
 

Propagation of gravitational waves in a cosmological background
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We investigate the propagation of gravitational waves in a cosmological background. Based on the
framework of spatially covariant gravity, we derive the general quadratic action for gravitational waves.
The spatial derivatives of the extrinsic curvature and the parity-violating terms are systematically
introduced. Special attention is paid to the propagation speed of the gravitational waves. We find that
it is possible to make the two polarization modes propagate in the same speed, which may differ from that
of the light, in the presence of parity-violating terms in the action. In particular, we identify a large class of
spatially covariant gravity theories with parity violation, in which both the polarization modes propagate in
the speed of light. Our results indicate that there are more possibilities in the framework of spatially
covariant gravity in light of the propagation speed of the gravitational waves.
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I. INTRODUCTION

A new era of astrophysics and cosmology has arrived
since the first detection of the gravitational wave (GW)
event GW150914 reported by LIGO [1], and the observa-
tion of more GW events by LIGO and VIRGO [2–6]. With
the current and the forthcoming GWexperiments, including
LISA [7], BBO [8], KAGRA [9], ET [10], Taiji [11,12],
and Tian-Qin [13], the GWs have opened a new window to
explore the nature of gravity [14–17].
Among various observables concerning the gravitational

waves, one that is of particular interest and of physical
importance is the propagation speed of the gravitational
waves. In practice, the propagation speed of GWs can be
measured by comparing arrival times between the GWs and
high-energy photons emitted at the same time of events
such as the binary neutron star coalescences [18,19]. The
recent observations of a binary neutron star coalescence
event GW170817 [20] and the associated gamma-ray burst
event GRB170817A [21] indicates that the propagation
speed of the gravitational waves coincides with the speed of
light with deviations1

−3 × 10−15 ≤ cT − 1 ≤ 7 × 10−16 ð1Þ

at the redshift z ≤ 0.009 and with frequency of 10–100 Hz.
The general relativity (GR) propagates two massless tensor
polarizations with the speed of light. In gravity theories
alternative to the GR, the gravitational waves propagate in a
speed different from unity generally [22–26]. As a result,

the propagation speed of the gravitational waves provides
us a unique test of modified gravity theories [27–30].
One modified gravity theory that has been extensively

studied in recent years is the scalar-tensor theory, which is
based on the idea of introducing an extra scalar degree of
freedom in addition to the usual tensor degrees of freedom
of GR. In the theoretical aspects, recent development of the
covariant scalar-tensor theory focused on introducing
higher derivatives without the Ostrogradsky ghost [31]
(also dubbed as being “healthy”). The representatives are
the Horndeski theory [32–34] as well as the degenerate
higher-order theory [35–38] (see Refs. [39,40] for reviews).
After taking into account the constraint in Eq. (1), the
viable Horndeski Lagrangian is [41–46] (see Ref. [47] for a
review)

LcT¼1 ¼ fðϕÞ4Rþ Pðϕ; XÞ þQðϕ; XÞ□ϕ; ð2Þ

where 4R is the 4-dimensional Ricci scalar, f is a general
function of the scalar field ϕ only, P and Q are general
functions of ϕ and X ≡ − 1

2
ð∂ϕÞ2, and □ϕ≡∇μ∇μϕ.

Surprisingly, the quadratic and the cubic Horndeski terms,
which attracted much attention in the past decade, are
completely suppressed. See also Refs. [48,49] for recent
constraints from the gravitational waves on the Horndeski
theory and beyond, and Refs. [50–55] for other modified
gravity theories in which the constraint in Eq. (1) is
satisfied.
An alternative approach to the scalar-tensor theory is to

construct gravity theories that do not respect the full
symmetry of GR. This idea can be traced back to the
effective field theory of inflation [56,57] and of dark energy
[26,58–64], as well as to the Hořava gravity [65,66]. We
may refer to such theories as spatially covariant gravity
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since they are metric theories respecting the spatial sym-
metry. This idea was further explored in Refs. [67,68], in
which a general framework for the spatially covariant
gravity theories was proposed. This framework was further
generalized by including a dynamical lapse function
[69,70], and by including an additional nondynamical
scalar field [71]. The virtue of the spatially covariant
gravity theories is that they can be related to the scalar-
tensor theories that have no ghost excitations in the
Friedmann-Lemaître-Robertson-Walker (FLRW) back-
ground,2 which are much broader than the ghost-free
covariant scalar-tensor theories and have much more
applications in cosmology.
The purpose of this work is to investigate the propaga-

tion of gravitational waves in the general framework of
spatially covariant gravity theories. The general formu-
lation of the propagation of gravitational waves in modified
gravity theories has been studied in Refs. [73–76].
Recently, the constraints on Lorentz violating gravity from
the gravitational waves were investigated in Refs. [77–80]
(see also Ref. [81]). Comparing with the previous studies
(e.g.,) [82], we shall pay special attention to two aspects
which are in principle included in Refs. [67,68] but were
less studied.

(i) First, we include spatial derivatives of the extrinsic
curvature (e.g., ∇kKij) explicitly, which were also
considered in Refs. [83–85] recently. Previous stud-
ies mainly focused on higher spatial derivatives of
the spatial curvature Rij, which contribute to the
“potential” term of the tensor perturbations and
result in the dispersion relation in the form
c2k2 þ c4k4 þ c6k6 þ � � �, where k is the wave
number. Higher spatial derivatives of the extrinsic
curvature are also natural objects in our framework,
which contribute to the “kinetic” terms of the tensor
perturbations. Higher spatial derivatives of the ex-
trinsic curvature also arise in scalar-tensor theories
that are healthy in the FLRW background when
being written in the unitary gauge [86,87]. As we
shall see, spatial derivatives of the extrinsic curva-
ture will modify the dispersion relation of the
gravitational waves in a different manner.

(ii) Second, we introduce the parity-violating terms.
Including the parity-violating terms has the potential
“risk,” since generally the two polarization modes of
the gravitational waves behave differently, which

may conflict with the observation if we consider (1)
to hold for both polarization modes. The parity-
violating gravity theories and the chiral gravitational
waves were extensively studied for the Chern-
Simons (CS) gravity [88–93], with Lorentz breaking
[94–100], with gauge field(s) [101–106], with chiral
fermions [107], for non-Gaussianities [108,109] as
well as in the observational aspects [110–120]. On
the other hand, it is well-known that in CS gravity
the two polarization modes of GWs propagate in the
speed of light [110,112,115,121]. It is thus interest-
ing to examine if there are more general parity-
violating gravity theories that have this property, i.e.,
satisfy the requirement cT ¼ 1 for both polariza-
tion modes.

We will examine the viable theories under the condition
cT ¼ 1 in the broader framework of spatially covariant
gravity [67,68]. Due to the above two aspects, the propa-
gation speeds of the two polarization modes with helicity
s ¼ �2 become, schematically

ðcð�2Þ
T Þ2¼W0�W1k̃þW2k̃

2�W3k̃
3þW4k̃

4þ�� �
G0�G1k̃þG2k̃

2�G3k̃
3þG4k̃

4þ�� � ; ð3Þ

whereWn;Gn etc. are functions of time and k̃≡ k=awith a
being the scale factor. This type of propagation speed arises
in the studies of curvature perturbation of Hořava gravity
[66], and in the more general framework of spatially
covariant gravity [82]. To our knowledge, for the first time
in this paper we consider systematically the propagation
speed in the form (3) for the gravitational waves. In this
work, we will pay special attention to the case with cT ¼ 1,
in light of the constraint (1). As we shall see, propagation
speed in the form (3) brings us more possibilities to tune the
parameters in order to have cT ¼ 1. As a result, there is a
large class of spatially covariant gravity theories in which
both polarization modes of the GWs propagate with
cT ¼ 1, even in the presence of parity-violating terms.
The paper is organized as following. In the next section,

we briefly review the framework of spatially covariant
gravity and show that the scalar-tensor theories, including
the Horndeski theory and those being healthy only when
the gradient of the scalar field is timelike and thus the
unitary gauge can be applied, take the form of spatially
covariant gravity in the unitary gauge with ϕ ¼ t. In
Sec. III, we set up our formalism by deriving the general
form of the quadratic action for the gravitational waves in
the cosmological background. In Sec. IV, we focus on the
propagation speed of the gravitational waves. We will
examine under which conditions the two circular polari-
zation modes of the gravitational waves could propagate in
the same speed, and in particular, in the speed of light. We
identify a large class of spatially covariant gravity theories,
in which both polarization modes propagate in the speed of

2Such a property is sometimes dubbed as being “healthy in the
unitary gauge,” i.e., a gauge in which the scalar field is chosen to
be spatially uniform ϕ ¼ ϕðtÞ. We wish to emphasize that gauge
choice is only a matter of convenience, which cannot affect the
physical contents. In fact, the unitary gauge is applicable only
when the gradient of the scalar field is timelike so that there is a
FLRW background, in which the ghostlike degree(s) of freedom
is not excited or can be safely suppressed by imposing appro-
priate boundary conditions [72].

XIAN GAO and XUN-YANG HONG PHYS. REV. D 101, 064057 (2020)

064057-2



light, even in the presence of parity-violating terms in the
original action. Section V concludes.
Notations: Throughout this work, 4Rμνρσ and 4R stand for

the 4-dimensional Riemann tensor and Ricci scalar, Rij and
R stand for the 3-dimensional Ricci tensor and scalar,
respectively.

II. GENERAL FRAMEWORK FOR SPATIALLY
COVARIANT GRAVITY THEORIES

A. Spatially covariant theories of gravity

Our starting point is the general action

S ≔
Z

dtd3xN
ffiffiffi
h

p
Lðt; N; hij; Kij; Rij; εijk;∇iÞ; ð4Þ

where N is the lapse function, hij is the 3-dimensional
spatial metric, Kij is the extrinsic curvature defined by

Kij ¼
1

2N
ð _hij − £N⃗hijÞ; ð5Þ

with _hij ≡ ∂thij and £N⃗ the Lie derivativewith respect to the
shift vectorNi, Rij is the 3-dimensional spatial Ricci tensor,
∇i is the covariant derivative compatiblewith hij. The action
Eq. (4) generalizes the framework in Ref. [67] by including
the Levi-Civita tensor εijk ≡

ffiffiffi
h

p
ϵijk with ϵ123 ¼ 1.

The theory described by Eq. (4) is proved to propagate
up to 3 dynamical degrees of freedom in the absence of εijk,
through a Hamiltonian analysis [68]. From the analysis it is
clear that the presence of εijk does not change the constraint
structure of the theory, and thus we conclude that the action
in Eq. (4) contains at most 3 dynamical degrees of freedom.
In general, one may further extend the framework by

including _N in the Lagrangian through

F ¼ 1

N
ð _N − £N⃗NÞ: ð6Þ

In this case, both the spatial metric hij and the lapse
function N become dynamical, and there are 4 dynamical
degrees of freedom (2 tensor and 2 scalar). As being proved
in details [69,70], extra conditions must be imposed in
order to ensure that a single scalar degree of freedom is
present. It was shown that the resulting theory, at least up to
the quadratic order in Kij and F, can be reduced to the form
of Eq. (4) through disformal transformations [70]. For this
reason, in the current work, we concentrate on the spatially
covariant gravity without _N, that is, Eq. (4).

B. Comparing with the existing theories

The advantage of the action Eq. (4) is that it not only
stands for a large class of gravity theories respecting spatial
symmetries, but also provides us a unifying framework for
scalar-tensor theories with higher derivatives but are free of
extra ghostlike degrees of freedom when the gradient of the

scalar field is timelike, so that there exists a FLRW
background and the so-called unitary gauge with ϕ ¼
ϕðtÞ can be applied. In the following, we will show some
examples by giving their expressions in the unitary gauge
explicitly, which take the form of Eq. (4).

1. Horndeski theory

The expression of Horndeski Lagrangian in the unitary
gauge with ϕ ¼ t was first derived in Ref. [61], which can
be written as [82]

Lðu:g:Þ
H ¼ a0K−2a1GijKijþbðKijKij−K2Þ

þcðK3−3KKijKijþ2Ki
jK

j
kK

k
i Þþd0þd1R; ð7Þ

up to the boundary terms. The six coefficients a0, a1, b, c,
d0, d1 are functions of t and N, which are subject to the
relations

a0 ¼
∂F3

∂N −
2

N
∂G4

∂t ; ð8Þ

2a1 ¼
F5

N
; ð9Þ

b ¼ ∂ðNG4Þ
∂N þ 1

2N2

∂G5

∂t ; ð10Þ

c ¼ −
1

6

∂G5

∂N ; ð11Þ

d0 ¼ G2 þ
1

N2

∂F3

∂t ; ð12Þ

d1 ¼ G4 −
1

2N2

∂ðG5 − F5Þ
∂t ; ð13Þ

with G2;…; G5 being functions of t and N, and F3 and F5

being related to G3 and G5 through

∂
∂N

�
F3

N

�
¼ −

G3

N2
;

∂
∂N

�
F5

N

�
¼ 1

N
∂G5

∂N ; ð14Þ

respectively. It is clear that Eq. (7) takes the form of Eq. (4).
In fact, in the unitary gauge it is possible to relax the
relations Eqs. (8)–(13) for the coefficients a0; a1 etc.

2. Curvature-squared terms with a scalar field

There are 3 quadratic polynomial invariants built of the
4-dimensional Riemann tensor,

K1 ¼ 4Rμνρσ
4Rμνρσ; ð15Þ

K2 ¼
1

2
εμναβ

4Rαβ
ρσ

4Rμνρσ ≡ 1

2
P; ð16Þ

K3 ¼
1

4
εμναβερσ

λτ4Rαβ
λτ
4Rμνρσ ≡ −LGB; ð17Þ
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where K1 is the so-called Kretschmann scalar, K2 corre-
sponds to the Chern-Pontryagin term P, and K3 corre-
sponds to the Gauss-Bonnet term LGB. K1 by itself is less
considered in the literature, since its equations of motion
are of higher order and thus it is associated with the
Ostrogradsky ghosts. It is well known that K2 and K3 are
topological invariants in 4-dimension. In order to introduce
local dynamics in 4-dimension, one choice is to couple
them to a scalar field in the form fðϕÞP and fðϕÞLGB. For
the Gauss-Bonnet term, it is well known that fðϕÞLGB
defined a well-behaved scalar-tensor theory with a single
scalar degree of freedom. In fact, it has been shown that
fðϕÞLGB can be recast in the form of Horndeski
theory [34].
For the Chern-Simons (CS) gravity [88,110] (see also

Ref. [122] for a review), the Lagrangian is

LCS ≔ fðϕÞP; P ≔ εμνρσ4Rρσαβ
4Rαβ

μν; ð18Þ
where εμνρσ is the Levi-Civita tensor defined by

εμνρσ ¼ 1ffiffiffiffiffiffi−gp ϵμνρσ; ð19Þ

with ϵ0123 ¼ −ϵ0123 ¼ 1. In the Arnowitt-Deser-Misner
(ADM) coordinates, the Chern-Pontryagin term becomes

P ¼ 16εijk
�
1

N
ð _Kli − £N⃗KliÞ∇jKl

k − Rl
i∇jKkl

− Kl
iK

m
j ∇mKlk − KlkKlm∇iKmj −

1

N
∇iKlj∇k∇lN

�
:

ð20Þ
Please note no integration-by-parts is performed in deriving
Eq. (20). It is thus clear that due to the presence of _Kij,
generally the CS gravity in Eq. (18) propagates
Ostrogradsky ghosts, which is also supported by the
Hamiltonian analysis [87]. Nevertheless, in the unitary
gauge with ϕ ¼ ϕðtÞ, _Kij (together with £N⃗Kij) can be
suppressed by integrations by parts. More precisely, in the
unitary gauge with ϕ ¼ t, one can show that

Lðu:g:Þ
CS ¼ fðtÞP

≃ 8εijkf

�
KilKlm∇jKkm þ Kl

iK
m
j ∇mKkl

− KKl
i∇jKkl − 2Rl

i∇jKkl −
1

N

_f
f
Kl

i∇jKkl

−
2

N
Kl

iKjlKkm∇mN −
2

N
∇iKjl∇k∇lN

�
; ð21Þ

up to total derivatives, where _f ≡ ∂fðtÞ=∂t. It is thus clear
that the CS gravity in the unitary gauge takes the form of
Eq. (4) and thus propagates a single scalar degree of
freedom in a FLRW background.

The CS gravity is not the only example of scalar-tensor
theories that suffer from the Ostrogradsky ghost(s) in their
covariant form, but are free of ghost(s) when the unitary
gauge can be applied, i.e., in a FLRW background. Another
interesting term was introduced in Ref. [86]

LDSSY ≡ 4Cμνρσ
4Cαβλτhμαhνβhρλnσnτ; ð22Þ

which is quadratic in the Weyl tensor Cμνρσ, with nμ ¼
−N∂μϕ and hμν ¼ gμν þ nμnν. In the case of a timelike
gradient of the scalar field, nμ is normalized to be nμnμ ¼
−1 and thus N ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð∂ϕÞ2p

. It terms of curvature
tensors, we have

LDSSY ¼ nμnνð4Rμ
αβλ4Rναβλ − 4Rα

μ
4RναÞ

þ nμnνnρnσð24Rμ
α
ν
β4Rρασβ − 4Rμν

4RρσÞ: ð23Þ
In the unitary gauge with ϕ ¼ t, we find

Lðu:g:Þ
DSSY ¼ −∇iK∇iK −∇iKik∇jK

j
k þ 2∇iK∇jK

j
i

− 2∇kKij∇jKik þ 2∇kKij∇kKij; ð24Þ
where again no integration-by-parts is performed. It is thus
clear that LDSSY in Eq. (22) describes a healthy scalar-
tensor theory when the unitary gauge can be applied, which
takes the form of Eq. (4). At this point, we emphasize that
the theory is healthy only when the unitary gauge can be
applied implies that they should be understood as Lorentz
breaking theories.

3. Other parity-violating theories

The existence of Levi-Civita tensor in the CS gravity
(18) implies the parity violation. Some exotic parity-
violating scalar-tensor theories that are healthy when the
unitary gauge can be applied were found in Ref. [87]. In the
following we briefly summarize the healthy terms by
reformulating the results in a more convenient form (see
Appendix for more details).
The first class of terms (with a subscript “A”) are

quadratic in the Riemann tensor and involve only first
derivative of the scalar field. There are three independent
combinations

LA;1 ¼ εμνρσ4Rρσαβ

�
4Rμν

α
λ∂βϕ∂λϕ −

1

2
4Rαβ

μν∂λϕ∂λϕ

�
;

ð25Þ

LA;2 ¼ εμνρσ4Rρσαβ

�
4Rβ

ν∂αϕ∂μϕ −
1

8
4Rαβ

μν∂λϕ∂λϕ

�
;

ð26Þ

LA;3 ¼ εμνρσ4Rρσαβ

�
4Rμλ

αβ∂νϕ∂λϕ −
1

4
4Rαβ

μν∂λϕ∂λϕ

�
;

ð27Þ
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which are healthy when the scalar field is timelike and thus
the unitary gauge can be chosen. One can show that in the
unitary gauge with ϕ ¼ t,

Lðu:g:Þ
A;1 ¼ −

8

N2
εijkKliKmj∇mKl

k þ 8

N2
εijkRli∇kKl

j; ð28Þ

and

Lðu:g:Þ
A;2 ¼ −

2

N2
εijkKliKmj∇mKl

k

−
2

N2
εijkðKi

mKlm − KKliÞ∇kKl
j

þ 4

N2
εijkRli∇kKl

j; ð29Þ

which are of the form of Eq. (4). LA;3 is trivially healthy
since in the unitary gauge

Lðu:g:Þ
A;3 ≡ 0: ð30Þ

We emphasize that no integration by parts is performed in
deriving Eqs. (28)–(30). We may conclude that a general
linear combination of LA;1, LA;2, and LA;3 with coefficients
being general functions of ϕ would be healthy when the
scalar field is timelike, although the inclusion of LA;3 is
actually unnecessary.
The second class of terms (with a subscript “B”) are

linear in both the Riemann tensor and the second derivative
of the scalar field. In this case there is only a single term

LB ¼ εμνρσ4Rρσαβ∇μ∇βϕ∇νϕ∇αϕ; ð31Þ

which reduces to

Lðu:g:Þ
B ¼ 2

N3
εijkKli∇kKj

l ; ð32Þ

in the unitary gauge with ϕ ¼ t, and is thus healthy.
The third class of terms (with a subscript “C”) are linear

in the Riemann tensor and quadratic in the second
derivative of the scalar field. There are three independent
combinations

LC;1 ¼ εμνρσ½4Rρσαβð∇β∇νϕ∇λϕ∇λϕ − 2∇β∇λϕ∇νϕ∇λϕÞ
þ 44Rσα∇β∇νϕ∇ρϕ∇βϕ�∇α∇μϕ; ð33Þ

and

LC;2 ¼ εμνρσ½4Rρσαβð∇λ∇νϕ∇βϕ∇λϕ −∇β∇λϕ∇νϕ∇λϕÞ
þ 24Rσα∇β∇νϕ∇ρϕ∇βϕ�∇α∇μϕ; ð34Þ

and

LC;3 ¼ εμνρσð4Rρλαβ∇λϕ∇σϕþ 24Rσα∇ρϕ∇βϕÞ
×∇α∇μϕ∇β∇νϕ; ð35Þ

up to the quadratic order in the first derivative ∇μϕ. In the
unitary gauge with ϕ ¼ t, we have

Lðu:g:Þ
C;1 ¼ 4

N4
εijk

�
KliKmj∇mKl

k −
1

N
KljRl

k∇iN

�
; ð36Þ

while LC;2 and LC;3 are trivial since

Lðu:g:Þ
C;2 ¼ 0; Lðu:g:Þ

C;3 ¼ 1

2
Lðu:g:Þ
C;1 : ð37Þ

Again, no integration by parts is performed in deriving
Eqs. (36) and (37). We may conclude that a general linear
combination of LC;1, LC;2 and LC;3 with coefficients being
general functions of ϕ is healthy when the scalar field is
timelike so that the unitary gauge is applicable, although
the inclusion of LC;2 and LC;3 is actually unnecessary when
working in the unitary gauge.

III. PROPAGATION OF THE
GRAVITATIONAL WAVES

In the above we have shown that higher derivative scalar-
tensor theories that are ghostfree when the scalar field is
timelike typically take the form of Eq. (4) when being
written in the unitary gauge. In other words, gravity
theories respecting the spatial covariance (4) provide us
a unifying framework to study modified gravity with a
single scalar degree of freedom, at least in the cosmological
background. In particular, terms with spatial derivatives of
the extrinsic curvature naturally arise in the above exam-
ples. In this section, we investigate the propagation of linear
gravitational waves within the framework of Eq. (4) in a
cosmological background.
Perturbations must respect the symmetries of the back-

ground they live on. The quadratic action for the tensor
perturbations γij on the Friedmann-Lemaître-Robertson-
Walker (FLRW) background must take the structure:

S2 ¼
Z

dtd3x
a3

2
ð_γijĜij;kl _γkl þ _γijF̂

ij;klγkl − γijŴ
ij;klγklÞ;

ð38Þ

where Ĝij;kl, F̂ ij;kl and Ŵij;kl are tensorial operators
respecting the SO(3) symmetry of the isotropic and
homogeneous spatial background. Throughout this work,
spatial indices of perturbation quantities are raised and
lowered by δij and δij. Note S2 in Eq. (38) contains only the
first order time derivative of γij since the original action (4)
contains the extrinsic curvature Kij only, while higher
spatial derivatives are generally allowed. Here a hat simply
reminds us that they contain spatial derivatives in general.
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Without loss of generality, we assume Ĝij;kl, Ŵij;kl and
F̂ ij;kl obey the following (anti)symmetries under the
permutations of indices:

Ĝij;kl ¼ Ĝji;kl ¼ Ĝij;lk ¼ Ĝkl;ij; ð39Þ

Ŵij;kl ¼ Ŵji;kl ¼ Ŵij;lk ¼ Ŵkl;ij; ð40Þ

and

F̂ ij;kl ¼ F̂ ji;kl ¼ F̂ ij;lk ¼ −F̂ kl;ij: ð41Þ

The last equality is because the symmetric part of F̂ ij;kl, if
exists, can always be reduced by integrations by parts.
Within the framework of Eq. (4), Ĝij;kl, F̂ ij;kl, and Ŵij;kl

must be built of the background quantities. In our case,
these are

δij; ϵijk; with time-dependent functions; ð42Þ

together with spatial derivatives. There are only two basic
operators that have nonvanishing contributions to the
quadratic action of tensor perturbations:

Sij;kl ≔
1

2
ðδikδjl þ δilδjkÞ; ð43Þ

and Aij;kl;m∂m with

Aij;kl;m ≔
1

4
ðδikϵjlm þ δilϵjkm þ δjkϵilm þ δjlϵikmÞ: ð44Þ

Both Sij;kl and Aij;kl;m∂m satisfy the relations in Eqs. (39)
and (40). It is not possible, however, to build an operator of
Sij;kl and Aij;kl;m with spatial derivatives satisfying all the
relations (in particular, the last equality) in Eq. (41), which
implies that

F̂ ij;kl ≡ 0; ð45Þ

in our case.
We thus conclude that in our framework of spatially

covariant gravity described by Eq. (4), the quadratic action
for the gravitational waves in a FLRW background takes
the form

S2 ¼
Z

dtd3x
a3

2
ð_γijĜij;kl _γkl − γijŴ

ij;klγklÞ; ð46Þ

where Ĝij;kl and Ŵij;kl are built of Sij;kl, Aij;kl;m∂m and
spatial derivatives. In this paper, we further assume that
Ĝij;kl and Ŵij;kl can be expanded as series of spatial
derivatives, which take the general form

Ĝij;klðt;∂Þ ¼
X
n¼0

�
G2nSij;kl −

1

a
G2nþ1Aij;kl;m∂m

� ð−ΔÞn
a2n

;

ð47Þ

and

Ŵij;klðt;∂Þ ¼
X
n¼0

�
W2nSij;kl −

1

a
W2nþ1Aij;kl;m∂m

�

×
ð−ΔÞnþ1

a2nþ2
; ð48Þ

with Δ ¼ δij∂i∂j. Here Gn andWn are general functions of
time, of which the explicit expression depend on the
concrete models. From the above, Gn and Wn with n ¼
0; 2; 4; 6;… are parity-preserving terms, and Gn and Wn
with n ¼ 1; 3; 5; 7;… are parity-violating terms.
In the Fourier space, the quadratic action in Eq. (46)

becomes

S2¼
Z

dt
d3k
ð2πÞ3

a3

2
ð_γijðt;kÞĜij;klðt;−ikÞ_γklðt;−kÞ− γijðt;kÞ

×Ŵij;klðt;−ikÞγklðt;−kÞÞ; ð49Þ

with

Ĝij;klðt;−ikÞ

¼
X
n¼0

�
G2nðtÞSij;kl−G2nþ1ðtÞAij;kl;m ð−iÞkm

a

�
k2n

a2n
; ð50Þ

and

Ŵij;klðt;−ikÞ

¼
X
n¼0

�
W2nðtÞSij;kl −W2nþ1ðtÞAij;kl;m ð−iÞkm

a

�
k2nþ2

a2nþ2
:

ð51Þ

We decompose the tensor perturbation γij into the
polarization modes:

γijðt; kÞ ¼
X
s¼�2

eðsÞij ðk̂ÞγðsÞðt; kÞ; ð52Þ

where k̂≡ k=jkj, eðsÞij ðk̂Þ are the circular polarization
tensors with the helicity states s ¼ �2, satisfying the
traceless and transverse conditions

δijeðsÞij ðk̂Þ ¼ kieðsÞij ðk̂Þ ¼ 0: ð53Þ

We follow the convention in Ref. [23] and choose the phase

of eðsÞij ðk̂Þ such that

XIAN GAO and XUN-YANG HONG PHYS. REV. D 101, 064057 (2020)

064057-6



eðsÞ�ij ðk̂Þ ¼ eð−sÞij ðk̂Þ ¼ eðsÞij ð−k̂Þ; ð54Þ

where an asterisk denotes the complex conjugate. The two
polarization tensors are normalized to be

eðsÞij ðk̂Þeð−s0Þijðk̂Þ ¼ δss
0
: ð55Þ

We make use of the relation [89,91,123]

ik̂lϵlije
ðsÞi
m ðk̂Þeðs0Þjmð−k̂Þ ¼ s

2
δss

0
; ð56Þ

after some manipulations, the quadratic action for the
polarization modes is

S2 ¼
Z

dτ
d3k
ð2πÞ3

a2

2

X
s¼�2

GðsÞðτ; kÞ
�
∂τγ

ðsÞðτ; kÞ∂τγ
ðsÞðτ;−kÞ

− k2
WðsÞðτ; kÞ
GðsÞðτ; kÞ γðsÞðτ; kÞγðsÞðτ;−kÞ

�
; ð57Þ

where τ is the conformal time defined by dt ¼ adτ, and

GðsÞðτ; kÞ ≔
X
n¼0

GnðτÞ
�
s
2

k
a

�
n
; ð58Þ

WðsÞðτ; kÞ ≔
X
n¼0

WnðτÞ
�
s
2

k
a

�
n
: ð59Þ

From Eq. (57), the two circular polarization modes of the
gravitational waves are decoupled, even if the parity-
violating terms are present. Eq. (57) [together with
Eqs. (58) and (59)] is one of the main results in this paper.
The equations of motion for the polarization modes are

thus

∂2
τ γ

ðsÞðτ; kÞ þHð2þ νðsÞÞ∂τγ
ðsÞðτ; kÞ

þ ðcðsÞT Þ2k2γðsÞðτ; kÞ ¼ 0; s ¼ �2: ð60Þ

where H is the comoving Hubble parameter defined by
H ¼ ∂τ ln a, and

νðsÞðτ; kÞ ¼ 1

H
∂τGðsÞðτ; kÞ
GðsÞðτ; kÞ ; ð61Þ

ðcðsÞT ðτ; kÞÞ2 ¼ WðsÞðτ; kÞ
GðsÞðτ; kÞ : ð62Þ

Equations (60)–(62) can be compared with the relevant
equations in Ref. [24] (see also Refs. [73,121]). The
parameter νðsÞ is identified to be the Planck mass running
rate, which modifies the amplitude of the gravitational
waves and is related to the strength of the gravity. The effect
of a running Planck mass on the GWs was recently

discussed in Ref. [124]. The parameter cðsÞT is identified
to be the propagation speed (phase velocity) of the
gravitational waves. In the case of GR, νðsÞ ¼ 0 and

cðsÞT ¼ 1. In a general modified theory of gravity, both

νðsÞðτ; kÞ and cðsÞT ðτ; kÞ depend on the time τ, the wave
number k and the helicity s.
Generally, νþ2 ≠ ν−2 and thus the left/right-hand polar-

izations of theGWs acquire different dampings, which is the
effect of “amplitude birefringence” [112,115,116,123,125].

On the other hand, cðþ2Þ
T ≠ cð−2ÞT implies that the left/right-

hand polarizations of the GWs propagate with different
velocities, which is the effect of “velocity birefringence”
[94,96,97,121].

IV. PROPAGATION SPEED OF THE
GRAVITATIONAL WAVES

Massless fieldsmust propagate in the same speed as that of
the light, as demanded by the Einstein equivalence principle
(EEP). However, EEP says nothing about the propagation
speed of gravitational waves, whichmay vary from theory to
theory. This has been known for theories respecting general
covariance, e.g., Horndeski theory [22], in which the
gravitational waves obey a linear dispersion relation. For
Lorentz breaking gravity theories, the gravitational waves
may even propagate with nonlinear dispersion relations.
We will pay special attention to the propagation speed of

gravitational waves in our framework. For concreteness, we
consider GðsÞ and WðsÞ up to k4, which corresponds to the
case where the original action (4) is up to the sixth order in
derivatives. From Eqs. (58)–(59), the propagation speeds of
the polarization modes are thus

ðcðsÞT Þ2 ≡WðsÞ

GðsÞ ¼ W0ðtÞ þW1ðtÞ s
2
k
a þW2ðtÞ k2

a2 þW3ðtÞ s
2
k3

a3 þW4ðtÞ k4

a4

G0ðtÞ þ G1ðtÞ s
2
k
a þ G2ðtÞ k2

a2 þ G3ðtÞ s
2
k3

a3 þ G4ðtÞ k4

a3
: ð63Þ

The expression (63) is quite general and can be applied to
many modified gravity theories studied before, such as the
Horndeski theory etc., of which the contributions to GðsÞ

and WðsÞ are summarized in Table I.

The requirement that there is no ghost and tachyon
instabilities indicates that

GðsÞ > 0; WðsÞ > 0: ð64Þ
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From Table I, it is easy to read the no instability conditions
in various modified gravity theories. In the case of fðϕ; RÞ
theory, this implies that f;R > 0. In the case of Gauss-
Bonnet theory, this implies _ξ > 0 and ̈ξ > 0 in an expand-
ing FLRW background. In the case of Horndeski theory,
this implies b − 3cH > 0 and d1 − _a1 > 0. Note for Chern-
Simons theory, Lorentz breaking Weyl gravity [86], and
parity-violating scalar-tensor theories studied in [87], con-
tributions to GðsÞ and WðsÞ start from the first or the second
order in k=a, which implies that they should be supple-
mented by terms that contribute to GðsÞ and WðsÞ starting
from the zeroth order in k=a (e.g., the GR or the Horndeski
theory), when being considered as a viable cosmologi-
cal model.
Comparing with the propagation speed that arises in

usual case (e.g., in the Horndeski theory), the propagation
speed in the form of Eq. (63) has at least two distinctive
features.

(i) Generally, the two circular polarization modes
propagate in different speeds, i.e., cðþ2Þ

T ≠ cð−2ÞT ,
due to the presence of parity-violating terms. How-
ever, it is possible that the coefficients in the original
action are turned such that the two polarization
modes propagate in the same speed in the presence
of parity-violating terms. This has been known for
the case of CS gravity [110,112,115,121].

(ii) There are k-dependence in the denominator of

ðcðsÞT Þ2. The k-dependence in GðsÞ arises due to
spatial derivative terms of the extrinsic curvature
Kij in the original action. This is different from usual
Lorentz-breaking theories such as Hořava gravity,
where the propagation speed is a polynomial in k,
which corresponds to Gn ¼ 0 for n > 0. A simpler
version of Eq. (63) arises in Ref. [121] (see also
Ref. [130]) in the study of a variation of the CS
gravity.

These introduce new features of the propagation of the
gravitational waves. Especially, this makes the two polari-
zation modes propagate in the same speed possible, even in
the presence of parity-violating terms in the original action.
In fact, as we shall see in Sec. IV B, the CS gravity is not

the only parity-violating gravity theory in which the two
polarization modes of the gravitational waves propagate in
the speed of light. There are more general parity-violating
gravity theories have this property.
Before proceeding, let us compare our result Eq. (63)

with the propagation speed of gravitational waves in parity-
violating gravity theories studied before. If in GðsÞ andWðsÞ
only the parity-violating terms with the lowest order in
spatial derivatives are present, Eq. (63) reduces to

ðcðsÞT Þ2 ¼ W0ðtÞ þW1ðtÞ s
2
k
a

G0ðtÞ þ G1ðtÞ s
2
k
a

: ð65Þ

In the case of CS gravity

G0 ¼ W0 ¼ 1; G1 ¼ W1; ð66Þ

which yields cðsÞT ≡ 1 in CS gravity. In a more general
setting with G0 ¼ W0 ¼ 1 but G1 ≠ W1, one get the
conclusion that if one polarization mode is enhanced/
superluminal, the other is suppressed/subluminal [121].
In general, this is not the case for the propagation speeds
given in Eq. (63).

A. On the case of cð + 2ÞT = cð− 2ÞT

As mentioned in the above, there is room for parameters
such that the two polarization modes propagate with the
same speed, despite of the presence of parity-violating
terms in the action. Mathematically, this is because the s-

dependence of cðsÞT can be balanced between GðsÞ andWðsÞ.
In particular, this can be achieved only if GðsÞ itself has
functional dependence on s and k, which is due to the
presence of spatial derivatives of the extrinsic curvature Kij

in our framework.
For consistency, we assume G0 ≠ 0 and W0 ≠ 0 (other-

wise the case of GR cannot be recovered). Requiring
that the two polarization modes propagate with the same
speed, i.e.,

ðcðþ2Þ
T Þ2 ¼ ðcð−2ÞT Þ2; ð67Þ

TABLE I. Contributions to GðsÞ and WðsÞ in specific modified gravity theories.

Theories GðsÞ WðsÞ References

General relativity: R 1
2

1
2

� � �
fðϕ; RÞ 1

2
f;R

1
2
f;R [126]

Gauss-Bonnet: ξðϕÞLGB 2_ξH 2 ̈ξ [127–129]
Horndeski theory 1

2
ðb − 3cHÞ 1

2
ðd1 − _a1Þ [22,24] (also Sec. II B 1)

Chern-Simons: fðϕÞP −2s _f k
a −2s _f k

a [110,112,115] (also Sec. II B 2)
Lorentz breaking Weyl gravity: LDSSY k2

a2
0 [86] (also eq. (22) in Sec. II B 2)

Parity-violating scalar-tensor theories
(α1; α2 etc. are constants): α1LA;1 þ α2LA;2 þ βLB þ γLC;1

−s½β
2
þð2α1þα2−γÞH�ka 0 [87] (also Sec. II B 3)
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yields 4 constraints among the 8 coefficients G1;…;G4 and
W1;…;W4:

2G0W1 − 2G1W0 ¼ 0; ð68Þ

−2G3W0þ2G2W1−2G1W2þ2G0W3¼0; ð69Þ
2G4W1 − 2G3W2 þ 2G2W3 − 2G1W4 ¼ 0; ð70Þ

2G4W3 − 2G3W4 ¼ 0: ð71Þ

There are 3 branches of solutions.
(i) Case 1: The first branch of solutions is

G1 ¼ 0; G3 ¼ 0; W1 ¼ 0; W3 ¼ 0: ð72Þ
This case is trivial, since there is no parity-violating
term at all. The two polarization modes propagate
with the same speed

ðcðsÞT Þ2 ¼ W0 þW2
k2

a2 þW4
k4

a4

G0 þ G2
k2

a2 þ G4
k4

a4
: ð73Þ

Note the spatially covariant gravity considered in
Refs. [67,82] (including the Hořava gravity [65])
belongs to this case, where G2 ¼ G4 ¼ 0.

(ii) Case 2: In the case with G1 ≠ 0, we get another
branch of solutions

G4 ¼
G1G2 − G0G3

G2
1

G3; ð74Þ

W1 ¼
G1W0

G0

; ð75Þ

W2 ¼
G2W0

G0

−
G3W0

G1

þ G0W3

G1

; ð76Þ

W4 ¼
G1G2 − G0G3

G2
1

W3: ð77Þ

The propagation speed is given by

ðcðsÞT Þ2 ¼
G1

W0

G0
þW3

k2

a2

G1 þ G3
k2

a2
: ð78Þ

In this case, since G1;W1 ≠ 0, the theory contains
parity-violating terms. Nevertheless, the parity-
violating effects do not show up in the propagation
speed of the polarization modes.

(iii) Case 3: We also have a special case with

W1 ¼
G1W0

G0

; W2 ¼
G2W0

G0

;

W3 ¼
G3W0

G0

; W4 ¼
G4W0

G0

: ð79Þ

In this case the propagation speed is simply

ðcðsÞT Þ2 ¼ W0

G0

; ð80Þ

in which the k-dependence of cðsÞT completely drops
out. We emphasize that “Case 2” does not include
“Case 3” as a special case.

In “case 1”, there is no parity-violating terms by con-
struction, and thus both polarization modes also have the
same amplitude when being quantized, although the
dispersion relation is highly nonlinear. This can be seen
also from Eq. (61), which implies νð2Þ ¼ νð−2Þ in “Case 1”.
On the other hand, in “Case 2” and “Case 3”, although the
two polarization modes propagate in the same speed, they
have different amplitudes since generally νð2Þ ≠ νð−2Þ due
to the presence of parity-violating terms G1 and G3.

B. Models with cð+ 2ÞT = cð − 2ÞT = 1

The detection of GW170817 [20] and GRB170817A
[21] indicates that the propagation speed of the gravita-
tional waves coincides with the speed of light with tiny
deviations (1). Limit of the same order has already reported
in the gravitational Cherenkov effect [131]. Although the
physics of GW170817 may be different from that in the
primordial universe, it has already been used to restrict
the structure of scalar-tensor theories [41–44,46]. Within
our framework, this corresponds to a special case of Case 3
in the above, which implies

Wn ¼ Gn; n ¼ 0; 1; 2; 3; 4: ð81Þ

In the following, we investigate a concrete model of
which the Lagrangian is a polynomial built of the extrinsic
curvature Kij and intrinsic curvature Rij as well as their
spatial derivatives. We classify each monomial according to
the orders of time and spatial derivatives of hij. Note Kij

contains the first order time derivative of hij, Rij contains
up to the second order in spatial derivatives of hij. In
Table II, we list all the possible terms up to the fourth order
in derivatives of hij. In Table II, dt and ds are the numbers
of time derivative and spatial derivative, respectively. We
emphasize that not all the terms in the above table (e.g., K2,
K3, ∇i∇jKij etc.) contribute to the quadratic action of the
gravitational waves. There are 35 individual terms in the
above table, while only 21 terms contribute to the propa-
gation of linear gravitational waves. Second, we do not list
terms involving spatial derivatives of the lapse function N,
since which do not contribute to the quadratic action of the
gravitational waves in a cosmological background.
Our starting point is the action

S¼
Z

dtd3xN
ffiffiffi
h

p
ðLð0Þ þLð1Þ þLð2Þ þLð3Þ þLð4ÞÞ; ð82Þ
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where LðdÞ stands for the linear combinations of terms in
the above table satisfying dt þ ds ¼ d, such as

Lð0Þ ¼ cð0;0Þ1 ; ð83Þ

Lð1Þ ¼ cð1;0Þ1 K; ð84Þ

and

Lð2Þ ¼ cð2;0Þ1 KijKij þ cð2;0Þ2 K2 þ cð0;2Þ1 R; ð85Þ

etc. All the coefficients cð1;0Þ1 ; cð2;0Þ1 etc. are functions of t
and N, e.g.,

cð1;0Þ1 ¼ cð1;0Þ1 ðt; NÞ: ð86Þ

Note generally the coefficients may also depend on spatial
derivatives of lapse functionN, and there are terms involving
spatial derivatives ofN which we do not include in Eq. (82).
Terms involving spatial derivatives ofN do not contribute to
the linear gravitational waves in the FLRW background,
although they may be considered when analyzing the
background evolution and scalar perturbations.
We will study the linear gravitational waves of the action

Eq. (82) around the FLRW background. To this end, we
consider the perturbed metric

ds2 ≡ −dt2 þ a2gijdxidxj; ð87Þ
with a ¼ aðtÞ being the scale-factor. At the background
level ḡij ¼ δij. It is proved convenient to define the
perturbation of gij in the “exponential” manner:

gij ≔ δikðeγÞkj
¼ δij þ γij þ

1

2
γikγ

k
j þ � � � ; ð88Þ

where γij is the tensor perturbation satisfying ∂iγ
i
j ¼ 0 and

γii ¼ 0, and we define

γij ≔ δikγ
k
j: ð89Þ

The advantage of defining gij in the exponential manner is
that det gij ≡ 1 (in the presence of tensor modes only),
which is unperturbed. With Eqs. (87) and (88), we consider
only the tensor modes, which is justified by the fact that the
scalar, vector, and tensor perturbations are decoupled at the
linear order in the FLRW background.
After some manipulations, the contribution of the action

Eq. (82) to the quadratic action for the tensor modes takes
the form of Eq. (46), i.e.,

S2 ¼
Z

dtd3x
a3

2

�
G0ðtÞ_γij _γij þ G1ðtÞϵijk _γli

1

a
∂j _γ

l
k

− G2ðtÞ_γij
Δ
a2

_γij þW0ðtÞγij
Δ
a2

γij

þW1ðtÞϵijkγli
1

a
Δ
a2

∂jγ
l
k −W2ðtÞγij

Δ2

a4
γij

�
; ð90Þ

where Gn and Wn are given by

G0ðtÞ ¼
1

2
½cð2;0Þ1 þ 3ðcð3;0Þ1 þ cð3;0Þ2 ÞH

þ 3ð3cð4;0Þ1 þ 2cð4;0Þ2 þ 3cð4;0Þ3 ÞH2�; ð91Þ

G1ðtÞ ¼
1

2
½cð2;1Þ1 − ðcð3;1Þ1 − 2cð3;1Þ2 − 3cð3;1Þ3 ÞH�; ð92Þ

G2ðtÞ ¼
1

2
cð2;2Þ1 ; ð93Þ

W0ðtÞ ¼
1

4
½2cð0;2Þ1 þ ∂tc

ð1;2Þ
3

þ ð3cð1;2Þ3 þ 6cð1;2Þ4 þ 2∂tc
ð2;2Þ
6 þ 3∂tc

ð2;2Þ
8 ÞH

þ ð4cð2;2Þ6 þ 6cð2;2Þ7 þ 9cð2;2Þ8 þ 18cð2;2Þ9 ÞH2

þ ð2cð2;2Þ6 þ 3cð2;2Þ8 Þ _H�; ð94Þ

W1ðtÞ ¼
1

4
∂tðcð1;3Þ1 þ cð1;3Þ2 Þ; ð95Þ

W2ðtÞ ¼ −
1

2
cð0;4Þ3 : ð96Þ

GR only contains terms proportional to _γij _γ
ij and γijΔγij.

Other terms in Eq. (90) arise due to the modification of
gravity. The term proportional to _γijΔ_γij was considered in

TABLE II. All the possible monomials built of Kij, Rij and
their spatial derivatives, up to the fourth order in derivatives.

dðdt; dsÞ Operators

0 (0,0) 1
1 (1,0) K

(0,1) � � �
2 (2,0) KijKij; K2

(1,1) � � �
(0,2) R

3 (3,0) KijKjkKi
k; KijKijK; K3

(2,1) εijkKi
l∇jKkl

(1,2) ∇i∇jKij; ∇2K; RijKij; RK
(0,3) � � �

4 (4,0) KijKjkKi
kK, ðKijKijÞ2, KijKijK2, K4

(3,1) εijk∇mKi
nKjmKkn, εijk∇iKj

mKk
nKmn, εijk∇iKj

lK
klK

(2,2) ∇kKij∇kKij, ∇iKjk∇kKij, ∇iKij∇kKk
j , ∇iKij∇jK,

∇iK∇iK, RijKi
kK

jk, RKijKij, RijKijK, RK2

(1,3) εijkRil∇jKk
l , εijk∇iRj

lK
kl

(0,4) ∇i∇jRij, ∇2R, RijRij, R2
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Refs. [86,132]. The two parity-violating terms in Eq. (90),
i.e., ϵijk _γli∂j _γ

l
k and ϵijkγliΔ∂jγ

l
k, are considered in

Ref. [121] (see also Ref. [133]). Note for the term
ϵijk∂i _γjl _γ

kl, Ref. [121] considered the contribution from

cð2;1Þ1 (i.e., εijkKi
l∇jKkl in the action) only.

From Eq. (90) and the various coefficients Gn and Wn
given in Eqs. (91)-(96), there are 21 terms in the original

action (82) (with 21 free coefficients cð2;0Þ1 , cð3;0Þ1 etc.) that
contribute to the propagation of linear gravitational waves.
According to Eq. (81), in order to make both polarization

modes propagate in the speedof light, i.e.,cðþ2Þ
T ¼ cð−2ÞT ¼ 1,

we must require that G0 ¼ W0, G1 ¼ W1, and G2 ¼ W2.
Moreover, these should be satisfiedwith anyvalueofHðtÞ, or
in other words, they should be stable against the variation of
H. With these requirements, we get 7 constraints for the 21
coefficients:

cð2;0Þ1 − cð0;2Þ1 −
1

2
∂tc

ð1;2Þ
3 ¼ 0; ð97Þ

6cð3;0Þ1 þ6cð3;0Þ2 −3cð1;2Þ3 −6cð1;2Þ4 −2∂tc
ð2;2Þ
6 −3∂tc

ð2;2Þ
8 ¼ 0;

ð98Þ

18cð4;0Þ1 þ 12cð4;0Þ2 þ 18cð4;0Þ3 − 4cð2;2Þ6 − 6cð2;2Þ7

− 9cð2;2Þ8 − 18cð2;2Þ9 ¼ 0; ð99Þ

2cð2;2Þ6 þ 3cð2;2Þ8 ¼ 0; ð100Þ

cð2;1Þ1 −
1

2
∂tðcð1;3Þ1 þ cð1;3Þ2 Þ ¼ 0; ð101Þ

cð3;1Þ1 − 2cð3;1Þ2 − 3cð3;1Þ3 ¼ 0; ð102Þ

cð2;2Þ1 þ cð0;4Þ3 ¼ 0: ð103Þ

From Eqs. (97)–(103), we may solve 7 coefficients to be

cð0;2Þ1 ¼ cð2;0Þ1 −
1

2
∂tc

ð1;2Þ
3 ; ð104Þ

cð2;1Þ1 ¼ 1

2
∂tðcð1;3Þ1 þ cð1;3Þ2 Þ; ð105Þ

cð1;2Þ4 ¼ cð3;0Þ1 þ cð3;0Þ2 −
1

2
cð1;2Þ3 ; ð106Þ

cð3;1Þ3 ¼ 1

3
ðcð3;1Þ1 − 2cð3;1Þ2 Þ; ð107Þ

cð2;2Þ8 ¼ −
2

3
cð2;2Þ6 ; ð108Þ

cð2;2Þ9 ¼ 1

9
ð9cð4;0Þ1 þ 6cð4;0Þ2 þ 9cð4;0Þ3 þ cð2;2Þ6 − 3cð2;2Þ7 Þ;

ð109Þ

cð0;4Þ3 ¼ −cð2;2Þ1 : ð110Þ

The other 14 coefficients are left undetermined.
After plugging Eqs. (104)–(110) into Eq. (82), and

rearranging terms according to the independent coeffi-
cients, the action that satisfies cT ¼ 1 is given by

ScT¼1
¼

Z
dtd3xN

ffiffiffi
h

p
ðLð0Þ þ Lð1Þ þ Lð2Þ þ L̃ð3Þ þ L̃ð4ÞÞ;

ð111Þ

where Lð0Þ and Lð1Þ are the same in Eqs. (83)–(84), which
do not contribute to the gravitational waves,

L̃ð2Þ ¼ cð2;0Þ1 ðKijKij þ RÞ þ cð2;0Þ2 K2; ð112Þ

and

L̃ð3Þ ¼ cð3;0Þ1 ðKijKjkKi
k þ RKÞ þ cð3;0Þ2 ðKijKij þ RÞK

þ cð3;0Þ3 K3 þ cð1;2Þ1 ∇i∇jKij þ cð1;2Þ2 ∇2K

þ cð1;2Þ3 GijKij −
1

2N
∂tc

ð1;2Þ
3 R; ð113Þ

and

L̃ð4Þ ¼ cð4;0Þ1 ðKijKjkKi
k þ RKÞK þ cð4;0Þ2

�
ðKijKijÞ2 þ 2

3
RK2

�
þ cð4;0Þ3 ðKijKij þ RÞK2 þ cð4;0Þ4 K4

þ cð3;1Þ1 εijk

�
∇mKi

nKjmKkn þ 1

3
∇iKj

lK
klK

�
þ cð3;1Þ2 εijk

�
∇iKj

mKk
nKmn −

2

3
∇iKj

lK
klK

�

þ cð2;2Þ1 ð∇kKij∇kKij − RijRijÞ þ cð2;2Þ2 ∇iKjk∇kKij þ cð2;2Þ3 ∇iKij∇kKk
j þ cð2;2Þ4 ∇iKij∇jK

þ cð2;2Þ5 ∇iK∇iK þ cð2;2Þ6 Rij

�
Ki

kK
jk −

2

3
KijK þ 1

9
hijK2

�
þ cð2;2Þ7 R

�
KijKij −

1

3
K2

�

þ cð1;3Þ1 εijkRil∇jKk
l þ cð1;3Þ2 εijk∇iRj

lK
kl þ 1

2N
∂tðcð1;3Þ1 þ cð1;3Þ2 ÞεijkKi

l∇jKkl

þ cð0;4Þ1 ∇i∇jRij þ cð0;4Þ2 ∇2Rþ cð0;4Þ4 R2: ð114Þ
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We conclude that the action Eq. (111) represents a large
class of gravity theories respecting the spatial symmetry, in
which both polarization modes of the gravitational waves
propagate in the speed of light in the cosmological back-
ground. Please note that terms involving the spatial
derivatives of N can be added into Eq. (111), which do
not affect the propagation of the linear GWs.

1. On the Horndeski theory with cT = 1

As a simple application of our result, let us consider the
Horndeski theory, of which the Lagrangian in the unitary
gauge is given in Eq. (7). The conditions Eqs. (97)–(103)
simply reduce to

b − d1 þ
1

N
∂ta1 ¼ 0; ð115Þ

and

c ¼ 0: ð116Þ
Equation (115) implies

b − d1 þ
1

N
∂ta1 ¼ N

∂G4

∂N þ 1

N2

∂G5

∂t ¼ 0: ð117Þ

On the other hand, from Eq. (11), Eq. (116) implies
G5 ¼ G5ðtÞ. Using Eq. (117), we may rewrite b to be

b ¼ G4 −
1

2N2

∂G5

∂t ; ð118Þ

and thus

∂b
∂N ¼ ∂G4

∂N þ 1

N3

∂G5

∂t ≡ 0; ð119Þ

which implies b ¼ bðtÞ. Finally, after some manipulations,
we arrive at the conclusion that under the requirement
cT ¼ 1, the Horndeski action in the unitary gauge reduces
to be

Sðu:g:ÞH;cT¼1 ¼
Z

dtd3xN
ffiffiffi
h

p
½bðtÞðKijKij − K2 þ RÞ

þ a0K þ d0�; ð120Þ
where a0 and d0 can be general functions of t and N. The
above analysis is consistent with the previous results
(e.g.,) [41].

2. On parity-violating gravity

In Eq. (114), we recognize four parity-violating terms
that preserve cT ¼ 1 for both polarization modes3:

O1 ¼ c1εijk

�
∇mKi

nKjmKkn þ 1

3
∇iKj

lK
klK

�
; ð121Þ

O2 ¼ c2εijk

�
∇iKj

mKk
nKmn −

2

3
∇iKj

lK
klK

�
; ð122Þ

O3 ¼ εijk

�
c3Ril∇jKk

l þ
1

2N
∂tc3Ki

l∇jKkl

�
; ð123Þ

O4 ¼ εijk

�
c4∇iRj

lK
kl þ 1

2N
∂tc4Ki

l∇jKkl

�
; ð124Þ

where c1;…; c4 are general functions of t and N, although
generally they may also depend on spatial derivatives of
lapse function N. At this point, it is interesting to note that
the CS gravity (21) corresponds to the special choice of
parameters with

c1 ¼ −8f; ð125Þ

c2 ¼ þ8f; ð126Þ

c3 ¼ −16f; ð127Þ

c4 ¼ 0: ð128Þ

This explains the fact that the speed of gravitational waves
in CS gravity is not modified. One finding in this work is
that there exist more general parity-violating terms that
have this property.

C. Other bounds

Up to now our discussion mainly focuses on the
coefficient cðsÞT defined in (62), which corresponds to the
phase velocity of the GWs. We have seen that requiring

cðsÞT ¼ 1 (thus there is no velocity birefringence) for both
polarization modes of the GWs has strictly constrained our
theory. In the following, we examine if further constraints
would arise by investigating the group velocity as well as
the amplitude birefringence effect of the GWs in our theory.

1. On the group velocities

Note γðsÞðτ; kÞ can be further expanded in terms of the
Fourier modes as

γðsÞðτ; kÞ ¼
Z

dω
2π

ðAðsÞ
k ðωÞe−iωτ þ BðsÞ

k ðωÞeþiωτÞ; ð129Þ

which can be plugging in (60) to yield the equation for ω

−ω2� ið2þνðsÞÞHωþk2ðcðsÞT Þ2 ¼ 0; s¼�2: ð130Þ

From (130) we may solve

3We keep O4 in Eq. (124) for completeness, although which
can be reduced to O3 in Eq. (123) (with extra terms involving
spatial derivatives of N) by integrations by part.
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ωðsÞ ¼ cðsÞT k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

�
H

cðsÞT k

�
2
�
1þ1

2
νðsÞ

�
2

s
þ iH

�
1þ1

2
νðsÞ

�
:

ð131Þ

Here the imaginary part of ωðsÞ indicates that the amplitude
of GWs is also affected due to the nonvanishing
Hð1þ 1

2
νðsÞÞ. The “group velocity” is identified to be

dðℜωðsÞÞ
dk

¼cðsÞT

1þ∂ lncðsÞT∂ lnk −1
2

�
H

cðsÞT k

�
2ð1þ1

2
νðsÞÞ∂νðsÞ∂ lnkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−
�

H
cðsÞT k

�
2ð1þ1

2
νðsÞÞ2

r : ð132Þ

If the condition cðsÞT ¼ 1 is satisfied,

dðℜωðsÞÞ
dk

→
1 − 1

2
ðHk Þ2ð1þ 1

2
νðsÞÞ ∂νðsÞ

∂ ln kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðHk Þ2ð1þ 1

2
νðsÞÞ2

q

≃ 1þ 1

2

�
H
k

�
2
�
1þ 1

2
νðsÞ

��
1þ 1

2
νðsÞ −

∂νðsÞ
∂ ln k

�
þ � � � ; ð133Þ

where “� � �” indicates terms of higher orders in H=k. Thus
for GWs with short wavelengths H=k ≫ 1,

dðℜωðsÞÞ
dk

				
cðsÞT ¼1

→ 1; ð134Þ

and thus requiring the group velocity of GWs with short
wavelengths to be the speed of light does not yield further
constraint for our theory.

2. On the absence of amplitude birefringence

Generally, even cðþ2Þ
T ¼ cð−2ÞT and thus there is no

“velocity birefringence”, νþ2 and ν−2 can be different,
which is the effect of the so-called “amplitude birefrin-
gence” [112,115,116,123,125]. Thus requiring the absence
of amplitude birefringence, i.e.,

νðþ2Þ ¼ νð−2Þ; ð135Þ

would further constrain our theory.
From (61), the absence of amplitude birefringence

implies

∂τGðþ2Þ

Gðþ2Þ −
∂τGð−2Þ

Gð−2Þ ¼ 0: ð136Þ

Similar to (63), we consider the case with up to k4:

GðsÞ ¼ G0 þ G1

s
2

k
a
þ G2

k2

a2
þ G3

s
2

k3

a3
þ G4

k4

a3
: ð137Þ

With this ansatz, (136) yields

kð2G0G0
1 − 2G1G0

0Þ þ 2k3ð−G3G0
0 þ G2G0

1 − G1G0
2 þ G0G0

3Þ
þ 2k5ðG4G0

1 − G3G0
2 þ G2G0

3 − G1G0
4Þ

þ k7ð2G4G0
3 − 2G3G0

4Þ ¼ 0; ð138Þ

we thus have 4 differential equations for G0;…;G4:

G1G0
0 − G0G0

1 ¼ 0; ð139Þ

G3G0
0 þ G1G0

2 − G2G0
1 − G0G0

3 ¼ 0; ð140Þ

G4G0
1 þ G2G0

3 − G3G0
2 − G1G0

4 ¼ 0; ð141Þ

G4G0
3 − G3G0

4 ¼ 0: ð142Þ

There is a unique set of solutions

Gn ¼ λnG0; λn ¼ const: ð143Þ

As a result, GðsÞðτ; kÞ in (137) must take the form

GðsÞðτ; kÞ ¼ G0ðτÞ
�
1þ c1

s
2

k
a
þ c2

k2

a2
þ c3

s
2

k3

a3
þ c4

k4

a3

�
:

ð144Þ

Let us consider again the model (82), of which the
quadratic action for the GWs is given in (90). For G1 and
G2, this yields

1

2
½cð2;1Þ1 − ðcð3;1Þ1 − 2cð3;1Þ2 − 3cð3;1Þ3 ÞH�

¼ λ1
1

2
½cð2;0Þ1 þ 3ðcð3;0Þ1 þ cð3;0Þ2 ÞH

þ 3ð3cð4;0Þ1 þ 2cð4;0Þ2 þ 3cð4;0Þ3 ÞH2�; ð145Þ

and

1

2
cð2;2Þ1 ¼ λ2

1

2
½cð2;0Þ1 þ 3ðcð3;0Þ1 þ cð3;0Þ2 ÞH

þ 3ð3cð4;0Þ1 þ 2cð4;0Þ2 þ 3cð4;0Þ3 ÞH2�; ð146Þ

respectively. Rearrange terms according to the powers of
H, we get

0 ¼ cð2;1Þ1 − λ1c
ð2;0Þ
1

− ½cð3;1Þ1 − 2cð3;1Þ2 − 3cð3;1Þ3 þ 3λ1ðcð3;0Þ1 þ cð3;0Þ2 Þ�H
− 3λ1ð3cð4;0Þ1 þ 2cð4;0Þ2 þ 3cð4;0Þ3 ÞH2; ð147Þ

and
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0 ¼ cð2;2Þ1 − λ2c
ð2;0Þ
1

− 3λ2ðcð3;0Þ1 þ cð3;0Þ2 ÞH
− 3λ2ð3cð4;0Þ1 þ 2cð4;0Þ2 þ 3cð4;0Þ3 ÞH2: ð148Þ

Similar to the analysis in Sec. IV B, the above equalities
should hold in any expanding background (i.e, against the
variation of H), we thus get 5 independent algebraic
equations for 11 coefficients:

cð2;1Þ1 − λ1c
ð2;0Þ
1 ¼ 0; ð149Þ

cð3;1Þ1 − 2cð3;1Þ2 − 3cð3;1Þ3 þ 3λ1ðcð3;0Þ1 þ cð3;0Þ2 Þ ¼ 0; ð150Þ

3cð4;0Þ1 þ 2cð4;0Þ2 þ 3cð4;0Þ3 ¼ 0; ð151Þ

cð2;2Þ1 − λ2c
ð2;0Þ
1 ¼ 0; ð152Þ

cð3;0Þ1 þ cð3;0Þ2 ¼ 0: ð153Þ

Together with the conditions for cT ¼ 1 (97)–(103), we get
a unique set of solutions

1

2
∂tðcð1;3Þ1 þ cð1;3Þ2 Þ ¼ λ1c

ð2;0Þ
1 ; ð154Þ

cð0;2Þ1 ¼ cð2;0Þ1 −
1

2
∂tc

ð1;2Þ
3 ; ð155Þ

cð3;0Þ2 ¼ −cð3;0Þ1 ; ð156Þ

cð1;2Þ4 ¼ −
1

2
cð1;2Þ3 ; ð157Þ

cð2;2Þ8 ¼ −
2

3
cð2;2Þ6 ; ð158Þ

cð4;0Þ3 ¼ −cð4;0Þ1 −
2

3
cð4;0Þ2 ; ð159Þ

cð2;2Þ9 ¼ 1

9
ðcð2;2Þ6 − 3cð2;2Þ7 Þ; ð160Þ

cð2;1Þ1 ¼ λ1c
ð2;0Þ
1 ; ð161Þ

cð3;1Þ3 ¼ 1

3
ðcð3;1Þ1 − 2cð3;1Þ2 Þ; ð162Þ

cð2;2Þ1 ¼ λ2c
ð2;0Þ
1 ; ð163Þ

cð0;4Þ3 ¼ −cð2;2Þ1 : ð164Þ

Equations (154)–(164) can be compared with the solutions
(104)–(110), which are special cases of the former. We thus

conclude that there is no amplitude birefringence and
both polarization modes propagate in the speed of light
in our theory as long as the coefficients satisfy the relations
(154)–(164).

D. Effective mass in the UV

Due to the presence of spatial derivatives of Kij in the
theory, the appearance of thek-dependence inGðsÞ introduces
new features for the propagation of the gravitational waves.
Here we briefly mention one interesting feature by revealing
that the gravitational wavesmay become effectivelymassive
in the short-wavelength limit (or ultraviolet limit).
First let us consider a simpler case where both GðsÞ and

WðsÞ are up to k2, which imply that G2 ≠ 0 andW2 ≠ 0. In
this case Eq. (63) becomes

ðcðsÞT Þ2 ¼ W0ðtÞ þW1ðtÞ s
2
k
a þW2ðtÞ k2

a2

G0ðtÞ þ G1ðtÞ s
2
k
a þ G2ðtÞ k2

a2
: ð165Þ

In the short-wavelength limit (i.e., k=a → ∞) we have

ðcðsÞT Þ2 → W2

G2

þ G2W1 − G1W2

G2
2

s
2

a
k

þ G2
1W2 − G2ðG1W1 þ G0W2Þ þ G2

2W0

G3
2

a2

k2

þOðk−3Þ: ð166Þ
If we further require

G2W1 − G1W2 ¼ 0; ð167Þ
we get

k2ðcðsÞT Þ2 → c2UVk
2 þm2

UV þOðk−1Þ; ð168Þ
with

c2UV ¼ W2

G2

; ð169Þ

m2
UV ¼ a2

G2W0 − G0W2

G2
2

: ð170Þ

Here cUV is the propagation speed in the UV limit, andmUV
is the effective mass for the gravitational waves in the
UV limit.
For the full-version of Eq. (63), in the limit of k=a → ∞

we have

ðcðsÞT Þ2 → W4

G4

þ ðG4W3 − G3W4Þ
G2
4

s
2

a
k

ð171Þ

þG2
3W4−G4ðG3W3þG2W4ÞþG2

4W2

G3
4

a2

k2

þOðk−3Þ: ð172Þ
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If we further require

G4W3 − G3W4 ¼ 0; ð173Þ

we get

k2ðcðsÞT Þ2 → c2UVk
2 þm2

UV þOðk−1Þ; ð174Þ

with

c2UV ¼ W4

G4

; ð175Þ

m2
UV ¼ a2

G4W2 − G2W4

G2
4

: ð176Þ

Again, in the UV limit the gravitational waves acquire an
effective mass term mUV. Of course, the above results are
derived in the UV limit, which implies that the effective
mass must be of the subleading order. Nevertheless, it is
interesting to explore this effect, which is a distinctive
feature of the spatial derivatives of the extrinsic curvature.

V. CONCLUSION

In this work we investigated the propagation of the
gravitational waves in a cosmological background. Based
on the framework of spatially covariant gravity proposed in
Refs. [67,68], we derived the general quadratic action for
the gravitational waves (46). Two types of terms were
systematically introduced: the spatial derivatives of the
extrinsic curvature and the parity-violating terms. From
Eq. (46) and the resulting equation of motion Eq. (60),
spatial derivatives of the extrinsic curvature will modify the
dispersion relation in a different manner and make the
Planck mass running rate k-dependent, which thus modify
the amplitude of the gravitational waves in a k-dependent
manner. This, on the other hand, raises the possibility of
keeping the propagation speed cT unchanged while modi-
fying the Planck mass running rate only.
We paid special attention to the propagation speed of the

gravitational waves. The detection of GW170817 and its
electromagnetic counterpart [20,21] implies the coinci-
dence of the propagation speeds of the GWs and of the
light. In this work, we tried to explore the possibility of
having cT ¼ 1 within the framework of spatially covariant
gravity. We found that it is possible to make the two circular
polarization modes propagate in the same speed, even in the
presence of parity-violating terms. In particular, we found a
large class of spatially covariant gravity theories (111) with
parity-violating terms given in Eqs. (121)–(124), in which
both polarization modes of the GWs propagate in the speed
of light. Previously, this property was known for the CS
gravity. In this work we shown that there are more general
parity-violating gravity theories having this property, or in
other words, surviving under the restriction cT ¼ 1. Our

results indicate that, although the parameter space of the
covariant scalar-tensor theories is heavily restricted, the
spatially covariant gravity may provide us more possibil-
ities in light of the propagation of the gravitational waves.
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APPENDIX: PARITY-VIOLATING THEORIES

Some interesting parity-violating gravity theories that are
free of extra ghostlike degree(s) of freedom when the scalar
field is timelike (so that the so-called unitary gauge is
applicable) were found in Ref. [87]. Here we reformulate
their results.
One class of terms considered in Ref. [87] are quadratic

in the Riemann tensor and involve only the first derivative
of the scalar field. There are 4 independent terms:

O1 ¼ εμνρσ4Rρσαβ
4Rμν

α
λ∇βϕ∇λϕ; ðA1Þ

O2 ¼ εμνρσ4Rρσαβ
4Rβ

ν∇αϕ∇μϕ; ðA2Þ

O3 ¼ εμνρσ4Rρσαβ
4Rμλ

αβ∇νϕ∇λϕ; ðA3Þ

O4 ¼ εμνρσ4Rρσαβ
4Rμν

αβ∇λϕ∇λϕ: ðA4Þ

If we consider the linear combination

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �X4
n¼1

AnOn

�
; ðA5Þ

where A1;…; A4 are general functions of ϕ and X≡
− 1

2
ð∂ϕÞ2, the coefficients must satisfy

4A1 þ A2 þ 2A3 þ 8A4 ¼ 0; ðA6Þ

in order to make the theory to be healthy when the unitary
gauge is applicable [87]. This can be understood more
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transparently by observing that in the unitary gauge, there
are 3 independent combinations of O1;…;O4 in which the
“dangerous” term £nKij exactly drops out:

O1 −
1

2
O4; O2 −

1

8
O4; O3 −

1

4
O4; ðA7Þ

which are nothing but LA;1, LA;2, LA;3 in Eqs. (25), (26),
and (27), respectively. The corresponding expressions in
the unitary gauge are given in Eqs. (28), (29), and (30),
respectively.
Another class of terms considered in Ref. [87] are linear

in the Riemann tensor and quadratic in the second
derivative of the scalar field. There are 5 independent terms

O1 ¼ εμνρσ4Rρσαβ∇α∇μϕ∇β∇νϕ∇λϕ∇λϕ; ðA8Þ

O2 ¼ εμνρσ4Rρσαβ∇α∇μϕ∇λ∇νϕ∇βϕ∇λϕ; ðA9Þ

O3 ¼ εμνρσ4Rραβλ∇β∇μϕ∇λ∇νϕ∇αϕ∇σϕ; ðA10Þ

O4 ¼ εμνρσ4Rρσαβ∇α∇μϕ∇β∇λϕ∇νϕ∇λϕ; ðA11Þ

O5 ¼ εμνρσ4Rσα∇α∇μϕ∇β∇νϕ∇ρϕ∇βϕ; ðA12Þ

up to the quadratic order in the first derivative ∇μϕ. If we
consider the combination

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �X5
n¼1

AnOn

�
; ðA13Þ

where A1;…; A5 are general functions of ϕ and
X ≡ − 1

2
ð∂ϕÞ2, the coefficients must satisfy

4A1 þ 2A2 þ 2A3 − A5 ¼ 0; ðA14Þ

2A1 þ A2 þ A4 ¼ 0; ðA15Þ

in order to make the theory to be healthy when the unitary
gauge is applicable, where the “dangerous” terms £nKij and
£nN exactly get canceled. There are thus 3 combinations

O1−2O4þ4O5; O2−O4þ2O5; O3þ2O5; ðA16Þ

which are exactly LC;1, LC;2, LC;3 in Eqs. (33), (34), and
(35), respectively. The corresponding expressions in the
unitary gauge are given in Eqs. (36) and (37), respectively.
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