transformation (under the coadjoint action (C2)
the measure is invariant). The term eiSðlaÞ changes as
in (1), i.e.,

δeiS ¼ −ieiS
Z

ξa∂tlaðtÞdt; ðC4Þ

while the terms laiðtiÞ change as

δlaiðtiÞ ¼ f c
aib

ξblcðtiÞ ¼
Z

f c
aib

ξblcðtÞδðt − tiÞdt: ðC5Þ

FIG. 1. The lowest order πðp; qÞ representations of SO(4,1) in
terms of SOð4Þ ≃ SUð2Þ ⊗ SUð2Þ labels. The dots indicate the
ðl1;l2Þ values within each representation.

8One can check explicitly that this is indeed true for the
examples in this paper.
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Then, we get from (C3),

Z
DðlÞeiS

Z
dt

�
−iξa∂tlaðtÞla1ðt1Þ � � � lanðtnÞ þ

X
k

fakb
cξbδðt − tkÞlcðtÞla1ðt1Þ � � � l̄akðtkÞ � � � lanðtnÞ

�
¼ 0; ðC6Þ

where l̄a1ðtkÞ means that this term is missing from the product. From these relations, we obtain the Ward identities (30).

2. n-point correlation function

One can show that the n-point correlation function is given by the time ordered product of the field operators as

hijl̂a1ðt1Þ � � � l̂anðtnÞjji ¼
X

fi1���ing

Yn−1
k¼1

θðtik − tikþ1
Þhijl̂ai1 � � � l̂ain jji; ðC7Þ

where on the r.h.s. l̂a are matrix operators for a specific representation of soð4; 1Þ, and summation is over all permutations
fi1 � � � ing of the numbers ð1 � � �nÞ (θðxÞ is the Heaviside step function). Indeed, the Ward identities (30) are satisfied, as can
be shown explicitly by deriving Eq. (C7). For instance, for n ¼ 3, denoting δij ¼ δðti − tjÞ and θij ¼ θðti − tjÞ, and using
that ∂=∂xθð�xÞ ¼ �δð�xÞ,

∂t1hijl̂a1ðt1Þl̂a2ðt2Þl̂a3ðt3Þjji ¼ δ12ðθ23hij½l̂a1 ; l̂a2 �l̂a3 jji þ θ32hijl̂a3 ½l̂a1 ; l̂a2 �jjiÞ
þ δ13ðθ32hij½l̂a1 ; l̂a3 �l̂a2 jji þ θ23hijl̂a2 ½l̂a1 ; l̂a3 �jjiÞ

¼ if b
a1a2δ12hijl̂bðt2Þl̂a3ðt3Þjji þ if b

a1a3δ13hijl̂a2ðt2Þl̂bðt3Þjji;

where we used the ETC (34), and in general (30) are verified. One can also check that the BJL limit is satisfied by (C7).
Indeed (see [36]), using the integral representation of the step function,

θðtÞ ¼ i
2π

Z
dαe−iαt

1

αþ iϵ
; ðC8Þ

and (C7) for n ¼ 2, Eq. (31) can be rewritten as

i
2π

lim
p0→∞

p0

Z
dt

Z
dα

αþ iϵ
eip0ðt−t1Þðe−iαðt−t1Þhijl̂al̂a1 jji þ eiαðt−t1Þhijl̂a1 l̂ajjiÞ

¼ i
2π

lim
p0→∞

p0

Z
dt

Z
dp0

0e
ip0

0
ðt−t1Þ

�
1

p0 − p0
0 þ iϵ

hijl̂al̂a1 jji −
1

p0 − p0
0 − iϵ

hijl̂a1 l̂ajji
�
: ðC9Þ

Taking the limit for p0 → ∞, it becomes

i
Z

dtδðt − t1Þhij½l̂a; l̂a1 �jji ¼ ihij½l̂a; l̂a1 �ðt1Þjji: ðC10Þ

Finally, we obtain the correlation function,

hij exp
�
ipμ

Z
L

0

υ̂μðtÞdt
�
jji ¼

X∞
n¼0

in

n!
pμ1pμ2 � � �pμn

Yn
k¼1

Z
L

0

dtkhijυ̂μ1ðt1Þυ̂μ2ðt2Þ � � � υ̂μnðtnÞjji

¼
X∞
n¼0

in

n!
pμ1pμ2 � � �pμn

Yn
k¼1

Z
L

0

dtk
Yn−1
m¼1

θðtm − tmþ1Þ
X
i1���in

hijυ̂μi1 � � � υ̂μin jji

¼
X∞
n¼0

in

n!
Lnpμ1pμ2 � � �pμnhijυ̂μi1 � � � υ̂μin jji

¼ hij exp ðiLp · υ̂Þjji; ðC11Þ
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where we used Eq. (C7) relation,

Yn
k¼1

Z
L

0

dtk
Yn−1
m¼1

θðtm − tmþ1Þ ¼
Ln

n!
ðC12Þ

and the fact that the indices μ; ν; ρ;… are saturated by the
symmetric terms pμpνpρ � � �, so that the sum over permu-
tations of indices i1; i2;…in gives another n! factor. On the
r.h.s. of (C11), the υ̂μ are matrices πðυ̂μÞ in the given
soð4; 1Þ representation.

APPENDIX D: MATRIX REPRESENTATION
FOR THE SPIN-1 SECTOR

1. The relation between l= 1 representation
of SOð4;1Þ and the DKP algebra

For k ¼ 1 Eq. (41), βμ ¼ −iυ̂μ gives

β3μ ¼ ημμβμ: ðD1Þ

Plugging this into (40), we obtain, for ρ ¼ ν and μ ≠ ν,

βμβ
2
ν − 2βνβμβν þ β2νβμ ¼ βμηνν:

Multiplying from the right by βν and using (D1) follow

β2νβμβν ¼ 2βνβμβ
2
ν: ðD2Þ

Multiplying from the right and left by βν follow, respec-
tively,

β2νβμβ
2
ν ¼ 2βνβμβνηνν

βνβμβνηνν ¼ 2β2νβμβ
2
ν

�
⇒ βνβμβν ¼ 0 μ ≠ ν; ðD3Þ

so that (D2) becomes

βμβ
2
ν þ β2νβμ ¼ βμηνν μ ≠ ν: ðD4Þ

Now, we take μ ≠ ν ≠ ρ in (40), multiply from the left
twice by βν and use (D3) and (D1) to get

βνβμβρηνν þ β2νβρβμβν ¼ 0 μ ≠ ν ≠ ρ:

Finally, we use relation (D4) and obtain

βνβμβρ þ βρβμβν ¼ 0 μ ≠ ν ≠ ρ: ðD5Þ

Relations (D1), (D4), and (D5) define the DKP (Duffin-
Kemmer-Petiau) algebra,

βμβρβν þ βνβρβμ ¼ βμηνρ þ βνημρ: ðD6Þ

2. Five-dimensional representation of DKP
matrices for spin-0

The DKP matrices (44) admit a five-dimensional irre-
ducible representation that carries the degrees of freedom of
a spin-0 field theory. We here report an explicit expression
for the matrices in this representation [14]. These are
given as

β0 ¼

0
BBBBBB@

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

1
CCCCCCA
; β1 ¼

0
BBBBBB@

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 −1 0 0 0

1
CCCCCCA
; β2 ¼

0
BBBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 −1 0 0

1
CCCCCCA
; β3 ¼

0
BBBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 −1 0

1
CCCCCCA
:

ðD7Þ

Notice that with this definition the spin-0 β matrices coincide with the defining representation for the generators
corresponding to the “momentum sector” of SOð4; 1Þ, i.e., βμ ≡Mμ4, where ðMABÞKL ≔ ηAKδKL − ηBKδAL (where here
ηAB ¼ diagð1;−1;−1;−1;−1Þ). In this representation, the projection of the field is

ψ ¼

0
BBBBBB@

π0

π1

π2

π3

φ

1
CCCCCCA

⟶ ϕ ¼ Pψ ¼

0
BBBBBB@

0

0

0

0

φ

1
CCCCCCA
: ðD8Þ
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3. Ten-dimensional representation of DKP matrices for spin-1

The ten-dimensional representations for the β matrices can be given as [22]

β0 ¼

0
BBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCCCCCA

; β1 ¼

0
BBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 −1 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCCCCCA

;

β2 ¼

0
BBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCCCCCA

; β3 ¼

0
BBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCCCCCA

: ðD9Þ

With these representations, the field ψ is projected as

ψ ¼

0
BBBBBBBBBBBBBBBBBBB@

F23

F31

F12

F01

F02

F03

A1

A2

A3

A0

1
CCCCCCCCCCCCCCCCCCCA

⟶ Aμ ¼ Rμψ ¼

0
BBBBBBBBBBBBBBBBBBB@

0

0

0

0

0

0

0

0

0

Aμ

1
CCCCCCCCCCCCCCCCCCCA

; ðD10Þ

while

Āμ ¼ −ψ†η0R
†
μ ¼ ð 0 0 0 0 0 0 0 0 0 ημμAμ Þ; ðD11Þ

so that the scalar product is given by X
μ

ĀμAμ ¼ AμAμ ¼ ημνAμAν ¼ AμAμ: ðD12Þ
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