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The symmetron is a typical example of screened modified gravity, wherein the symmetron force is
dynamically suppressed in dense environments. This allows it to hide in traditional tests of gravity.
However, the past decade has seen great experimental progress toward measuring screened forces in the
laboratory or in space. Screening relies on nonlinearities in the equation of motion, which significantly
complicates the theoretical analysis of such forces. Here, we present a calculation of the symmetron force
between a dense plate and sphere surrounded by vacuum. This is done via semianalytical approaches in two
limiting cases, based on the size of the sphere: large spheres are analyzed via the proximity force
approximation, whilst small spheres are treated as screened test particles. In the intermediate regime we
solve the problem numerically. Our results allow us to make contact with Casimir force experiments, which
often employ a plate and sphere configuration for practical reasons, and may therefore be used to constrain
symmetrons. We use our results to forecast constraints on the symmetron’s parameters for a hypothetical
Casimir experiment that is based on the current state of the art. The forecasts compare favorably to other
leading laboratory tests of gravity, particularly atom interferometry and bouncing neutrons. We thus
conclude that near-future Casimir experiments will be capable of placing tight new bounds on symmetrons.
Our results for the symmetron force are derived in a scale-invariant way, such that although we here focus
on Casimir experiments, they may be applied to any other plate-sphere system, ranging from microscopic
to astrophysical scales.

DOI: 10.1103/PhysRevD.101.064065

I. INTRODUCTION

The accelerated expansion of the Universe has motivated
new classes of scalar-tensor theories [1,2] that go beyond
general relativity (GR) [3]. As the coupling of the scalar
sector to matter is generically not explicitly forbidden by
the symmetries of these scalar-tensor theories, there is in
general no theoretical restriction on the existence of scalar
“fifth forces” between matter particles. On the other hand,

such forces are experimentally tightly constrained in the
Solar System and by laboratory experiments [4–6].
Compatibility with these bounds then requires the fifth
force to be either tuned to be extremely weak, or to be
dynamically suppressed in certain situations.
This latter approach, dubbed as “screening,” has generated

a great deal of interest over the past twodecades [7]. There are
four main classes of screening mechanisms that have been
discovered so far (see [8] for a comprehensive review):
(1) chameleons [9]: The scalar field becomes heavy, and

therefore short-ranged, in dense environments.
(2) Damour-Polyakov [10]: The scalar field decouples

when the coupling to matter is dynamically driven to
zero. Examples are given by the symmetron [11–14]
and the dilaton in the large string coupling limit [15].
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(3) K-mouflage: The steep field gradients of the scalar
field help to suppress fifth forces [16–18].

(4) Vainshtein: Fifth forces are suppressed in regions
where the second derivatives of the scalar field are
sufficiently large [19,20].

The phenomenology of the first twomechanisms turns out to
be similar, i.e., they both screen fifth forces where the surface
Newtonian potential of the body is sufficiently large [21]. For
concreteness, in this paper we focus on symmetrons, even
though extension to other scenarios, particularly chame-
leons, is possible.
Symmetron gravity has been extensively studied in

contexts ranging from cosmological large-scale structure
to laboratory experiments. As mentioned above, the main
observable effect of symmetrons is that matter feels an extra
force compared to the general relativistic gravitational
interaction. Hence the large-scale dark matter distribution
in the Universe is affected and differs from the GR case.
Such changes are investigated in Refs. [22,23]. On smaller
scales, symmetrons are naturally expected to alter the
collapse dynamics of dark matter shells, and, as such,
leave observable imprints on the density profiles of dark
matter halos [24], as well as to alter the halo mass function
[25]. Moreover, symmetron fifth forces will necessarily
alter the velocity dispersion of dark matter tracers in halos,
therefore leading to a potential mismatch between the
dynamical halo mass and the lensing mass. This feature
is exploited as a test of symmetron gravity in Ref. [26].
Another interesting class of tests is suggested at galactic
and stellar scales. Particularly, the effects on stellar dynam-
ics in galaxies and globular clusters are explored in
Refs. [27,28]. References [29,30] consider changes in
energy output from binary pulsars, Ref. [31] investigates
the effect of screening on stellar evolution and Ref. [32]
studies changes in stellar physics induced by the symme-
tron force. The presence of a scalar force is also expected to
induce a mismatch between the stellar and gas components
in galaxies. This idea in the context of symmetron gravity is
explored in Ref. [33].
Besides cosmological and astrophysical tests, symme-

trons can also be tested in laboratory experiments. Notably,
atom interferometry experiments have been able to con-
strain them significantly [34–36]. These are complemented
by torsion balance experiments [37,38]. Constraints also
follow from quantum effects of the symmetron which affect
the anomalous magnetic moment of the electron [39] and
lead to corrections to the energy levels of neutrons in the
gravitational field of the Earth [40].
In this paper, we focus on new bounds on symmetrons

that may be obtained from Casimir force sensors [41–43].
Although conceived as detectors for the quantum mechani-
cal Casimir-Polder force, these systems are also sensitive to
any additional forces [43,44], including classical screened
fifth forces [45]. The advantage of using Casimir force
sensors to look for new forces is that they probe very short

distance scales (∼10 μm) and therefore larger particle
masses compared to longer-range fifth force detectors in
the laboratory or the Solar System (see, for instance,
Ref. [46]). Casimir experiments have been used to con-
strain chameleons [45], and new experiments [47] will
provide results soon [48,49]. However, such constraints
have not yet been presented for symmetrons, mainly due to
a lack of theoretical calculations of the symmetron force
between extended objects [5].
In this article we address this shortcoming by computing

the symmetron force between a plate and a sphere. We
focus on this case for two reasons. First, it is perhaps the
simplest asymmetric geometry with two extended objects
that one could consider. Second, our results will be directly
applicable to realistic Casimir force sensors, which often
use a plate and a sphere for practical experimental reasons
[50], rather than two parallel plates (as in some previous
experiments such as CANNEX [48]). This configuration
leads to significant theoretical challenges, as screened fifth
forces generically have nonlinear equations of motion
which are difficult or impossible to solve in less symmetric
setups. In this paper we overcome this hurdle by identifying
two limiting regimes that allow the symmetron force
between a sphere and a plate to be approximated analyti-
cally. We also present numerical solutions that interpolate
between the limiting cases, and which verify our analytic
treatments.
We do this by splitting our analysis into three regions,

determined by the size of the dimensionless quantity μR,
whereR is the radius of the sphere andμ is approximately the
mass of the symmetron invacuum. Physically, this measures
the radius of the sphere in units of the symmetron’s Compton
wavelength. Our three regions are thus μR ≪ 1;∼1, and
≫1. In the first and third regions we are able to exploit the
hierarchy of scales between the sphere radius and the
symmetronComptonwavelength to obtain accurate analytic
approximations to the force. In the middle region we solve
the problem numerically. It is fortunate that the numerical
solution is easiest to obtainwhen all scales in the problemare
comparable, given that this is precisely the regime in which
analytic approximations break down. Our results cover
several orders of magnitude in sphere radii and separations,
and our methodology can be applied to more extreme
configurations, not directly reported in this paper. Hence
we present a complete solution for the symmetron force in
the plate-sphere system. Furthermore, the solutions we
obtain are fully nonlinear; at no point is the theory linearized
about the background vacuum expectation value (apart from
the derivation of the screening factor of a dense sphere,
which is standard). We then apply our solutions to a realistic
Casimir sensor, and show that the results from future
measurements will be able to constrain a large part of the
symmetron’s parameter space. Although our results are
applied to a specific type of problem, i.e., the force between
a sphere and a plate which are of laboratory sizes, we
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emphasize that these solutions are scale-independent and
could apply to many other setups such as astrophysical
problems.
In this paper we concentrate on the classical symmetron

interaction between a sphere and a plate. We do not take
into account quantum effects which can be significant.
Such quantum effects have been studied in Ref. [51] for the
plate-plate case, and as a rule, the effects dominate when
the scalar field between interacting bodies can be consid-
ered almost massless and the self-interaction of the scalar
field is large. The forecasts we present here are in the small
self-interaction regime, where we expect the quantum
effects to be negligible. We leave a comprehensive analysis
of the quantum interactions in the plate-sphere system for
future work.
This paper is organized as follows. We first review the

symmetron screening mechanism in Sec. II. In Sec. II B, we
focus on the two-parallel-plate case. This provides us with
intuition for how analytic approximations should be made
for the plate-sphere configuration, and additionally, allows
us to validate our numerical setup. In Sec. III, we analyze
the plate-sphere system analytically, and provide analytic
approximations for the two cases of large and small
spheres. In Sec. IV, we discuss our procedure for numeri-
cally integrating the symmetron equation of motion and
computing the force between the sphere and the plate in
regimes that are not captured by our analytic results. We
show that in the regions of the parameter space where
we expect both analytic and numerical approaches to be
valid, the results are in very good agreement. We test our
numerical framework for a range of configuration param-
eters and show that it can be applied to any experimental
setup. In Sec. V, we propose a Casimir force experiment,
based on a plate-sphere configuration and with specifica-
tions and sensitivity that closely follow those of existing
state-of-the-art experiments. We place forecast constraints
on the symmetron’s free parameters using the expected
Casimir bounds on fifth forces. We compare our constraints
to those obtained from other laboratory experiments based
on atom interferometry [35], torsion balances [37], and
ultracold bouncing neutron measurements [40]. Finally, we
conclude in Sec. VI.

II. THE SYMMETRON MODEL

A. The model

The symmetron is a real scalar field with a Lagrangian
density1 given by

L ¼ −
1

2
ð∂ϕÞ2 − 1

2

�
ρ

M2
− μ2

�
ϕ2 −

1

4
λϕ4 −

μ4

4λ
: ð1Þ

Notice the quadratic coupling of the symmetron field ϕ to
the ambient matter density ρ, which leads to a Z2

symmetry-breaking effective potential,

VeffðϕÞ ¼
1

2

�
ρ

M2
− μ2

�
ϕ2 þ 1

4
λϕ4 þ μ4

4λ
: ð2Þ

In the absence of matter, ρ ¼ 0 and the effective potential
has minima at ϕmin ¼ �v with v≡ μ=

ffiffiffi
λ

p
. In this case the

effective potential reduces to that of a Higgs-like field.
Without loss of generality we will consider the positive
vacuum value only. The breaking of the Z2 symmetry can
lead to domain walls [34,52], which are not expected to be
present in the experimental settings that we consider. When
the ambient matter density is above the critical value
ρcrit ≡ μ2M2, the minimum of the effective potential is
located at ϕ ¼ 0. If ρ is independent of time then the
equation of motion for static field configurations is an
elliptic partial differential equation given by

∇⃗2
ϕ ¼

�
ρ

M2
− μ2

�
ϕþ λϕ3: ð3Þ

The quadratic coupling to matter also leads to a symmetron
force experienced by a test particle with massmtest, given by

a⃗test ¼ −
mtest

M2
ϕ∇⃗ϕ: ð4Þ

Notice that the force is proportional to the symmetron’s
local field value—in media with density greater than the
critical density, ρ > μ2M2, the ambient field value is driven
to 0 and the symmetron force switches off. Another
remarkable property of the symmetron is that extended
objects can be screened, that is, the symmetron force may
not be proportional to the total mass of the object. We
review this phenomenon here, for the case of a finite-sized
sphere of density ρ. This treatment closely follows that
of Ref. [13].
We compute the symmetron force between a sphere with

mass msphere and a test particle with mass mtest. We first
compute the symmetron field profile around the sphere, and
then compute the force on the test particle with Eq. (4).
The sphere is taken to have radius R and density
ρðrÞ ¼ ρΘðR − rÞ, where ρ is a constant and Θ is the
Heaviside step function. We assume that the sphere is dense
enough to restore the Z2 symmetry, i.e., ρ > μ2M2.
Otherwise, the sphere is not capable of perturbing the
symmetron field away from the vacuum expectation value
(VEV) ϕ ¼ v and the symmetron force is negligible.
First we solve the equation of motion inside the sphere.

Deep inside the sphere we expect ϕ to approach the
minimum of the effective potential in the symmetric phase.
We can therefore approximate the effective potential by a
quadratic function located at ϕ ¼ 0, and find

1We are using units where c ¼ ℏ ¼ 1 and are working with the
mostly plus metric convention.
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ϕinðrÞ ¼ A
R
r
sinh ðμrζÞ; ð5Þ

where we have introduced ζ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

μ2M2 − 1
q

. Note that we

have set one of the boundary conditions such that ϕ does
not diverge at the origin. We are left with a normalization
factor A, which will be determined later. Next we solve for
the field outside the sphere. We demand that the field
minimizes its potential far away from the sphere: ϕðrÞ → v
as r → ∞. This time, we linearize the equation of motion
about ϕ ¼ v and find

ϕoutðrÞ ¼ vþ B
R
r
e−

ffiffi
2

p
μr; ð6Þ

where we have an undetermined constant of integration B.
To fix the constants A and B, we impose that the field and
its first derivative match at the surface of the sphere r ¼ R.
We are ultimately interested in the symmetron force exerted
on the test particle, so we will only need the constant B, for
which we find

B ¼ −ve
ffiffi
2

p
μR μRζ coth ðμRζÞ − 1

μRζ coth ðμRζÞ þ ffiffiffi
2

p
μR

: ð7Þ

For the symmetron screening mechanism to work we must
assume that the sphere is much denser than the symmetron
critical density, i.e., ρ ≫ μ2M2. Taking this limit, the
coefficient B becomes

B ¼ −v
�
1 −

tanh
ffiffiffi
α

p
ffiffiffi
α

p
�
; ð8Þ

where we have defined the dimensionless parameter α≡
ρR2

M2 for convenience.
Let us now consider a fixed matter coupling M, and

study the limiting cases of a very small and light sphere
versus a very large and dense sphere. In the first limit
α ≪ 1, and we have

B ¼ −v
α

3
: ð9Þ

The external field is therefore given by

ϕout ≈ v −
vα
3

R
r
: ð10Þ

The (attractive) symmetron force exerted on a test particle
follows from Eq. (4), and to leading order in α reads

F ≈ −
mtest

M2
v
d
dr

ðϕoutðrÞÞ ¼ −
v2

4πM4

mtestmsphere

r2
: ð11Þ

Evidently small, light particles couple to each other with a
symmetron force proportional to the product of their
masses and inversely proportional to the square of the

distance between them, exactly as they do in GR. The
relative strength of their interaction, compared to
Newtonian gravity, is

Fϕ

FN
¼ 2

�
vMPl

M2

�
2

; ð12Þ

where MPl ≡ ð8πGÞ−1=2 is the Planck mass.
Let us now consider the limit of a dense and large sphere,

i.e., α ≫ 1. The integration constant in the external field
becomes

B ¼ −v
�
1 −

1ffiffiffi
α

p
�
: ð13Þ

This time, the symmetron force experienced by the test
particle is

F ≈ −
v2

4πM4

mtestðλspheremsphereÞ
r2

; ð14Þ

where we have defined a screening factor λsphere for the
sphere as

λsphere ≡ 3M2

ρR2
: ð15Þ

Notice that the symmetron force is no longer proportional
to the total mass of the sphere, but only to a minuscule
fraction λsphere ≪ 1 of the sphere’s total mass. The force is
thus sharply suppressed compared to what one might have
guessed based on Eq. (11) alone. This phenomenon is the
essence of screening.
More generally, the symmetron force between two

spheres R1;2 involves a screening factor for each sphere.
Combining Eqs. (11) and (14), we have

F ¼ −
v2

4πM4

ðλ1m1Þðλ2m2Þ
r2

; ð16Þ

as long as the two spheres can be considered as mutual test
objects, i.e., not disturbing the field profile generated by
one another, where the screening factors are

λi ≈min

�
3M2

ρiR2
i
; 1

�
; ð17Þ

with i ¼ f1; 2g. The screening factor will play a crucial
role in describing the behavior of a small but very dense
sphere in the next section.

B. The symmetron force between parallel plates

Let us now discuss another simple density configuration,
namely, two infinitely dense parallel plates separated by a
distance L, and analyze the field profile and the resulting
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force between the plates; see Fig. 1. As the density of plates
is taken to be infinite, the symmetron field can be taken to
be zero inside the plates. Additionally, the exterior solution
is unaffected by the separation of the plates, hence we are
interested only in the dynamics of the field between the
plates.
The parallel-plates configuration is important for two

main reasons. First of all, thanks to the planar symmetry of
the configuration the symmetron equations of motion can
be analytically integrated and the corresponding fifth force
can be calculated exactly. This will allow us later to verify
the accuracy of our numerical integrator of the symmetron
equation of motion, as well as our procedure of numerical
force calculation. Besides this technical aspect, as we will
see later, the parallel-plates setup can give important
insights into the field configuration and the force in the
plate-sphere setup.

1. Simple approximate treatment

We start our discussion with an approximate, qualitative
treatment of this system. When the separation between the
plates is large, L ≫ μ−1, the field has sufficient room to
roll to the vacuum expectation value. The relevant length
scale over which the symmetron field is able to vary
significantly is the Compton wavelength in vacuum,
∼μ−1. The gradient energy per unit area of the plate can
then be approximated as

Eroll

A
≈ 2

Z
μ−1

0

1

2
ð∇⃗ϕÞ2dx ≈

�
v
μ−1

�
2

μ−1 ¼ μ3

λ
; ð18Þ

where A is the surface area of one of the plates. Note that
due to our convention in Eq. (2) the true vacuum has a zero

potential energy. As a result the energy of the field
configuration for L ≥ μ−1 can be approximated as

Efar

A
≈
μ3

λ
; ð19Þ

up to an Oð1Þ constant. This indicates that the energy
stored in the symmetron field does not depend on the plate
separation L, hence the force between the plates, deter-
mined through F=A ¼ − d

dL ðE=AÞ, is zero: Ffar=A ¼ 0.
When the separation L is sufficiently small, L≲ μ−1, the

field would have to spend a significant amount of gradient
energy in order to achieve the true vacuum. As a conse-
quence, the lowest energy configuration is the one in which
the field stays in the false vacuum, so ϕ ¼ 0 everywhere
between the two plates. In this case there is no gradient
energy, and the total energy per unit plate area is

Enear

A
¼ μ4

4λ
L: ð20Þ

The force per unit area is, therefore, Fnear=A ¼ −μ4=4λ.
In summary, according to our qualitative analysis the

force between the two plates behaves as

F
A
¼ −

� μ4

4λ if L < Lcross;

0 if L≳ Lcross;
ð21Þ

where Lcross is a crossover separation below which the field
is zero everywhere between the plates. According to the
qualitative analysis above we are only able to estimate the
order of magnitude of the crossover separation to be
Lcross ∼Oðμ−1Þ. In the next subsection we will be able
to determine its exact value.
Given these estimates we can now discuss the influence

of the quantum corrections to the classical force [51]. The
quantum interaction between the two plates is not sup-
pressed when the scalar field can be considered as massless
in vacuum, i.e., when μL≲ 1. In this case the two plates
attract each other with a quantum pressure

F
A
≃ −

π2

480L4
; ð22Þ

which is one half of the electromagnetic result as the scalar
has only one polarization. In this regime, the classical
interaction dominates when

λ≲ 480

π2
ðμLÞ4; ð23Þ

which can be safely taken to be in the range λ≲ 1. In the
following, we will always assume that the self-coupling of
the symmetron is small enough to neglect the quantum
interaction.

FIG. 1. Parallel-plates configuration. The plates are assumed to
have density ρ ≫ μ2M2, so that ϕ ≈ 0 everywhere inside. Every-
where else is assumed to be in perfect vacuum. The force per area
on one of the plates is computed by integrating over a boundary
that encompasses a section of the plate.
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2. Improved pressure between plates

The treatment presented above gives a simple estimate of
the force. However, an exact solution is also possible. As
previously mentioned, the symmetries of this density
configuration allow the field profile to be found exactly
in terms of special functions. Particularly, the solution for
the field in the intervening region between the plates is
found to be

ϕintðxÞ ¼ vφ0cd

�
μx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − φ2

0=2
q

;
φ2
0

2 − φ2
0

�
; ð24Þ

where cdðu;mÞ is the Jacobi elliptic function; see, for
instance, Refs. [53,54] for a complete treatment. The
parameter φ0 ranges between 0 and 1 and is fixed by
the boundary condition that the field must vanish at the
surface of each plate, ϕintð�L=2Þ ¼ 0. This leads to the
condition

0 ¼ cd

�
μL
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − φ2

0=2
q

;
φ2
0

2 − φ2
0

�
: ð25Þ

Note that φ0 is the value of the field in the middle of the
intervening region, normalized by the VEV v, i.e.,
φ0 ¼ ϕintðx ¼ 0Þ=v. It is not possible to isolate φ0 ana-
lytically, although we can note the following:

(i) If μL < π, we must have φ0 ¼ 0; see Refs. [37,38]
for further explanation.

(ii) As μL → ∞, φ0 → 1.
(iii) When μL≳ π, by continuity we can expect φ0 ≪ 1.

We can then Taylor expand Eq. (25) and obtain

φ0 ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8
3π ðμL − πÞ

q
, which we must stop trusting as

soon as μL is sufficiently larger than π.
Outside the intervening region, the field rises monotoni-
cally toward the VEV,

ϕoutðxÞ ¼ v tanh

�
μffiffiffi
2

p
�
x −

�
L
2
þW

���
; ð26Þ

where W is the width of the plate.
We can compute the scalar force on an extended object in

the following way [55]. The 3-momentum in a volume of
space V is given by

Pi ¼
Z
V
d3xT 0

i ; ð27Þ

where Tμν is the total energy-momentum tensor for both the

matter and scalar fields, Tμν ¼ Tmatter
μν þ Tϕ

μν. We choose V
to be large enough so that it encompasses the entire
extended object, but small enough that the matter fields
dominate the integral. This ensures that the momentum of
the volume V is a good approximation of the momentum
of the extended object itself. The force is the time derivative
of the momentum, so we have

_Pi ¼
Z
V
d3x∂0Ti

0 ¼ −
Z
V
d3x∂jTi

j ¼ −
Z
B
d2σjTi

j; ð28Þ

where we have used the conservation of the energy-
momentum tensor to go from the first integral to the
second, and then changed the volume integral over V to
a surface integral over the outer boundary B of the volume
with an area element d2σi. The matter part of Tμν vanishes
on the boundary, so we need to integrate only the energy-
momentum tensor of the scalar field. Taking into account
the symmetries of the problem, we choose B to be a
rectangular parallelepiped as shown in Fig. 1, the two sides
of which are located at small distances ϵ from the two
surfaces of the plate. The energy-momentum tensor of the
scalar field is

Tϕ
μν ¼ ∂μϕ∂νϕþ ημν

�
−
1

2
ð∂ϕÞ2 − VðϕÞ

�
; ð29Þ

and can be computed at any arbitrary point. Obviously,
given the symmetries of the configuration, the only non-
vanishing component of the force is the x-component,
which can be written as

_Px ¼ −
Z

L=2þWþϵ

L=2−ϵ
dx

d
dx

Txx ¼ TxxðxÞjL=2−ϵL=2þWþϵ ð30Þ

using the middle integral in Eq. (28).
Since the scalar field vanishes on the surface of the plate,

we obtain

_Px ¼
1

2

�
ϕ0
int

�
L
2

��
2

−
1

2

�
ϕ0
out

�
L
2
þW

��
2

; ð31Þ

where a prime denotes a derivative with respect to x. Note
that the right-hand side of this equation is equal to the
difference between the boundary values of the stress-energy
tensor, as expected from the last expression in Eq. (28). We
now use the solutions of the field given by Eqs. (24) and
(26), as well as the identities

d
dx

tanhðxÞ¼1− tanhðxÞ2;
�
d
dx

cdðx;mÞ
�

2

¼ð1−cdðx;mÞ2Þð1−m2cdðx;mÞ2Þ; ð32Þ

to calculate the force between the plates. We obtain a force
per area A

F
A
¼ μ4

4λ
ðφ2

0ð2 − φ2
0Þ − 1Þ: ð33Þ

When the distance between the two plates is small, μL < π,

then φ0 ¼ 0 and F=A ¼ − μ4

4λ, as we obtained in our
qualitative estimation of the force in the previous
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subsection.When the distance is large,L → ∞, thenφ0 → 1
and F=A → 0. For general values of L, we solve Eq. (25)
numerically, using Newton’s method. We plot in Fig. 2 the
exact pressure F=A as a function of μL, as well as
the qualitative estimates for small and large distances.
Note that the estimated values for small distances,
μL < π, are in perfect agreement with the exact values,
while they are significantly smaller for intermediate dis-
tances, π < μL≲ 5.5; the estimated and exact values agree
for L → ∞. This is an important observation with implica-
tions for calculating the constraints one may want to
impose on the symmetron fifth forces using parallel-plates
experiments.

III. PLATE AND SPHERE I:
ANALYTIC RESULTS

In this section, we turn to the problem of computing the
classical scalar force between an infinite plate and a finite-
radius sphere. The reason for considering this configuration
is that Casimir experiments are often built using a plate-
sphere system [41,42,50], as this setup eliminates exper-
imental uncertainty related to proper alignment of two
plates.
We assume that the surface of the infinite plate is located

at x ¼ 0 with a sphere of radius R facing it, and that the
nearest distance between the plate and the sphere is D; see
Fig. 3. Although a given experimental setup is likely to
have a fixed radius R and to probe only a few different
separations, our aim in this paper is to compute the
symmetron force for any combination of R and D. This,
along with the scale invariance of our solutions, will allow
our results to be applicable to any system that resembles a
plate-sphere configuration, ranging from microscopic to
astrophysical scales. Furthermore, our general approach

will enable future work to identify optimal configurations
for new Casimir experiments, in order to probe the most
interesting regions of the parameter space.
Due to the nonlinearity of the symmetron’s equation of

motion, it is impossible to find exact analytic solutions for
the field in this configuration. We must therefore work with
numerical solutions or analytic approximations in different
regimes. In this section, we present approximate solutions
for the scalar force in two regimes: (i) large spheres with
R ≫ μ−1, and (ii) small spheres with R ≪ μ−1. In the next
section, we use numerical solutions to verify these approx-
imations, as well as to provide solutions for R of Oðμ−1Þ.

A. Large sphere

We first analyze the plate-sphere system in the limit that
the sphere radius is much larger than the symmetron’s
Comptonwavelength, i.e.,R ≫ μ−1. Our approach is similar
to the proximity approximation that is often employed in
calculations of the quantum Casimir force between objects
with complex geometries; see, for example, Refs. [45,56].
We consider infinitesimally thin ring-like elements of the

sphere parallel to the plate, and use the analytic formula for
the parallel-plate pressure calculated in the previous section
to model the pressure exerted on the element by the plate.
Let us consider a ring placed at a distance L ¼ Dþ Rþ
R cos θ from the surface of the plate, where θ is the standard
polar angle defined around the x-axis (see Fig. 3). The
contribution of this ring to the total force experienced by
the sphere is approximated as

dF ¼ PðLÞð− cos θÞdA; ð34Þ

FIG. 2. Pressure exerted by a symmetron fifth force on each
plate for an experiment with two parallel plates, computed
approximately for small and large separations, as well as through
an exact, numerical method. The pressure is constant for plate
separations L < πμ−1 and then decreases exponentially for larger
separations.

FIG. 3. Plate-sphere setup. The plate is assumed to be infinitely
large and separated by a distance D from the surface of a sphere
of radius R. We have also illustrated various geometric quantities
that will be useful. The plate and the sphere are located in vacuum
and both are assumed to be sufficiently dense so that ϕ ≈ 0
everywhere inside the objects.

CLASSICAL SYMMETRON FORCE IN CASIMIR EXPERIMENTS PHYS. REV. D 101, 064065 (2020)

064065-7



where PðLÞ is the pressure between two parallel plates
separated by the distance L, and dA is the area of the
infinitesimal ring element. The factor − cos θ takes the
x-component of the force on the ring or corresponds to
the cross-sectional area of the sphere directly perpendicular
to the plate. The area of the ring is dA ¼ 2πaðRdθÞ, where
a ¼ R sin θ is the vertical distance from the infinitesimal
ring to the line connecting the plate and center of the
sphere.
The total symmetron force exerted on the sphere is then

obtained by integrating over the hemisphere nearest the
plate and is given by

F¼−2πR2

Z
π

π=2
dθ sinθ cosθPðDþRþR cosθÞ: ð35Þ

What remains is to specify the pressure between the parallel
plates PðLÞ. In Sec. II B, we found two different expres-
sions for that. The first one is given in Eq. (21), which is
approximate but simple. We will refer to this as PapproxðLÞ.
We also found the exact pressure between two plates, given
by Eq. (33), which we will refer to as PexactðLÞ. Although
the latter has the advantage of being exact, it does not admit
a closed-form solution. Employing the former for now, we
note that the pressure is a step function, so only a spherical
cap within a distance π=μ from the plate contributes to the
pressure, and PapproxðLÞ is constant over this area. We
therefore compute the attractive force on the spherical
cap, which has a height h ¼ π=μ −D and radius a2 ¼
R2 − ðDþ R − π=μÞ2. The cap has cross sectional area
πa2 ¼ πðπ=μ −DÞð2R − ðπ=μ −DÞÞ, so the force is

F ¼ −
μ4

4λ
π

�
π

μ
−D

��
2R −

�
π

μ
−D

��

if D <
π

μ
< Dþ R: ð36Þ

When no part of the sphere is within π=μ of the plate, the
force is zero:

F ¼ 0 if D >
π

μ
: ð37Þ

When all of the near hemisphere is within π=μ of the plate,
we have

F ¼ −
πR2μ4

4λ
if Dþ R <

π

μ
: ð38Þ

In summary, the force is

F ¼

8>><
>>:

− μ4

4λ πR
2 D< π

μ−R;

− μ4

4λ πðπμ−DÞð2RþD− π
μÞ π

μ−R < D< π
μ ;

0 D> π
μ :

ð39Þ

We remind the reader that we are working in the regime of
large spheres, R ≫ μ−1, so the first case is included only for
completeness.
To obtain a more exact result, we could instead have used

PexactðLÞ, given by Eq. (33). In this case, it is not possible to
simplify the expression, and we must instead rely on
numerical integration. That is, we integrate

F ¼ −2πR2

Z
π

π=2
dθ sin θ cos θPðDþ Rþ R cos θÞ; ð40Þ

where the pressure P is given by Eq. (33). A comparison
between these two expressions for the symmetron force on
a large sphere R ¼ 10μ−1 is given in Fig. 4.

B. Small sphere

Let us now calculate the symmetron force between a
plate and a small sphere, i.e., R ≪ μ−1. In this limit, we
may safely neglect the backreaction of the sphere on the
symmetron field profile sourced by the plate alone.2 This
means that the force on the sphere will be proportional to
that of a test particle. The constant of proportionality is the
screening factor λsphere, which is given by Eq. (17). The
force on the sphere is therefore

F⃗ ¼ −
λspheremsphere

M2
ϕ∇⃗ϕ; ð41Þ

where msphere is the mass of the sphere, and ϕ is the field
profile generated by the plate alone. Recall that the latter is
simply given by

ϕðxÞ ¼ v tanh

�
μxffiffiffi
2

p
�
: ð42Þ

Before putting all these ingredients together let us also
recall that we are working in the limit ρR2 ≫ M2, and as
such Eq. (17) indicates that λsphere → 0. However, in this
limit the mass of the sphere diverges, and as a result the
prefactor in Eq. (41) is a non-negligible quantity given by

λspheremsphere

M2
¼ 4πR: ð43Þ

Putting all these together, Eqs. (42) and (41) give the
attractive force

F ¼ −
4πv2μRffiffiffi

2
p tanh

�
μxffiffiffi
2

p
�
sech2

�
μxffiffiffi
2

p
�
; ð44Þ

where x is the distance from the surface of the plate to the
center of the sphere.

2Note that the backreaction, neglected here, may lead to large
corrections at very small distances, as explored in Ref. [57].
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The approximate forces we obtained for large and small
spheres are plotted in Fig. 4 as functions of the distance
between the plate and the sphere. Notice that in the case of
the small sphere the force vanishes as the sphere
approaches the plate. Intuitively, this may be understood
as a consequence of the symmetron’s quadratic coupling to
matter: near the plate the ambient field value is driven
toward zero, so the coupling between the symmetron and
matter becomes weaker and the force is diminished.

IV. PLATE AND SPHERE II:
NUMERICAL RESULTS

Beyond highly symmetric configurations it is impossible
to find exact solutions of Eq. (3). In the previous section,
we detailed two useful limiting cases: very large spheres
with R ≫ μ−1, and very small spheres with R ≪ μ−1. In
these cases it was possible to exploit the hierarchy of scales
to make analytic progress.
In this section, we turn to the intermediate regime, where

R ≈ μ−1. We are unable to exploit any such hierarchy of
scales in this case, so we must resort to numerical
integration of the symmetron’s equation of motion. Our
results allow us to bridge the gap between the two limiting
cases we explored in the previous section. We use a
commercial solver,3 which relies on the finite-element
method. For some of the cases, we have checked the
solutions using our own numerical code based on the
Newton-Gauss-Seidel relaxation algorithm, which is a
standard method widely used in the studies of screened
modified gravity (see Ref. [60] for a description of the
algorithm, as well as Refs. [35,36]). This has allowed us to

assess the validity of the solutions obtained by two different
solvers.
As before, we will assume that the sphere and the plate

are infinitely dense, and that the matter density elsewhere is
zero. The former assumption allows us to set ϕ ¼ 0
everywhere inside the objects, which gives us the boundary
condition ϕ ¼ 0 at the surfaces of the plate and the sphere.
We additionally take the component of ∇ϕ normal to the
simulation box edges to vanish. In all cases, we have
checked that our simulation box size, Lbox, is large enough,
so any boundary effects do not alter the field profile around
the sphere.
At first it may appear that we have four parameters that

specify a given configuration, μ, λ, R and D. However, the
static symmetron’s equation of motion is invariant under
simultaneous rescalings of the field and coordinates. This
rescaling symmetry makes it possible to eliminate the μ and
λ parameters from the equation of motion, significantly
reducing our computational task. To see this explicitly, we
define a new (dimensionless) field variable φ≡ ϕ=v, in
terms of which the equation of motion in the absence of
matter (ρ ¼ 0) is given by

∇2φ ¼ −μ2φþ μ2φ3: ð45Þ

Next, let us rescale all spatial dimensions by μ so that our
new dimensionless distance coordinate is x̂≡ μx. The
equation of motion now becomes

∇̂2φ ¼ −φþ φ3; ð46Þ

where the hat indicates a derivative with respect to the new
dimensionless coordinate x̂. We are left with just two
parameters that completely define the plate-sphere system.
These parameters are the rescaled radius of the sphere,

FIG. 4. Comparison of approximate symmetron forces for small and large spheres in a plate-sphere setup. Left panel: The force is
computed for small spheres with μR ≪ 1 using Eq. (44). Here, we have considered a screening factor for the sphere and neglected the
backreaction of the sphere on the symmetron field profile generated by the plate. Right panel: The force is computed for large spheres
with μR ≫ 1 using the proximity force approximation, given by Eq. (40). A qualitative estimate of the force is also plotted for
comparison, given by Eq. (39). The vertical line indicates the distance μD ¼ π beyond which the qualitative estimate vanishes.

3We used Matlab’s Partial Differential Equation Toolbox,
version R2019b, similar to what has been done in Refs. [58,59].
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R̂ ¼ μR, and the rescaled distance between the surface of
the sphere and the plate, D̂ ¼ μD. We will solve the
equation numerically in this form and only later will we
reintroduce the parameters μ and λ.
Once we have the field profile, we can compute the

scalar force on the sphere using Eq. (28). In particular, we
perform a surface integral of the energy-momentum tensor,
over a spherical surface taken to be slightly larger than the
sphere itself, i.e., with a radius r̂ ¼ R̂þ ϵ. Since we will
ultimately use interpolated values of the field, henceforth
we drop the ϵ and take the radius of the integral to be r̂ ¼ R̂.
Then the analogue of Eq. (28) for the rescaled fx̂; ŷg
coordinates gives

F̂≡−
Z
B
dÂ n̂jT̂i

j

¼ ð−2πR̂2Þ
Z

π

0

sinθdθðcosθT̂xxðR̂;θÞ þ sinθT̂xyðR̂;θÞÞ;

ð47Þ

where T̂μν is obtained by rewriting Eq. (29) in our rescaled
variables. Note also that n̂ ¼ cos θx̂þ sin θŷ is the
normal vector to the sphere, see Fig. 3. Given a numerical
solution φðx̂; ŷÞ, we can interpolate the values of T̂μν in the
integrand, and obtain the dimensionless scalar force on the
sphere. Notice that the force is perpendicular to the plate as
contributions to the force from opposite sides of the sphere,
which are directed parallel to the plate, cancel each other
out. It is then straightforward to reintroduce the factors of μ
and λ back and obtain the physical scalar force F,

F ¼ μ2

λ
F̂: ð48Þ

Our aim is to solve Eq. (46) numerically throughout the
region 0.1≲ R̂≲ 10, as larger or smaller values are covered
by the approximate methods detailed in the previous
sections. We shall see that our numerical results are
well-described by those approximations in the appropriate
limits. Let us also mention that our primary interest is in
relatively small plate-sphere separations, typically D̂≲ 10,
as the force is exponentially suppressed with distance, so
larger separations are not relevant for fifth force tests.
We set the edges of the simulation box to be at

least Ĥ Compton wavelengths away from the surface of
the sphere, so the dimensions of the simulation box are
ðD̂þ 2R̂þ ĤÞ × ðR̂þ ĤÞ—note that our simulations are
performed in cylindrical polar coordinates, hence in the
perpendicular direction the size of the simulation box is
ðR̂þ ĤÞ and not 2ðR̂þ ĤÞ. We have chosen Ĥ ¼ 5 as a
balance between being a small enough box size to have
good enough resolution, and it being large enough to be
able to safely neglect the effects of the simulation box
boundaries on the field profile near the sphere. The size of

the mesh is set sufficiently fine that further increases do not
change the solution by more than 1%.
For a range of configurations with D=R ∈ ½0.1; 10� we

have numerically solved Eq. (46) for different values of R̂.
The smallest and largest values of R̂ are determined by
identifying the validity bounds of the small-sphere and
large-sphere approximations. For example, for D=R ¼ 0.1,
numerical simulations are performed in the range
R̂ ∈ ½0.5; 20�. The resulting force has been computed with
Eq. (47). In this range one can neglect the quantum
interactions between the sphere and the plate as long as
the self-coupling λ is small enough, typically less than a
coupling of order one. Figure 5 depicts an example of the
field profile as a result of our numerical integration. Our
results for the force are plotted in Fig. 6. From Fig. 6, we
clearly see that the analytic approximations developed in
Sec. III match the numerical results well for μR≲ 0.1
(small spheres) and μR≳ 10 (large spheres).

V. FORECAST CONSTRAINTS ON
SYMMETRON’S PARAMETERS

In this section, we turn to the task of using Casimir force
sensors to place bounds on the symmetron’s free param-
eters. Currently, there exists a precise Casimir force sensor,
employing a plate-sphere configuration, which could be
used to constrain the symmetron’s mass and couplings. The
sensor consists of a sphere of radius R ¼ 150 μm, held at a
distanceDnear ¼ 15 μm from a circular plate. The plate has
a pattern of 50 μm deep rectangular trenches of length and
width 200 μm cut into it. The plate is rotated so that the
trenches pass under the sphere. The entire setup is inside a
vacuum chamber of height 40 cm and diameter 45 cm. As
the plate rotates, the horizontal distance D between the
sphere and the plate alternates between Dnear ¼ 15 μm and

FIG. 5. Typical numerical solution of the symmetron field
around the plate and sphere setup for D ¼ R ¼ 2μ−1. The color
indicates the field value as a fraction of the VEV. The simulation
is performed in cylindrical coordinates, in order to exploit the
axisymmetry of the problem. From the field and its gradient, the
force may be computed via Eq. (47).
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Dfar ¼ 65 μm. The experiment is very similar to, but more
sophisticated than that of Ref. [50], the details of which will
appear shortly. Provided all known interactions have been
ruled out, when the measured force is null within the
experimental error (currently 0.2 fN at the 95% confidence
level [50]),

δF ¼ Fnear − Ffar ¼ 0� 0.2 fN ð49Þ

yields the fifth force constraints.
Among known interactions, the difference in the

Newtonian gravitational force between the near and far
configurations is too small to be detected (∼1 zN), the
electrostatic interaction can be controlled to better than
10 aN, and the Casimir interaction itself has been measured
to be much smaller than 0.2 fN for separationsD > 12 μm.
Ideally, one would then use the results from Secs. III and

IV to calculate the difference in the symmetron force
between these two configurations δFϕ, allowing one to
place constraints on the symmetron’s parameters. However,
there is a complication due to the finite size of the trenches.
In order to place accurate constraints, one would either
need the trench walls to be so far away from the sphere that
they are negligible, or one would need to perform detailed
3D simulations of the setup. The focus of this work is on
the plate-sphere system, and accurately describing the
effects of the trenches is beyond the scope of the present
paper. Therefore, we shall use the results of the pure plate-
sphere system, derived in Secs. III and IV, to produce
forecasts for an as-yet unperformed experiment that has an
identical setup, except with trenches that are much wider
and longer, so that the trench walls could be safely

neglected. The system could then be treated as a pure
plate and sphere, oscillating between two separations Dnear
and Dfar.
Depending on the size of the parameter μ, we shall

employ different approximations for the symmetron force
between the plate and the sphere. As we saw in Sec. IV, the
proximity approximation given by Eq. (40) works well for
μ≳ 10R−1. Likewise, we saw that the small screened
sphere approximation, given by Eq. (44), may be trusted
when μ≲ 0.1R−1. In between, we must rely on numerical
solutions, which interpolate between these two regimes, as
described in the previous section.
Before presenting the forecast constraints let us note that

we are able to place constraints only in the regime where
μ≳ R−1

vac, with Rvac being the smallest interior dimension of
the vacuum chamber. If this condition is not met then the
symmetron field stays in the false vacuum ϕ ¼ 0 every-
where inside the vacuum chamber, just as we saw in Sec. II
B. Consequently, there is no fifth force and it is impossible
to place constraints. Additionally, very large values of μ
correspond to very large values of R̂ and D̂ (with D̂=R̂
being fixed), which, according to Fig. 6, correspond to
vanishingly small F̂. Intuitively, in this regime the range of
the force is much shorter than the distance between the
plate and the sphere, and the force is exponentially sup-
pressed. As a result, very large values of μ are also not
well constrained. Moreover, as we mentioned above, the
experiments are able to report only differential force
measurements, i.e., force differences between two sphere
placements. As we see in Fig. 6, there is an interme-
diate value of μ for which any of the two curves (corre-
sponding to different values of D̂=R̂) intersect each other.

FIG. 6. Symmetron force F̂ between a sphere of radius R and an infinite plate a distanceD away. The force is given as a dimensionless
number F̂ ¼ λF=μ2, and is a function of the rescaled radius of the sphere R̂ ¼ μR and the value of D=R. The solid curves show the
analytic approximations corresponding to small spheres (left-most curves) and large spheres (right-most curves). The dots are results of
numerical integration of the full, nonlinear equation of motion of the field, with the force being computed using the exact (numerically
calculated) field profile. The pale gray curves represent the analytic results in the regimes where they are no longer valid, hence should
be replaced with numerical results. The leftmost and rightmost points of each color are in perfect agreement with the corresponding
analytic approximations. These points, therefore, mark the upper and lower validity regimes of the analytic approximations.
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The differential signal in the vicinity of this value of μ is
therefore tiny, and hence these particular values of μ cannot
be constrained.
Having defined our window of sensitivity to μ, we next

consider the window of sensitivity to M. We have assumed
that density of the sphere and plate is infinite, and the
density of the surrounding gas is zero. Quantitatively, for
these assumptions to be valid the critical density of the
symmetron ρcrit ¼ μ2M2 must satisfy

ρvac ≪ μ2M2 ≪ ρsphere: ð50Þ

For our analysis throughout this paper we have taken
ρvac ¼ 102 eV4 (corresponding to a pressure of 10−9 Torr
for air at room temperature) and ρsphere ¼ 1018 eV4 (cor-
responding to a density of 10 g cm−3). Additionally, we
have assumed that the sphere and the plate are strongly
screened, so by Eq. (43) we must restrict our attention to the
regime

ρsphereR2

M2
≫ 1: ð51Þ

Let us mention that in this analysis the parameter M does
not have any effects on the value of the force. We have
effectively discarded it by assuming ρvac ¼ 0 and ϕ ¼ 0 at
the surfaces of the plate and the sphere. Therefore, the only
way it can be constrained is through the two conditions we
just presented. In the left panel of Fig. 7, we show both of
these constraints in the μ −M plane (note that λ does not

play any role in this discussion; see below). Particularly, the
two slanted black lines correspond to the upper and lower
limits onM imposed through Eq. (50), while the horizontal
black line corresponds to the ratio in Eq. (51) taken to
be unity.
We are now ready to present the constraints on the

remaining two parameters μ and λ. While different values
of μ correspond to different field profiles, and consequently
different fifth forces, the effect of λ on the force is much
simpler. In fact, as we discussed earlier, it does not enter the
numerical integration procedure. It simply enters only as a
prefactor through Eq. (48), while F̂ itself depends on μ (and
not on λ). As a result, smaller values of λ result in stronger
fifth forces. Recall also that we have assumed λ > 0, which
is required in order for the symmetron mechanism to work.
Therefore, for particular choices of μ andM, we rule out the
values of λ that give differential forces δF > δFexp, where
δFexp is the bound reported by the Casimir experiment.
The forecast constraints in the λ − μ plane are shown in

the right panel of Fig. 7 assuming different values of the
experimental bound δFexp. The solid, white curves corre-
spond to three different hypothetical upper bounds pro-
vided by future Casimir force experiments, consistent with
the current state of the art. For this plot we have taken two
configurations with D=R ¼ 15=150 and D=R ¼ 65=150,
identical to the ones for the existing cutting-edge Casimir
experiment described above. The vertical, dashed line
marks the value of μ for which the forces in the two
configurations are almost identical, and the differential
force signal is therefore negligibly small.

FIG. 7. Left panel: Ranges ofM and μ compatible with Eqs. (50) and (51). The slanted lines are given by the condition of spontaneous
symmetry breaking occurring in the vacuum and not inside the plate and the sphere. The horizontal upper bound is given by the
requirement of the plate and the sphere being strongly screened. The parameter values outside the dark blue region do not satisfy at least
one of Eqs. (50) and (51), and therefore cannot be constrained by the present analysis. Right panel: Expected constraints from future
plate-sphere based Casimir experiments on symmetron parameters μ and λ. The experimental details are based on the current state of the
art. We have assumed that the experiment employs a large plate and a sphere of radius R ¼ 150 μm, and measures the differential force
between plate/sphere separations of D ¼ 15 μm and 65 μm. The solid, white curves correspond to three different upper bounds
depending on the sensitivity of the experiment. The vertical dashed line marks the value of μ for which the forces in the two
configurations are almost identical, and the differential force signal is therefore negligibly small. Note also that values of μ smaller than
R−1
vac are not constrainable. We find that such a configuration is capable of constraining ∼5 orders of magnitude in μ, which is remarkable

given that laboratory experiments such as atom interferometry are currently sensitive to a window only ∼2 orders of magnitude wide.
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For a given value of μ, we can deduce the forecast
constraints in the λ −M plane. These constraints are
presented in Fig. 8, alongside those currently provided
by atom interferometry [35,36], torsion balance [37] and
ultracold bouncing neutron experiments [40]. Note that the
Casimir forecasts presented in this figure are obtained for
the as-yet unperformed but realistic experiment described
above. We see that our forecasts are largely complementary
to torsion balance constraints. Atom interferometry pro-
vides very strong bounds, but only within a narrow window
of ∼2 orders of magnitude in μ, while Casimir experiments
are capable of constraining ∼5 orders of magnitude.
Bouncing neutrons provide powerful constraints over a

similarly large window in μ. This follows from the fact that
the difference between energy levels of the bouncing
neutrons in the gravitational field of the Earth vanishes
only when μz0 ≫ 1, where z0 ¼ ð2m2gÞ−1=3 ≃ 6microns is
the typical size of the neutron’s wave function over a
perfect mirror. As a result, those bounds [40] exist up to
μ ∼ eV, one order of magnitude larger than we presently
forecast for the hypothetical but realistic Casimir experi-
ment described above. (It is possible that our estimates for
Dnear are slightly too conservative, in which case near-
future Casimir experiments could also bound μ up to ∼eV.)
It may also be seen from Fig. 8 that bouncing neutrons

constrain a slightly narrower band inM, mainly because of a
relatively large vacuum chamber gas density ρvac. It is
certainly plausible that future generations of the bouncing
neutron experiment could remove this limitation. Taken
together, we find that near-future Casimir experiments will
be competitivewith, and complementary to, an assortment of
existingbounds over awide rangeof parameter space, chiefly
thanks to the remarkably short distance scales probed.

VI. CONCLUSIONS

In this paper we have presented solutions for the plate-
sphere system in symmetron modified gravity. We have
identified two different analytical approximations that may
be used when the sphere is much larger or smaller than the
symmetron Compton wavelength, and have developed
numerical solutions that naturally interpolate between these
two regimes. Thanks to the scaling of the solutions with μ,
these solutions may find application across a wide range of
scales, from microscopic laboratory to astrophysical setups.
To demonstrate the utility of our results we have applied

them to Casimir force sensors, which often measure the
force between a sphere and a plate. Casimir force sensors
have been previously unable to provide trustworthy bounds
for symmetrons, largely due to the lack of detailed

FIG. 8. Symmetron forecast constraints corresponding to a differential force upper bound of δFupper ¼ 0.2 fN at the 95% confidence
level, expected to be provided by future realistic Casimir experiments employing a sphere of radius R ¼ 150 μm. Here we have
computed the differential force between two configurations with Dnear ¼ 15 μm and Dfar ¼ 65 μm. The shaded regions will be
excluded at a confidence level equal to the one provided by the Casimir experiment for the δF measurement. Color indicates the
symmetron mass μ to which a given constraint applies. Also plotted are the relevant bounds from atom interferometry, torsion balance
and ultracold bouncing neutron measurements reproduced from Refs. [35,37,40], respectively. It may be seen that (i) torsion balance
experiments are complementary to Casimir experiments, and (ii) atom interferometry is extremely sensitive, but constrains only a
relatively narrow window of μ. Bouncing neutrons result in strong constraints over a similar range of μ, but presently apply only to a
slightly narrower band in M. This is largely due to the relatively large vacuum chamber density ρvac in bouncing neutrons experiments,
which could plausibly be significantly improved in future experiments.
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calculations predicting the symmetron force in such setups.
Our results address this shortcoming. By considering a
hypothetical Casimir experiment that is based on the
current state of the art, we have found that Casimir force
sensors hold a great deal of promise at probing a very large
range of symmetron masses μ spanning ∼5 orders of
magnitude, thanks to the sensor’s extraordinary sensitivity
and to the short distance scales involved.
It will be interesting to apply our results to the actual

Casimir experiments that will be coming in the near future.
Our results also pave the way for more detailed studies. For
example it may be necessary to model accurately the trench
walls in Casimir experiments. It is also interesting to apply
an optimization technique to the experimental configura-
tion parameters to find the values that maximize the
sensitivity of the experiments to the symmetron force
and the constraints on symmetron’s parameters. We could
also apply our results to astrophysical problems, such as
configurations comprising a small spheroidal dwarf galaxy
in the vicinity of a nearly planar spiral galaxy. Examples of
such situations exist in the local group of galaxies. It would
be extremely interesting to analyse the dynamical effects
induced by the symmetron field on small, nearly spherical
galaxies and determine if smaller values of the Compton
wavelength μ−1 could be tested astrophysically. Notice that
these effects would only be present if the symmetron does
not couple to dark matter. On larger scales, one could also
envisage testing the presence of symmetrons by studying
the dynamics of galactic halos in the neighbourhood of

galaxy filaments and great walls of galaxies. In this case,
dark matter would be influenced by the presence of the
symmetron. We leave these studies for future work.
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