
 

Relativistic compressibility conditions
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The constraints imposed by the relativistic compressibility hypothesis on the square of the speed of
sound in a medium are obtained. This result allows us to obtain purely hydrodynamic conditions for the
physical reality of a perfect energy tensor representing the energetic evolution of a perfect fluid in local
thermal equilibrium. The results are applied to the paradigmatic case of the generic ideal gases. Then the
physical reality of the ideal gas Stephani models is analyzed and the Rainich-like theory for ideal gas
solutions is built.
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I. INTRODUCTION

In relativity, the gravitational field g is related by Einstein
equations to the energy content T of the spacetime. We
know that not all energy tensors T represent physically
admissible energy contents, so that they have to be con-
strained by suitable causal and energy conditions which, in
turn, restrict the physically admissible gravitational fields.
In addition, the energy content of particular physical

media is described by specific energy tensors. For example,
a perfect fluid imposes T to be of the specific form:

T ¼ ðρþ pÞu ⊗ uþ pg; ð1Þ

where u, ρ, and p denote the unit velocity of the fluid, its
energy density, and its pressure, respectively. Obviously,
such a particular choice of physical media additionally
restricts the physically admissible gravitational fields.
We are concerned here with thermodynamic perfect

fluids in local thermal equilibrium. A thermodynamic
perfect fluid is a perfect fluid characterized, in addition
to the above quantities, by its conserved matter density n,
internal energy ϵ, specific entropy s, and temperature Θ.
And it is in local thermal equilibrium (LTE) if it verifies the
energy balance:

Θds ¼ dϵþ pdv; ð2Þ

where v ¼ 1=n is the specific volume. It was shown a long
time ago that, in order to be physically admissible,

relativistic thermodynamic perfect fluids in LTE have to
verify the relativistic compressibility conditions1: which
may be written as follows:

H1∶ ðτ0pÞs < 0; ðτ00pÞs > 0;

H2∶ ðτ0sÞp > 0;

where the dynamic volume τ ¼ fv is the specific volume v
weighted by the enthalpy index,2 f ¼ 1þ i=c2, the specific
enthalpy i being given by i ¼ ϵþ pv.
In Newtonian gravitation, whatever the thermodynamic

characterization of a perfect fluid may be, the Poisson
equation states that the only physical quantity of a volume
element of the fluid that causes or undergoes directly the
gravitational field is its matter density.
Correspondingly, in relativity, Einstein equations tell us

that there is the particular combination of the three hydro-
dynamic quantities, u, ρ and p, in the perfect energy tensor
T given by (1) which directly causes or undergoes the
gravitational field.
The above relativistic compressibility conditions involve

thermodynamic, not only hydrodynamic, quantities, lead-
ing us to ask the following question: Do the relativistic
compressibility conditions impose constraints on the
energy tensor T of a thermodynamic perfect fluid in LTE?
Note that, via Einstein equations, this question is the

equivalent of asking whether or not the relativistic
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1See Sec. III for details and nuances. For a function fðx; yÞ,
ðf0xÞy denotes the partial derivative of f with respect to x, at
constant y.

2In this work the units are such that c ¼ 1. We make explicit it
here in order to make clear that in the classical limit c2 → ∞, the
dynamical volume τ reduces to the specific volume v.
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compressibility conditions restrict the physically admis-
sible gravitational fields.
The analysis of this question is interesting for both,

conceptual and practical reasons:
(1) From a conceptual point of view, a relativistic

thermodynamic perfect fluid may be considered as
a conservative and deterministic hydrodynamic
perfect flow endowed with subsidiary thermic
quantities.3 Thus, the relativistic compressibility
conditions could impose restrictions on these
subsidiary, nongravitational quantities, on its
hydrodynamic flow creating or undergoing the
gravitational field or on both ingredients. And it
is important to determine which of these three
possibilities is correct and to explicitly obtain the
form of the corresponding constraints. This is the
first objective of the present work.

(2) From a practical point of view, the solution to the
inverse problem for perfect fluids (namely, the
determination of all the physical thermodynamic
perfect fluids whose evolution in LTE is descri-
bed by a given perfect fluid energy tensor T) is
tantamount to the acquisition of all characteristic
equations of state and thermodynamic quantities
compatible with that given tensor T. It becomes
crucial to know the degree of freedom or constraints
to which these unknown thermodynamic relations
and quantities are subject. The second objective of
the present work is to analyze and practically
illustrate this situation. We shall do this for the
particular case of the generic ideal gases.

In Sec. II we introduce the concept of hydrodynamic
flow of a thermodynamic perfect fluid, which gathers a
significant result [1,2]: the hydrodynamic quantities
fu; ρ; pg can be subject to complementary hydrodynamic
constraints that ensure the existence of the full set of
thermodynamic quantities. In fact, these additional con-
ditions state that the indicatrix of local thermal equilibrium,
χ ≡ _p=_ρ, is a function of state, χ ¼ χðρ; pÞ, and then it
coincides with the square of the speed of sound.
In Sec. III we address the main goal of this paper,

namely, the hydrodynamic flow approach to the relativistic
compressibility conditions. First, we summarize the results
by Israel [3] and Lichnerowicz [4], and then we analyze
separately two cases: the intrinsic barotropic media and the
nonbarotropic ones. We show that the compressibility
conditions H1 can be stated in terms of the indicatrix
function χðρ; pÞ; that is, they impose constraints on the
hydrodynamic flow. Nevertheless, condition H2 generically
only imposes constraints on the thermodynamic subsidiary
quantities.
In Sec. IV we study in detail the specific case of a generic

ideal gas. We start from our hydrodynamic characterization

of a generic ideal gas [2], which requires that the indicatrix
function χ ≡ _p=_ρ depends on the hydrodynamic variable
π ¼ p=ρ, χ ¼ χðπÞ. Then, the compressibility condition H2

on the ideal gas thermodynamic quantities can also be
stated in terms of the function χðπÞ.
In Sec. V the results in the previous section enable us to

acquire the Rainich approach for the perfect fluid solutions
of the Einstein equations performing an ideal gas which
fulfills the relativistic compressibility conditions.
In Sec. VI we apply our results to analyze the physical

reality of the ideal gas Stephani models obtained in [5]. In
addition to the full compressibility conditions, we impose
additional constraints ensuring a good performance at high
and low temperatures, i.e., that its behavior is similar to that
of a monoatomic relativistic gas.
Finally, in Sec. VII we comment on the conceptual,

practical, and numerical relevance of the results obtained
here.
In this paper we work on an oriented spacetime with a

metric tensor g of signature f−;þ;þ;þg. We denote
with the same symbol any tensor and its associated ones
by raising and lowering indexes with the metric tensor.
For the metric product of two vectors, we write
ðx; yÞ ¼ gðx; yÞ, and we put x2 ¼ gðx; xÞ. If S is a 2-tensor,
SðxÞ denotes the vector with covariant components Sαβxβ,
Sðx; yÞ ¼ Sαβxαyβ, and S2 the 2-tensor with components
ðS2Þαβ ¼ SαλSλβ.

II. HYDRODYNAMIC FLOW OF A
THERMODYNAMIC PERFECT FLUID IN LTE

The divergence-free condition for the perfect energy
tensor T given by (1),

∇ · ððρþ pÞu ⊗ uþ pgÞ ¼ 0; ð3Þ

leads to a system of four equations for the five hydro-
dynamic quantities fu; ρ; pg. For thermodynamic perfect
fluids in LTE the deterministic closure4 to this system is
obtained [6] by considering the matter density n ¼
nðρ; pÞ > 0 subject to the matter conservation equation:

_nþ nθ ¼ 0; ð4Þ

θ ¼ ∇αuα being the expansion of the fluid, and where a dot
denotes the directional derivative, with respect to u, of a
quantity q, _q ¼ uðqÞ ¼ uα∂αq. Moreover, the specific
internal energy ϵ is defined by the relation:

ρ ¼ nð1þ ϵÞ: ð5Þ

3See Sec. II for details.

4That is to say, the set of complementary equations to be added
to the system in order that it admits unicity of the Cauchy
problem.
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Then, according to a classical argument, it is always
possible to identify each integral divisor of the one-form
Λ≡ dϵþ pdð1=nÞ with the (absolute) temperature Θ,
allowing us to define the specific entropy s by the energy
balance equation (2), which can be written as:

Θds ¼ ð1=nÞdρþ ðρþ pÞdð1=nÞ: ð6Þ

As a consequence, only two thermodynamic quantities are
independent and they define a thermodynamic plane.5

Equations (3), (4), and (6) imply the equivalence between
matter conservation and a local adiabatic evolution, a
condition which can be stated as

_s ¼ 0: ð7Þ

The set of equations F ≡ fð3Þ; ð4Þ; ð5Þ; ð6Þg constitutes
the deterministic fundamental system of the relativistic
hydrodynamics.
Any solution fu; ρ; p; n; ϵ; s;Θg of the fundamental

system F defines a thermodynamic fluid in local thermal
equilibrium, and it involves, in addition to the hydro-
dynamic quantities fu; ρ; pg, a set of thermodynamic
quantities fn; ϵ; s;Θg. This fact generates the impression
that any LTE closure to the conservation equations (3)
necessarily needs the introduction of these new, thermo-
dynamic quantities. Such an impression is incorrect, as
already shown by a previous result [1] (see also the recent
paper [2]).

Theorem 1. The necessary and sufficient condition for a
conservative perfect energy tensor T ¼ ðρþ pÞu ⊗ uþ
pg to represent the energetic evolution of a thermodynamic
perfect fluid in LTE is that its hydrodynamic quantities
fu; ρ; pg fulfill the hydrodynamic sonic condition:

ð_ρd _p − _pd_ρÞ ∧ dρ ∧ dp ¼ 0: ð8Þ

The hydrodynamic sonic condition (8) is a deterministic
closure for the conservative system (3) so that the evolution
of the thermodynamic perfect fluid in LTE is uniquely
determined by the differential system H≡ fð3Þ; ð8Þg in
the hydrodynamic quantities fu; ρ; pg. We shall call this
system H the hydrodynamic flow of the thermodynamic
perfect fluid in LTE.
Note that the above theorem states the following:

(i) if fu; ρ; p; n; ϵ; s;Θg is a solution of the fundamental
system F ≡ fð3Þ; ð4Þ; ð5Þ; ð6Þg, then fu; ρ; pg is a sol-
ution of the hydrodynamic flow system H≡ fð3Þ; ð8Þg,
and conversely, (ii) if fu; ρ; pg is a solution of the hydro-
dynamic flow system H≡ fð3Þ; ð8Þg, then a solution

fu; ρ; p; n; ϵ; s;Θg of the fundamental system F ≡
fð3Þ; ð4Þ; ð5Þ; ð6Þg exists.6

This means that the solutions of the systemH character-
ize the evolution of the thermodynamic perfect fluid in
LTE. But they do not characterize the thermodynamic
perfect fluid in LTE itself, because they may also be verified
by other, different continuous media.
As follows from the above considerations, a thermody-

namic perfect fluid in LTE is determined by its hydro-
dynamic flow H endowed with two quantities n and s
depending on the two hydrodynamic variables ρ and p and
subject to Eqs. (4) and (7), respectively.
It is important to observe that, when the hydrodynamic

sonic condition (8) is included in the hydrodynamic flowH
as a deterministic closure, the hydrodynamic quantities
determine completely the evolution of the fluid, meanwhile
the thermodynamic quantities appear as subsidiary varia-
bles specifically allowing the characterization of the sole
thermodynamic properties of the fluid. In this sense,
Eqs. (4) and (7) no longer play the role of deterministic
closures for the conservative system (3) but are “reduced”
to simple evolution equations for the subsidiary thermo-
dynamic quantities n and s.
The interest of the hydrodynamic flow approach to the

LTE of a thermodynamic perfect fluid has been widely
pointed out in [2] and some applications have recently been
developed [7,8]. From this approach, the indicatrix of
local thermal equilibrium [2], χ ≡ _p=_ρ, plays a central
role. We remember here that, when _ρ ≠ 0, χ is a function
of state, χ ¼ χðρ; pÞ, and that it then coincides with the
square of the speed of sound and the hydrodynamic LTE
characterization (8) identically holds; for this reason we
also call this characterization the hydrodynamic sonic
condition.

III. RELATIVISTIC COMPRESSIBILITY
CONDITIONS

In his study of shock waves in a relativistic thermody-
namic perfect fluid in LTE, Israel [3] was lead to impose the
above relativistic compressibility conditions H1 and H2 in
order to obtain a coherent theory.7 Later, Lichnerowicz [4]
showed that, in relativistic magnetohydrodynamics, these
relativistic compressibility conditions lead to analogous
results.
The relativistic compressibility conditions H1 and H2 in

terms of the dynamic specific volume τ have the same form
as the Weyl classical ones [9], ðv0pÞs < 0, ðv00pÞs > 0,

5In fluid hydrodynamics, the thermodynamic relation (6) has a
dual interpretation: (i) as a spacetime equation that constrains
the scalar thermodynamic quantities, and (ii) as a relation in the
thermodynamic plane that restricts the thermodynamic states.

6All the conditions involved in the fundamental system F and
in the hydrodynamic flow system H are local like all the results
and statements presented in this paper.

7Namely, one in which (i) shock velocities are always less than
the light constant c, (ii) shocks are compressive supersonic waves
with increasing entropy across them, and (iii) the state after the
shock is univocally determined by the state before the shock.
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ðv0sÞp > 0, in terms of the specific volume v and, of course,
both conditions coincide in the classical limit c2 → ∞
(see footnote 2). These facts suggest that the dynamic
specific volume τ is a leading variable in relativistic
thermodynamics.
Following this idea, the relativistic compressibility con-

ditions H1 and H2, and a suitable relativistic definition of
the exothermic reaction in terms of the dynamical volume
τ, allowed one of us, Coll [10,11], to construct the
relativistic theory of deflagrations and detonations in a
magnetohydrodynamic fluid.8

From Synge’s results [13] on the relativistic Boltzmann
gas, it follows that this gas verifies the relativistic com-
pressibility conditions H1 and H2. Israel [14] showed that
the first inequality of the compressibility conditions H1

remains true also for relativistic Bose and Fermi gases. And
Lucquiaud [15,16] proved that both relativistic compress-
ibility conditions H1 and H2 are equally satisfied by
relativistic Boltzmann, Bose, and Fermi gases.
In [17], Thorne extended (for vanishing magnetic field)

the work of Israel and Lichnerowicz, showing that their
essential results could be obtained in the absence of the
compressibility condition H2. Subsequently, Lichnerowicz
[18,19] reworked the relativistic theory of shock waves in
magnetohydrodynamics under both hypothesis, H2 and its
inverse, that we denote H̄2:

H̄2∶ ðτ0sÞp < 0:

For any medium in LTE one has9 ðv0τÞp ¼ ðΘ0
pÞs=ðτ0sÞp.

Consequently, if the medium has a classical limit, τ → v
and ðv0τÞp → 1, then we have, necessarily, ðΘ0

pÞs < 0. Thus,
for a medium that holds H̄2, any isentropic evolution
implies that its temperature decreases when pressure
increases. In the scientific literature such media seem
scarce. Anyway, their possible existence leads us, in what
follows, to take into account also this condition H̄2.
We want now to analyze to what extent the relativistic

compressibility conditions H1 and H2 or H̄2 concern the
hydrodynamic flow of the perfect fluid in LTE or only its
subsidiary thermodynamic quantities. For this task, we
must consider separately the barotropic and nonbaro-
tropic cases.

A. Compressibility conditions for barotropic media

Let us consider a barotropic fluid subject to the
barotropic equation of state p ¼ ϕðρÞ.10 In this case

the characteristic equation n ¼ nðρ; sÞ takes the
expression [2]:

nðρ; sÞ ¼ GðρÞ
RðsÞ ; GðρÞ ¼ exp

�Z
dρ

ρþ ϕðρÞ
�
: ð9Þ

The dynamic specific volume τ may be written

τ ¼ 1

n2
ðρþ pÞ; ð10Þ

and by derivation taking into account (9) we obtain

ðτ0pÞs ¼
1

n2ϕ0 ðϕ0 − 1Þ; ð11Þ

ðτ00pÞs ¼
1

n2ðρþ pÞϕ03 ½ϕ00ðρþ pÞ þ 2ϕ0ð1 − ϕ0Þ�; ð12Þ

ðτ0sÞp ¼ 2τ

RðsÞR
0ðsÞ: ð13Þ

Then, replacing these expressions in the compressibility
conditions H1 and H2, it results in the following:

Theorem 2. For a barotropic perfect fluid in LTE with
equation of state p ¼ ϕðρÞ, the relativistic compressibility
conditions H1 and H2 (respectively, H̄2) may be written as

H1∶ 0 < ϕ0 < 1; ðρþ pÞϕ00 þ 2ϕ0ð1 − ϕ0Þ > 0; ð14Þ

and

H2∶ R0ðsÞ > 0 ðrespect:; H̄2∶ R0ðsÞ < 0Þ; ð15Þ

where RðsÞ is the entropy denominator of the characteristic
equation n ¼ nðρ; sÞ given by (9).
Note that a barotropic perfect energy tensor, dρ ∧

dp ¼ 0, always meets the hydrodynamic sonic condition
(1). Moreover, the entropy denominator RðsÞ is arbitrary.
Then, taking into account these facts, from Theorems 1 and
2, it follows:

Theorem 3. The necessary and sufficient condition for a
barotropic perfect fluid energy tensor T to represent the
evolution in LTE of a barotropic fluid verifying H1 and H2

or H̄2 is H1. Any such energy tensor T may be endowed
with a characteristic equation n ¼ nðρ; sÞ verifying either
H2 or H̄2.

Before studying the nonbarotropic case, let us note three
points:

(i) The expression (14) of the conditions H1 is known
and can be found in the literature (see for example
[12]). Note that ϕ0 is the square of the speed of
sound, c2s ¼ ðp0

ρÞs ¼ ϕ0ðρÞ.

8An abridged English version may be found in [12], Chap. 8,
Sec. III.

9This expression follows from the integrability condition of
(2), ðv0sÞp ¼ ðΘ0

pÞs, and the relation ðv0sÞp ¼ ðv0τÞpðτ0sÞp deduced
from v ¼ vðτðs; pÞ; pÞ.

10We avoid the case ρ ¼ ρ0, which leads to an unphysical
thermodynamic scheme since it does not meet any of the above
relativistic compressibility conditions.
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(ii) Conditions (14) exclusively involve hydrodynamic
quantities. Thus, the relativistic compressibility
conditions H1 only concern the hydrodynamic flow
of the perfect fluid in LTE. Nevertheless, constraint
H2 (or H̄2) imposes an additional condition on its
subsidiary thermodynamic quantities and it does not
restrict the perfect energy tensor.

(iii) It is worth remarking that Theorem 2 only applies
for intrinsic barotropic fluids, that is, for barotropic
perfect fluid energy tensors where p ¼ ϕðρÞ is
considered to be an equation of state.11 Otherwise,
a barotropic relation p ¼ ϕðρÞ that does not fulfill
the expressions (14) could be an admissible evolu-
tion path of a nonbarotropic fluid which fulfills the
(general) compressibility conditions H1. Conversely,
a nonbarotropic perfect fluid which does not fulfill
the compressibility hypothesis H1 could admit a
barotropic evolution that fulfills the conditions (14).
We will return to this fact at the end of the following
subsection.

B. Compressibility conditions for nonbarotropic media

Under the nonbarotropic assumption, we can consider
the thermodynamic quantities ðρ; pÞ as coordinates in the
thermodynamic plane.12 As we have seen, a thermody-
namics is determined by two functions nðρ; pÞ and sðρ; pÞ
that are solution to Eqs. (4) and (7), and are constrained by
the thermodynamic relation (6). If one of these functions of
state is known, the square of the speed of sound can be
obtained as [2]

c2s ¼ χðρ; pÞ≡ −
s0ρ
s0p

¼ 1

n0p

�
n

ρþ p
− n0ρ

�
: ð16Þ

And conversely, it is worth remarking the simplicity with
which the square of the speed of sound χðρ; pÞ allows us to
control the different thermodynamic schemes with which a
hydrodynamic flow may be endowed. Indeed, as seen in
[2], the mass density n ¼ nðρ; pÞ and the entropy s ¼
sðρ; pÞ are of the form n ¼ n̄Rðs̄Þ and s ¼ sðs̄Þ, where
n̄ðρ; pÞ is any particular solution of Eq. (16) in n, and Rðs̄Þ
and sðs̄Þ are arbitrary functions of any particular solution
s̄ðρ; pÞ of Eq. (16) in s.
From (16) we obtain that, for any function of state

z ¼ zðs; pÞ ¼ zðρ; pÞ, we have

ðz0sÞp ¼ z0ρ
s0ρ
; ðz0pÞs ¼ z0p − z0ρ

s0p
s0ρ

¼ z0p þ
1

χ
z0ρ: ð17Þ

Moreover, from (10) we obtain

τ0ρ ¼ −
2

n3
n0ρðρþpÞ þ 1

n2
; τ0p ¼ −

2

n3
n0pðρþpÞ þ 1

n2
:

ð18Þ

Then, from (17) (with z ¼ τ) and (18) we have

ðτ0pÞs ¼ ξðρ; pÞ≡ 1

n2χ
ðχ − 1Þ: ð19Þ

From the function of state ξðρ; pÞ given above we derive

ξ0ρ ¼
1

n2χ2

�
χ0ρ −

2

n
χðχ − 1Þn0ρ

�
; ð20Þ

ξ0p ¼ 1

n2χ2

�
χ0p −

2

n
χðχ − 1Þn0p

�
: ð21Þ

Then, making use of (17) (with z ¼ ξ), (18), and (16), we
have

ðτ00pÞs ¼
ðρþ pÞðχχ0p þ χ0ρÞ þ 2χð1 − χÞ

n2ðρþ pÞχ3 : ð22Þ

On the other hand, from (17) (with z ¼ τ) and (18) we
obtain

ðτ0sÞp ¼ 1

n2s0ρ

�
1 −

2ðρþ pÞ
n

n0ρ

�
: ð23Þ

Then, replacing expressions (19), (22) and (23) in the
compressibility conditions H1 and H2, it results in the
following:

Theorem 4. For a nonbarotropic perfect fluid in LTE,
the relativistic compressibility conditions H1 and H2

(respectively, H̄2) may be written as

H1∶
�
0 < χ < 1;

ðρþ pÞðχχ0p þ χ0ρÞ þ 2χð1 − χÞ > 0;
ð24Þ

and

H2∶ I > 0 ðrespect:; H̄2∶ I < 0Þ; ð25Þ

where χ is the square of the speed of sound as a function of
state depending on ðρ; pÞ, χ ¼ χðρ; pÞ, and I ¼ Iðρ; pÞ is
the function that depends on n¼nðρ;pÞ and s ¼ sðρ; pÞ as

Iðρ; pÞ≡ 1

s0ρ
½n − 2ðρþ pÞn0ρ�: ð26Þ

If we take into account the expression of the temperature
Θðρ; pÞ in terms of the functions nðρ; pÞ and sðρ; pÞ [2],
the function of state Iðρ; pÞ given in (26) can be written as
I ¼ n½2nΘ − 1=s0ρ�. Then, we can obtain an equivalent

11And not an evolution path in the thermodynamic plane of a
more general equation of state.

12For a function of state zðρ; pÞ we write z0ρ ¼ ðz0ρÞp,
z0p ¼ ðz0pÞρ.
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expression for the condition H2 which can be useful in
subsequent applications [8]:

Corollary 1. The compressibility condition H2 (respec-
tively, H̄2) can be written as:

H2∶ 2nΘ >
1

s0ρ

�
respect:; H̄2∶ 2nΘ <

1

s0ρ

�
: ð27Þ

Note that, under the physical requirements Θ > 0 and
n > 0, a sufficient condition for H2 is s0ρ < 0.
The equation of state χðρ; pÞ, being not a characteristic

equation, needs to be complemented by another one in
order to determine completely the thermodynamic proper-
ties of the fluid. We know that two different pairs ðn̄; s̄Þ and
ðn; sÞ, which are the solutions of Eq. (16), are related by
n ¼ n̄Rðs̄Þ and s ¼ sðs̄Þ. Then, the corresponding func-
tions of state Ī ≡ Īðρ; pÞ and I ≡ Iðρ; pÞ given in (26) are
related by

I ¼ 1

s0ðs̄Þ ½Rðs̄ÞĪ − 2n̄ðρþ pÞR0ðs̄Þ�: ð28Þ

This expression implies that we can take the arbitrary
function Rðs̄Þ such that I does not vanish, and thus either
H2 or H̄2 is fulfilled. Then, any of them may be selected by
choosing the arbitrary function s ¼ sðs̄Þ such that s0ðs̄Þ has
the appropriate sign. Consequently, we have the following:

Lemma 1. Any function of state χðρ; pÞ is compatible
with a thermodynamic scheme verifying either the relativ-
istic compressibility condition H2 or H̄2. It is the nature of
the physical fluid to be described that will dictate what
compressibility condition, H2 or H̄2, has to be chosen.

Let us consider a nonbarotropic (dρ ∧ dp ≠ 0) and
nonisoenergetic (_ρ ≠ 0) energy tensor T. Then, we can
define the indicatrix function χ ≡ _p=_ρ. When χ is a
function of state (dχ ∧ dρ ∧ dp ¼ 0), Theorem 1 implies
that the hydrodynamic sonic condition holds, and then
χ coincides with the square of the speed of sound,
χ ¼ χðρ; pÞ, of the fluids for which T is a possible
evolution. Theorem 4 and Lemma 1 apply for these
thermodynamics and, taking into account Theorem 1, we
have the following:

Theorem 5. The necessary and sufficient condition for a
nonbarotropic and nonisoenergetic perfect energy tensor T
to represent the evolution in LTE of a perfect fluid verifying
the relativistic compressibility conditions H1 and H2 or H̄2

is that the indicatrix function χ ≡ _p=_ρ is a function of state,
χ ¼ χðρ; pÞ, verifying expression (24) of the relativistic
compressibility conditions H1. Any such energy tensor T
may be endowed with thermodynamic quantities n ¼
nðρ; pÞ and s ¼ sðρ; pÞ solutions of (16) such that one
the relativistic compressibility conditions H2 or H̄2 holds.

When _ρ ¼ 0 and _p ≠ 0we have necessarily [2] n ¼ nðρÞ
and s ¼ sðρÞ, and then the compressibility conditions H1

do not hold. If we have an isobaroenergetic evolution,
_ρ ¼ _p ¼ 0, the associated thermodynamic schemes are
defined by an arbitrary matter density n ¼ nðρ; pÞ and a
specific entropy s ¼ sðρ; pÞ solution to the last equality in
(16) [2]. But, alternatively, we can give an arbitrary speed
of sound, namely its square χ ¼ χðρ; pÞ, which constraints
n ¼ nðρ; pÞ and s ¼ sðρ; pÞ by means of (16). Then, the
results in [2], and Theorem 4 and Lemma 1 imply the
following:

Theorem 6. A nonbarotropic and isoenergetic perfect
energy tensor T represents the evolution in LTE of a perfect
fluid subject to the relativistic compressibility conditions
H1 and H2 or H̄2 if, and only if, it is isobaroenergetic,
_ρ ¼ _p ¼ 0.
For it, the admissible general thermodynamic quantities

n ¼ nðρ; pÞ and s ¼ sðρ; pÞ are those for which (16)
defines a square of the speed of sound χ ¼ χðρ; pÞ
verifying expression (24) of the relativistic compressibility
condition H1. Then, (28) may generate new quantities n ¼
nðρ; pÞ and s ¼ sðρ; pÞ verifying either H2 or H̄2.

We finish this section with some suitable comments on
the above results.

(i) Note that Theorems 5 and 6 provide a purely
hydrodynamic characterization of the perfect
energy tensors T which are the evolution in LTE
of a thermodynamic perfect fluid subject to the
compressibility conditions H1 and H2 or H̄2. In
other words, Theorems 5 and 6 characterize all
the hydrodynamic flows able to correspond to
thermodynamic perfect fluids subject to the relativ-
istic compressibility conditions. This characteriza-
tion imposes conditions (24) on the square of the
speed of sound χðρ; pÞ. In the nonisoenergetic case,
this function is determined by the hydrodynamic
flow H≡ fð3Þ; ð8Þg through the indicatrix function
χðρ; pÞ ¼ χ ≡ _p=_ρ. In the isoenergetic case, _ρ ¼ 0,
we have necessarily _p ¼ 0, the indicatrix function is
indeterminate, and the compressibility conditions
does not impose any condition on the hydrodynamic
flow H. The thermodynamics associated with any
of these isobaroenergetic flows are constrained by
conditions (24) that now define the square of the
speed of sound χðρ; pÞ.

(ii) In the inverse problem [2] under consideration, H1

imposes the constraint (24) on the function χðρ; pÞ
and H2 or H̄2 imposes the constraint (25)–(26) to
the, nonhydrodynamic, thermodynamic quantities n
and s. And, as stated in Lemma 1, for any given
hydrodynamic function χðρ; pÞ, there always exist
thermodynamic functions n and s that fulfill H2

or H̄2. Nevertheless, in restricted inverse problems
[2] for specific families of perfect fluids, charac-
terized by a relation involving hydrodynamic as well
as thermodynamic quantities, the compressibility
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conditions H2 or H̄2 may restrict strongly the
hydrodynamic function χ ≡ _p=_ρ (this is the case,
for example, of the ideal gas. See next section).

(iii) From (28), the thermodynamic fluids that do not
fulfill neither H2 nor H̄2 are those verifying I ¼ 0,
where I is given in (26). It follows from this exp-
ression of I that the matter density is of the form
n ¼ nðρ; pÞ ¼ fðpÞðρþ pÞ1=2, where fðpÞ is any
arbitrary positive function. Then, from (16), the squ-
are of the speed of sound is given by χðρ;pÞ¼
½1þðρþpÞFðpÞ�−1, with F≡2f0ðpÞ=fðpÞ, and it
verifies H1 if and only if FðpÞ > 0 and
F0ðpÞ < F2ðpÞ. In fact, from (10), the function
fðpÞ and the dynamic volume τ are related by
τ ¼ f−2ðpÞ, which allows us to directly see that
ðτ0sÞp ¼ 0, i.e., that neither H2 nor H̄2 are verified.

(iv) For a nonbarotropic fluid, a barotropic evolution can
be defined by a relation s ¼ sðρÞ. Then, if
p ¼ pðρ; sÞ, the barotropic relation between ρ and
p is given by p ¼ ϕðρÞ≡ pðρ; sðρÞÞ. We have
c2s ¼ ðp0

ρÞs ≠ ϕ0ðρÞ. Thus, ϕ0ðρÞ is not the square
of the speed of sound in this case. Consequently,
Theorem 2 concerns barotropic energy tensors that
describe the evolution of intrinsic barotropic fluids,
and Theorem 4 concerns nonbarotropic energy
tensors describing the evolution of nonbarotropic
fluids. The cases of barotropic energy tensors that
describe barotropic evolutions of nonbarotropic
fluids require specific individual studies. Note that
Theorem 4 remains valid in this case and it gives
restrictions on the square of the speed of sound.

(v) We know [2] that every barotropic and isobaroe-
nergetic (_ρ ¼ _p ¼ 0) perfect energy tensor repre-
sents the evolution in LTE of any perfect fluid.
Consequently, perfect fluids verifying the con-
straints (24) and (25)–(26) could have a particular
barotropic evolution of the form p ¼ ϕðρÞ that is not
subjected to constraints (14). For example, this is the
case of any physical fluid evolving at constant
pressure, ϕðρÞ ¼ p0. On the other hand, nonbaro-
tropic fluids failing to verify H1, i.e., that do not
fulfill the constraints (24), might have a barotropic
evolution p ¼ ϕðρ) satisfying (14) (see at the end of
next section for a specific example).

IV. COMPRESSIBILITY CONDITIONS FOR
A GENERIC IDEAL GAS

A generic ideal gas13 is described by the equation of
state:

p ¼ knΘ; k≡ kB
m

: ð29Þ

In [2] we have studied the expression of the speed of sound
and the other thermodynamic quantities of a generic ideal
gas in terms of the hydrodynamic quantities ðρ; pÞ. We
present in the next lemma a slightly different version of
these results, which will be useful in order to analyze the
relativistic compressibility conditions.

Lemma 2. The square of the speed of sound χ of a
nonbarotropic generic ideal gas depends on the sole
hydrodynamic variable π ≡ p=ρ, χ ¼ χðπÞ ≠ π. Then, in
terms of the hydrodynamic quantities ðρ; pÞ, the specific
internal energy ϵ, the temperature Θ, the matter density n,
and the specific entropy s are given, respectively, by

ϵðρ; pÞ ¼ eðπÞ − 1; Θðρ; pÞ ¼ π

k
eðπÞ; ð30Þ

nðρ; pÞ ¼ ρ

eðπÞ ; sðρ; pÞ ¼ k ln
fðπÞ
ρ

; ð31Þ

the generating functions eðπÞ and ϕðπÞ being, respectively,

eðπÞ¼e0exp

�Z
ψðπÞdπ

�
; ψðπÞ≡ π

ðχðπÞ−πÞðπþ1Þ ;

ð32Þ

fðπÞ¼f0exp

�Z
ϕðπÞdπ

�
; ϕðπÞ≡ 1

χðπÞ−π
: ð33Þ

The compressibility conditions H1 and H2 or H̄2 have
been stated, for general perfect fluids, in Theorem 4. Now,
in order to express H1 for generic ideal gases, where
χðρ; pÞ ¼ χðπÞ, we have

χ0p ¼ χ0ðπÞ
ρ

; χ0ρ ¼ −
χ0ðπÞ
ρ

π; ð34Þ

χχ0p þ χ0ρ ¼
χ0ðπÞ
ρ

ðχðπÞ − πÞ: ð35Þ

Then, from the expression (24) of the compressibility
conditions H1, we arrive to the following:

Lemma 3. A generic ideal gas fulfills the relativistic
compressibility condition H1 if, and only if, the square of
the speed of sound χ ¼ χðπÞ satisfies

H1∶ 0< χ<1; ð1þπÞðχ−πÞχ0 þ2χð1−χÞ>0: ð36Þ

On the other hand, H2 or H̄2 have been stated in
Theorem 4 in terms of nðρ; pÞ and sðρ; pÞ. For a generic
ideal gas, where we have the expressions (31) for these
functions of state, we obtain

13The equation of state (29) not being a characteristic equation
of state in the Gibbs’ sense, is insufficient to define completely
the thermodynamics of the fluid (it is usually completed with a
particular expression of the internal energy ϵ as a function of the
temperature Θ). It does not define an ideal gas, but anyone of the
whole class. To reflect this fact, we call it a generic ideal gas.
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s0ρ ¼ −
kχ

ρðχ − πÞ ;
n0ρ
n

¼ χðπ þ 1Þ − π

ρðχ − πÞðπ þ 1Þ :

Consequently, if we substitute these expressions in (26), we
have

Iðρ; pÞ ¼ ρ2

kχeðπÞ ½ð2π þ 1Þχ − π�: ð37Þ

Taking into account that the first factor in (37) is positive,
from expressions (34), (35), (37) and Theorem 4, it follows:

Lemma 4. A generic ideal gas fulfills the relativistic
compressibility condition H2 (respectively, H̄2) if, and only
if, the square of the speed of sound χ ¼ χðπÞ satisfies

H2∶ χ >
π

2π þ 1

�
respect:; H̄2∶ χ <

π

2π þ 1

�
:

ð38Þ

Here we are interested in current generic ideal gases as
defined by (29). Although we have seen that, from a formal
point of view, Eq. (29) is compatible with compressibility
condition H̄2, from now on we will consider only the
current compressibility conditions H1 and H2 for ideal
gases suggested by the mentioned Lucquiaud’s results.
Thus, from the two lemmas above we obtain the following:

Theorem 7. A generic ideal gas fulfills the relativistic
compressibility conditions H1 and H2 if, and only if, the
square of the speed of sound χ ¼ χðπÞ satisfies:

H1;H2∶
� π

2πþ1
< χ < 1;

ð1þ πÞðχ − πÞχ0 þ 2χð1 − χÞ > 0:
ð39Þ

This result allows us to characterize the perfect energy
tensors that represent the evolution in LTE of an ideal gas
fulfilling the corresponding compressibility conditions.
Now, for similar reasons made before Theorems 5 and
6, we analyze separately the isoenergetic and nonisoener-
getic evolutions. Then, if we take into account Lemma 2
and Theorem 7, we arrive at the following result, which
considers both cases together.

Theorem 8. The necessary and sufficient condition for a
nonbarotropic perfect energy tensor T to represent the
evolution in LTE of a generic ideal gas subject to the
relativistic compressibility conditions H1 and H2 is

(i) If it is nonisoenergetic, that the indicatrix function
χ ≡ _p=_ρ depends on the sole hydrodynamic variable
π ≡ p=ρ, χ ¼ χðπÞ ≠ π, and it satisfies the con-
straints (39).

(ii) If it is isoenergetic, that it has be isobaroenergetic,
_ρ ¼ _p ¼ 0. Then, the generic ideal gas thermody-
namic quantities verifying these compressibility
conditions are those for which the square of the

speed of sound, χ ¼ χðπÞ, determined by these
quantities, fulfills the constraints (39).

The above two theorems concern the compressibility
condition H2 but, from Lemma 4, two similar theorems can
be stated for condition H̄2 by changing the first inequalities
in (39) to

0 < χ <
π

2π þ 1
: ð40Þ

It is worth presenting some remarks about the results in
this section.

(i) In the general inverse problem for a perfect energy
tensor T, the inequalities (36) guarantee H1 if the
square of the speed of sound is a function of the
sole variable π, χ ¼ χðπÞ. Then, Lemma 1 states
that we can complete the thermodynamics with
functions nðρ; pÞ, sðρ; pÞ ensuring H2 or H̄2. But
not all the resulting fluids will be generic ideal
gases. The latter are the solution to the restricted
inverse problem for generic ideal gases; they are
given by Lemma 2 and satisfy H2 or H̄2 if χ
fulfills the corresponding inequality in (38). Note
that now, by means of the function χ, H2 or H̄2

also restrict the hydrodynamic flow in this re-
stricted inverse problem.

(ii) We have seen that the hydrodynamic variable π ¼
p=ρ plays a central role in the study of the properties
of a generic ideal gas. In fact, for a general perfect
fluid, the Plebański [20] energy conditions state,
−p ≤ ρ < p, that is, they limit the range of physi-
cally admissible values of π to −1 ≤ π ≤ 1. Under
the reasonable assumption of positive matter density
and temperature, the equation of state (29) implies a
positive pressure and thus, the energy conditions for
a generic ideal gas state that 0 < π < 1. On the other
hand, this is the range where the compressibility
conditions H1 are fulfilled for the thermodynamic
fluids in which neither condition H2 nor condition
H̄2 are met. From (38), they are those whose square
of the velocity of sound, say χ�, is χ� ¼ π=ð2π þ 1Þ.
Thus, condition (38) states that the graphic of χðπÞ
for the generic ideal gases verifying the relativistic
compressibility conditions H1 and H2 (respectively,
H̄2) is over (respectively, under) the graphic of χ�ðπÞ
in the region ½0; 1� × ð0; 1Þ.

(iii) Observe that Theorem 8 only concerns the non-
barotropic case. Barotropic generic ideal gases
have, necessarily [2,21], the equation of state14

p ¼ ðγ − 1Þρ, and the compressibility conditions
H1 given by (14) hold if, and only if, 1 < γ < 2.

14We see here that in the present restricted inverse problem for
generic ideal gases, the hypothesis of barotropicity completely
determines the thermodynamics of the ideal gas.

COLL, FERRANDO, and SÁEZ PHYS. REV. D 101, 064058 (2020)

064058-8



But these ideal gases are physically meaningless in
the common domain, because for them ϵ ¼ cvΘ − 1
and the internal energy takes negative values at low
temperatures.

(iv) The expressions (36) of the compressibility con-
ditions H1 have been obtained from the correspond-
ing general expressions (24) under the hypothesis
χðρ; pÞ ¼ χðπÞ. Thus, constraints (36) also apply
for a fluid with a speed of sound c2s ¼ p=ρ, that
is χ ¼ π, and it is verified by this function for
π ∈ ½0; 1�. Nevertheless the expressions (38) of the
compressibility conditions H2 or H̄2 do not apply in
this case because expressions (31) are only valid for
ideal gases (χ ≠ π). An open problem that will be
considered elsewhere is to solve the inverse problem
in this case, and to study the compressibility con-
dition H2 or H̄2 for the associated thermodynamic
schemes.

(v) As we mentioned in comment (v) at the end of
previous section, a nonbarotropic media failing to
fulfill the expression (24) of the compressibility
conditions H1 might have a barotropic evolution
with a barotropic relation p ¼ ϕðρ) satisfying the
expression (14) of H1 for barotropic fluids. As an
example, let us consider a generic ideal gas with a
square of the speed of sound χðπÞ which does not
fulfill the expression (36) of the compressibility
conditions H1. Let eðπÞ be the specific energy given
in (32), and let π0 ∈ ½0; 1� be a value of the hydro-
dynamic variable π ¼ p=ρ. Then, from the results in
[2] we obtain that an evolution at constant temper-
ature Θ0 ¼ 1

k π0eðπ0Þ leads to a barotropic evolution
p ¼ π0ρ which fulfills the expression (14) of H1.

V. RAINICH APPROACH TO THE IDEAL
GAS SOLUTIONS

The necessary and sufficient conditions for a metric g to
be a non-null Einstein-Maxwell solution were studied by
Rainich [22]. We can distinguish the algebraic Rainich
conditions, which impose that the Ricci tensor is of (non-
null) electromagnetic type, and the differential ones, which
guarantee that the electromagnetic field is a solution of the
Maxwell equations.
A similar approach for the perfect fluid implies, in a first

step, that we obtain the algebraic conditions for a Ricci
tensor to have a triple eigenvalue, and a simple one with an
associated timelike eigenvector. These conditions and the
additional ones assuring that the energy tensor fulfills the
Plebańsky [20] energy conditions were obtained years ago
[1,23]. A more recent version [24] states the following:

Lemma 5. Consider the following scalar and tensor
functions of the Ricci tensor R:

t≡ trR; N ≡ R −
1

4
tg; ð41Þ

q≡ −2

ffiffiffiffiffiffiffiffiffi
trN3

3

3

r
; Q≡ N −

1

4
qg: ð42Þ

A spacetime is a perfect fluid solution fulfilling the energy
conditions if, and only if, the Ricci tensor R satisfies

Q2þqQ¼0; Qðx;xÞ>0; q>0; tþq>0; ð43Þ

where x is any timelike vector.

Lemma 6. When the conditions (43) of Lemma 5 are
verified, the energy density ρ, the pressure p, and the unit
velocity u of the fluid are given by

ρ ¼ 1

4
ð3qþ tÞ; p ¼ 1

4
ðq − tÞ; u ¼ QðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qQðx; xÞp :

ð44Þ

The extra conditions on the Ricci tensor for the fluid to
be in LTE were presented in [1]. They are obtained in terms
of the Ricci invariants (41) and (42) by writing their
expression (8) with the values of ρ, p, and u given by
Lemma 6 (see also [24]).
As we are concerned here by current generic gases, we

must impose the energy conditions corresponding to a gas,
0 ≤ π < 1, π ¼ p=ρ, as well as the LTE condition, which
states (see Lemma 2) dχ ∧ dπ ¼ 0, χ ≠ π. Moreover, the
function χðπÞ has to fulfill the compressibility conditions
H1 and H2 for ideal gases given by Theorem 7.
When the perfect energy tensor is nonisoenergetic,

_ρ ≠ 0, the square of the speed of sound is given by the
indicatrix function, χ ¼ χ ≡ _p=_ρ. Then, taking into
account Theorem 8 and the expressions in Lemma 5, we
obtain the following.

Theorem 9. Let us consider, in terms of the above scalar
and tensor functions (41), (42), and (44) of the Ricci tensor
R, the following:

π ≡ p
ρ
; χ ≡Qðdp; dρÞ

Qðdρ; dρÞ ; χ0 ≡ ðdχ; yÞ
ðdπ; yÞ ; ð45Þ

where y is any transversal vector to dπ: ðdπ; yÞ ≠ 0.
A metric is a nonisoenergetic perfect fluid solution

describing a generic ideal gas in LTE that fulfills the
compressibility conditions H1 and H2 if, and only if, the
Ricci tensor R satisfies

Q2 þ qQ ¼ 0; Qðx; xÞ > 0; −t < q ≤ t; ð46Þ
QðdρÞ ≠ 0; dχ ∧ dπ ¼ 0; χ ≠ π; ð47Þ

π

2π þ 1
< χ < 1; ð1þ πÞðχ − πÞχ0 þ 2χð1 − χÞ > 0;

ð48Þ

where x is any timelike vector.
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On the other hand, in the isoenergetic case, _ρ ¼ 0,
Theorem 8 states that the evolution is necessarily isobaric,
_p ¼ 0. Moreover, any function χðπÞ fulfilling (48) is
compatible with this evolution. Consequently, we have
the following:

Theorem 10. A metric is an isoenergetic perfect fluid
solution describing a generic ideal gas in LTE that fulfills
the compressibility conditions H1 and H2 if, and only if, the
Ricci tensor R satisfies (46) and

QðdρÞ ¼ 0; QðdpÞ ¼ 0; ð49Þ

where x is any timelike vector, and Q, N, w, t, ρ, and p are
given in (41), (42), and (44).

VI. CONSTRAINTS ON THE IDEAL GAS
STEPHANI UNIVERSES

The Stephani universeswere obtained as the conformally
flat perfect fluid solutions to Einstein equations with
nonzero expansion [25]. Later, they were achieved [26]
as the conformally flat class of irrotational and shear-free
perfect fluid spacetimes with nonzero expansion. They can
also be characterized as the spacetimes verifying a weak
cosmological principle without any hypothesis on the
energy tensor [27,28].
In [28] Bona and Coll also showed that the necessary and

sufficient condition for a Stephani universe to represent the
evolution of a fluid in local thermal equilibrium is that it
admits a three-dimensional isometry group on two-dimen-
sional orbits. This result was later recovered in [29] and
spherically symmetric Stephani universes that may be
interpreted either as a classical monoatomic ideal gas or
as a matter-radiation mixture were considered in [30].
In [5] we studied the Stephani universes that can be

interpreted as a generic ideal gas in local thermal equilib-
rium. Now we summarize the main results in the following
statements:

Thermodynamic Stephani universes [28]. The metric
of the thermodynamic Stephani universes may be written as

ds2 ¼ −α2dt2 þ Ω2δijdxidxj; ð50Þ

α≡ R∂R lnL; Ω≡ w
2z

L; ð51Þ

L≡ RðtÞ
1þ bðtÞw ; w≡ 2z

1þ ε
4
r2
; ð52Þ

with RðtÞ and bðtÞ being two arbitrary functions of time. Its
symmetry group is spherical, plane, or pseudospherical
depending on ε to be 1, 0, or −1 and the Friedmann-
Robertson-Walker limit occurs when b ¼ constant.
Furthermore, the energy density, the pressure, the expan-
sion, and the three-space curvature are given by

ρ ¼ 3

R2
ð _R2 þ ε − 4b2Þ; p ¼ −ρ −

R
3

∂Rρ

α
; ð53Þ

θ ¼ 3 _R
R

≠ 0; κ ¼ 1

R2
ðε − 4b2Þ: ð54Þ

Ideal gas Stephani universes [5]. A thermodynamic
Stephani universe, (50), (51), and (52), represents a generic
ideal gas if, and only if, the metric function bðRÞ and the
energy density ρðRÞ satisfy the equations:

Ra0 ¼ −aðc1a2 þ c2aþ 1Þ; b00R ¼ −c1a2b0; ð55Þ

a ¼ aðRÞ≡ −
R∂Rρ

3ρ
; ð56Þ

where the principal constants c1 and c2 are arbitrary. Then,
in terms of bðRÞ and ρðRÞ, the expansion factor RðtÞ
satisfies the generalized Friedmann equation:

ρðRÞ ¼ 3

R2
½ _R2 þ ε − 4b2ðRÞ�: ð57Þ

Ideal gas Stephani models [5]. The indicatrix function
χ ¼ χðπÞ of the ideal gas Stephani universes takes the
expression:

χðπÞ ¼ βπ2 þ γπ þ δ; δ≡ γ − β − 2=3; ð58Þ

where the constants β and γ determine the fundamental
constants as

c1 ¼ 3β; c2 ¼ 3ðγ − 2β − 1Þ: ð59Þ

Then, depending on the roots of the equation χðπÞ ¼ π, we
find five classes Cn of ideal gas Stephani universes:

CLASS 1: c1 ¼ c2 ¼ 0.
CLASS 2: c1 ¼ c2 ≠ 0.
CLASS 3: Δ≡ c2 − 4c1 ¼ 0, c1 ≠ 0.
CLASS 4: Δ≡ c2 − 4c1 > 0, c1 ≠ 0.
CLASS 5: Δ≡ c2 − 4c1 < 0.

Moreover, for every class, we can obtain the thermody-
namic quantities (30) and (31) by using the generating
functions (32) and (33), and we obtain five different
thermodynamics.
On the other hand, the study of equations (55) and (56)

leads us to distinguish the singular models, [a0ðRÞ ¼ 0],
compatible with classes C2, C3, and C4, and regular
models [a0ðRÞ ≠ 0], compatible with the five classes
Cn [5].
Now we will study the compatibility of the above ideal

gas Stephani models with the compressibility conditions
studied in Sec. IV. It is worth remarking that a full analysis
of the physical behavior of the solutions implies, not
only a survey of the Plebański energy conditions [20],
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−p ≤ ρ < p, i.e., −1 < π ≤ 1, but also the knowledge of
the solution to the generalized Friedmann equation (57),
which allows us to obtain the coordinate dependence of ρ
and p by (53). But this is not our goal here.
Here we want to analyze when an ideal gas Stephani

model fulfills the compressibility conditions H1 and H2

[i.e., verifies the corresponding expressions (39)], provided
that it fulfills the energy conditions for a gas:

0 ≤ π ≤ 1: ð60Þ

We must look for the values of the principal constants c1
and c2 (or, equivalently, of the constants β and γ) for which
the indicatrix function (58) satisfies the expressions (39) of
the compressibility conditions H1 and H2 for a significant
range of π ∈ ½0; 1�. We shall consider here separately the
models with a physically reasonable behavior at low or
high temperature.

A. Low temperature: Models with χ(0)= 0

For an ideal gas, good performance at low temperatures
means a vanishing speed of sound when pressure vanishes,
that is, χð0Þ ¼ 0. Then, from (58) and (59), we have

χðπÞ ¼ ðγ − 2=3Þπ2 þ γπ; ð61Þ

c1 ¼ 3γ − 2 ≠ 0; c2 ¼ 1 − 3γ; Δ ¼ 9ðγ − 1Þ2:
ð62Þ

Now we study the values of the parameter γ for which the
indicatrix function (61) fulfills the expressions (39) of the
compressibility conditions H1 and H2 in a neighborhood of
π ¼ 0. Note that χ0ð0Þ ¼ γ, and χ�ð0Þ ¼ 0, χ0�ð0Þ ¼ 1 for
χ�ðπÞ ¼ π=ð2π þ 1Þ. Then, if we impose the first inequal-
ity in (39), χ�ðπÞ < χðπÞ, we have, necessarily, γ > 1. On
the other hand, a straightforward calculation shows that the
second inequality in (39), χðπÞ < 1, holds in the interval
π ∈ ½0; πm�, where

0 < πm ¼ 2

γ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ 4ðγ − 2=3Þ

p < 1: ð63Þ

Finally, under the already imposed constraints, the last
inequality in (39) is satisfied. Note that, for γ > 1, one has
c1 ≠ 0 and Δ > 0. Consequently, the ideal gas thermody-
namics belong to class C4. Thus, we have the following:

Proposition 1. The indicatrix function χ ¼ χðπÞ of the
ideal gas Stephani universes takes the expression (61) when
it verifies χð0Þ ¼ 0. When γ > 1 the associated thermody-
namics belong to class C4 and fulfill the relativistic
compressibility conditions H1 and H2 for π ∈ ½0; πm�,
where πm is given in (63).

Taking into account the results in [5] we can determine
the generating functions (32) and (33) by using the

indicatrix function (61). And, from them, we can obtain
the associated ideal gas thermodynamics (30) and (31).
These thermodynamics of class C4 are compatible with
both singular and regular models. The explicit expressions
of these models can be found in [5], where the ideal gas
Stephani models which approximate a classical ideal gas at
first order in the temperature are studied. It is worth
remarking that those models satisfy χð0Þ ¼ 0 and the
parameter γ coincides with the adiabatic index, which is
subject to 1 < γ < 2. Nevertheless, the compressibility
conditions also hold for γ ≥ 2 in π ∈ ½0; πm�.

B. High temperature: Models with χ(1=3)= 1=3

For a relativistic Synge gas [13,31], the limit Θ → ∞
leads to a radiation fluid, ρ ¼ 3p, and a speed of sound
cs ¼ 1=

ffiffiffi
3

p
. Consequently, in order to have a good behavior

at high temperatures we will impose to the indicatrix
function χ the constraint χð1=3Þ ¼ 1=3. Then, from (58)
and (59), and introducing the parameter λ ¼ 7–8γ, we have

χðπÞ ¼ 1

16

�
3ð1 − λÞπ2 þ 2ð7 − λÞπ þ

�
λþ 1

3

��
; ð64Þ

c1¼
9

16
ð1−λÞ; c2¼

3

4
ðλ−2Þ; Δ¼ 9

16
λ2: ð65Þ

We can see that, for any value of the parameter λ, the
indicatrix function (64) fulfills the expressions (39) of the
compressibility conditions H1 and H2 in π ¼ 1=3, and,
therefore, in its neighborhood. Moreover, depending on the
values of λ, the ideal gas thermodynamics belong to classes
C2, C3, or C4. Thus, we have the following:

Proposition 2. The indicatrix function χ ¼ χðπÞ of the
ideal gas Stephani universes takes the expression (64) when
it verifies χð1=3Þ ¼ 1=3. For any value of the parameter λ
the associated thermodynamics fulfill the relativistic com-
pressibility conditions H1 and H2 in a neighborhood of
π ¼ 1=3, and they belong to class C2 when λ ¼ 1, to class
C3 when λ ¼ 0, and to class C4 otherwise.

Taking into account the results in [5] and by using the
indicatrix function (64) we can determine the generating
functions (32) and (33) and, from them, we can obtain the
associated ideal gas thermodynamics (30) and (31). These
thermodynamics of class C2, C3, and C4 are compatible
with both singulars and regular models. Here, we do not
give the explicit expressions of all these models. We restrict
ourselves to the cases which also are near to the Synge gas
at the following order in temperature.
The derivative of the indicatrix function χ ¼ χðπÞ of a

Synge gas satisfies [13,31] χ0ð1=3Þ ¼ 1=2. From (64) we
have

χ0ðπÞ ¼ 1

8
½3ð1 − λÞπ þ ð7 − λÞ�; χ00ðπÞ ¼ 3

8
ð1 − λÞ:

ð66Þ
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If we impose χ0ð1=3Þ to be in the neighborhood ½1=4; 3=4�
of 1=2, then the parameter λ satisfies 1 < λ < 3, and c1 ≠ 0
and Δ > 0. Consequently the thermodynamics belong to
class C4.
Before determining the domain where the indicatrix

function (64) fulfills the expressions (39) of the compress-
ibility conditions H1 and H2, we will obtain the generating
functions (32) and (33) by using the indicatrix function
(64). A straightforward calculation leads to

eðπÞ ¼ e0
j3ðλ − 1Þπ þ 3λþ 1j3þ1

λ

j1 − 3πj1λðπ þ 1Þ3 ; ð67Þ

fðπÞ ¼ f0

				 3ðλ − 1Þπ þ 3λþ 1

1 − 3π

				
4
λ

: ð68Þ

Note that both generating functions diverge in π ¼ 1=3,
and from (30) the temperature also diverges as occurs in the
relativistic Synge gas, where π ≤ 1=3. If we look for a
model which approximates a Synge gas we must restrict
ourselves to π ∈ ½0; 1=3�. Now we shall see when the
indicatrix function (64) fulfills the expressions (39) of the
compressibility conditions H1 and H2 in this domain.
We have χ0ðπÞ > 0 in ½0; 1=3�, and χð0Þ ¼ ðλþ 1=3Þ=

16 > 0, χð1=3Þ ¼ 1=3. Thus 0 < χðπÞ ≤ 1=3 < 1. The
indicatrix function depends on the parameter λ and we
can consider it as a function of two variables χðπ; λÞ. We
have ∂χ

∂λ > 0 in the considered domain and, consequently,
χðπ; λÞ ≥ χðπ; 1Þ. We can easily check that χðπ; 1Þ ≥
χ�ðπÞ ¼ π

2πþ1
. Therefore, the first compressibility condition

in (39) holds.
On the other hand, if π ∈ ½0; 1=3�, we have

χðπÞ ≤ χðπ; 1Þ ≤ π, χ0ðπÞ > 0, and 0 < χðπÞ < 1, and
consequently the second compressibility condition in
(39) also holds.

Proposition 3. The indicatrix function χ ¼ χðπÞ of the
ideal gas Stephani universes takes the expression (64) when
it is subject to χð1=3Þ ¼ 1=3. If, additionally, the parameter
λ ∈ ½1; 3� (or equivalently, χ0ð1=3Þ ∈ ½1=4; 3=4�, i.e., it is
closed to a Synge gas), then the associated thermodynamics
fulfill the relativistic compressibility conditions H1 and H2

in π ¼ ½0; 1=3�, and they belong to class C4.

The ideal gas models of class C4 in proposition above
demonstrate good physical behavior if the hydrodynamic
variable π ¼ p=ρ ranges in ½0; 1=3�, and they approach a
Synge gas at high temperature, that is, in a neighborhood of
1=3. Nevertheless, at low temperatures they differ from the
Synge gas because the speed of sound does not approach
zero when the temperature reaches zero.
From the generating functions, (67) and (68), we can

obtain the associated ideal gas thermodynamics (30) and
(31). These thermodynamics of class C4 are compatible
with both singulars and regular models. The explicit
expressions of these models can be easily obtained from

the results in [5]. By way of example, here we make explicit
the generalized Friedmann equations for one of the singular
models compatible with the case λ ¼ 2 (the best fit for a
Synge gas):
Generating functions:

eðπÞ ¼ e0ð3π þ 7Þ72
ð1 − 3πÞ12ðπ þ 1Þ3 ; fðπÞ ¼ f0

�
3π þ 7

1 − 3π

�
2

:

ð69Þ

Generalized Friedmann equations:

ρðRÞ ¼ 3

R2
½ _R2 þ ε − 4b2ðRÞ�; ð70Þ

where

ρðRÞ ¼ ρ0

�
R0

R

�
4

; bðRÞ ¼ b1 þ b2

�
R
R0

�
2

: ð71Þ

VII. ENDING COMMENTS

As we have seen in Sec. II, a thermodynamic perfect
fluid in LTE may be considered as a conservative and
deterministic hydrodynamic fluid endowed with subsidiary
thermodynamic quantities. We know that causal and energy
conditions directly constrain hydrodynamic variables and,
consequently, they restrict the physically admissible energy
tensors and, then, the gravitational fields that may be
related to them. But whether or not the compressibility
conditions, involving thermodynamic variables, also
restrict the physically admissible energy tensors, remains
an open problem, which we have solved in Sec. III
(Theorems 2, 3, 4, 5, and 6). We have seen that, at most,
only H1 generically restricts them, and we have shown the
form of the corresponding constraints. These results cor-
respond to the conceptual point of view referred to in the
Introduction.
An important task in relativity is the study of the physical

meaning of the formal solutions T ¼ fu; ρ; pg to the
conservative perfect fluid equations ∇ · T ¼ 0, whether
or not they are coupled to the gravitational field by Einstein
equations. At present, a wide family of such solutions is
known without specific physical meanings. Our hydrody-
namical approach (see also [2]) provides a tool to analyze
the physical reality for this family of solutions and to
solve the inverse problem for obtaining the specific
thermodynamic interpretation. We have shown that the
compressibility conditions H1 impose constraints on the
hydrodynamic quantities fu; ρ; pg, while the compress-
ibility condition H2 only imposes constraints on the
thermodynamic subsidiary quantities.
We have applied these results to the particular case of

generic ideal gases. In this case, because of the very
definition of generic ideal gases, where hydrodynamic
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and thermodynamic quantities are involved, not only
H1 but also H2 constrain the hydrodynamic quantities
(Theorems 7 and 8).
Our results can be useful in the determination of the

metrics of a given family of perfect fluid solutions that
represent the evolution of a specific set of fluids. The
physical requirements studied here for generic ideal gases
have been imposed on the ideal gas Stephani universes
already obtained elsewhere [5] and physically realistic
models have been selected (Sec. VI). A similar study
has been performed elsewhere for the Szskeres-Szafron
solutions of class II [8].
A Rainich-like theory of a physical medium is the

complete geometrization of the physical relations character-
izing it, that is to say, the formulation of these relations
(equations and inequalities) in terms of concomitants of the
sole space-time metric g. We have here formulated the
Rainich approach to generic ideal gases subject to the
compressibility conditions H1 and H2 (Theorems 9 and 10).
Is is worth remarking that our approach offers an IDEAL

(Intrinsic, Deductive, Explicit, and ALgorithmic) charac-
terization of the perfect energy tensors that describe the
evolution of a physically realistic perfect fluid. In [2] we

outlined the interest and the applications of this kind of
approach.
Here we want to emphasize the relevance of our results

in numerical relativity. On the one hand, the IDEAL
approach to a solution to the Einstein equation or to the
relativistic hydrodynamic equations may be the starting
point in obtaining a fully algorithmic characterization of
the initial data for this solution. For example, this study
has been performed for the Schwarzschild and Kerr
vacuum solutions [32–34] by considering our IDEAL
labeling of these geometries [35,36]. On the other hand,
physical constraints play a central role in designing
numerical algorithms for solving the relativistic hydro-
dynamic equations [37–41] (see also the recent paper [42]
and references therein).
These applications correspond to the practical point of

view referred to in the Introduction.
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