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We carry out a systematic study on the motion of test particles in the region inner to the horizon of a
hyperbolically symmetric black hole. The geodesic equations are written and analyzed in detail. The
obtained results are contrasted with the corresponding results obtained for the spherically symmetric case.
It is found that test particles experience a repulsive force within the horizon, which prevents them to reach
the center. These results are obtained for radially moving particles as well as for particles moving in the
θ − R subspace. To complement our study we calculate the precession of a gyroscope moving along a
circular path (nongeodesic) within the horizon. We obtain that the precession of the gyroscope is retrograde
in the rotating frame, unlike the precession close to the horizon (R ¼ 2mþ ϵ) in the Schwarzschild
spacetime, which is forward.
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I. INTRODUCTION

In a recent paper [1] a global description of the
Schwarzschild black hole was proposed, which sharply
differs from the “classical” picture of the spherically sym-
metric black hole. Themotivation for this proposalwas based
on thewell-known fact that any transformation thatmaintains
the static form of the Schwarzschild metric (in the whole
space-time) is unable to remove the singularity in the line
element [2]. In other words, any coordinate transformation
allowing the manifold to extend over the whole space-time
(including the region inner to the horizon), necessarily
implies that the metric is nonstatic within the horizon (see
for example [3–7]). A simpleway to arrive at this conclusion
consists in noticing that the Schwarzschild horizon is also a
Killing horizon, implying that the timelike Killing vector
outside the horizon becomes spacelike inside it. If we
recall that a static observer is one whose four-velocity is

proportional to the Killing timelike vector [8], it follows that
no static observers can be defined inside the horizon. Further
discussion on this point may be found in [9].
Then, based on the physical point of view that any

equilibrium final state of a physical process should be
static, the existence of a static solution would be expected
over the whole space-time. To achieve that, the following
scheme was proposed in [1].
Outside the horizon (R > 2m), one has the usual

Schwarzschild line element corresponding to the spheri-
cally symmetric vacuum solution to Einstein equations,
which can be written in polar coordinates in the form

ds2 ¼ −
�
1 −

2m
R

�
dt2 þ dR2

ð1 − 2m
R Þ

þ R2dΩ2;

dΩ2 ¼ dθ2 þ sin2θdϕ2: ð1Þ
As is well known, this metric is static and spherically

symmetric, meaning that it admits four Killing vectors:

χð0Þ ¼ ∂t; χð2Þ ¼ − cosϕ∂θ þ cot θ sinϕ∂ϕ

χð1Þ ¼ ∂ϕ; χð3Þ ¼ sinϕ∂θ þ cot θ cosϕ∂ϕ: ð2Þ
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However, when R < 2m the signature changes from
ð−;þ;þ;þÞ to ðþ;−;þ;þÞ and an apparent line element
singularity appears at R ¼ 2m. Of course, as is also well
known, these drawbacks can be removed by coordinate
transformations, but at the price that, as mentioned before,
the staticity is lost within the horizon.
In order to save the staticity inside the horizon, the model

proposed in [1] describes the space-time as consisting of a
complete four-dimensional manifold [described by (1)] on
the exterior side and a second complete four-dimensional
solution in the interior. Additionally a change in signature,
as well as a change in the symmetry at the horizon was
required. The θ − ϕ submanifolds have a spherical sym-
metry on the exterior and hyperbolic symmetry in the
interior. The two meet only at R ¼ 2m, θ ¼ 0.
Thus the model permits for a change in symmetry, from

spherical outside the horizon to hyperbolic inside the
horizon. Doing so, one has a static solution everywhere,
but the symmetry of the R ¼ 2m surface is different at both
sides of it. We have to stress that we do not know if there is
any specific mechanism behind such a change of symmetry
and signature. However, the main point is that the change of
symmetry (and signature) was the only way we have found
to obtain a globally static solution.
Thus, the solution proposed for R < 2m is

ds2 ¼
�
2m
R

− 1

�
dt2 −

dR2

ð2mR − 1Þ − R2dΩ2;

dΩ2 ¼ dθ2 þ sinh2θdϕ2: ð3Þ

This is a static solution with the ðθ;ϕÞ space describing a
positive Gaussian curvature.
Besides the timelike Killing vector χð0Þ ¼ ∂t, it admits

three additional Killing vectors which are

χð1Þ ¼ ∂ϕ; χð2Þ ¼ − cosϕ∂θ þ coth θ sinϕ∂ϕ;

χð3Þ ¼ sinϕ∂θ þ coth θ cosϕ∂ϕ: ð4Þ

A solution to the Einstein equations of the form given by
(3), defined by the hyperbolic symmetry (4), was first
considered by Harrison [10], and has been more recently
the subject of research in different contexts (see [11–17]
and references therein).
In [1], a general study of radial geodesic at θ ¼ 0 was

presented, leading to some interesting conclusions about
the behavior of a test particle in this new picture of the
Schwarzschild black hole. Our purpose in this work is to
carry out a complete study on the geodesics in the region
inner to the horizon. Furthermore, some erroneous con-
clusions about the motion of test particles along the θ ¼ 0
axis presented in [1] will be corrected.
As we shall see here, very important differences appear

in the behavior of test particles inside the horizon, when
this region is described by (3), as compared with the results

obtained for the classical black hole picture. Particularly
relevant are the facts that a repulsive acceleration is
experienced by the test particle inside the horizon, and
that test particles can cross the horizon outwardly, but only
along the axis θ ¼ 0.

II. THE GEODESICS

The equations governing the geodesics may be derived
from the Lagrangian

2L ¼ gαβ _xα _xβ; ð5Þ
where the dot denotes differentiation with respect to an
affine parameter s, which for timelike geodesics coincides
with the proper time. Then, the Euler-Lagrange equations,

d
ds

�∂L
∂ _xα

�
−

∂L
∂xα ¼ 0; ð6Þ

lead to the geodesic equations, which may also be written in
its usual form,

ẍα þ Γα
βγ _x

β _xγ ¼ 0: ð7Þ
Although the general characteristics of geodesics for

R > 2m are very well known, here we include a very brief
resume, in order to contrast these with the results that we
shall obtain for R < 2m.

A. Geodesics for R > 2m (Schwarzschild)

For the metric (1) the geodesic equations (6) are

̈tþ 2m_t _R
R2ð1 − 2m

R Þ
¼ 0; ð8Þ

R̈
1 − 2m

R

−
_R2m

R2ð1 − 2m
R Þ2

þm_t2

R2
− R_θ2 − R _ϕ2sin2θ ¼ 0; ð9Þ

θ̈R2 þ 2R _R _θ−R2 _ϕ2 sin θ cos θ ¼ 0; ð10Þ

ϕ̈sin2θ þ 2 _R _ϕ sin2θ
R

þ 2 _ϕ _θ sin θ cos θ ¼ 0: ð11Þ

As is well known, there are unbounded orbits as well as
bounded ones. In this latter case we have elliptic orbits with
a perihelion shift. There are also circular orbits, which may
be stable or unstable.
Let us first consider circular geodesics ( _R ¼ _θ ¼ 0), then

it follows from (8) and (11) that ̈t ¼ ϕ̈ ¼ 0, and from (10)
we obtain

R2 _ϕ2 sin θ cos θ ¼ 0; ð12Þ
which implies that circular geodesics do exist on the plane
θ ¼ π=2. Of course, due to the spherical symmetry, if the
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particle is not on this plane we can always rotate coor-
dinates until it is. Accordingly without loss of generality we
may choose θ ¼ π=2.
Next, from (9) we obtain

m_t2

R2
− R _ϕ2 ¼ 0; ð13Þ

then defining the angular velocity as ω ¼ _ϕ
_t we obtain the

Kepler law,

ω2 ¼ m
R3

: ð14Þ

Let us now define a “velocity” by [18]

Wi ¼ dxiffiffiffiffiffiffiffiffiffiffi−g00
p

dx0
; ð15Þ

with

dxi ¼ ð0; dx1; dx2; dx3Þ: ð16Þ
Then for the tangential velocity of a circular orbit we find

W2 ≡ jWiWij ¼ ω2R2

�
1 −

2m
R

�
−1
: ð17Þ

In the weak field limitm=R ≪ 1 we recover the classical
expression W ¼ ωR. The geodesics are null, timelike or
spacelike if W ¼ 1; < 1; > 1 respectively.
Let us now focus on the radial motion of test particles.

First of all, notice that as a consequence of the symmetry
(spherical and time independence) we have three constants
of motion which are energy and angular momentum
(magnitude and direction), defined respectively by (on
the plane θ ¼ π=2)

∂L
∂_t ¼ constant≡ E ¼ −_t

�
1 −

2m
R

�
; ð18Þ

∂L
∂ _ϕ ¼ constant≡ L ¼ _ϕR2; ð19Þ

∂L
∂ _θ ¼ constant≡ Pθ ¼ _θR2: ð20Þ

Then the first integral of (9) may be written as

_R2 ¼ E2 − V2; ð21Þ

with

V2 ¼
�
1 −

2

y

��
L̃2

y2
þ 1

�
ð22Þ

where y≡ R=m, L̃2 ≡ L2

m2.

The above equation is the same as equation (10) in [1].
However in this reference it was used to study the motion
inside the horizon, which obviously is incorrect [the
potential V given by (22) is correct but valid only outside
the horizon].
For the motion along the axis θ ¼ 0 we have L ¼ 0, then

for the value of energy given in Fig. 1, all possible radial
geodesics (for R > 2m) extend between the horizon (the
vertical line) and the value of y where the horizontal line
crosses the curve V2 as given by (22). We shall discuss the
behavior of the particle for R < 2m in the next subsection.
For larger values of E, such that E > V, unbounded
trajectories are allowed.
For θ ¼ π=2 and the values of energy E and the angular

momentum L̃ given in Fig. 2, the horizontal line crosses the
curve V2 as given by (22) (for R > 2m) at two points, say
y1, y2 (y2 > y1). Thus there are radial geodesics, outside the
horizon, in the interval y1 > y > 2, and unbounded tra-
jectories for y > y2. The unstable circular geodesic corre-
sponds to the value of E ¼ Ec. The region inner to the
horizon shall be considered in the next subsection.
All the results above are well known, and apply for

R > 2m.

FIG. 1. V2 as function of y for θ ¼ 0. The vertical line is
the horizon. The horizontal line corresponds to the value of
E2 ¼ 0.315.

FIG. 2. V2 as function of y for θ ¼ π=2, and L̃2 ¼ 55. The
vertical line is the horizon. The lower horizontal line corresponds
to the value of E2 ¼ 1.71. The higher horizontal line corresponds
to the value of E2

c ¼ 2.42.
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B. Geodesics for the hyperbolically
symmetric black hole (R < 2m)

Let us now analyze the geodesic structure for the
region within the horizon, where we assume the space-
time to be described by the hyperbolically symmetric
solution (3).
Using (3) we obtain from (6) or (7)

̈t −
2m_t _R

R2ð2mR − 1Þ ¼ 0; ð23Þ

R̈þ
_R2m

R2ð2mR − 1Þ −
m_t2ð2mR − 1Þ

R2

− R_θ2
�
2m
R

− 1

�
− R _ϕ2sinh2θ

�
2m
R

− 1

�
¼ 0; ð24Þ

θ̈R2 þ 2R _R _θ−R2 _ϕ2 sinh θ cosh θ ¼ 0; ð25Þ

ϕ̈þ 2 _R _ϕ

R
þ 2 _ϕ _θ coth θ ¼ 0: ð26Þ

Let us first consider circular geodesics along the ϕ

direction. Thus _R ¼ _θ ¼ 0, and it follows from (25)

R2 _ϕ2 sinh θ cosh θ ¼ 0; ð27Þ

from which we can see that, unlike the case R > 2m, there
are not circular geodesics in the ϕ direction, not even
unstable ones.
Furthermore, from (24) it follows that

m_t2

R2
þ R _ϕ2sinh2θ ¼ 0; ⇒ ω2 ¼ −

m
R3sinh2θ

ð28Þ

which is clearly unacceptable, and confirms the conclu-
sion above.
Let us now consider geodesics along the θ direction, i.e.,

_R ¼ _ϕ ¼ 0, then it follows from (24)

m_t2

R2
þ R_θ2 ¼ 0; ⇒

_θ2

_t2
¼ −

m
R3

; ð29Þ

implying that there are not geodesics exclusively along the
θ direction.
More generally if we assume _R ¼ 0 then it follows

from (24)

m_t2

R2
þ R_θ2 þ R _ϕ2sinh2θ ¼ 0; ð30Þ

implying that no motion is possible unless _R ≠ 0.
If we assume that _ϕ ¼ 0 then it follows at once from (25)

that

_θR2 ¼ constant ⇒ Pθ ¼ constant; ð31Þ

whereas, if we assume _θ ¼ 0, then it follows from (25)
that _ϕ ¼ 0.
Next, let us assume that at some given initial s ¼ s0 we

have _θ ¼ 0, then it follows at once from (25) that such a
condition will propagate in time only if θ ¼ 0 or _ϕ ¼ 0. In
other words, any θ ¼ constant trajectory is unstable except
θ ¼ 0, unless _ϕ ¼ 0. It is worth stressing the difference
between this case and the situation in the R > 2m region
[see (10)].
Thus only the following cases are allowed:
(1) Purely radial geodesics _R ≠ 0, _θ ¼ _ϕ ¼ 0.
(2) Geodesics in the R, θ plane (i.e., _ϕ ¼ 0; _R; _θ ≠ 0)
(3) The general case _R; _θ; _ϕ ≠ 0.
Let us first consider the radial motion of test par-

ticles inside the horizon. As for the region exterior to
the horizon, we have two constants of motions
which are energy and angular momentum, defined
respectively by

∂L
∂_t ¼ constant≡ E ¼ _t

�
2m
R

− 1

�
; ð32Þ

∂L
∂ _ϕ ¼ constant≡ L ¼ − _ϕR2sinh2θ; ð33Þ

however, the canonical momentum Pθ now is not
conserved, unless _ϕ ¼ 0,

∂L
∂ _θ ≡ Pθ ¼ −_θR2: ð34Þ

For the radial motion along the symmetry axis θ ¼ 0,
both L and Pθ vanish. Also, as mentioned before, if we
assume that at some initial time _θ ¼ 0, then the trajectory
along the θ ¼ 0 axis will be stable in time.
Then, the first integral of (24) with _ϕ ¼ _θ ¼ 0 reads

_R2 ¼ E2 − V2; ð35Þ

with

V2 ¼
�
2

y
− 1

�
; ð36Þ

where y≡ R=m.
The above equation is the same as equation (15) in [1].

However in this latter reference it was used to study the
motion outside the horizon, which obviously is incorrect.
Again, the potential V given by (36) is correct but valid
only inside the horizon.
As we see from Fig. 1, for the given value of E, the test

particle inside the horizon never reaches the center, moving
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between the point where the horizontal line crosses V2 [as
given by (36)] and the horizon. In principle the particle may
cross the horizon and bounces back at the point (outside the
horizon) where the horizontal line crosses V2 [as given
by (22)].
Thus for this particular value of energy we have a

bounded trajectory with extreme points at both sides of
the horizon. For sufficiently large (but finite) values of
energy, the particle moves between a point close to, but at
finite distance from, the center and R → ∞.
Two main conclusions emerge at this point, for the test

particle moving under the conditions stated above:
(1) The particle never reaches the center, approaching it

asymptotically as E → ∞.
(2) The particle may cross the horizon, not only in-

wardly but also outwardly.
The sharp difference between this behavior of the test
particle inside the horizon and the corresponding behavior
in the classical picture of the Schwarzschild black hole does
not need to be further emphasized.
Let us now consider the radial motion on the θ ¼ π=2

plane. First of all we observe that, as mentioned before, if
we want to remain on that plane, inside the horizon, we
must have _ϕ ¼ L ¼ 0, and the situation is very similar to
the case θ ¼ 0, with one important difference; now the
trajectory is unstable against perturbations of the angular
momentum, and we should expect the particle to leave
the θ ¼ π=2 plane. Nevertheless, for the sake of com-
pleteness we have also plotted this case in Fig. 2.
Three main differences between this case and the

situation for R > 2m deserve to be emphasized.
(1) For R > 2m the motion on the plane θ¼constant≠0

is stable.
(2) For R < 2m the motion on the plane θ¼constant≠0

requires L ¼ 0.
(3) Even if L ¼ 0, for R < 2m, the trajectory will

be unstable against perturbations of the angular
momentum.

These conclusions are qualitatively the same for any
θ ¼ constant ≠ 0.
The results exhibited above show that the motion

along the θ ¼ 0 axis is sharply different from other
trajectories. More specifically, the instabilities of the
motion for any θ ¼ constant ≠ 0 trajectory imply that,
unless the particle moves along θ ¼ 0, all trajectories
must involve variations of θ. Therefore, we shall next
find the trajectories of test particles on the plane R − θ
for any ϕ ¼ constant, in which case the momentum Pθ

is constant and L ¼ 0. It is worth noticing that due to
axial symmetry, the motion on any two-dimensional
slice ϕ ¼ constant is invariant with respect to rotations
around the symmetry axis. Therefore the restricted case
L ¼ 0 provides the most relevant physical information
about the motion of the particle without integrating the
full system of geodesic equations.

Then, the first integral of (24) becomes

_R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −

�
2m
R

− 1

��
P2
θ

R2
þ 1

�s
: ð37Þ

Since we are interested in the spatial trajectories, we use

_R ¼ −
Pθ

R2
R0; R0 ¼ dR

dθ
;

to write (37) as

z0 ¼ 1

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − ðz − 1Þðk2z2 þ 1Þ

q
; ð38Þ

where z ¼ 2m
R , and k ¼ Pθ

2m, thus z changes in the domain
ð−∞; 1�. We have integrated the equation above for a wide
range of values of the parameters k, E. The integration was
carried out with the boundary condition that all trajectories
coincide at θ ¼ 0, z ¼ 1.
Two main results emerge from all these models. On the

one hand we found that the test particle never crosses the
horizon outwardly, approaching it as k tends to zero, as
expected from Figs. 1 and 2. To illustrate this point we show
the results of the numerical integration of (38) for the values
indicated in the legends of Figs. 3 and 4, however this
conclusion holds for all possible trajectories with finite
values ofE and k. In these figures the axes cross at the origin
(the center of symmetry) and the length of a line segment
from the center to any point on the curve is given by z and the
angle of this line with the horizontal axis is θ. On the other
hand, we found that the test particle never reaches the center,
approaching it asymptotically as k; E → ∞.
In order to understand the results above, it is convenient

to calculate the four-acceleration of a static observer in the
frame of (3). We recall that a static observer is one whose
four-velocity Uμ is proportional to the Killing timelike
vector [8], i.e.,

Uμ ¼
�

1ffiffiffiffiffiffiffiffiffiffiffiffi
2m
R − 1

p ; 0; 0; 0

�
: ð39Þ

FIG. 3. The trajectory of the test particle in the subspace R − θ,
for k ¼ 1

10000
and E ¼ 3.
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Then for the four-acceleration aμ ≡ UβUμ
;β we obtain for

the region inner to the horizon

aμ ¼
�
0;−

m
R2

; 0; 0

�
; ð40Þ

whereas for the outer region described by (1) we obtain

aμ ¼
�
0;

m
R2

; 0; 0

�
: ð41Þ

The physical meaning of (41) is clear, it represents the
inertial radial acceleration outwardly directed, which is
necessary in order to maintain static the frame, by canceling
the gravitational acceleration exerted on the frame. Since
the former is directed radially outwardly, it means that the
gravitational force is attractive, as expected. However,
inside the horizon the four-acceleration as defined by
(40) is directed inwardly, implying that a repulsive force
is acting on the particle in that region. This remarkable fact
explains the peculiarities of the orbits inside the horizon.
The above discussion may be presented in an alternative

format (see [19] for details). Let us introduce a locally
defined coordinate system (T; X; θ;ϕÞ associated with a
locally Minkowskian observer or, equivalently, a tetrad
field associated with this Minkowskian observer, i.e.,

dX ¼ ffiffiffiffiffiffiffiffiffiffiffi
−gRR

p
dR dT ¼ ffiffiffiffiffi

gtt
p

dt ð42Þ

then for a particle instantaneously at rest inside the horizon,
we have

d2X
dT2

¼ m

R2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mR − 1Þ

q ; ð43Þ

where (3) and (24) have been used. From the above
equation, the repulsion experimented by the particle is
clearly established.
For the Schwarzschild solution (1) for R > 2m, the

corresponding expression reads

d2X
dT2

¼ −
m

R2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2m

R Þ
q ; ð44Þ

indicating the attractive nature of the gravitation force in
that region.

III. GYROSCOPE PRECESSION OF A
GYROSCOPE ALONG A CIRCULAR,

NONGEODESIC PATH

We shall now calculate the precession of a gyroscope
moving along a circular trajectory inside the horizon. Since,
as we have already mentioned, no circular geodesics exist
in that region, the trajectory of the gyroscope cannot be a
geodesic. This calculation can be performed in different
ways, here we shall use the Rindler-Perlick method [20],
which we find particularly suitable for our purpose.
This method consists in transforming the angular coor-

dinate ϕ by

ϕ ¼ ϕ0 þ ωt; ð45Þ
where ω is a constant. Then the original frame is replaced
by a rotating frame. The transformed metric is written in a
canonical form,

ds2 ¼ −e2Ψðdt − ωidxiÞ2 þ hijdxidxj; ð46Þ
with latin indexes running from 1 to 3 and Ψ;ωi and hij
depending on the spatial coordinate xi only (we are
omitting primes). Then, it may be shown that the rotation
three vector Ωi of the congruence of world lines xi ¼
constant is given by [20]

Ωi ¼ 1

2
eΨðdet hmnÞ−1=2ϵijkωk;j; ð47Þ

where the comma denotes partial derivative, and the three
vector Ω is related to the vorticity tensor ωαβ by

ωkj ¼ Ωlηlkj; ð48Þ

where ηlkj ¼ ðdethmnÞ1=2ϵikj is the Levi-Civita tensor
associated to the spatial metric hmn.
It is clear from the above that, since Ωi describes the rate

of rotation with respect to the proper time at any point at
rest in the rotating frame, relative to the local compass of
inertia, then −Ωi describes the rotation of the compass of
inertia (the gyroscope) with respect to the rotating frame.
Thus let us consider a gyroscope moving around the

center along a circular orbit (nongeodesic), and let us
calculate its precession. Since −Ω describes the precession
of the gyroscope relative to the lattice, then after one
revolution the orientation of the gyroscope, in the rotating
frame, changes by

FIG. 4. The trajectory of the test particle in the subspace R − θ
for three values of k, (1=4; 1=6; 1=8) and E ¼ 3.
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Δϕ0 ¼ −ΩeΨΔt: ð49Þ

Obviously, the precession per revolution relative to the
original system is

Δϕ ¼ Δϕ0 þ 2π: ð50Þ

The case of the Schwarzschild metric (R > 2m) has been
calculated in [20] for the θ ¼ π=2 plane. They obtain for
the magnitude of the vorticity Ω [notice that a ω is missing
in Eq. (38) in [20] ]:

Ω ¼ ωð1 − 3m
R Þ

1 − 2m
R − R2ω2

; ð51Þ

and for the total precession Δϕ

Δϕ ¼ −2π
� ð1 − 3m

R Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m

R − R2ω2
p − 1

�
: ð52Þ

From the expressions above, we see that at R ¼ 3m the
orientation of the gyroscope is locked to the lattice (Ω ¼ 0).
In the region between the horizon and R ¼ 3m, if ω is
sufficiently small so that the orbits are timelike, Ω becomes
negative and the precession of the gyroscope is forward
even in the rotating frame (Δϕ0 > 0). Thus the total
precession Δϕ exceeds 2π.
However for the region interior to the horizon, as

described by (3) the situation is completely different.
Indeed, retracing the same steps leading to (51) and (52)
we obtain (for the plane θ ¼ π=2)

Ω ¼ ωαð3mR − 1Þ
2m
R − 1 − R2ω2α2

; ð53Þ

Δϕ0 ¼ −
2παð3mR − 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
R − 1 − R2ω2α2

p ; ð54Þ

Δϕ ¼ −2π
�

αð3mR − 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
R − 1 − R2ω2α2

p − 1

�
; ð55Þ

where α≡ sinhðπ=2Þ.
As it is apparent from (54), for sufficiently small ω, so

that the orbits are timelike, in the region inner to the horizon
described by the metric (3), the precession of the gyroscope
is retrograde in the rotating frame. Obviously the total
precession in the original frame is now smaller than 2π, as it
happens for the Thomas precession in Minkowski space-
time [see Eqs. (32) and (33) in [20] ].

IV. CONCLUSIONS

In the classical picture of the Schwarzschild black hole,
any particle inside the horizon is bound to reach the center

in a finite proper time interval. This is the basic fact behind
the classical black hole paradigm. However, as we have
seen here, if we adopt the point of view proposed in [1], we
find that the kinematic and dynamic properties of a test
particle inside the horizon are quite different. Indeed, not
only are the test particles not condemned to displace to the
center, but they cannot reach the center for any finite value
of energy as shown in Figs. 1, 2, and 4. This fact is brought
about by the existence of a repulsive force within the
horizon, which pushes the test particle away from the
center.
Besides the feature commented above, there is another

important difference with respect to the classical picture. It
consists in the fact that the particles inside the horizon may
in principle leave that region along the axis θ ¼ 0. Thus,
the particle may come from R → ∞ crosses the horizon,
bounces back before reaching the center and crosses the
horizon outward. As we have seen this can be done only
along this axis; all other trajectories, as illustrated by Figs. 2
and 3, never cross the horizon. This point was already
emphasized in [1], although it must be stressed that other
conclusions, concerning the motion of test particles pre-
sented in [1], are erroneous due to an incorrect use of
Eqs. (34) and (35). Also, it is worth noticing that it is
possible that a quantum theory would permit a particle to
tunnel across the horizon for θ ≠ 0.
Finally we have seen that the precession of a gyroscope

moving along a circle inside the horizon is retrograde,
whereas, close to the horizon, but at the outside of it
(R ¼ 2mþ ϵ, where ϵ ≪ 2m and positive), the precession
is forward.
Before closing this section we would like to raise two

questions, and to speculate about their possible answers.
(1) What is the physical origin of the repulsion expe-

rienced by the test particle inside the horizon?
(2) What could be the observational consequences of the

fact that the test particle could leave the horizon
along the θ ¼ 0 axis?

With respect to the first question, let us mention that
repulsive forces in the context of general relativity have
been reported before, in many different scenarios, (see
[19,21–28]). However, neither of these references provides
a satisfactory physical explanation about the origin of such
an effect. Although this requires a deep and careful
analysis, which is beyond the scope of this manuscript,
we speculate that the repulsion might be related to quantum
vacuum of the gravitational field.
With respect to the second question, we speculate that

the hyperbolically symmetric black hole might be invoked
to explain extragalactic relativistic jets.
Indeed, relativistic jets are highly energetic phenomena

which have been observed in many systems (see [29,30]
and references therein), usually associated with the pres-
ence of a compact object, and exhibiting a high degree of
collimation. The spin and the magnetic field of a compact
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object are some of the many mechanisms proposed so far to
explain this phenomenon [31]. However, no consensus has
been reached until now, concerning the basic mechanism
for its origin. Still worse, the basic physical ideas under-
lying the occurrence of these jets are hidden by the great
number of models available (see [31–36] and references
therein) and their complexity, implying a large number of
assumptions. Under these circumstances, we speculate that
the possible ejection, and collimation, of test particles along
the θ ¼ 0 axis, produced by the repulsive force acting
within the horizon, could be considered as a possible
engine behind the jets.
To summarize, even though our proposal for the

region inside the horizon is highly “heterodox,” the results
ensuing from its adoption lead to specific observational

consequences and provide a possible explanation to some
so far unresolved astrophysical quandaries. It goes without
saying that the final word about the physical viability of the
hyperbolically symmetric black hole belongs to the obser-
vational evidence. Nevertheless, in the light of the results
here presented we believe that until such evidence is
provided, our proposal is significant enough as to consider
it further.
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