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In the case of a spherically symmetric nonlinear scalar field (SF) in flat space, besides singularity at the
center, spherical singularities can occur for nonzero values of radial variable r > 0. We show that in the
general relativity the gravitational field suppresses the occurrence of the spherical singularities under some
generic conditions. Our consideration deals with asymptotically flat space-times around static spherically
symmetric configurations in the presence of N nonlinear SFs, which are minimally coupled to gravity.
Constraints are imposed on the SF potentials, which guarantee a monotonicity of the fields as functions of
r; also the potentials are assumed to be exponentially bounded. We give direct proof that solutions of the
joint system of Einstein-SF equations satisfying the conditions of asymptotic flatness are regular for all
values of r, except for naked singularities in the center r ¼ 0 in the Schwarzschild (curvature) coordinates.
Asymptotic relations for SF and a metric near the center are derived, which appear to be remarkably similar
to the Fisher solution for free SF. These relations determine two main types of the corresponding geodesic
structure when photons can be captured by the singularity or not. To illustrate, the case of one SF with
monomial potential is analyzed in detail numerically. We show that the image of the accretion disk around
the singularity, observed from infinity, can take the form of a bright ring with a dark spot in the center, like
an ordinary black hole.
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I. INTRODUCTION

In this paper we study some common properties of static
spherically symmetric configurations of general relativity
with several nonlinear scalar fields.
Scalar field (SF) models are widely used in relativistic

gravitational physics as elements of alternative gravita-
tional theories [1], especially in cosmology within
approaches to the dark energy problem [2]. Most publica-
tions deal with one SF; however, scenarios with multiple
SFs are also well known (see, e.g., [3]), being extensions of
the single-scalar-tensor approaches.
Therefore, it is natural to ask how the scalar field works

in compact astrophysical objects. In particular, recent
publications of the Event Horizon Telescope (EHT) results
[4] have increased interest in black hole (BH) mimickers,
which differ from BH but can give similar images of the
radiating material around these objects. Indeed, within the
EHTangular resolution it is difficult to rule out a number of
alternative astrophysical objects (see, e.g., [5]) and refer-
ences therein). Theories with additional scalar fields, which
model the ubiquitous “dark energy,” create a suitable soil
where such mimickers can grow [6,7].

It is well known that introduction of SF in models of
compact astrophysical objects may lead to important
consequences. For example, the arbitrarily small free SF
affects the space-time topology, e.g., leading to a naked
singularity (NS). This is clearly seen in the case of the
Fisher analytic solution [8–10]. This is closely related to
the famous Bekenstein theorems [11] (see, also [12] and
references therein), which prohibit existence of horizons in
the presence of SF. Though, space-times with topological
properties quite different from those of BH can have similar
observational properties from the perspective of a distant
observer [6,7,13].
Note that models of spherically symmetric compact

objects with linear SFs are best studied for massless linear
SF, starting from the early publications [8–10]; more
complicated SF potentials have been considered elsewhere
(see, e.g., [14–16]). As we will see below, main asymptotic
properties of the solutions are common for a fairly wide
class of the SF potentials.
One of the main issues of the present study concerns the

domain of regular solutions and the occurrence of singu-
larities. Indeed, the singular behavior is very common for
nonlinear differential equations and it is not evident that
there is no “spherical” singularities outside the center (that
is, for r > 0 in the Schwarzschild coordinates). In particu-
lar, equations of a static self-interacting SF in special

*valeryzhdanov@gmail.com
†alexander.stashko@gmail.com

PHYSICAL REVIEW D 101, 064064 (2020)

2470-0010=2020=101(6)=064064(12) 064064-1 © 2020 American Physical Society

https://orcid.org/0000-0003-3690-483X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.064064&domain=pdf&date_stamp=2020-03-26
https://doi.org/10.1103/PhysRevD.101.064064
https://doi.org/10.1103/PhysRevD.101.064064
https://doi.org/10.1103/PhysRevD.101.064064
https://doi.org/10.1103/PhysRevD.101.064064


relativity (i.e., on the fixed Minkowsky background) can
have solutions with singularities at arbitrary spatial points
(see the Appendix A).
In the case of linear scalar fields, the singularities outside

the center of spherically symmetric configurations are not
expected (cf. [8,17]). The question arises in the case of
nonlinear SF models in view of the above special relativ-
istic examples. Nevertheless, a general relativistic analysis
in the presence of nonlinear SFs shows [18] that such
spherical singularities do not seem to appear, if gravita-
tional effects are involved; namely, solutions of the
Einstein-SF equations are singular for r → 0, but they
do not have singularities for r > 0. However, our paper [18]
uses numerical integration in the case of particular SF
potentials, so these results are not too general.
In the present paper we give a rigorous proof showing

that, indeed, the joint system of Einstein-SF equations does
not lead to spherical singularities for r > 0, and we derive
asymptotic relations for r → 0 under general conditions for
positive definite SF potentials. Moreover, our results extend
to the case of several SFs with similar qualitative metric
behavior. Therefore, we state our findings for asymptoti-
cally flat space-times in the presence of N nonlinear SFs,
which represent static spherically symmetric configurations
of general relativity. The scalar fields are assumed to be
minimally coupled to gravity.
In Sec. II we formulate general requirements for the SF

potentials that are used to guarantee some properties of the
solutions stated below. The potentials are assumed to be
exponentially bounded and to fulfill conditions analogous
to that used in the proof of the Bekenstein theorems [12]. In
Sec. III we present a direct proof that solutions of the joint
system of Einstein-SF equations obeying conditions at
spatial infinity are regular for all values of r > 0 in the
Schwarzschild (curvature) coordinates except naked sin-
gularities in the center r ¼ 0. In Sec. IV we prove
asymptotic relations for the metric and SF near the center.
They are used in Sec. V to describe qualitative features of
the space-time geodesics, which are important for under-
standing the configuration image from the perspective of a
remote observer. The main findings are summarized in
Sec. VI. In Appendix Awe give an example of a nonlinear
SF in the flat space (static spherically symmetric case),
showing the appearance of singularities for r > 0.
Appendix B describes the generalized Fisher solution for
N free scalar fields. The results are illustrated in detail by an
example of numerical solutions with one monomial SF
(Appendix C).

II. BASIC RELATIONS

We consider N real scalar fields Φ ¼ fϕ1;…;ϕNg that
are described by Lagrangian density

L ¼ 1

2

XN
i¼1

∂μϕi∂μϕi − VðΦÞ: ð1Þ

Throughout the paper we assume that VðΦÞ is a twice
continuously differentiable function,

VðΦÞ ≥ 0; ð2Þ

and

ϕiV 0
iðΦÞ ≥ 0; i ¼ 1;…; N; ð3Þ

where V 0
i ¼ ∂V=∂ϕi.

Assumptions (2), (3) can be fulfilled, e.g., in the case of a
polynomial potential

VðΦÞ ¼
X

ni1þ���þniN≥1
wi1;…iN

YN
i¼1

ϕ2ni
i ð4Þ

where wi1;…iN ≥ 0.
Also we assume that there exist positive constants

C0; C0
0; κ; κ

0 such that for all Φ:

jVðΦÞj < C0 expðκkΦkÞ ð5Þ

(kΦk stands for the Euclidean norm of the N-component
vector Φ) and for all i ¼ 1; 2;…; N

���� ∂V∂ϕi

���� < C0
0 expðκ0kΦkÞ: ð6Þ

Evidently, estimates (5), (6) are fulfilled for any finite
degree polynomial including example (4). One can show, if
(6) is valid, then there exist some constants C0; κ such that
(5) is also valid; i.e., in fact only (6) is necessary.
The space-time endowed with the metric gμν subject to

the Einstein equations1

Gν
μ ¼ 8πTν

μ ð7Þ

is assumed to be asymptotically flat. The field equations

gμν∇μ∇νϕi ¼ −V 0
iðΦÞ; i ¼ 1;…; N ð8Þ

follow from (1).
The energy-momentum tensor of the scalar fields is

Tμν ¼
XN
i¼1

∂μϕi∂νϕi − gμνL: ð9Þ

We work with a static spherically symmetric space-time
metric in curvature coordinates

1Units: G ¼ c ¼ 1.
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ds2 ¼ eαðrÞdt2 − eβðrÞdr2 − r2dO2; ð10Þ

where dO2 ¼ dθ2 þ ðsin θÞ2dφ2; radial variable r > 0.
In the case of metric (10), the Einstein equations yield

d
dr

½rðe−β − 1Þ� ¼ −8πr2T0
0; ð11Þ

where T0
0 ¼ e−β

P
N
i¼1 ϕ

02
i =2þ VðΦÞ, ϕ0

i ¼ dϕi=dr,

re−β
dα
dr

þ e−β − 1 ¼ −8πr2T1
1; ð12Þ

where T1
1 ¼ −e−β

P
N
i¼1 ϕ

02
i =2þ VðΦÞ.

Equations (8) yield

d
dr

�
r2e

α−β
2
dϕi

dr

�
¼ r2e

αþβ
2 V 0

iðΦÞ; ð13Þ

i ¼ 1;…; N.
In view of the asymptotic flatness we assume

lim
r→∞

½rðeα − 1Þ� ¼ lim
r→∞

½rðe−β − 1Þ� ¼ −rg; ð14Þ

where rg ¼ 2M and M > 0 is the configuration mass.
It can be assumed that at spatial infinity the SF

components behave as independent fields in the flat space
and tend to zero. We assume ΦðrÞ → 0 for r → ∞ and

∃K∶ r2kΦ0ðrÞk < K < ∞; ð15Þ

whence also

rkΦðrÞk < K: ð16Þ

Stronger restrictions for SF can be assumed for some
potentials (see, Appendix A), but conditions (15), (16) are
sufficient for our purposes.
Definition.—Functions αðrÞ; βðrÞ ∈ C1 and ΦðrÞ ∈ C2

will be said to be a solution of Eqs. (11)–(13) on ðr0;∞Þ,
r0 ≥ 0, if they satisfy these equations on ðr0;∞Þ and
conditions (14), (15), (16).
Equations (11), (12) are equivalent to

α0 þ β0 ¼ 8πr
XN
i¼1

ϕ02
i ; ð17Þ

β0 − α0 ¼ 2

r
þ eβ

�
16πrVðΦÞ − 2

r

�
: ð18Þ

Following [8], instead of α and β we introduce new
(positive) variables

X ¼ eðαþβÞ=2; Y ¼ reðα−βÞ=2; ð19Þ

satisfying, in view of (14),

lim
r→∞

½rðX − 1Þ� ¼ 0; lim
r→∞

ðY − rÞ ¼ −rg: ð20Þ

Also we introduce

Zi ¼ −rYϕ0
i; i ¼ 1;…; N: ð21Þ

Conditions (16), (15) and the second condition of (20) yield

jZiðrÞj < K; lim
r→∞

½ϕiðrÞZiðrÞ� ¼ 0: ð22Þ

After simple transformations from (17), (18) we get an
equivalent system

dX
dr

¼ 4π
X
rY2

XN
i¼1

Z2
i ; ð23Þ

dY
dr

¼ X½1 − 8πr2VðΦÞ�: ð24Þ

Equation (13) is reduced to a pair of the first-order
equations

dZi

dr
¼ −r2XV 0

i; ð25Þ

i ¼ 1;…; N,

dϕi

dr
¼ −

Zi

rY
: ð26Þ

III. REGULARITY OF SOLUTIONS FOR r > 0

As we mentioned above, for a nonlinear SF it is
necessary to be careful about the global behavior of
solutions in connection with possible singularities that
may arise when we continue the solutions from infinity
to smaller values of the radial variable (see the example of
Appendix A in the case of the Minkowski space-time).
In this section we analyze the joint system (11), (12),

(13) or equivalent system (23)–(26) and state some general
conditions guaranteeing that the scalar field and the metric
(10) is regular for all r > 0. In order to do this one must rule
out the cases XðrÞ→0, YðrÞ → 0, jZiðrÞj→∞, jϕiðrÞj→∞
for r → r0 þ 0 for some r0 > 0.
Below we use monotonicity properties of solutions

following from condition (3). Using (19), (21), (25),
(26), we get

−
d
dr

ðϕiZiÞ ¼
Z2
i

rY
þ r2XϕiV 0

i: ð27Þ

Below we use (19), (21) to define Zi.
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Lemma 1.—Let condition (3) is valid for allΦ; functions
αðrÞ, βðrÞ are continuously differentiable on ðr0;∞Þ,
r0 ≥ 0, and satisfy (14). Let, for some i, ϕiðrÞ ∈ C2 is a
nontrivial solution of (13) on this interval [ϕiðrÞ ≢ 0] with
conditions (15), (16). Then functions ϕiðrÞ, ZiðrÞ and
dϕi=dr do not change their signs, ϕiðrÞZiðrÞ > 0 and
ϕiðrÞdϕi=dr < 0 on ðr0;∞Þ.
Proof.—Let r1 be an arbitrary point to the right of r0.

The right-hand side of (27) is non-negative in view of (3)
and ϕiZi is nonincreasing. If we suppose (on the contrary)
that ϕiðr1ÞZiðr1Þ < 0 for r1 > r0, then this will be pre-
served for r > r1 in contradiction to ϕið∞ÞZið∞Þ ¼ 0,
which is the consequence of (14), (15), (16). Therefore,
ϕiðrÞZiðrÞ ≥ 0 for r > r0. Now, if we suppose
ϕiðr1ÞZiðr1Þ ¼ 0 (again on the contrary), then we have
analogously that ϕiðrÞZiðrÞ≡ 0 that is ϕiðrÞdϕi=dr≡ 0

and dϕ2
i =dr≡ 0 for r > r1. In view of ϕið∞Þ ¼ 0 this

yields ϕiðrÞ≡ 0 for r > r1 in contradiction to the
assumption that ϕiðrÞ is nontrivial. This yields strict
inequality ϕiðrÞZiðrÞ > 0; then ϕiðrÞ and ZiðrÞ cannot
change their signs. This proves all the statements of
this Lemma.
Further we assume that at least one component of Φ is

nontrivial: ϕiðrÞ ≠ 0.
Lemma 2.—Let conditions (2), (3) are fulfilled, functions

αðrÞ; βðrÞ;ΦðrÞ ∈ C1 satisfy equations (13), (17), (18)
and ϕiðrÞ ≠ 0 for i ¼ 1;…; N in ðr0; r1�, where
0 < r0 < r1 < ∞. Then there exists η0 > 0∶ YðrÞ > η0
and SiZiðrÞ > SiZiðr1Þ > 0, where Si ¼ signϕi.
Proof.—We use system (23)–(26).
Let for some i we have ϕiðrÞ ≠ 0. In view of Lemma 1

we can assume ϕiðrÞ > 0, ZiðrÞ > 0, ϕ0
iðrÞ < 0 without

loss of generality. Then ϕiðrÞ is monotonically decreasing.
In view of (25) and (3), ZiðrÞ > 0 is decreasing and
ZiðrÞ > Ziðr1Þ for r < r1. Analogously, inequality
SiZiðrÞ > SiZiðr1Þ is fulfilled for the other nontrivial SF
components.
In view of (23), function XðrÞ is monotonically increas-

ing. From (23), (24) we have for r < r1

1

Y2

dY
dX

¼ r
4π

P
N
i¼1 Z

2
i
½1 − 8πr2VðΦÞ� ≤

[using (2)]

≤
r1

4π
P

N
i¼1 Z

2
i ðrÞ

≤
r1

4π
P

N
i¼1 Z

2
i ðr1Þ

;

where we take into account X0 > 0, and we used the
monotonicity properties of SiZi. Integration of this inequal-
ity yields

1

YðrÞ ≤
1

Y1

þ r1X1

4π
P

N
i¼1 Z

2
i ðr1Þ

:

Therefore, 1=YðrÞ > 0 is bounded and ∃ η0 > 0∶
YðrÞ > η0. The Lemma 2 is proved.
On account of this Lemma we see that if there is a

nontrivial component ϕiðrÞ ≠ 0 that satisfies Eqs. (13),
(17), (18) in ðr0; r1�, where 0 < r0 < r1 < ∞, then there
exists η0 > 0∶ YðrÞ > η0.
Lemma 3.—Let the conditions (5), (6) are fulfilled and

functions αðrÞ; βðrÞ ∈ C1, ΦðrÞ ∈ C2, ϕi ≠ 0 (at least for
some i) satisfy Eqs. (17), (18) and (13) on ðr0; r1�, where
0 < r0 < r1 < ∞. Then there exist finite limits

Ȳðr0Þ¼ lim
r→r0þ0

YðrÞ> 0; Z̄iðr0Þ¼ lim
r→r0þ0

ZiðrÞ> 0; ð28Þ

X̄ðr0Þ¼ lim
r→r0þ0

XðrÞ> 0; ϕ̄iðr0Þ¼ lim
r→r0þ0

ϕiðrÞ≠ 0: ð29Þ

Proof.—According to the assumption of this lemma,
Xðr1Þ is finite. Let r0 < r ≤ r1. Equation (17) on account
of (19) yields

XðrÞ ¼ Xðr1Þ exp
�
−4π

Z
r1

r
x
XN
i¼1

ϕi
02ðxÞdx

�
ð30Þ

Using the Cauchy-Bunyakovsky-Schwarz inequality we
have for r < r1

jϕiðrÞ−ϕiðr1Þj ¼
����
Z

r1

r
ðϕ0

iðxÞ
ffiffiffi
x

p Þ · 1ffiffiffi
x

p ·dx

����≤
≤
Z

r1

r
jϕ0

iðxÞj
ffiffiffi
x

p
·
1ffiffiffi
x

p ·dx≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
r1

r
x½ϕ0

iðxÞ�2dx lnðr1=rÞ
s

:

Then

Z
r1

r
x½ϕ0

iðxÞ�2dx ≥
½ϕiðrÞ − ϕiðr1Þ�2

lnðr1=rÞ
; ð31Þ

whence using (30) we have

XðrÞ ≤ Xðr1Þ exp
�
−4π

XN
i¼1

½ϕiðrÞ − ϕiðr1Þ�2
lnðr1=rÞ

�
; ð32Þ

and we strengthen this inequality by replacing lnðr1=rÞ
by lnðr1=r0Þ:

XðrÞ ≤ Xðr1Þ exp
�
−4π

XN
i¼1

½ϕiðrÞ − ϕiðr1Þ�2
lnðr1=r0Þ

�
: ð33Þ

Denote

BðrÞ¼XðrÞjVðΦðrÞÞj; B̃iðrÞ¼XðrÞjV 0
iðΦðrÞÞj: ð34Þ

As kΦk ≤
P

N
i¼1 jϕij, then according to (33) and (5) we

obtain BðrÞ ≤
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≤ C1 exp

�XN
i¼1

�
−4π

½ϕiðrÞ − ϕiðr1Þ�2
lnðr1=r0Þ

þ κjϕiðrÞj
��

ð35Þ

where C1 ¼ Xðr1ÞC0 > 0. Term ∼4πjϕðrÞj2= lnðr1=r0Þ
dominates the exponent for ϕ → ∞, the expression in
the exponent as a function of ϕ has maximum, so BðrÞ
is uniformly bounded for r → r0 þ 0, r0 > 0. Analogous
consideration shows that B̃iðrÞ is also bounded (even if
ϕi → ∞). Then expressions (34) and the right-hand sides of
(24), (25) are bounded, integrable yielding the existence of
limits Ȳðr0Þ; Z̄iðr0Þ. Inequalities Ȳðr0Þ > 0, SiZ̄iðr0Þ > 0
follow from considerations of Lemmas 1,2.
From (26) in view of Lemma 1 it follows that jdϕi=drj

and ϕiðrÞ are bounded and have limits for r → r0.
Existence of X̄ðr0Þ > 0 follows either from (23) or directly
from (17) in view of the previous results. The Lemma 3 is
proved.
We summarize the above statements in the form of the

following
Theorem.—Let the SF potential satisfies conditions (2),

(3) and (5), (6) for all Φ. Let αðrÞ; βðrÞ;∈ C1, ΦðrÞ ∈ C2

represent a nontrivial (ϕiðrÞ ≢ 0, i ¼ 1;…; N) solution of
Eqs. (13), (17), (18) on open interval ðr0;∞Þ; r0 > 0 with
conditions (14), (15), (16). Then

(i) there exist finite limits of functions αðrÞ; βðrÞ;ϕiðrÞ
and ϕ0

iðrÞ for r → r0;
(ii) this solution can be regularly continued onto a left

neighborhood of r0;
(iii) this solution can be regularly continued for all r > 0

up to the center.
Proof.—Statement (i) of the theorem is essentially the

result of Lemma 3. The right-hand sides of Eqs. (23)–(26)
are analytic in the neighborhood of X̄ðr0Þ > 0, Ȳðr0Þ > 0,
SiZ̄iðr0Þ > 0, Siϕ̄iðr0Þ > 0. Then statement (ii) follows
from the existence-uniqueness theorem for ordinary differ-
ential equations. Application of the continuous induction
in order to continue the solutions for all r > 0 completes
the proof.
We note that the regularity for r > 0 does not exclude a

singularity at the origin r ¼ 0.

IV. ASYMPTOTICS AT THE CENTER

The next question concerns the behavior of the solutions
in the vicinity of the center that can be studied using
considerations similar to Lemma 3 with some restrictions
on κ; κ0 from (5), (6). We take into account that signs Si ≡
signðϕiÞ ¼ signðZiÞ do not change on ð0;∞Þ.
Lemma 4.—Let conditions (2), (3) and (5), (6) are ful-

filled with maxðκ2;κ02Þ<32π=N. Let αðrÞ; βðrÞ;ϕiðrÞ ≢ 0
ði ¼ 1;…; NÞ represent a solution of (11), (12), (13) on
ð0;∞Þwith conditions (14), (15), (16). Then there exist finite
nonzero limits

Zi;0 ¼ lim
r→0þ0

ZiðrÞ; Y0 ¼ lim
r→0þ0

YðrÞ ð36Þ

such that SiZi;0 > 0; Y0 > 0.
Proof.—Let 0 < r < r1 < ∞. We denote L ¼ lnðr1=rÞ

and DðrÞ ¼ r2BðrÞ that appears in the right-hand side of
(24). Now we repeat considerations of Lemma 3 leading to
(35), but we can leaveL ¼ lnðr1=rÞ in this inequality instead
of lnðr1=r0Þ yielding:

DðrÞ¼ r21ðr=r1Þ2BðrÞ¼ r21e
−2LBðrÞ≤C2e−2L·

· exp

�
−
XN
i¼1

�
4π

L
½ϕiðrÞ−ϕi;1�2−κjϕiðrÞj

��
ð37Þ

where C2 ¼ r21Xðr1ÞC0 > 0, ϕi;1 ¼ ϕiðr1Þ.
We strengthen the inequality by discarding some neg-

ative terms in the exponent. After simple calculations
(completing a perfect square) we get

DðrÞ ≤ C2 exp

�
−2Lþ 4π

L

XN
i¼1

��
jϕi;1j þ

κL
8π

	
2
��

:

If κ2 < 32π=N, then this expression is bounded for r → 0
(L → ∞); then the right-hand side of (24) is integrable and
the limit Y0 ≥ 0 exists.
Analogously, under suppositions of this lemma we get

that r2XV 0
i in the right-hand side of (25) is integrable and

limits Zi;0 exist. After that, inequalities SiZi;0 > 0; Y0 > 0

are obtained similarly to Lemma 3, Q.E.D.
Using Lemma 4 we can obtain the asymptotic behavior

of SF for r → 0. From (26) and using (36) we have

dϕi

dr
∼ −

ζi;0
r

; ϕiðrÞ ∼ −ζi;0 ln r; ð38Þ

where ζi;0 ¼ Zi;0=Y0. The singularity of ϕiðrÞ for r → 0 is
a physical one; it takes place in any coordinate system and
cannot be removed by a coordinate transformation.2

From (17), (18) we obtain the leading terms of asymp-
totics for r → 0:

αðrÞ ∼ ðη − 1Þ ln r; β ∼ ðηþ 1Þ ln r; ð39Þ

where η ¼ 4π
P

N
i¼1 ζ

2
i;0.

Note that the asymptotics (38), (39) are similar to those
of the generalized Fisher solution with V ≡ 0 (see
Appendix B). Indeed, under conditions (5), (6) the terms
containing VðϕÞ are asymptotically much smaller as
compared with the other terms in (17), (18) for r → 0.

2Scalar curvature R ∼ −D1=rηþ3 and Kretschmann scalar
RαβγδRαβγδ ∼D2=r2ηþ6 diverge for r → 0, where constants
D1 > 0; D2 > 0 depend on details of asymptotic behavior of
VðΦÞ for large fields.
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V. TEST PARTICLE MOTION

The asymptotic relations (39) enable us to highlight main
qualitative situations concerning the geodesic structure of
the space-time around the spherically symmetric static
configuration with N SFs.
The integrals for trajectories of photons and test particles

in the plane θ ¼ π=2 are

eα
�
dt
dτ

	
2

− eβ
�
dr
dτ

	
2

− r2
�
dφ
dτ

	
2

¼ S; ð40Þ

eα
�
dt
dτ

	
¼ E; r2

�
dφ
dτ

	
¼ L; ð41Þ

where S ¼ 0 in the case of photons and S ¼ 1 for test
particles, τ is a canonical parameter, E > 0 and L are
constants of motion. This yields

eαþβ

�
dr
dτ

	
2

¼ E2 −Ueffðr; L; SÞ; ð42Þ

where Ueffðr; L; SÞ ¼ eαðSþ L2=r2Þ.
Thus, we are dealing with one-dimensional particle

motion in the field of effective potential Ueff .
In view of asymptotics (14), we have Ueff ≈ Sþ L2=r2

for r → ∞. In the case of the radial motion of photons
(L ¼ 0, S ¼ 0) using (39), for r → 0 we have
rηdr=dτ ≈�E, so photons can reach the singularity at
the center for a finite value of τ. For L ≠ 0 both for S ¼ 0
and S ¼ 1, we have two main situations defined by the sign
of η − 3. In Appendix C we consider an example showing
that both signs may be indeed possible. For r → 0 and L ≠
0 asymptotic relations (39) yield Ueff ≈ L2eαr−2 ∼ rη−3.
Thus for η > 3we haveUeffðr; L; SÞ → 0 for r → 0 and for
sufficiently large L there is a maximum of Ueffðr; L; SÞ as a
function of r. Otherwise, for η<3we haveUeffðr;L;SÞ→∞
for r → 0.
Let us consider in more detail the motion of photons

(S ¼ 0). In this case by an appropriate choice of the
canonical parameter we can put E ¼ 1. To build the image
of a radiating accretion disk, the inverse ray tracing is
widely used: instead of tracking the photons emitted by the
disk, we track the trajectories of incident photons moving in
the opposite direction from the observer. For this purpose,
we consider below scattering of photons by the singularity
in the center.
Let η > 3. Then there exists a global maximum of the

effective potential maxUeffðr; L; 0Þ ¼ L2M0, where M0 ¼
max eα=r2. The solutions rðτÞ of (42) that describe incom-
ing photons with L2M0 < 1, dr=dτ < 0, can be continued
to the values r → 0, that is, these photons fall on the center.
There is a nonzero capture cross section of the incident
photons by the singularity (see Fig. 5 of Appendix C for the
example). On the other hand, if the singularity does not

radiate, the external observer will see a dark spot in the
center surrounded by a luminous ring due to radiating
substance around the configuration. The occurrence of the
maximum of maxUeffðr; L; 0Þ means that there exists at
least one “photon sphere” (cf. e.g., [6])—the set of unstable
circular photon trajectories. The situation with this con-
figuration may be very similar to that for BH, when we
have the same qualitative behavior of the test body circular
orbits and the photon orbits (as described in Appendix C).
In this case it will be difficult to distinguish images of these
objects without additional independent information about
the surrounding matter.
In the case of η < 3, L ≠ 0 the effective potential

Ueffðr; L; SÞ is unbounded for r → 0. Therefore, photons
falling from infinity with L ≠ 0 are reflected back from the
potential and do not reach the center. If the deflection angle
αdðLÞ is sufficiently large, the incident photon may not hit
the disk plane at all. If, e.g., the disk is observed face-on,
this will be the case of αdðLÞ > π=2—for sufficiently small
impact parameters L ≠ 0. The example of such a behavior
is given in Fig. 6 of Appendix C. This means that the distant
observer cannot receive photons with L < L0 (from any
part of the disk), that is he will see a dark spot in the center.
This situation is described in Appendix C, where we
present a detailed consideration of null geodesics by the
example of one nonlinear SF with the monomial potential.

VI. DISCUSSION

We considered static spherically symmetric configura-
tions of general relativity in the presence of N scalar fields
minimally coupled to gravity, which obey conditions of
asymptotic flatness. The SF potential is supposed to satisfy
conditions (2), (3) guaranteeing a monotonic dependence
of non-trivial SF modes upon radial variable; also it must be
exponentially bounded (5), (6). These conditions are
fulfilled for a number of widely used field-theoretic
models, such as positively definite polynomial potentials
(4). A superposition of independent SFs with monomial
potentials ∼ϕ2n

i can serve as a simple example.
Under these conditions, we proved that any asymptoti-

cally flat solution of the Einstein-SF equations cannot have
singularities on a sphere of nonzero radius, i.e., the solu-
tions are regular for all nonzero values r > 0 of radial
variable r in the Schwarzschild (curvature) coordinates
outside the center. On the other hand, all nontrivial SF
components ϕi have singularities for r → 0. The results are
illustrated by the numerical example for one SF with
monomial potential (Appendix C).
We note that asymptotic properties of the solutions with

N nonlinear scalar fields are remarkably similar to that of
the case of one linear massless SF [8–10] and its gener-
alization for N free SFs (Appendix B). All these
cases have naked singularities at the center with the
logarithmic asymptotic behavior of SF and power-law
metric components.
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It would be interesting to relax the restrictions on the
potentials (2), (3), (5), (6). Though we note examples (see,
e.g., [15,16]) showing that violation of the conditions (2),
(3) can lead to the black hole configurations with scalar
hair. One can also suppose that nonlinear SF potentials with
a more strong dependence upon SF than in (5), (6) [like
VðϕÞ ∼ sinhðϕ2nÞ; n > 2] can lead to spherical singularities
with a nonzero radius.
In view of the asymptotic properties of the metric we

show that there exist two different types of the geodesic
structure, depending on the strength of the SF components
at infinity. They are related to different behaviors of
isotropic geodesics. In case of the first one the incident
photons with sufficiently small impact parameters L are
captured by the singularity. There exists a photon sphere [6]
and spiral trajectories of photons passing near it that fall to
the center after several revolutions. This case is similar to
that of BH, and here one can also have the ringlike image of
the accretion disk with a dark spot in the center. Different
brightness distributions over the ring are possible, which,
however, are also a function of complicated physical
processes that are unattainable for independent observa-
tions. Therefore, there is a lot of configurations with naked
singularity that can mimic the Schwarzschild BH.
In the other type, the photons and the test particles with

nonzero angular momentum cannot reach the center. The
examples show that in this case the incident photons can be
strongly deflected by the center, which makes it impossible
for some regions near the singularity to be observed from
some directions at infinity; in this case the dark spot in the
center can be possible as well.
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APPENDIX A: ONE SF IN THE FLAT SPACE

1. Asymptotic behavior for r → ∞
Here we consider one real SF ϕ with the power-law

potential

VðϕÞ ¼ wjϕjp; w > 0: ðA1Þ

The SF equation in Minkowski space-time is

d
dr

�
r2

dϕ
dr

�
¼ pwr2ϕjϕjp−2: ðA2Þ

We assume conditions (15), (16) to be fulfilled for ΦðrÞ≡
ϕðrÞ. Due to considerations analogous to Lemma 1 of

Sec. III we infer that ϕðrÞ and ϕ0ðrÞ do not change their
signs and without loss of generality we further assume
ϕ > 0;ϕ0ðrÞ < 0.
In case of p ¼ 2, w ¼ μ2=2 (massive SF with mass μ)

there is the exact solution satisfying the zero condition
for r → ∞:

ψðrÞ ¼ Q
r
expð−μrÞ; Q ¼ const: ðA3Þ

For p > 2, the substitution

ϕ ¼ e−qtψ ; t ¼ ln r; q ¼ 2

p − 2
ðA4Þ

leads to an autonomous differential equation

d2ψ
dt2

þ ð−2qþ 1Þ dψ
dt

þ qðq − 1Þψ ¼ pwψp−1: ðA5Þ

Equation (A5) is equivalent to the dynamical system on
the plane

du
dt

¼ð2q−1Þ−qðq−1Þψþpwψp−1;
dψ
dt

¼ u: ðA6Þ

(i) First consider the case 2 < p < 4 when qðq − 1Þ ¼
2ð4 − pÞðp − 2Þ−2 > 0. On the half-plane ψ ≥ 0
the dynamical system (A6) has critical points
ðψ ¼ 0; u ¼ 0Þ and ðψ ¼ Q0; u ¼ 0Þ, where

Q0 ¼
�
qðq − 1Þ

pw

� 1
p−2
: ðA7Þ

The point (0, 0) is a repeller (unstable node) with the
eigenvalues of the linearized system

λ�1 ¼ q ¼ 2

p − 2
; λ�2 ¼ q − 1 ¼ 4 − p

p − 2
: ðA8Þ

The point ðQ0; 0Þ is a saddle with eigenvalues

λ� ¼ 6−p
2ðp−2Þ

"
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ8ð4−pÞðp−2Þ

ð6−pÞ2
s #

: ðA9Þ

The separatix branches that enter the saddle corre-
spond to asymptotic solutions of (A2) for r → ∞.
For these branches we have

ψðtÞ ≈Q0½1þ C expð−λtÞ�; t → ∞;

where C is an arbitrary constant, λ ¼ −λ− > 0.
Correspondingly, we have an asymptotic solution
of (A2) for r → ∞:
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ϕ1ðrÞ ≈ ϕ1ðrÞ ¼
Q0

rq

�
1þ C

rλ

	
: ðA10Þ

The other solutions near the saddle do not fit
condition ϕð∞Þ ¼ 0.

(ii) For p > 4 there is the only critical point (0, 0) and
this is a saddle [see (A8) for p > 4]. Condition
ϕð∞Þ ¼ 0 leads to the separatrix of the saddle
yielding ψðtÞ ∼Qe−jλ�2jt; t → ∞ and

ϕðrÞ ≈Q=r; r → ∞; ðA11Þ

Q being an arbitrary constant.
(iii) For p ¼ 4 (q ¼ 1) there is also the only critical point

(0,0), but it is not simple. Analogously to the case
p > 4, there are solutions that tend to (0,0) for
t → ∞ yielding an asymptotic solution for SF

ϕðrÞ ¼ Q

r
ffiffiffiffiffiffiffiffiffiffiffij ln rjp �

1þ 3 ln j ln rj
4 ln r

þ � � �
	

ðA12Þ

where Q is an arbitrary constant.

2. Spherical singularities

A typical phenomenon for some types of a nonlinear
equation is the occurrence of singularities for finite values
of the independent variable. Here we present an example
showing that this may be the case for certain solutions
of Eq. (A2).
First of all, one can check directly that with p > 2 there

exists a solution of Eq. (A2), which is singular at
r ¼ rs > 0, which can be represented approximately near
this point as

ϕðrÞ ≈
�

qðqþ 1Þ
pwðr − rsÞ2

�
q=2

with arbitrary rs > 0 and q ¼ 2=ðp − 2Þ. However, here we
do not know the behavior of this solution for r → ∞. In this
view we present an example with more detailed consid-
eration of the solutions satisfying asymptotic condition
(A11) at infinity. We confine ourselves to the case
p ¼ 2n; n > 2.
Multiplying (A2) by ϕ0ðrÞ after some transformations

we get

dE
dr

¼ −
2

r
½ϕ0ðrÞ�2 ≤ 0; ðA13Þ

where EðrÞ ¼ ½ϕ0ðrÞ�2=2 − wϕ2n. Then for r < r0 we have
EðrÞ ≥ Eðr0Þ. For a sufficiently large r0 we have

ϕðr0Þ ≈Q=r0 ≪ 1; ϕ0ðrÞ ≈ −Q=r20; ðA14Þ

this yields Eðr0Þ > 0 and

½ϕ0ðrÞ�2 > wϕ2nðrÞ:

Taking into account the signs (ϕ > 0;ϕ0 < 0)

ϕ0ðrÞ < −
ffiffiffiffi
w

p
ϕn →

d
dr

�
1

ϕn−1

	
>

ffiffiffiffi
w

p ðn − 1Þ:

Integration of this inequality yields on ½r; r0�, (r < r0)

ϕðrÞ > ½ϕ−ðn−1Þ
0 −

ffiffiffiffi
w

p ðn − 1Þðr0 − rÞ�1=ðn−1Þ:

If

ϕ−ðn−1Þ
0 −

ffiffiffiffi
w

p ðn − 1Þr0 < 0; ðA15Þ

then we necessarily have singularity of ϕ for some
r ¼ rs > 0. The inequality (A15) needs to be checked to
be compatible with (A14). Both estimates will be satisfied
for a sufficiently large r0 and

Q > rðn−2Þ=ðn−1Þ0 ½ ffiffiffiffi
w

p ðn − 1Þ�−1=ðn−1Þ:

This ensures the existence of the singularity for some
r ¼ rs > 0. However, this seems to be a too tight assess-
ment. Numerical integration shows that the singularity
occurs for much lower Q (see Fig. 1).

APPENDIX B: GENERALIZED FISHER
SOLUTION: N FREE SCALAR FIELDS

Here we consider the case of N scalar fields with
VðΦÞ≡ 0. Our considerations closely follow the Fisher
work [8].
From (25) we have Zi ≡ const, and (23), (24) are

separated yielding the second order equation

FIG. 1. Position of singularity rs for the solution of (A2)
with different p ¼ 2n as a function of Q from conditions
(A11), (A12).
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d2Y
dr2

¼ Ξ
rY2

dY
dr

; ðB1Þ

where

Ξ ¼ 4π
XN
i¼1

Z2
i ¼ const: ðB2Þ

We assume nontrivial Ξ > 0.
Substitution r ¼ expðtÞ transforms (B1) into an autono-

mous equation that can be easily integrated yielding

dY
dt

¼ Y −
Ξ
Y
þ A; ðB3Þ

where A is an integration constant. Besides A, the result
contains one more integration constant. Both are defined
on account of (20), in particular A ¼ rg ¼ 2M. The final
result is

½g−ðYÞ�ð1−νÞ=2½gþðYÞ�ð1þνÞ=2 ¼ r; ðB4Þ

where g�ðYÞ ¼ Y þM �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ Ξ

p
, ν ¼ M=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ Ξ

p
.

Here YðrÞ varies from
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ Ξ

p
−M to infinity as r varies

from zero to infinity. This determines implicitly YðrÞ ≥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ Ξ

p
−M as a function of r > 0.

The metric components are

eα ¼ ðg−=gþÞν; eβ ¼ gþg−=Y2; ðB5Þ

and SF as a function of Y is

ϕiðYÞ ¼
Zi

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ Ξ

p ln

�
gþðYÞ
g−ðYÞ

	
: ðB6Þ

This is the Fisher solution [8]; the only difference is due to
the presence of N fields in (B2) and (B6). Transition to a
new radial variable Y leads to the Janis-Newman-Winicour
[9] (see also [10]) representation of the metric

ds2¼
�
g−
gþ

	
ν

dt2−
�
gþ
g−

	
ν

dY2−ðgþÞ1þνðg−Þ1−νdO2: ðB7Þ

APPENDIX C: NUMERICAL SOLUTIONS:
ONE FIELD, MONOMIAL POTENTIAL

Here we consider one SF with monomial potential

VðϕÞ ¼ ϕ2n; ðC1Þ

where n ¼ 2; 3;…. The case of the linear massive scalar
field (n ¼ 1) has been considered in [17]. Obviously,
assumptions (2), (3) and (5), (6) are fulfilled with
appropriately chosen C0; C0

0. Therefore all the results of

Lemmas 1–4 and Theorem 1 are valid for solutions of
Eqs. (11)–(13) with the potential (C1).
The asymptotic formulas for sufficiently large r are

obtained on account of conditions (15), (16), (20), assum-
ing that the behavior of ϕðrÞ for r → ∞must be the same as
in the Minkowski space-time (see Appendix A). For
n ¼ 3; 4;… the asymptotic formulas can be derived using
expansions in powers of 1=r. The leading terms of
solutions are as follows:

ϕðrÞ ¼ Q
r

�
1þ rg

2r
þO

�
1

r3

	�
; ðC2Þ

eα ¼
�
1 −

rg
r

	�
1þO

�
1

r3

	�
; ðC3Þ

eβ ¼
�
1 −

rg
r

	
−1
�
1 −

4πQ2

r2
þO

�
1

r3

	�
; ðC4Þ

where constants Q and M fix the solution uniquely. For
n ¼ 2 the asymptotic formula for SF involves logarithmic
terms according to (A12). We note that in fact only the first
terms of the asymptotic formulas are sufficient to obtain
stable numerical results described below. Namely, one can
use (A11) and (A12) to obtain initial conditions for the
numerical integration of Eqs. (23)–(26), starting with a
sufficiently large value of r towards the center r ¼ 0.
We checked the asymptotic behavior near the center

(r → 0), which is described by the relations (38) for SF and
(39) for the metric with η ¼ 4πζ20 > 0. Figures 2 and 3
illustrate typical behavior of the solutions. Figure 4 shows
the relationship ηðQÞ of asymptotics at infinity and near the
center. We see that both signs of η − 3 are possible leading
to different types of the photon trajectories (Figs. 5, 6).

FIG. 2. Metric and SF in case of the monomial potential (C1)
with n ¼ 2; the solutions are specified for Q ¼ 0.5 and different
M. For r → 0 it is clearly seen that eα ≫ eβ in accordance
with (39).
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The numerical solutions have been used to study the
geodesic structure around the configuration with potential
(C1) according to Eqs. (41), (42). The configuration
parameters were n ¼ 2, Q ¼ 0.2 (η > 3, Fig. 5) and
n ¼ 3, Q ¼ 0.5 (η < 3, Fig. 6); the figures show the
qualitative features of the incident photon trajectories,
which are typically used for imaging the configuration
by means of the inverse ray tracing.
To illustrate, we considered a simple model of an

accretion disk (AD) observed face-on, which is formed
by the planar distribution of the test body stable circular
orbits (SCO). The SCO distribution has been studied by
means of the technique of our papers (see [16,18], where
the key point is the occurrence and disposition of extrema
of Ueffðr; L; 1Þ.

In the case of η > 3, we have the Schwarzshild-like SCO
distribution of AD [18]: there is the inner region where the
test body circular orbits do not exist at all, then there exists
a ring of unstable circular orbits with larger radii and then
there is an outer region of SCO that extends to infinity.
These regions are indicated by the empty section of the AD
plane in Fig. 5.
For η < 3, SCO densely fill the area near the center and

there exist SCOs with arbitrarily small radii [18] in the
accretion disk plane, which is described by the bold solid

FIG. 3. Metric and SF in the case of the monomial potentials
(C1) with n ¼ 3; the solutions are specified for M ¼ 1 and
different Q.

FIG. 4. Dependence ηðQÞ for different n of (C1); M ¼ 1.

FIG. 5. Light rays incident from infinity in the field of the
naked singularity; η ¼ 4πζ20 > 3 (n ¼ 3,Q ¼ 0.2). The accretion
disk is observed face-on; the empty section on the AD plane
indicates an area in which there are no SCOs forming the
accretion disk. The fall of photons to the center with a sufficiently
small L is possible (trajectories 3,4). Trajectory 2 intersects the
empty section of the AD plane and creates an image of a point on
the back of AD.

FIG. 6. Typical photons trajectories in the field of the naked
singularity for η ¼ 4πζ20 < 3 (n ¼ 3, Q ¼ 0.5). Each point of the
accretion disk has two images, with the exception of the area in
the vicinity of the center; the photons from this region do not
come to the observer plane. Trajectories 1 and 4 correspond to the
different images of the disk boundary. In case of trajectories 4, 5
there is a strong deflection when the scattered photons pass
nearby center. Trajectory 5 does not cross the disk plane at all.
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black line without gaps in Fig. 6. Also in this case there
may be discontinuous SCO distributions: in this case there
is the region of SCO near the center, then there is a ring of
unstable orbits and then there is an outer region of SCO that
extends to infinity.
A detailed description of these results is beyond the scope

of the present paper; however, we note that in case of the
configurations with potential (C1) fixed by parametersM,Q,
possible SCOdistributions turn out to be qualitatively similar
to the case of the linear massive scalar field (see [18]).
For η < 3, there is a strong light deflection near the

singularity and due to this effect the light from the inner

orbits of AD near the center avoids certain directions. The
photons incident from infinity with a sufficiently small L
deviate strongly from the initial direction and do not reach
the accretion disk that is located face-on; this means that the
distant observer must see a dark spot in the center of the
configuration. This does not mean that the innermost SCO
will be invisible for all possible observers since the effect
depends on the direction of the line of sight with respect to
the AD plane.
In case of η > 3, the qualitative picture is as described in

Sec. V; in particular, the photons from infinity with
sufficiently small L fall to the singularity.
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