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A deformed relativistic kinematics can be understood within a geometrical framework through a
maximally symmetric momentum space. However, when considering this kind of approach, usually one
works in a flat spacetime and in a curved momentum space. In this paper, we will discuss a possible
generalization to take into account both curvatures and some possible observable effects. We will first
explain how to construct a metric in the cotangent bundle in order to have a curved spacetime with a
nontrivial geometry in momentum space and the relationship with an action in phase space characterized by
a deformed Casimir. Then, we will study within this proposal two different space-time geometries. In the
Friedmann-Robertson-Walker universe, we will see the modifications in the geodesics (redshift, luminosity
distance, and geodesic expansion) due to a momentum dependence of the metric in the cotangent bundle.
Also, we will see that when the spacetime considered is a Schwarzschild black hole, one still has a common
horizon for particles with different energies, differently from a Lorentz invariance violation case. However,
the surface gravity computed as the peeling off of null geodesics is energy dependent.
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I. INTRODUCTION

Due to the inconsistencies between general relativity
(GR) and quantum field theory (QFT), a new theory that
makes both of them compatible has been looked at for
several decades now. Examples of these attempts are string
theory [1-3], loop quantum gravity [4,5], supergravity
[6,7], or causal set theory [8—10]. In most of these theories,
a minimum length appears [11-13], which is normally
associated with the Planck length £ ~ 1.6 x 10733 cm. It
is believed that this minimum length could mark somehow
the transition to a “quantum” spacetime which replaces our
concept of “classical” spacetime.

If spacetime has a minimal length, there should be a
modification of the special relativity (SR) symmetries, that
characterized the classical spacetime, parametrized by a
high energy scale (usually considered to be the Planck
energy A)." We can distinguish two different scenarios
depending on how this modification is introduced. One can
consider that some of the Poincaré group symmetries are
broken, as in the Lorentz invariance violation (LIV)
scenarios (see [15,16] for a review), or one can have a
deformation of these symmetries, in such a way that there is
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still a relativity principle. This is what is considered in the
doubly special relativity (DSR) framework [17], where
the kinematics of SR are deformed: there is a modified
(nonlinear) conservation law for momenta, a deformed dis-
persion relation and, in order to have a relativity principle,
a modification of the usual Lorentz invariance that makes
compatible the two previous ingredients. This kind of
deformation is usually carried out by a mathematical
machinery called Hopf algebras [18], where the example
of k-Poincaré [19] is one of the most studied deformations
of the Poincaré algebra.

A duality between spacetime and momentum space was
proposed by Born in the 1930s [20], considering the
possibility that, if a curved spacetime describes GR, maybe
a curved momentum space could represent a quantum
gravity theory (when a curvature of spacetime is also
present). This idea was formulated in order to avoid the
ultraviolet divergences appearing in QFT, but recently has
been considered again as a way to go beyond SR. In fact, it
was suggested in Refs. [21,22] a relationship between a
modified kinematics and a curved momentum space, which
has been understood deeper in Ref. [23]. From the algebraic
point of view, in the particular case of the x-Poincaré Hopf
algebra [24], the associated x-Minkowski noncommutative
spacetime [19] allows us to deduce a de Sitter geometry for
momentum space [25].

© 2020 American Physical Society
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In order to study the possible consequences on spacetime
of deviations from Lorentz invariance, there had been
several papers studying Finsler geometries [26-28], a
generalization of a Riemannian geometry in which the
metric can depend on the velocities (this is a particular case
of Lagrange space geometries [29]). For example, in
Ref. [30] the redshift in Friedmann-Robertson-Walker
and spherically symmetric metrics has been studied.
Also, in Ref. [31] the modified Raychaudhuri’s equation
has been developed for the Finslerian case. But in these
works the modification of the metric is not related with a
deformed kinematics in the DSR context.

In the DSR framework, Finsler spacetimes have been
studied for flat spacetime [32,33], and also for curved
spacetimes [34]. In those papers it was shown that a
deformed dispersion relation produces a velocity depend-
ence on the metric. The main difference with the LIV
scenario is that in this framework, nonlinear Lorentz trans-
formations are implemented in order to make the metric
invariant. A different approach was used in Ref. [35], where
the modification is carried out by Hamiltonian geometry
(see also Ref. [29]). In this case, the metric is momentum
dependent (the Hamiltonian version of a Lagrange space).
Both Finsler and Hamiltonian geometries are particular rea-
lizations of geometries in the tangent and cotangent bundle
respectively. The starting point in all of them is a deformed
dispersion relation. But in DSR context, and in particular
in the Hopf algebra framework, there is a basis called
“classical basis” of k-Poincaré [36] in which the dispersion
relation is the usual of SR. As from a geometrical and
algebraical point of view, different basis are equivalent, and
one should obtain the same result starting from different
dispersion relations. But this is not what it is found in those
papers: in all of them, if one considers this particular basis
of x-Poincaré, one obtains the same results as in SR.

Also in DSR scenarios, the study of the propagation and
interaction of particles considering a curvature in both
momentum and space-time spaces was carried out in
Ref. [37]. In that paper an action with some nonlocal
variables (defined by the space-time tetrad) is considered,
allowing one to generalize the relative locality action [22]
when a curvature in spacetime is present.

Here we are going to consider a general case in the
cotangent bundle because as we will see, this is required in
order to study a modification of a spacetime due to a de
Sitter momentum space. We will check that our metric is
independent on the choice of the space-time variables one
uses but, as in GR, the results depend on the momentum
basis (choice of coordinates on the fiber). Our approach is
completely different from the works appearing in the
literature since our starting point is a metric in the cotangent
bundle instead of a deformed dispersion relation, but as we
will see, there is a relationship between both approaches.

The paper is organized as follows. In Sec. II we will see
how to construct a metric in the cotangent bundle that takes

into account the modified kinematics of x-Poincaré, check-
ing that there are isometries of the metric related with
translations and transformations that leave the momentum
origin invariant for a fixed space-time point, which lead to
the kinematics of k-Poincaré in absence of space-time
curvature. This will manifest the presence of a nontrivial
composition law, differentiating the case of a deformed
relativistic kinematics from the LIV scenario. Also, we will
explain the main ingredients of the geometry in the
cotangent bundle following [29] that we will use in the
paper, finding the modified Lie derivative in this context.
Moreover, we will see the connection between the cotan-
gent bundle metric formalism we will follow in the paper
and the usual approach of considering an action in
phase space with a deformed Casimir. In Secs. III and
IV we will see the phenomenological implications in the
modified Friedmann-Robertson-Walker universe and in
a Schwarzschild black hole. In the first case we will
study the modified geodesics, redshift, luminosity distance,
and the congruence of geodesics that takes into account
the momentum dependence of the metric. For the
Schwarzschild metric, we will study the null geodesics
finding that particles with different energies will still have
the same horizon, in contrast with the LIV case [38,39].
Also, we will compute the surface gravity from the peeling
of null geodesics, finding that it depends on the energy.
Finally in Sec. V, we will see the conclusions.

II. METRIC IN THE COTANGENT BUNDLE

In this section we will first review the main results of
[23]. We will expose how a deformed relativistic kinemat-
ics can be understood through a maximally symmetric
momentum space, characterized by a metric ¢} (k). A
deformed relativistic kinematics is composed of a deformed
composition law for the momenta @, a deformed dispersion
relation C(k) and, in order to have a relativity principle,
modified Lorentz transformations 7%. In particular, if
the momentum space is de Sitter, one can find the special
case of k-Poincaré when one considers the isometries
of the metric as the composition law (translations) and
the Lorentz transformations (Lorentz isometries).

After this incipit, we will show a possible way to
generalize the previous work taking into account the
curvature of spacetime. This will lead us to a metric in
the cotangent bundle, depending on momentum and space-
time coordinates. In such metric we will see that, as in the
flat space-time case, one can define momentum trans-
formations (for a fixed point x) that leaves the form of the
metric invariant. Six of them leave the origin invariant
(which are related to the Lorentz transformations) and the
other four do not (which are related to translations, i.e., the
composition law).

Also, we will explain how to deal with a metric in
the cotangent bundle depending on both momentum and
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space-time coordinates, finding the deformed Killing equa-
tion for such metric.

Finally, we will compare the velocity computed through
the action with a deformed Casimir and the velocity
obtained from a metric, checking that both procedures
give the same result.

A. Curved momentum space, flat spacetime

In [23] a proposal to derive a (relativistic) deformed
kinematics from a geometry in maximally symmetric
momentum space is given, defining a deformed composi-
tion and transformation laws from the isometries of the
momentum metric associated with translations and Lorentz
respectively, and the deformed dispersion relation as the
(square of the) distance from the origin to a point in
momentum space. In particular, it was shown in that paper
that, when the momentum space is de Sitter with the choice
of coordinates in which the metric is’
goo(k) =1, 90i(k) =0, gij(k) = e~/ (1)
where A plays the role of the high energy scale, one can
obtain the kinematics of x-Poincaré in the bi-cross-product
basis [24]. Through the tetrad of momentum space defining
the momentum metric

gﬁv(k) = (pZ(k)ﬂa/}(Z)/j(k), (2)

it is easy to obtain the composition law, i.e., the four
translations, by the following equation:

Ap ®q),
T‘ﬂ%@)- (3)

P

Pi(p @ q) =

Since these transformations leave the tetrad invariant
(and then the metric), they are isometries of the momentum
metric. With this prescription to obtain the composition
law, it can be shown [23] that the only compatible
kinematics is k-Poincaré (note that the composition law
is associative by construction).

With the choice of the tetrad leading to metric (1)

(P?(k) = (P(l)(k) - 0, (p;(k) = 6;e_k0/A’

(4)

the composition law is

(P®q)o=ro+4d0. (p®q),=pi+qer (5

The modified Lorentz transformations are given by the six
isometries leaving invariant the origin:

*We use the signature convention where 1 = (+, —, —, —).

Ogh(K) ap,, DT (K) 0T (k)
Tkpjp (k) = Tkl)gpu(k) + Tkpgup(k)’ (6)
where

TP (k) = x T (k). (7)

is the Lorentz generator [23]. From here one obtains

i i iA _ ]—(’2 klk
jg (k):_kn \7? <k>_5]§|:e 2k0/A_1_P:| + A]'
(8)

Once the latter is known, one can easily compute the
Casimir defined as a function of momenta which is
invariant under these transformations

aC(k)
Ok,

"

{C(k). T} = i (k) =0, ©)

getting
C(k) = A2(eko/A 4 e=ko/N — 2) — eko/AR2 (10)

With all this we see that the ingredients of the deformed
kinematics of k-Poincaré in the bi-cross-product basis [24]
obtained through Hopf algebras can also be found from
geometrical arguments [23].

B. Curved momentum and space-time spaces

In SR, one describes the motion of a free particle by the
action

s:/w@—Nww—mq (11)

where C(k) = k"’ ky is the SR dispersion relation and the
dot represents the derivative with respect to 7. One can
obtain the geodesic motion in GR just rewriting Eq. (11) as

S = /xﬂk,, - N(C(k) — m?), (12)

where k, = &,(x)k,, with &,(x) defined as the inverse of
the tetrad of the space-time metric e%(x), satisfying

g (%) = ef(X)naper (x). (13)

while the dispersion relation is given by
C(]_() = ]_C(lna/}l_(/i = kﬂg;y(x)kw (14)
One can check that the worldlines obtained through this

action are the same that one would obtain in GR with the
geodesics derived from the affine connection of the metric.
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In Ref. [22] it was first proposed that the dispersion
relation can be viewed as the squared distance from the
origin to a point k£ of the momentum space. In order to
measure distances in momentum space, one can consider
the line element

do? = dkagk (k)dky = dka(p?(k)nm(])g(k)dkﬁ, (15)

where @F(k) is the inverse of ¢F(k). Viewing the momen-
tum space as a fiber of the space-time manifold, one
computes such distance for a fixed space-time point (see
chapter 4 of Ref. [29]). Then, if one considers that the
transformation k — k is the correct way to take into account

a curvature in spacetime, the new momentum line element
would be

do? = dk,g (k)dks = dk,g" (x.k)dk,.  (16)

where in the second step we have used that the distance is
carried along a fiber for a fixed space-time point. The tensor
¢"(x, k) is constructed with the tetrad of spacetime and the
original metric in momentum space. Explicitly,

g/w(xf k) = <I);j(x, k)’?a/jq)g(xf k)’ (17)

where

Dji(x. k) = e/, (x)g (k). (18)

Now we can check that this metric is invariant under space-
time diffeomorphisms, as in GR. As this is a tetrad, a

canonical transformation in phase space (x, k) — (x/, k") of
the kind
ox¥
.X'/M = f”(x), klll = ka, (19)

in such that for any nonlinear change of space-time
variables, i.e., for any set of functions f, of the space-
time variables, the tetrad Eq. (18) will transform as

@A) = 05 @l ), (20)
because
Ox* 1. APN TN
e = s ®). @)

where we have used standard transformation law for the
tetrad of spacetime

8)6”' >
=S E), 22)

and then, the barred variables are independent of the choice
of spatial coordinates

ox°  ox" _
a/y trapel/f()_ke() k}l' (23)

k, = ke (x') =
Also, we consider that the momentum space tetrad does not
change under such transformation.

In the following, we will prove that with the definition of
the new momentum metric given in this work, starting with
a momentum space metric, we can still define momentum
transformations for a fixed space-time point x that leave
invariant the form of the metric, taking into account the
curvature of the spacetime (the generalization to curved
spacetime of the results obtained in [23]): there are still 10
momentum isometries of the metric that correspond to
the four translations and six transformations that leave the
origin invariant [the point in phase space (x,0)], and
we can identify the squared distance from a point in the
momentum space to the origin as the deformed dispersion
relation. In Appendix it is shown that when the starting
momentum space metric is of constant curvature (max-
imally symmetric space), the momentum scalar of curva-
ture given by the contraction of Eq. (49) is also constant.
Then, for a momentum metric with a dependence in space-
time coordinates constructed with our procedure, we see
that the fact that the original momentum space is maximally
symmetric leads to a constant momentum scalar of curva-
ture, and that we can also find 10 momentum isometries
(momentum transformations for a fixed point in spacetime).

1. Modified translations

As our starting point is to take into account the curvature
of the spacetime by replacing k — k = ek, Eq. (3) should
be generalized to

op & 7q),

(@7 ==

» (7). (24)

where p = p, = &,(x)p,. ¢ = q, = €,(x)g,. We can now
define a modified composition (@) for a curved spacetime

(P @ q), = &,(x)(pDq),- (25)

Then, one has
P DY) u-
7. (7)

= ex(net(n) 2020 i)

e, (x)p:(p @ g) = ej(x)

Ap®q), %4, ,

_ 9(p®9), o(G) =

- 0g, oq, 0a," vo(d)
_ 9(p®q), o
= e (o). (26)

1.€.,
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I(p®q), o

@ (x, (pDq)) = 94 b(x, q). (27)

This means that we can identify, for a fixed x, the isometries
of this metric that leaves the form of the tetrad of the whole
metric invariant as the deformed composition law when a
curvature of spacetime is present, in the same way it was
done in [23].

By construction, the deformed composition law gener-
ators of Eq. (3) form a group, so the composition law must
be associative. By the same argument, the barred compo-
sition law must be associative. In fact, it is easy to see that
if the composition law @ is associative, the composition
law @ is also associative. We define 7 = (l_c @ g) and
[ = (p ® k), and then we have r = (k@q) and [ = (p®k).
Therefore,

=2i(p®(kDq)),. (28)
and
(1®7q),=¢e(i®q), = e (p®)®Dg),,  (29)

but as the @ composition is associative, the following
identity holds:

p&7),=10®7), (30)

and hence

(P®(kq)), = (P®K)Dq),, (31)

so the @ is also associative. Then, we have found that when
one works in the cotangent bundle with a maximally
symmetric momentum space, one can also define four
momentum translations, which are also associative.

2. Modified Lorentz transformations
We can rewrite Eq. (6) replacing k — k = ek

) k(% B Provy - _ gy AN
2 apn = Zel g+ 25 B . o
From here, we have
05 (K) . OTLE i
o eI ) = =5 er(x)gh (B)
aj () o
U RNES)

Multiplying the previous equation by e4(x)e¥(x) one
obtains

093:(X, k) qp 0T (x. k)
ok, U (x, k) _8—/c/,g’”(x’k)
AT (x, k)
+Tkpgﬁp('x’ k), (34)
where
ap M apf (7
T (x, k) = ep(x)T." (k). (35)

We see that 7 Zﬁ (x, k) are the new isometries of the metric
leaving the momentum origin invariant for a fixed point x.

3. Deformed dispersion relation

Following our prescription, the generalization to Eq. (9)
when the spacetime is curved should be

8C( )
Ok

"

TP (k) = o. (36)

One can see the action of these transformations on the
Casimir with the infinitesimal transformation parameters

WDgp-
OC(h) = e 35}5 )‘7 (5 k) = g 6(915 )aki T (k)
9C . 8C
- waﬁ%éﬁ(x)j/(x, k) = (p)j ®
-0 (37)

where the last equality holds for a fixed point x.

At the beginning of the section, in order to construct the
momentum metric in the presence of a curved spacetime,
we have supposed that the replacement k — k = ek was a
natural procedure to take into account the curvature of
spacetime. With our prescription, we have found that if the
Casimir C(k) is the squared distance of the metric g}, (k) in

momentum space from the origin to a point k, C(k) is the
squared distance for a fixed point x of the new momentum
metric g, (x, k) from the origin in momentum space to a
point k. This means that our first assumption of considering
that C(k) is the deformed dispersion relation when the
spacetime is curved is consistent with how we constructed
the momentum metric with a dependence on space-time
coordinates, combining a curvature in spacetime with a
curved momentum space.

C. Main properties of the geometry
in the cotangent bundle

We have seen that considering our approach we have
obtained a metric in momentum space for a fixed point in
spacetime. This metric can be considered as a metric in the
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cotangent bundle, taking into account a curvature in both
momentum and space-time spaces, using the formalism
given in Ch. 4 of Ref. [29]. In this subsection, we are going
to summarize the basic concepts and formulas we will use
in the following.

We define H,’ZD as the affine connection of the metric in
spacetime, in such a way that the covariant derivative of the
metric vanishes

89, (%, k)
Guvp (x’ k) - ”57 - gab(x k) (X k)
- go‘ﬂ('xv k)HZu(xv k) = O’ (38)
where we use a new derivative
o 0 0
=5 PNy k) —, 3
OxH 8 ”+ (x )akp (39)

and N, (x, k) are the coefficients of the nonlinear con-
nection N (also called horizontal distribution), supplemen-
tary to the vertical distribution V. The vertical distribution
is generated by 0/0k,, while the horizontal one is con-
structed by 6/6x*. In GR, the coefficients of the nonlinear
connection are given by

N, (x, k) = k,Hj,(x). (40)

Also, one can find the following relation between the
metric and the affine connection

1
Hﬁb(X, k) = Egmy(x’ k)

% 5gav(x’ k) 5.%/4()6’ k) _ 59/41/()61 k)

Sxt Sx¥ 5x° '
(41)
The d-curvature tensor is defined as [29]
ON,,(x, k) ON,,(x,k)
R, (x. k) = i A (42)

It represents the curvature of the phase space. It measures
the integrability of spacetime, i.e., position space, as a
subspace of the cotangent bundle and is defined as the
commutator between the horizontal vector fields

6 0 0
{wvg} Ml//)(x k) akp (43)

It can be seen that this tensor is

;wp(x k) =k R;gp(x’ k>’ (44)

where

*0
R uvp

(x.K) = OH, (x, k) 6HZ/,(x,k)
ox” ox*

HS (x, k)H}, (x, k) — H, (x, k) Hj ) (x, k)) .

(45)

In the GR case, R,,,(x. k) = k,Ry,,(x), R;,,(x) being the

Riemann tensor. The horizontal bundle would be integrable

if and only if R, = O (see Refs. [29,35] for more details).
The affine connection in momentum space is

v 1 g™ (x, k)~ 0g™(x,k) 0g"(x, k)
Cy (x.k) = Eg”"< ok, T ok, ok, )
u v c

(40)

and then, we can also define the following covariant
derivative:

v,
ok

"

vy

-0, (x, k). (47)

The curvature tensor in position space is

RS, (x, k) = Ry, (x. k) +

Cz‘(x, k)R;,,(x, k), (48)
and the one in momentum space is

9Cs (x, k) 9Ce (x, k)
ok, ok,

+ CP(x, k) O (x. k)

S5 (x, k) =

— C (x, k) C¥ (x. k).
(49)
One can define a line element in the cotangent bundle as
G = g (x, k)dx'dx" 4 ¢ (x, k) Sk, 0k, (50)

where

ok, = dk, — N,,(x, k)dx". (51)
In this way, a vertical path is characterized as a curve in the
cotangent bundle with constant space-time coordinates and

with the momentum satisfying the geodesic equation with
the connection of the momentum space, i.e.,

dk, dk, dk
g2 TG k)

—2 =0, 52
dr dr (52)

while a horizontal curve will be determined by
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d?x+ dx¥ dx°
H/Z/la 5 k — = 0’
gz T el K
ok, dki dx°
— = —N_ (x,k)— = 0. 53

These are the same equations that hold in GR but, in this
case, the affine connection HY,(x, k) is a function depend-
ing not only on x but also on k.

D. Modified Killing equation

In this subsection we will derive the modified Killing
equation for a metric in the cotangent bundle. We can
express the variation of the coordinates x* along a vector
field y* as

() = x* + y*AX, (54)

where A/ is the infinitesimal variation parameter. This
variation of x* reflects on k, in the following way:

oxP w
(k/) - k/,va T — k(z - a a k/}Aﬂ (55)

since k transforms as a covector. The general variation of a
vector field X%(x, k) will then be

a X(l a Xa

X Ay
My =557/ AL~ k, AL

Dk O
(56)

)
AxP +

AX = =

As in GR, in cotangent geometry we can obtain the Killing
equation by imposing the line element invariance with
respect to the variation along a vector field y*

A(ds*) = A(g,,dx'dx”) = A(g,,)dx"dx* + g, A(dx*)dx”

+ g A(dx”)dx* = 0. (57)
From Eq. (56) we know that

Gy e 09, "

A 58
(90) = G d"BA =5l 5 (58)
while from Eq. (54) we can obtain
a)((l
A(dx*) = d(Ax*) = d(y*AL) = d PAL. (59)

Therefore, Eq. (57) can be expressed as

0 0
A(ds*) = ( Iy S Ay >dx”dx”A,1

Ox® Ok, Ox* "7

0, oy¥
+ G <§ dxPdx’ + =

5.7 dxﬁdx"> AL, (60)
X

giving finally

99, Gy Ox" ox* ox”
a __ A A -z =0
oxe X " ok, oxe T I g T I =0

(61)

which is the same equation obtained in [35]. This can be
rewritten in a covariant way taking into account the fact that
x% does not depend on k, and then

oy* oy

T 62
oxP 6xP (62)

so the previous equation becomes

3G, 09, 09, "
= v -_ v Hya - ad -
<5x“ ok, " % Okg 6x°7

g Ha 5g (%
+gzy<5 R + gy g Hat 95

Ooxt ox”

(63)

and using the definitions of the affine connection of
Eq. (41) and covariant derivative of Eq. (38) one finds

L

79w

99,
=Xvu +)(ﬂ;u_ 81: )(/Ulk =0. (64)

Also we can find the modified Lie derivative for a contra-
variant vector

E)(u” :)(Dul;lv - ”y)(”u )(a (65)

E. Relationship between metric
and action formalisms

Let us consider the line element in momentum space.
One can find a simple and useful relation between the
distance and the metric for a Riemannian manifold [40]

DO.k) _ kg(k)
Ok kg (k)k,

(66)

where D(0, k) is the distance from a fixed point O to k. This
implies

ODWO.K) . () ID(O.K)
ok, ok

i

~ 1. (67)

In Ch. 3 of [41] it was shown that this property also holds
for the Minkowski space (inside the light cone and
extended on the light cone by continuity) and hence, it
is valid for any pseudo-Riemannian manifold of dimension
n due to Whitney embedding theorem [42], since they can
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be embedded in a Minkowski space of at most dimension
2n + 1. From this property, it is easy to obtain a simple
relationship between the metric and the Casimir defined as
the distance squared

From the action
S = / ()'c"kﬂ - N(C(k) - mz))dr, (69)

with a generic deformed Casimir, we can read that

aC(k)
ok,

i

=N

(70)

being NV = 1/2m or 1 when the curve is timelike or null
respectively.

Following the prescription of the previous subsection,
we can consider the line element in spacetime to be

ds* = gk, (k)dx*dx". (71)

For the timelike case, we can chose the parameter of the
curve to be s and then

1= )'c/‘g}’jy(k))'c”. (72)
Substituting Eq. (70) in the previous equation we find

1 oC(k) , . 9C(k)
an ok, I g

1
=—4m> =1, (73)
C(k)=m> 4m?

where we have used Eq. (68). If we consider a null
geodesic, then

0 = gk, (k)x*, (74)

and therefore, using Eq. (70) we find

ac(k) , . OC(k)
Gy () =0, (75)
Ok, ™" Ok, C(k)=0

where again Eq. (68) was used in the last step. We see that
considering an action with a deformed dispersion relation
and a momentum geometry where we identify the squared
distance with the Casimir, leads us to the same results.’

*If instead of considering the squared distance one considers a
function of it, one arrives to the same results just redefining the
mass for the timelike curves. The null cases would be exactly the
same.

This is also valid for the generalization we propose in
this work considering a curved space-time and momentum
spaces. In this case, the relation of Eq. (68) is generalized to

B T =40 = 5 g (e 0.
(76)
From the action
S = /xﬂkﬂ - N(C(k) —m?) (77)

with the same deformed Casimir but depending on the
barred momenta, we can read

) oC(k)
H —
=N T

(78)

where again AV = 1/2m or 1 when the curve is timelike or
null respectively. Then, we can trivially see that, with the
generalization considered here, we observe the same
relationship between the action and metric formalisms.

III. FRIEDMANN-ROBERTSON-WALKER
METRIC

Now we can study different models for spacetime with a
de Sitter momentum space. In this section, we will start by
computing the momentum dependence of velocity in the
case of photons in two different ways for the Friedmann-
Robertson-Walker metric. We will see that the results
obtained from the variation of the action Eq. (12) and
through the line element of the metric are the same, which
is in agreement with what we have found in the previous
section. Moreover, we will obtain the evolution of momenta
as a function of time. We will also study some phenom-
enological aspects related with the Friedmann-Robertson-
Walker universe.

In order to construct the metric in the cotangent bundle,
we choose the tetrad of de Sitter momentum space of
Eq. (4), while for the space-time metric, we choose the
tetrad to be

(79)

where R(x") is the scale factor. With these tetrads we are
now able to construct the metric of the cotangent bundle
from Eq. (17), obtaining

Goo(x, k) =1, 9oi(x, k) =0,

9ij(x, k) = n;; R (x0)e /A, (80)

For this metric, one can see from Eq. (49) that the scalar
of curvature in momentum space is constant S = 12/A?
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and that the curvature tensor in momentum space corre-
sponds to a maximally symmetric space, i.e.,

Sp(f/,w & gpﬂg(w - g/)ygtm' (81)

A. Velocities for photons

In this subsection we compute the velocity of photons
first from an action. We start from the action

S = / (¥#k, — NC(k))dr (82)

with the deformed Casimir of the bi-cross-product basis
[43] depending of x and k

C(k) = A2 (/A 4 e/ — 2) — I eho/A
K2 eko/A

= Az(ekO/A + e_kO/A - 2) - W . (83)

Setting x° = 1, i.e., taking that the temporal coordinate as
the proper time, we can obtain the value of A/ as a function
of position and momenta, and then, we can obtain the
velocity for massless particles (in 1 + 1 dimensions) as

4A3k1 eZkO/A<ekO/A _ I)R(XO)Z
(k%e%o//\ _ Azesz/AR(XO)Z + A2R<x0)2)2 :
(84)

v=x!=-

When one uses the Casimir in order to obtain k; as a
function of ky, one finds

ky = —Ae~Fo/A(eko/A — 1)R(xY), (85)

and then, by substitution of Eq. (85) in Eq. (84), one can see
that the velocity is

(86)

so we will see an energy dependent velocity in these
momentum coordinates. When A goes to infinity one gets
v = 1/R(xy), which is the standard result of GR.

This can be also obtained directly from the metric asking
the line element to be null,

0 = (dx°)? = R(x®)e=2ko/M (dx!)?, (87)
which is consistent with what we claim in the previous

section: the same result must be obtained starting from the
action and from the line element of the metric.

B. Momenta for photons

Looking for the extrema of the action (82), one can find

. A(ek/N —1)R'(x0)
ko = - 5

RGO ki =0. (88)

Solving the first equation we obtain the expression of the
energy as a function of time

ko — —Alog (1490 =1 89
o= -mios (1) @)

where the constant of integration of the previous differ-
ential equation has been chosen in order to, when one takes
the limit A going to infinity, one recovers that the conserved
energy is the barred momentum E = kyR(x°), so this
constant can be considered as the energy conserved along
the geodesic.

C. Redshift

Starting from the line element derived for photons from
the metric

0 = (dx®)? — R?>(x0)e /A gx2, (90)

1o dxOeko/A x
/°”0:/ dx = x. (91)
1 R(x) 0

Now we can write Eq. (91) as a function of x using
Eq. (89) and obtaining that the quotient in frequencies are
(see Ch. 14 of Ref. [44])

we find

vo ot R+ (e = 1)/R(1)
vy 8ty R(to)(1+ (e75/2 = 1)/R(1y))
_R(ty) + e EN -1

= , 92
R(1g) + e BN — 1 ©2)
and then, the redshift is
R(t, -E/A _ 1
_Rlg) +e 1. (93)

R(t)) +eEA—1

We see that taking the limit A — oo in the previous
equation, we recover the usual redshift in Friedmann-
Robertson-Walker space [44]. From this equation, one
can observe that the redshift will be different for particles
with different energies. We can check this through a simple
calculation: suppose two particles emitted from a distance
source, one with energy E — 0 while the other has an
energy E, being E << A. When detected at R(t,), the
redshift will be different for each one. In particular, if
we make a series expansion in the high energy scale, we see
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1+200 E( 1 1
26 TA <R<r0> R<rl>>‘ 54)

Then, the redshift will be different depending on the energy
of the particle we are detecting. In particular, we can
observe that for higher energies there is more redshift, since

(g

where the last factor is always greater than unity since, as
the universe is expanding, R(#;) < R(t).

1+ 2(E) = (1 +z(0))<1

D. Luminosity distance

Here we will compute the luminosity distance following
the same procedure as in Ref. [44]. We consider a circular
telescope mirror of radius b, placed with its center at the
origin and its normal along the line of sight of the radial
direction to the light source. The light rays that just graze
the mirror edge form a cone at the light source that, for a
locally inertial coordinate system at the source, have a half-
angle |e| given by the relation

b = R(ty)e ™ /Mx|e], (96)

where b is expressed here as a proper distance and x is the
spatial coordinate at the emission of light. Then the solid
angle of this cone is

7h?

2 _
el T R(1g)e /A2

(97)

and the fraction of all isotropically emitted photons that
reach the mirror is the ratio of this solid angle to 4z, or

lef? A
— = , 98
4 ArR*(ty)e kol Ay? 58)
where A is the proper area of the mirror
A = nb°. (99)

However, each photon emitted with energy hv; will be red-
shifted to energy

R(t)) + e EN -1

hv ,
"R(ty) + e EM — 1

(100)

and photons emitted at time intervals d¢; will arrive at time
intervals

R(tl) + e_E/A -1
"Ritg) + e E/A—1°

(101)

where #; is the time the light leaves the source, and ¢ is the
time the light arrives at the mirror. Thus, the total power P

received by the mirror is the total power emitted by the
source, its absolute luminosity L, times a factor

R(t “EIN — 12
( 1) + € , (102)
R(fo) + e_E/A - 1
multiplied by the fraction Eq. (98):
R(t —E/A _1)2
P—LA ( (l)+e ) (103)

4R (1) (R(ty) + e E/N — 1)2e72ko/Ax2"

The apparent luminosity / is the power per unit mirror area,
so using Eq. (89) we obtain

(R(t) + e "0 —1)2
4r(R(ty) + e E/N — 1)4x2"

P
== =1L 104
1 (104)

In an Euclidean space the apparent luminosity of a source at
rest at distance d would be L/4zd?, so in general we may
define the luminosity distance d; of a light source as

L \1/2
dp = |— , 105
t (4;;1) (105)
and then Eq. (104) may therefore be written
R(t —E/IN—1)?
, = Blo) te Sx (106)
R(tl) + e_E/A - 1
We can rewrite the previous expression as
R(IO) + E_E/A - 1\?
dp = , 107
: <R(t1) TeFRoy) T (107)
where
r=(R(t;) + e /" - 1)x (108)

is the proper distance that separates the source from us.
Now we can express the luminosity distance as a function
of the redshift we have found above
dp = (1+2z)°r, (109)

which is the same expression one finds in GR.
As we did for the redshift, we can see that for particles

with different energies the luminosity distance will be
different. One can easily find

dr(0) (1 + z(O))Q’

~\U+z(E)

(110)

di(E)

and then, the luminosity distance will be an increasing
function of energy, as the redshift is. This is an interesting
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feature that perhaps could be tested in the future in
cosmographic analyses.

E. Congruence of geodesics

In this part we will study the congruence of null
geodesics for the metric of the cotangent bundle. We make
the computation taking the procedure of Ref. [45].

We start from the definition of the expansion for null
geodesics

1 d
0 = ——65,

111
oS da (11L)

where 6S is the infinitesimal change of surface. For the
metric of Eq. (80) we obtain

M/AR (1)

:27
=R

(112)

where R'(1) = dR(r)/dr. Taking this expression we can see
that making a series expansion in 1/A

(113)

The expansion of the congruence of the geodesics will
depend on the energy, in such a way that the expansion will
be greater for larger energies, since

0(E,) = 0(E)) <1 + (114)

E
R(1)A)"
IV. SCHWARZSCHILD METRIC

Now we will focus on the Schwarzschild solution. We
choose the tetrad of Lemaitre coordinates [46]4

ef=1, el=y/— ¢€jx)=r, eg(x) = rsin6,
r
(115)
where
3 (2/3)
r= (5 (x — t)) (2M)1/3), (116)

With the same choice of the momentum tetrad of Sec. III,
we obtain from Eq. (17) the metric in the cotangent bundle

“The use of Lemaitre coordinates is necessary because in the
most common choices of coordinates [45], the metric is singular
in the horizon because of the momentum dependent term.

2M

g)c)c(x7 k) = _Te

Gpp(x. k) = —r>sin>Ge=2o/A,
(117)

Gu(x, k) =1, —2ko/A,

(5. K) = —re ol

Again, one can see that the momentum scalar of curvature
is constant S = 12/A? and that the momentum curvature
tensor corresponds to a maximally symmetric space.

Now we will study the event horizon in this modified
metric of Schwarzschild. First, we will see the conserved
energy along geodesics. After that, we will represent the
null geodesics in order to obtain the event horizon. Finally,
we will compute the surface gravity.

A. Conserved energy

In the case we are considering, Eq. (61) gives

L =1, (118)

which is exactly the same Killing vector obtained in GR.”
One also can get the same result from the action Eq. (82)
where the Casimir is

C(k) = A2(eRo/A 1 e Rl _ 2y _ B eho/A

= A2(el/A 4 e~ho/A — 2) — P eko/A ﬁ (119)

With the choice of 7 = 7, one can express N in Eq. (82) as a
function of x and k and then, it is easy to see that the
derivatives of the momenta satisfy (in 1 4+ 1 dimensions)

ko + k; = 0. (120)

Using the Casimir, we find for photons the relation between
the spatial component of the momentum and the zero
component

(121)

so the conserved energy is
2M
E=ky+k =ky+/—A(1 —e /M), (122)
r

B. Event horizon

In order to compute the event horizon, we study the null
ingoing and outgoing geodesics. In GR, the horizon in
these coordinates is in x — r = 4M /3 and the singularity is

>This can be easily understood just looking at Eq. (61). If in
GR there is a constant Killing vector, the same vector will be a
Killing one in this modified equation.
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FIG. 1. Particles with three different velocities coming from outside the horizon, crossing it and finally arriving to the singularity.
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FIG. 2. Outgoing null geodesics from outside the horizon.

at x =t [46]. We first start from the line element of the
metric Eq. (117). Then we can solve the differential
equation

— 1)\ /3
ds> =0 = d_ (M> efo/A, (123)

dt 4M

where + stands for outgoing geodesics and — for ingoing.
We can solve numerically this differential equation writing
ko as a function of the conserved energy [inverting
Eq. (122)] and then plot it for different energies. We
observe that doing the numerical computation one sees
no difference between the geodesics with different energies.
Taking M = 1 we show the behavior for ingoing geodesics6
in Fig. 1.

°In the next figures, the representation of the geodesics are
carried out for different initial conditions for different energies,
and hence the trajectories are different.

For particles emitted outside the horizon but close to it,
they will escape in a finite time, see Fig. 2.

Also, we can represent the geodesics starting inside the
horizon in Fig. 3, and we see that they finally go into the
singularity. In Refs. [39,47-49] it is shown that in a LIV
scenario, where there are different horizons for particles
with different energies, there is a violation of the second
law of the black hole thermodynamics making possible a
construction of a perpetuum mobile (see however [50] for a
possible resolution of this problem). We see that in contrast
with LIV scenarios, in our case there is a unique horizon,
which is consistent with the fact that in DSR framework
there is a relativity principle.

C. Surface gravity

There are different ways to compute the surface gravity
of a black hole [51]. In particular, it can be related with the
peeling off properties of null geodesics near the horizon.
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FIG. 3.

In [51] it was shown that the surface gravity can be
defined as

d|x, (1) = % (1)

r (124)

~ pee]ing(t)|xl (t) - x2(t)|’
where x;(7) and x,(¢) are two null geodesics on the same
side of the horizon and the normalization Of Kpeling 1S
chosen so to coincide with Kip,finiy in the GR limit. We
obtain from Eq. (123), for two null geodesics with the same
energy ky:

dlx, (1) = x(1)| et/

~ - 12
dt 4M |x1 (t) XZ(t)|v ( 5)
and then,
oo/ A
Kpeeling = W , (126)

which depends on the energy of the geodesic. This seems to
imply that the Hawking temperature defined as [45]

T=—

- (127)

will generally depend on the energy of the outgoing
particles, an interesting result that deserves further inves-
tigation and we leave for future work.

V. CONCLUSIONS

In this paper we proposed a generalization of a curved
spacetime that takes into account a curvature of momentum
space. The obtained metric is invariant under space-time
diffeomorphisms and hence, the results we find are inde-
pendent of the space-time coordinates one uses as in GR,

10 15

Null geodesics from inside the horizon falling at the singularity.

but depend on the coordinates of momentum space. We
have shown that if one considers the dispersion relation as
the squared distance in momentum space, the study of
propagation of a particle through a metric or a phase-space
action leads to the same results. In particular, we have
considered a de Sitter momentum space, which represents
the modified kinematics of x-Poincaré, and we considered
case studies of a Friedmann-Robertson-Walker universe
and the Schwarzschild black hole.

In the Friedmann-Robertson-Walker metric we have
studied the modified geodesics, redshift, luminosity dis-
tance, and the expansion of geodesics. We saw that higher
energetic photons have greater velocity than the lower
energetic ones implying for them greater redshift, lumi-
nosity distance, and geodesic expansion (this depends on
the sign appearing with the high energy scale A, varying the
results if the sign changes).

For the Schwarzschild metric, we have studied the null
geodesics showing that particles with different energies still
have the same horizon, in contrast with the LIV case
[38,39], where there are different horizons for particles with
different energies. This is in agreement with the preserved
relativity principle of DSR. However, the surface gravity
computed from the peeling off of null geodesics is energy
dependent, suggesting that the Hawking’s temperature will
depend on the energy. All of these phenomena could be
used to constrain the scale A within this framework. We
hope to explore these implications in future works.
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space of Eq. (49) for flat spacetime

aC™ (k) OCY (k)
S (k) = -
ok, ok,

+ CH(k)CY (k) = CF (k) Cy' (k).

APPENDIX: SCALAR OF CURVATURE OF
THE MOMENTUM SPACE

In this Appendix we show that, when one considers a
metric in the cotangent bundle constructed from a metric
in momentum space of constant curvature, the scalar of
|

(A1)

that can be rewritten using Eq. (46) and raising the low
index as

O gi (k) Pgpi(k) gy (k)
Ok,0k, ~ Okok,  Ok,0k,

So‘lcly(k) _ 1 <azgzﬂ(k) (A2)

~ 2\ Ok Ok, ) + g (k) (C (k) CF (k) = G (k) CZ (k).

Our principal assumption claims that we must change k — k = &k in order to consider a nontrivial geometry in spacetime,
so the previous equation should be

2 01 (T, 2 KA (T 2 04 (T% 2 K1 (T,
sovin(f) — % <861€fa<12]z) % ]_f:a(]_i) ~ 88 /'Zfa(l}l;) ~ 88 gjai%?) + ¢ (R)(CHR)CP (R) - CH(R)CAR)),  (A3)
which contracting gives
So% (k) gk, (k) gk, (k) = const, (A4)
since the momentum space is maximally symmetric, and where géy(l_c) is the inverse of the metric
gk (K g (k) = &. (AS)

Now we can compute the scalar of curvature in momentum space from the metric in the cotangent bundle given by

G (. k) = () gf5 (K)eg (), (A6)
and where the curvature tensor in momentum space is now
goin(y ) L (LK) PRI k) P k) Pk
X, = — — —
2\ 0kOk, 0k,0k, Ok Ok, 0k,0k,
+ ¢ (x, k) (C*(x, k) C (x, k) — CF (x, k) CZ(x, k)). (A7)
After some steps, one can finally check that
S (e, K)o (5. K) g (. ) = S7# (R}, (R) g, (R) = const, (A8)

so with our procedure we still have a constant curvature momentum space and therefore, it is not strange that we have found
ten transformations for momenta for a fixed point x (that we can call momentum isometries of the metric): four of them are
related with translations and the other six are the transformations that leave the momentum origin invariant [i.e., the point in
phase space (x,0)].
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