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Recently, we have shown that dynamically stable ergostar solutions (equilibrium neutron stars that
contain an ergoregion) with a compressible and causal equation of state exist [A. Tsokaros, M. Ruiz, L.
Sun, S. L. Shapiro, and K. Uryū, Phys. Rev. Lett. 123, 231103 (2019)]. These stars are hypermassive,
differentially rotating, and highly compact. In this work, we make a systematic study of equilibrium models
in order to locate the position of ergostars in parameter space. We adopt four equations of state that differ in
the matching density of a maximally stiff core. By constructing a large number of models both with
uniform and differential rotation of different degrees, we identify the parameters for which ergostars appear.
We find that the most favorable conditions for the appearance of dynamically stable ergostars are a
significant finite density close to the surface of the star (i.e., similar to self-bound quark stars) and a small
degree of differential rotation.

DOI: 10.1103/PhysRevD.101.064069

I. INTRODUCTION

One important open question in modern astrophysics is
the mechanism that powers relativistic jets in short gamma-
ray bursts like the one accompanying event GW170817
[1–3]. Within the membrane paradigm, these highly ener-
getic phenomena are typically attributed to the black hole
horizon [4]. On the other hand, according to more recent
studies [5–7], it is the ergosphere and its threading by
magnetic field lines that is chiefly responsible for the jet’s
existence, while a black hole horizon is not necessary. An
ergostar is a star that contains an ergoregion, i.e., a region
where there are no timelike static observers and all
trajectories (timelike or null) must rotate in the direction
of rotation of the star (frame dragging). For an ergostar, the
question relevant to jet formation is whether the ergoregion
is preserved in the presence of a dissipative mechanism,
such as viscosity or a turbulent magnetic field. In particular,
when an ergostar is threaded by a magnetic field, is stability
maintained over many Alfvén timescales, or does the
turbulent magnetic viscosity destabilize the star before a
jet can be launched?
The question regarding the dynamical stability of an

ergostar with a causal and compressible equation of state
(EOS) was answered positively in [8]. There, the ALF2cc
EOS was adopted to create ergostars that evolved stably for
∼150 dynamical times or ∼30 rotation periods. These
equilibria, when perturbed in a radial or nonaxisymmetric
way, showed no significant mode growth, while their shape

and ergoregion remained intact. At the same time, poly-
tropic models of ergostars presented in [9] proved to be
unstable to radial collapse. The secular evolution of stars
containing ergoregions is governed by the fact that the
timelike Killing vector associated with the stationarity of
the spacetime becomes spacelike inside the ergoregion,
which implies a negative energy with respect to an
asymptotic observer for a freely moving particle there.
As a consequence, a nonaxisymmetric perturbation that
radiates positive energy at infinity will make the negative
energy in the ergoregion even more negative, leading to the
so-called Friedman instability [10,11]. The timescale for
this instability was initially considered to be longer than the
Hubble time [12], but more recently, it was found that it can
be quite small [13,14] (for small mode numbers).
On the other hand, since the original work of Wilson

[15], it seems that differential rotation plays a crucial role in
the appearance of an ergoregion (see also the models of
[9,16,17]). In the presence of magnetic fields, this differ-
ential rotation is eventually suppressed due to magnetic
winding and the magnetorotational instability [18,19],
which in turn implies that jet formation (if dependent on
the existence of the ergoregion) may be inhibited. Given the
fact that we were able to construct dynamically stable,
differentially rotating ergostars, the answer regarding the
ergosphere hypothesis on jet formation depends crucially
on whether a dissipative mechanism will affect the structure
of the ergostar sufficiently to remove the ergoregion before
powering a jet. Alternatively, they may drive an ergostar, if
hypermassive, to collapse to a black hole. If the ergosphere
is indeed responsible for the formation of a jet, then in this*tsokaros@illinois.edu
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case, its lifetime may be different from the case where a
black hole is the power source.
In order to probe the possible scenarios described above,

one needs to know the most favorable equilibria that
contain ergoregions. Is it possible to have ergostars that
are uniformly rotating (with a compressible and causal
EOS)? Is it possible to have supramassive [20] ergostars,
i.e., uniformly rotating ergostars with mass larger than the
maximum Tolman-Oppenheimer-Volkoff (TOV) limit but
less than the maximum mass at the mass-shedding (Kepler)
limit? To answer such questions, we perform in this work a
parameter study probing the existence of ergostars. Using
four EOSs and different degrees of differential rotation, we
map the location of the ergostars on mass vs central density
diagrams. Our EOS strategy is similar to the one employed
in [8]. This time, we start with the SLy EOS [21] and
construct a large number of uniformly and differentially
rotating models using 5 degrees of differential rotation.
Then we construct three additional EOSs based on the SLy
one where we progressively substitute an inner core at
matching densities ρ0nuc; 2ρ0nuc; 4ρ0nuc with the maximally
stiff EOS, which has the speed of sound equal to the speed
of light [see Eq. (4)]. Here, ρ0nuc ¼ 2.7 × 1014 g=cm3 is
nuclear matter density. Sequences of constant angular
momentum and constant rest mass are constructed and
stability questions are addressed.

II. NUMERICAL METHODS

Our equilibria are constructed with the Cook-Shapiro-
Teukolsky (CST) code [20], which solves the Einstein
equations for rotating equilibria under the assumptions of
stationarity and axisymmetry. The spacetime element (units
of G ¼ c ¼ 1) is in the form of

ds2 ¼ −eγþρdt2 þ e2αðdr2 þ r2dθ2Þ
þ eγ−ρr2sin2θðdϕ − ωdtÞ2; ð1Þ

where γ, ρ, α, ω are all functions of r and θ only, while the
stress-energy tensor is written as

Tμν ¼ ðρ0 þ ρi þ PÞuμuν þ Pgμν; ð2Þ

where ρ0 is the rest-mass density, ρi the internal energy
density, and P the pressure at the rest frame of the fluid.
Here, uμ is the fluid four-velocity that for a circular flow
considered here may be written as uμ ¼ utðtμ þΩϕμÞ,
where tμ is the timelike Killing vector that defines
stationarity, and ϕμ is the azimuthal spacelike Killing
vector that defines axisymmetry. The angular velocity Ω
is constant for uniform rotation but a function of r and θ
when differential rotation is considered. The vanishing
divergence of the stress-energy tensor, together with the
assumptions of stationarity and axisymmetry, lead to the
Euler equation of hydrostatic equilibrium [20]. In the case

of uniform rotation, the Euler equation can be directly
integrated, while in the case of differential rotation, it can
be integrated when the specific angular momentum j ¼
utuϕ is a function of Ω itself [20,22]. In this work, we will
consider either uniform rotation or differential rotation
described by the Komatsu-Eriguchi-Hachisu law [9,23]
jðΩÞ ¼ A2ðΩc − ΩÞ, whereΩc is the angular velocity at the
center of the star, and A is a parameter that controls the
amount of differential rotation. To probe for the existence
of the ergosphere, we examine at every point the sign of the
norm of the vector tμ, and in particular, we identify where
the condition

t · t ¼ gtt ¼ eγ−ρðω2r2sin2θ − e2ρÞ > 0 ð3Þ
is satisfied.
The first EOS that we consider here uses the SLy EOS

[21] in the form of a piecewise representation P ¼ Kiρ
Γi
0

[24]. The matching rest-mass densities ρ0i as well as
the polytropic indices Γi are shown in Table I. A
polytropic constant is calculated from the reference
values of pressure (2.42103 × 1034 dyn=cm2) and density
(5.01187 × 1014 g=cm3), while the rest of the polytropic
constants are calculated from the equality of pressure at
the dividing densities of Table I. The other three EOSs
(SLycc1, SLycc2, and SLycc4) are based on the SLy one
where we progressively substitute an inner core at
matching densities ρ0nuc; 2ρ0nuc, and 4ρ0nuc, with the
maximally stiff EOS [25]

P ¼ σðϵ − ϵsÞ þ Ps: ð4Þ
Here, σ is a dimensionless parameter, ϵ ¼ ρ0 þ ρi is the
total energy density, and Ps the pressure at ϵs. The
solutions presented in this work assume σ ¼ 1.0, i.e., a
core at the causal limit, which represents the compress-
ible EOS that yields configurations of maximal compact-
ness [26]. Equation (4) relates the pressure to the total
energy density when ρ0 ≥ ρ0s ¼ ρ0nuc; 2ρ0nuc; 4ρ0nuc for
the SLycc1, SLycc2, and SLycc4 EOSs, respectively,
while for ρ0 ≤ ρ0s the SLy EOS is recovered. One can
express the pressure in terms of the rest-mass density in
a polytropiclike form by integrating the first law of the
thermodynamics dϵ=ðϵþ PÞ ¼ dρ0=ρ0. Using Eq. (4),
we get for ρ0 ≥ ρ0s,

TABLE I. The SLy EOS. In the first column are the dividing
rest-mass densities in g=cm3, while in the second column are the
polytropic indices.

ρ0i Γi

(� � �) 2.85100
1.00000 × 1015 2.98800
5.01187 × 1014 3.00500
1.46220 × 1014 1.35692
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P ¼ 1

σ þ 1
ðσκρσþ1

0 þ Ps − σϵsÞ; ð5Þ

ϵ ¼ 1

σ þ 1
ðκρσþ1

0 þ σϵs − PsÞ; ð6Þ

h ¼ κρσ0; ð7Þ

where the constant κ ¼ hs=ρσ0s, and h ¼ ðρ0 þ ρi þ
PÞ=ρ0 is the specific enthalpy. The value hs can be
evaluated from the polytrope outside the core.

III. RESULTS

For the four EOSs described above the maximum
spherical mass MTOV

max , the maximum mass at the mass-
shedding limit under uniform rotationMKep

max, as well as their
corresponding rest-mass densities are shown in Table II.
We note here that the SLy EOS has a speed of sound cs ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
dP=dϵ

p
larger than the speed of light when ρ0 >¼

1.999 × 1015 g=cm3 which is identical to the density at
the maximum mass. For the other three EOSs, since 4ρ0nuc
is less than this value, we always have cs ≤ c.
Figure 1 is devoted to the SLy EOS. The top and middle

rows depict the position of ergostars (green crosses) in a
mass vs central rest-mass density diagram.1 Every panel
corresponds to a different degree of differential rotation
starting from uniform rotation in the top left panel where
Â−1 ¼ 0 and progressing to a higher degree of differential
rotation in the right middle panel where Â−1 ¼ 1. In each
plot, we show the spherical solutions (TOV black curve),
the mass-shedding limit of uniformly rotating stars (red
curve), sequences of constant rest massM0 (orange dashed
curves), sequences of constant angular momentum J
(brown dashed curves), and the curve that joins the
maximum mass points (turning points) on every J ¼
const sequence (blue dashed curve). In a typical calcu-
lation, for every Â (i.e., for every panel), we divide a range
of densities starting from a low density up to the limiting
point 2.0 × 1015 g=cm3 into 60 intervals, and using the
CST code we compute 60 constant rest-mass density
sequences from the spherical limit (black curve) all the
way up into more massive models that have small ratios
Rp=Re until the code fails to converge. Here, Rp is the polar
radius. The last points, i.e., the points with the smaller value
of Rp=Re, on every sequence are connected with a dashed
red curve in the panels of the top and middle row in Fig. 1.
As we can see, there are no ergostars for uniformly rotating
models or small differential rotation Â−1 ¼ 0.2 for the SLy
EOS. On the other hand, the largest number of ergostars
appear when Â−1 is approximately in the range 0.4–0.6,

while for larger degrees of differential rotation, they tend to
diminish again.
One important line in these plots is the blue dashed line

which separates the secularly unstable/stable models
against axisymmetric perturbations. For the uniformly
rotating case, it is denoted as the turning point line due
to “turning point theorem” of Friedman et al. [27]: Along a
sequence of uniformly rotating stars with fixed angular
momentum and increasing central density, the configura-
tion of maximum mass marks the onset of secular insta-
bility. The turning point line is also commonly taken to be
the criterion for distinguishing dynamical stability.
Although the analysis of Takami et al. [28] implies that
the loci of secular, dynamical, and turning point lines is
more subtle, they clearly are close to each other. For
differential rotation, there is no analogous theorem, but
there is significant evidence that again the locus of
dynamical stability is very close to the turning point on
J ¼ const curves [29–31]. According to [28,31], the
dynamical instability typically sets in at central densities
slightly below the one that corresponds to the turning point.
In particular, as one moves along a J ¼ const sequence
toward increasing densities, one encounters the secular
instability first, then the dynamical, and finally the turning
point. Given that all three points are very close together and
given the lack of any general theorem, we will assume here
that the turning points mark the beginning of the dynami-
cally unstable region, although the reader should be aware
of the differences discussed above. We also note here that in
the cases with differential rotation, the CST code can go to
large deformations (i.e., small ratios of Rp=Re) that
correspond to toroidal configurations. On the other hand,
in some cases, especially for large masses and smaller
densities, we were not able to find a turning point.
Typically, for those cases a fixed angular momentum
sequence is a monotonically increasing function of mass
as one moves to larger densities. For our present purposes,
we tacitly assume that the last points in those sequences
signify the dynamical instability limit, although in reality
that limit should be on the left at higher densities.2

TABLE II. The four EOSs employed here. The columns are the
maximum spherical mass MTOV

max in units of M⊙, the maximum
mass of the uniformly rotating modelsMKep

max, and the correspond-
ing rest-mass densities in g=cm3.

EOS MTOV
max MKep

max ρTOV0max ρKep0max

SLy 2.061 2.488 1.999 × 1015 1.771 × 1015

SLycc1 4.067 5.280 5.979 × 1014 5.175 × 1014

SLycc2 2.917 3.656 1.139 × 1015 1.022 × 1015

SLycc4 2.222 2.681 1.852 × 1015 1.721 × 1015

1Here we use the notation of the CST code [20] where
Â ¼ A=Re, Re being the equatorial radius.

2It is possible that more fine-tuned codes like [32,33] can go
beyond our calculated models and refine the position of the
turning point in the very high mass differentially rotating regime.
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This implies that all ergostars on and to the right of the
blue dashed lines are dynamically unstable. For the SLy
EOS, Fig. 1, this criterion rules out most of the ergostars,
at least for a mild degree of differential rotation
(Â−1 ¼ 0.4, 0.6). For larger differential rotation, the
ergostars tend to accumulate close to the turning point
line (or more precisely, close to the last model we were
able to calculate), and given the discussion above, the

dynamical stability of these models is questionable, as a
full evolution will be needed for a diagnosis. We also note
here that as differential rotation becomes larger, the
turning point line becomes straighter and rotates counter-
clockwise with respect to the maximum spherical point.
This also implies that all models on and to the right of the
uniformly rotating turning point line are dynamically
unstable irrespective of the degree of differential rotation.

FIG. 1. SLy EOS. Top and middle row depict the location of the ergostars (green cross) in a mass vs central rest-mass density diagrams
for different degrees of differential rotation Â. The panel with Â−1 ¼ 0 (top left) corresponds to uniform rotation. Bottom row shows the
deformation (Rp=Re) and T=W for three differential rotation cases. Blue crosses correspond to ergostars on the left of the turning point
line, while red crosses correspond to the ones on the right.
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In addition, this is true for supramassive as well as
hypermassive stars.
To get a better understanding of the qualitative features

of the SLy ergostars, we plot in the bottom row of Fig. 1
the deformation parameter Rp=Re as well as the rotational
kinetic over the gravitational potential energy T=W for
three representative cases of differential rotation. The
vertical black line corresponds to the density of the
maximum spherical mass, while the red one corresponds
to the density of the maximum uniformly rotating mass.

We find that all models with Â−1 ¼ 0.4, 0.6, 0.8 are
toroidal (i.e., the maximum density is not at the center),
and the larger the differential rotation, the more toroidal
shapes we were able to compute. Note that according to
recent studies [34], extreme toroidal configurations are
dynamically unstable. In the T=W panels, we draw with a
horizontal dashed-dot line the T=W ¼ 0.25 benchmark,
which in many cases provides a crude criterion for the
onset of dynamical instability to nonaxisymmetric (bar)
modes [35,36]. Blue crosses correspond to ergostars on

FIG. 2. Same as Fig. 1 but for the SLycc1 EOS.
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FIG. 3. Same as Fig. 1 but for the SLycc2 (first and second rows) and SLycc4 (third and fourth rows) EOSs.
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the left of the turning point line, while red crosses
correspond to ergostars on the right of the turning
point line.
Figure 2 is similar to Fig. 1, but it corresponds to the

SLycc1 EOS. The effect of the large causal core is
immediately seen even for the uniformly rotating models:
Supramassive ergostars now appear, but they all lie in the
dynamical unstable part of the parameter space. We also
note here that the maximummass of the spherical solutions,
as well as the maximum mass at the mass-shedding limit,
increase considerably from the SLy EOS (by factors of 1.97
and 2.12, respectively). This has already been seen with the
ALF2cc EOS employed in [8,37]. Given the fact that the
SLycc1 and ALF2cc EOSs only differ in the crust (i.e., for
ρ0 ≤ ρ0nuc), it is not surprising that the differences in the
TOV and Kepler lines are minute. In addition, comparing
SLycc1 vs SLy, we see that the densities where the
maximum mass for the spherical and mass-shedding
sequence reduce significantly (by factors of 3.34 and
3.42, respectively; see Table II). Although this may seem
contradictory, it is related to the fact that the density profile
along an axis is quite different from models using a typical
EOS (like SLy or ALF2) without a large causal core.
Instead of a parabolic type, the profile with SLycc1 starts
from a smaller central density, diminishes somewhat all the
way to the surface of the star, where it abruptly reduces to
zero (see Fig. 1 in [37]). In this respect, stars with the
SLycc1 or ALF2cc EOS resemble quark stars that have a
finite surface density.
When differential rotation is considered, the general

trends are (1) the turning point line moves up and turns
counterclockwise with respect to the maximum TOV mass
point, as in Fig. 1. (2) The ergostars move toward smaller
densities well beyond the turning point line, toward the
stable part of the parameter space. (3) For a larger degree of
differential rotation, the ergostars tend to accumulate
toward the turning point line and also the number of them
tends to decrease. When differential rotation is large
enough, the ergostars almost disappear.
The fact that a very mild differential rotation moved

the ergostars from the unstable regime at high densities
on the right of the turning point line to the left at
lower central densities enabled us to find dynamically
stable models [8]. Although these models used a different
EOS (ALF2cc), they do not differ significantly from
the models of Fig. 2 since apart from a small crust, the
rest of the star has the same (causal) EOS. In particular,
the featured model in Fig. 1 of [8] had Â−1 ¼ 0.2, a
central density ρ0 ¼ 4.52 × 1014 g=cm3, and mass M ¼
5.709 M⊙. Looking at the right panel of the top row in
Fig. 2, we can see that indeed such a model lies within the
dynamically stable regime.
From the bottom row panels of Fig. 2, where differential

rotation is small (Â−1 ¼ 0.1,) all ergostars are spheroidal
for the SLycc1 EOS, and they progressively become

toroidal with higher differential rotation (this is in contrast
with the SLy EOS where almost all ergostars found had
toroidal topology). Also, T=W for the spheroidal models is
below the benchmark value of 0.25, while it becomes larger
and reaches the 0.3 value as differential rotation is
increased. We note here that for Â−1 ¼ 0.1, the ergostars
to the right of the blue line (which are the majority of them)
should be unstable to axisymmetric perturbations. For the
small number of ergostars to the left of the red line, the
possibility of dynamical stability is significant. For
Â−1 ¼ 0.2, all models with density larger than approxi-
mately ρ0 ≈ 5 × 1014 g=cm3 should also be unstable to
axisymmetric perturbations, but the ones with less central
density can be stable even with respect to nonaxisymmetric
modes (there are many models with T=W < 0.25 and even
some with T=W > 0.25 can be stable). Similar arguments
can be made for Â−1 ¼ 0.4.
When the causal core is assumed at 2ρ0nuc, ergostars

almost disappear from the uniformly rotating regime (Fig. 3
top left panel). Similar to the SLycc1 EOS, small differ-
ential rotation (Â−1 ¼ 0.2) brings ergostars into the stable
side of the turning point line and, according to Fig. 3
second row left panel, these are possibly stable against
nonaxisymmetric perturbations. As the degree of differ-
ential rotation increases, the turning point line turns
counterclockwise with respect to the maximum spherical
mass point, and the ergostars accumulate toward the end
point of our convergence regime. The middle and right
panels in the second row of Fig. 3 show the deformation
and T=W when Â−1 ¼ 0.4, 0.6 for the SLycc2 EOS. Full
simulations will be needed to probe the fate of these
equilibria. The bottom two rows in Fig. 3 depict the
ergostars when the causal core shifts at 4ρ0nuc. Here, the
EOS is very close to the original SLy, apart from the very
high density regime; thus, the position of the ergostars
resembles the one found in Fig. 1.

IV. DISCUSSION

It has recently been proposed [5,6] that the mechanism
behind the launching of relativistic jets from compact
objects is the ergosphere and not a black hole horizon.
In [7], the authors tested a simplified version of this
scenario by performing a force-free numerical simulation
of a homogeneous ergostar using the Cowling approxima-
tion. They confirmed that the Blandford-Znajek mechanism
is not directly related to the horizon of the black hole by
showing that (a) the magnetic field collimation, (b) the
induced charged density and poloidal currents, and (c) the
electromagnetic luminosity that are produced by a rotating
ergostar are similar to those observed in a rotating black
hole spacetime. Their use of an incompressible EOS
together with their freezing of the gravitational field, raises
doubts regarding the stability of ergostars in a realistic
evolutionary scenario. As in [38–40], we define an incipient
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jet based on the following three characteristics: (1) a
collimated, tightly wound magnetic field, (2) a mildly
relativistic outflow (ΓL > 1.2), and (3) the outflow is
confined by a funnel containing a (nearly) force-free
magnetic field b2=ð2ρ0Þ > 1. Here, b2 ¼ B2=ð4πÞ, and B
is the magnetic field at the poles. In the case of [7], the
absence of all matter does not permit conditions (2) and
(3) to be checked, whichmotivates our efforts to explore the
parameter space of dynamically stable ergostars with a
compressible and causal EOS.
Regarding the Friedman instability, it was shown that the

m ¼ 2 bar mode of a homogeneous ergostar having a
period T ¼ 27M has a growth time τF ≈ 108M [13]. Larger
values of m have even larger τF. On the other hand, the
Alfvén timescale is

τA
M

¼
ffiffiffiffiffiffiffiffi
4πϵ

p

B

�
R
M

�
: ð8Þ

For typical ergostars and B ∼ 1012 G, one gets τA=M∼
106 ∼ τF=100. Therefore, it is improbable that the Friedman
instability will have any effect on the possible formation of
a jet. On the other hand, large magnetic fields (⪆1015 G)
are needed to bring the Alfvén timescale on levels that can
be currently simulated (⪅ 103M) but sufficiently small that
they are not dynamically significant initially.
In this work, we constructed more than ∼30; 000

uniformly and differentially rotating equilibria using four
EOSs in order to probe the parameter space and identify the
parameters under which ergostars appear. The most favor-
able parameters will be adopted in the future for full
magnetohydrodynamical simulations. Using the SLy EOS
as a basis, we constructed three other EOSs by imposing a
causal core at ρ0nuc; 2ρ0nuc, and 4ρ0nuc. We expect that
similar behavior will be found when any other EOS is used
instead of the SLy one. The differential rotation law that we
explored is the so-called “j-const” law, and it will be
interesting in the future to see how robust our findings are
when other differential rotating laws are employed, like

those presented in [41] that model more accurately the
rotation profile of a neutron star merger remnant. In all
cases considered, we calculated the turning point line [27]
and commented on the stability properties of the ergostars
that we found. For a regular EOS like the SLy, most
ergostars appear on the unstable side of the turning point
line, but for small differential rotation, models on the stable
side also appear. These stars typically are highly hyper-
massive and very close to the limits of convergence for the
CST code. Their stability will have to be probed by full
general relativistic simulations as in [8]. For an EOS like
SLycc1, ergostars appear more frequently for a mild degree
of differential rotation. Here, dynamically stable models
exist, as shown in [8]. Given the fact that the stars of this
EOS resemble quark stars, we conjecture that stable
ergostars of quark or strange matter will have more
favorable possibilities for existence. When a causal core
is found deep in the high density regime of a neutron star,
the number of ergostars that we were able to construct
diminished.
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