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Propagation of gravitational waves in a cosmological background
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We investigate the propagation of gravitational waves in a cosmological background. Based on the
framework of spatially covariant gravity, we derive the general quadratic action for gravitational waves.
The spatial derivatives of the extrinsic curvature and the parity-violating terms are systematically
introduced. Special attention is paid to the propagation speed of the gravitational waves. We find that
it is possible to make the two polarization modes propagate in the same speed, which may differ from that
of the light, in the presence of parity-violating terms in the action. In particular, we identify a large class of
spatially covariant gravity theories with parity violation, in which both the polarization modes propagate in
the speed of light. Our results indicate that there are more possibilities in the framework of spatially
covariant gravity in light of the propagation speed of the gravitational waves.
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I. INTRODUCTION

A new era of astrophysics and cosmology has arrived
since the first detection of the gravitational wave (GW)
event GW150914 reported by LIGO [1], and the observa-
tion of more GW events by LIGO and VIRGO [2-6]. With
the current and the forthcoming GW experiments, including
LISA [7], BBO [8], KAGRA [9], ET [10], Taiji [11,12],
and Tian-Qin [13], the GWs have opened a new window to
explore the nature of gravity [14—17].

Among various observables concerning the gravitational
waves, one that is of particular interest and of physical
importance is the propagation speed of the gravitational
waves. In practice, the propagation speed of GWs can be
measured by comparing arrival times between the GWs and
high-energy photons emitted at the same time of events
such as the binary neutron star coalescences [18,19]. The
recent observations of a binary neutron star coalescence
event GW170817 [20] and the associated gamma-ray burst
event GRB170817A [21] indicates that the propagation
speed of the gravitational waves coincides with the speed of
light with deviations'

3x10B <er=1<7x10716 (1)

at the redshift z < 0.009 and with frequency of 10-100 Hz.
The general relativity (GR) propagates two massless tensor
polarizations with the speed of light. In gravity theories
alternative to the GR, the gravitational waves propagate in a
speed different from unity generally [22-26]. As a result,
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the propagation speed of the gravitational waves provides
us a unique test of modified gravity theories [27-30].

One modified gravity theory that has been extensively
studied in recent years is the scalar-tensor theory, which is
based on the idea of introducing an extra scalar degree of
freedom in addition to the usual tensor degrees of freedom
of GR. In the theoretical aspects, recent development of the
covariant scalar-tensor theory focused on introducing
higher derivatives without the Ostrogradsky ghost [31]
(also dubbed as being “healthy”). The representatives are
the Horndeski theory [32-34] as well as the degenerate
higher-order theory [35-38] (see Refs. [39,40] for reviews).
After taking into account the constraint in Eq. (1), the
viable Horndeski Lagrangian is [41-46] (see Ref. [47] for a
review)

L1 =f(@)'R+P(¢.X)+0(¢. X)0p,  (2)

where “R is the 4-dimensional Ricci scalar, f is a general
function of the scalar field ¢ only, P and Q are general
functions of ¢ and X =—1(0¢)?, and O¢ =V, Vig.
Surprisingly, the quadratic and the cubic Horndeski terms,
which attracted much attention in the past decade, are
completely suppressed. See also Refs. [48,49] for recent
constraints from the gravitational waves on the Horndeski
theory and beyond, and Refs. [50-55] for other modified
gravity theories in which the constraint in Eq. (1) is
satisfied.

An alternative approach to the scalar-tensor theory is to
construct gravity theories that do not respect the full
symmetry of GR. This idea can be traced back to the
effective field theory of inflation [56,57] and of dark energy
[26,58-64], as well as to the Horava gravity [65,66]. We
may refer to such theories as spatially covariant gravity
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since they are metric theories respecting the spatial sym-
metry. This idea was further explored in Refs. [67,68], in
which a general framework for the spatially covariant
gravity theories was proposed. This framework was further
generalized by including a dynamical lapse function
[69,70], and by including an additional nondynamical
scalar field [71]. The virtue of the spatially covariant
gravity theories is that they can be related to the scalar-
tensor theories that have no ghost excitations in the
Friedmann-Lemaitre-Robertson-Walker (FLRW) back-
ground,” which are much broader than the ghost-free
covariant scalar-tensor theories and have much more
applications in cosmology.

The purpose of this work is to investigate the propaga-
tion of gravitational waves in the general framework of
spatially covariant gravity theories. The general formu-
lation of the propagation of gravitational waves in modified
gravity theories has been studied in Refs. [73-76].
Recently, the constraints on Lorentz violating gravity from
the gravitational waves were investigated in Refs. [77-80]
(see also Ref. [81]). Comparing with the previous studies
(e.g.,) [82], we shall pay special attention to two aspects
which are in principle included in Refs. [67,68] but were
less studied.

(i) First, we include spatial derivatives of the extrinsic
curvature (e.g., V(K;;) explicitly, which were also
considered in Refs. [83—85] recently. Previous stud-
ies mainly focused on higher spatial derivatives of
the spatial curvature R;;, which contribute to the
“potential” term of the tensor perturbations and
result in the dispersion relation in the form
Cok? + cyk® + cgk® + - -, where k is the wave
number. Higher spatial derivatives of the extrinsic
curvature are also natural objects in our framework,
which contribute to the “kinetic” terms of the tensor
perturbations. Higher spatial derivatives of the ex-
trinsic curvature also arise in scalar-tensor theories
that are healthy in the FLRW background when
being written in the unitary gauge [86,87]. As we
shall see, spatial derivatives of the extrinsic curva-
ture will modify the dispersion relation of the
gravitational waves in a different manner.

(i) Second, we introduce the parity-violating terms.
Including the parity-violating terms has the potential
“risk,” since generally the two polarization modes of
the gravitational waves behave differently, which

*Such a property is sometimes dubbed as being “healthy in the
unitary gauge,” i.e., a gauge in which the scalar field is chosen to
be spatially uniform ¢ = ¢)(¢). We wish to emphasize that gauge
choice is only a matter of convenience, which cannot affect the
physical contents. In fact, the unitary gauge is applicable only
when the gradient of the scalar field is timelike so that there is a
FLRW background, in which the ghostlike degree(s) of freedom
is not excited or can be safely suppressed by imposing appro-
priate boundary conditions [72].

may conflict with the observation if we consider (1)
to hold for both polarization modes. The parity-
violating gravity theories and the chiral gravitational
waves were extensively studied for the Chern-
Simons (CS) gravity [88-93], with Lorentz breaking
[94-100], with gauge field(s) [101-106], with chiral
fermions [107], for non-Gaussianities [108,109] as
well as in the observational aspects [110-120]. On
the other hand, it is well-known that in CS gravity
the two polarization modes of GWs propagate in the
speed of light [110,112,115,121]. It is thus interest-
ing to examine if there are more general parity-
violating gravity theories that have this property, i.e.,
satisfy the requirement cp = 1 for both polariza-
tion modes.

We will examine the viable theories under the condition
cr =1 in the broader framework of spatially covariant
gravity [67,68]. Due to the above two aspects, the propa-
gation speeds of the two polarization modes with helicity
s = +2 become, schematically

( (ﬂ))z :WoiW1]~<+W2/~<2iW3/~63+W4]}4+...

‘ e T OB NE
! N SN SN ANy

where W, G, etc. are functions of time and k = k/a with a
being the scale factor. This type of propagation speed arises
in the studies of curvature perturbation of Hofava gravity
[66], and in the more general framework of spatially
covariant gravity [82]. To our knowledge, for the first time
in this paper we consider systematically the propagation
speed in the form (3) for the gravitational waves. In this
work, we will pay special attention to the case with cr = 1,
in light of the constraint (1). As we shall see, propagation
speed in the form (3) brings us more possibilities to tune the
parameters in order to have ¢t = 1. As a result, there is a
large class of spatially covariant gravity theories in which
both polarization modes of the GWs propagate with
cr = 1, even in the presence of parity-violating terms.
The paper is organized as following. In the next section,
we briefly review the framework of spatially covariant
gravity and show that the scalar-tensor theories, including
the Horndeski theory and those being healthy only when
the gradient of the scalar field is timelike and thus the
unitary gauge can be applied, take the form of spatially
covariant gravity in the unitary gauge with ¢ =¢. In
Sec. III, we set up our formalism by deriving the general
form of the quadratic action for the gravitational waves in
the cosmological background. In Sec. IV, we focus on the
propagation speed of the gravitational waves. We will
examine under which conditions the two circular polari-
zation modes of the gravitational waves could propagate in
the same speed, and in particular, in the speed of light. We
identify a large class of spatially covariant gravity theories,
in which both polarization modes propagate in the speed of
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light, even in the presence of parity-violating terms in the
original action. Section V concludes.

Notations: Throughout this work, *R,,,, and “R stand for
the 4-dimensional Riemann tensor and Ricci scalar, R;; and
R stand for the 3-dimensional Ricci tensor and scalar,
respectively.

II. GENERAL FRAMEWORK FOR SPATIALLY
COVARIANT GRAVITY THEORIES

A. Spatially covariant theories of gravity

Our starting point is the general action

K Rijvgijkvvi)ﬂ (4)

S::/dtd%Nx/Ec(z,N,hij, i
where N is the lapse function, h;; is the 3-dimensional

spatial metric, K;; is the extrinsic curvature defined by

1 .
K (h

ij:gv £ﬁhij)’ (5)

ij T TN

with hi ; = 0,h;; and £ the Lie derivative with respect to the
shift vector N’, R;; is the 3-dimensional spatial Ricci tensor,
V, is the covariant derivative compatible with /;;. The action
Eq. (4) generalizes the framework in Ref. [67] by including
the Levi-Civita tensor &;j, = V'he;;; with €123 = 1.

The theory described by Eq. (4) is proved to propagate
up to 3 dynamical degrees of freedom in the absence of €; .,
through a Hamiltonian analysis [68]. From the analysis it is
clear that the presence of €;;, does not change the constraint
structure of the theory, and thus we conclude that the action
in Eq. (4) contains at most 3 dynamical degrees of freedom.

In general, one may further extend the framework by
including N in the Lagrangian through

1.

F:N(N—;E,;,N). (6)
In this case, both the spatial metric h;; and the lapse
function N become dynamical, and there are 4 dynamical
degrees of freedom (2 tensor and 2 scalar). As being proved
in details [69,70], extra conditions must be imposed in
order to ensure that a single scalar degree of freedom is
present. It was shown that the resulting theory, at least up to
the quadratic order in K; j and F, can be reduced to the form
of Eq. (4) through disformal transformations [70]. For this
reason, in the current work, we concentrate on the spatially
covariant gravity without N, that is, Eq. (4).

B. Comparing with the existing theories

The advantage of the action Eq. (4) is that it not only
stands for a large class of gravity theories respecting spatial
symmetries, but also provides us a unifying framework for
scalar-tensor theories with higher derivatives but are free of
extra ghostlike degrees of freedom when the gradient of the

scalar field is timelike, so that there exists a FLRW
background and the so-called unitary gauge with ¢ =
¢ (1) can be applied. In the following, we will show some
examples by giving their expressions in the unitary gauge
explicitly, which take the form of Eq. (4).

1. Horndeski theory

The expression of Horndeski Lagrangian in the unitary
gauge with ¢p = t was first derived in Ref. [61], which can
be written as [82]

;ng) :CloK—za]G,‘jKU+b(Kin[j—K2)
+c(K>=3KK;KV + 2K KLK¥) +dy+d\ R, (7)

up to the boundary terms. The six coefficients ay, a;, b, c,
dy, d; are functions of ¢ and N, which are subject to the
relations

OF, 209G,
“W=3N TN o ®)
2a, :%, 9)
c:—é%§, (11)
do= Gyt 0, (12)
dy - G4_#8(Gsa; Fs)’ (13)

with G,, ..., G5 being functions of # and N, and F5 and Fs
being related to G; and G5 through

O (B __G 0 (F5\ _10Gs
ON\N)  N¥ ON\N/) NON’
respectively. It is clear that Eq. (7) takes the form of Eq. (4).

In fact, in the unitary gauge it is possible to relax the
relations Egs. (8)—(13) for the coefficients ag, a; etc.

(14)

2. Curvature-squared terms with a scalar field

There are 3 quadratic polynomial invariants built of the
4-dimensional Riemann tensor,

Kl = 4R;w/)o'4Rﬂylmv (15)
L s s 1

K2:§€/u/aﬂ 'R% po R”UpO.EEP, (16)
1 Mtdpap  Apuvpo

K3 = Zg,uvaﬂgpﬁ R At R = _[’GB’ (17)
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where K is the so-called Kretschmann scalar, K, corre-
sponds to the Chern-Pontryagin term P, and K3 corre-
sponds to the Gauss-Bonnet term Lgg. K| by itself is less
considered in the literature, since its equations of motion
are of higher order and thus it is associated with the
Ostrogradsky ghosts. It is well known that K, and K5 are
topological invariants in 4-dimension. In order to introduce
local dynamics in 4-dimension, one choice is to couple
them to a scalar field in the form f(¢)P and f(¢)Lgg. For
the Gauss-Bonnet term, it is well known that f(¢)Lgg
defined a well-behaved scalar-tensor theory with a single
scalar degree of freedom. In fact, it has been shown that
f(P)Lgg can be recast in the form of Horndeski
theory [34].

For the Chern-Simons (CS) gravity [88,110] (see also
Ref. [122] for a review), the Lagrangian is

Lcg = f(¢)P7

where &7 is the Levi-Civita tensor defined by

P:= 8;41//)(74 Rpaaﬁ4 Raﬂ;w , ( 1 8)

1
T = e, (19)

with €po3 = =€ = 1. In the Arnowitt-Deser-Misner

(ADM) coordinates, the Chern-Pontryagin term becomes
N
P = 16€Uk N(Kll_’{ﬁKll)iji_Rfijkl

1
— KiK'V, Ky — Ky K'"™V,K,,; — NviK,jvkle .
(20)

Please note no integration-by-parts is performed in deriving
Eq. (20). It is thus clear that due to the presence of K ijs
generally the CS gravity in Eq. (18) propagates
Ostrogradsky ghosts, which is also supported by the
Hamiltonian analysis [87]. Nevertheless, in the unitary
gauge with ¢ = (1), kij (together with £5K;;) can be
suppressed by integrations by parts. More precisely, in the
unitary gauge with ¢ = ¢, one can show that

L&E = f(n)P
~ 88ijkf <KilKlmVijm + KEK;"vakl
I l 1j !
- KK[ijkl - 2Riijkl - N?Kiijkl

2 2
—NKij,KkamN—NViKﬂVleN>, (21)
up to total derivatives, where f = df(¢)/0r. It is thus clear
that the CS gravity in the unitary gauge takes the form of

Eq. (4) and thus propagates a single scalar degree of
freedom in a FLRW background.

The CS gravity is not the only example of scalar-tensor
theories that suffer from the Ostrogradsky ghost(s) in their
covariant form, but are free of ghost(s) when the unitary
gauge can be applied, i.e., in a FLRW background. Another
interesting term was introduced in Ref. [86]

Lpssy = *Coupo " CoprcH"* WP R non", (22)

pHvpo

which is quadratic in the Weyl tensor C,,,,, with n, =
-NO,¢ and h,, = g,, + n,n,. In the case of a timelike

gradient of the scalar field, n, is normalized to be n,n* =
—1 and thus N = 1/4/—(d¢)>. Tt terms of curvature

tensors, we have
Lpssy = n¥n” (4R,Maﬂ ’14Rm/3,1 - 4RZ4RW)

+ nnn’n® (2'R,% PR puop — ‘R 'R0 )- (23)
In the unitary gauge with ¢ = ¢, we find

'Cl()ué%\){ = -V,KVK — V,K”‘V]Ki + 2ViKVjK{
=2V, K VK™ + 2V, K VEKY, (24)

where again no integration-by-parts is performed. It is thus
clear that Lpggy in Eq. (22) describes a healthy scalar-
tensor theory when the unitary gauge can be applied, which
takes the form of Eq. (4). At this point, we emphasize that
the theory is healthy only when the unitary gauge can be
applied implies that they should be understood as Lorentz
breaking theories.

3. Other parity-violating theories

The existence of Levi-Civita tensor in the CS gravity
(18) implies the parity violation. Some exotic parity-
violating scalar-tensor theories that are healthy when the
unitary gauge can be applied were found in Ref. [87]. In the
following we briefly summarize the healthy terms by
reformulating the results in a more convenient form (see
Appendix for more details).

The first class of terms (with a subscript “A”) are
quadratic in the Riemann tensor and involve only first
derivative of the scalar field. There are three independent
combinations

Lag =R ,pup <4R,wa,13ﬁ PP — %4Raﬂ w0, ¢>,
(25)

Las =R ,pup <4Rﬂ LO%P0,p — %4Raﬂ mazfﬁa%),
(26)

1
‘CA,?: = gﬂy/)64R/)r7(1/J <4Ry/1{lﬂau¢al¢ - 44R”ﬂ;w8/1¢82¢> B

(27)
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which are healthy when the scalar field is timelike and thus
the unitary gauge can be chosen. One can show that in the
unitary gauge with ¢ =1,

8 N 8 . .
Ly = _mgiijlle/valk + mfiijl'VkK1’7 (28)
and
2
Ll = ~ 2K K"V, K
— W&'[jk(KimKlm — KK”)kalj
4 A 4
+ ﬁ&'iijllkalj, (29)

which are of the form of Eq. (4). L4 3 is trivially healthy
since in the unitary gauge

4

0. (30)

We emphasize that no integration by parts is performed in
deriving Egs. (28)—(30). We may conclude that a general
linear combination of L, 1, L4 », and L, 3 with coefficients
being general functions of ¢ would be healthy when the
scalar field is timelike, although the inclusion of L, 3 is
actually unnecessary.

The second class of terms (with a subscript “B”) are
linear in both the Riemann tensor and the second derivative
of the scalar field. In this case there is only a single term

Ly = 8Wp64Rﬂ6aﬂvll vﬁ¢vu¢va¢’ (31)
which reduces to

c(ug )

B =3 UkK“V"K{, (32)

in the unitary gauge with ¢ = ¢, and is thus healthy.

The third class of terms (with a subscript “C”) are linear
in the Riemann tensor and quadratic in the second
derivative of the scalar field. There are three independent
combinations

£C,1 = 5”"/’6[4Rpaaﬂ(vﬂvy¢v,1¢vl¢ - 2Vﬂvz¢vu¢vl¢)
+ 44RMV/3VD¢V/,¢V/,¢]V“V#¢, (33)

and

‘CC.Z = e [4R/)n'a/}(vﬂvy¢vﬁ¢v/1¢ - v/}vl¢vy¢vﬁ¢)
+ 24ervﬂvy¢vp¢v/}¢]vavﬂ¢’ (34)

and

LC,S = ere (4Rp/laﬂv/1¢v6¢ + 24R6avp¢vﬂ¢)
x VOV, VPV, (35)

up to the quadratic order in the first derivative V,¢. In the
unitary gauge with ¢ =, we have

1

while L, and L3 are trivial since
u.g. u.g. l u.g
e =00 Loy =soet. @)

Again, no integration by parts is performed in deriving
Egs. (36) and (37). We may conclude that a general linear
combination of L¢ 1, L, and L 3 with coefficients being
general functions of ¢ is healthy when the scalar field is
timelike so that the unitary gauge is applicable, although
the inclusion of L, and L 3 is actually unnecessary when
working in the unitary gauge.

III. PROPAGATION OF THE
GRAVITATIONAL WAVES

In the above we have shown that higher derivative scalar-
tensor theories that are ghostfree when the scalar field is
timelike typically take the form of Eq. (4) when being
written in the unitary gauge. In other words, gravity
theories respecting the spatial covariance (4) provide us
a unifying framework to study modified gravity with a
single scalar degree of freedom, at least in the cosmological
background. In particular, terms with spatial derivatives of
the extrinsic curvature naturally arise in the above exam-
ples. In this section, we investigate the propagation of linear
gravitational waves within the framework of Eq. (4) in a
cosmological background.

Perturbations must respect the symmetries of the back-
ground they live on. The quadratic action for the tensor
perturbations y;; on the Friedmann-Lemaitre-Robertson-
Walker (FLRW) background must take the structure:

Sy = /dtd3 2 <7ugl/ klykl =+ 71 }-Uk - }/UWUYHYUL

(38)

where @ij ki R FUK and WYUK are tensorial operators
respecting the SO(3) symmetry of the isotropic and
homogeneous spatial background. Throughout this work,
spatial indices of perturbation quantities are raised and
lowered by 67 and §;;. Note S, in Eq. (38) contains only the
first order time derivative of y;; since the original action (4)
contains the extrinsic curvature K;; only, while higher
spatial derivatives are generally allowed. Here a hat simply
reminds us that they contain spatial derivatives in general.
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Without loss of generality, we assume @ij'kl, WKL and

Flik obey the following (anti)symmetries under the
permutations of indices:

glj ki gjl kI gij,lk _ @k],ij’ (39)
Wl] Lkl le ki Wt] Ak Wkl Jj (40)

and
jrjij.kl _ jr:-ji,kl _ jz:'ij,lk _ _ﬁkl,ij. (41)

The last equality is because the symmetric part of F/ if
exists, can always be reduced by integrations by parts.
Within the framework of Eq. (4), G” KL FUHK and WK
must be built of the background quantities. In our case,
these are
5, elik, with time-dependent functions, (42)
together with spatial derivatives. There are only two basic

operators that have nonvanishing contributions to the
quadratic action of tensor perturbations:

Sij,kl = (5ik5jl +5i15jk)’ (43)

| =

and AVKmY  with

Aij,kl,m = (5ik€jlm +5il€jkm +5jk€iln1 —|—5jl€ikm), (44)

Bl

Both S¥* and AUKmY, satisfy the relations in Eqgs. (39)
and (40). It is not possible, however, to build an operator of
Sk and AUKLm with spatial derivatives satisfying all the
relations (in particular, the last equality) in Eq. (41), which
implies that

fl]k[ =0 (45)

in our case.

We thus conclude that in our framework of spatially
covariant gravity described by Eq. (4), the quadratic action
for the gravitational waves in a FLRW background takes
the form

@
Sy = /dtd3 > 7,8 700 = v W), (46)
where GV and WK are built of SU+ Aliklmg —and
spatial derivatives. In this paper, we further assume that

Gk and WYUK can be expanded as series of spatial
derivatives, which take the general form

oy . 1 . —A)"
glJ'kl(ty a) = <g2nSU’k1 - _g2n+1Alj.kl’mam) ( 2n) ’
=0 a a
(47)
and
Wz]kl ‘. 8 Z<W2 Sl]kl——Wz lAl]klma )
n=0
( )Vl+1
2n+2 ’ (48)

with A = §'9,0;. Here G, and W, are general functions of
time, of which the explicit expression depend on the
concrete models. From the above, G, and W, with n =
0,2,4,6,... are parity-preserving terms, and G, and W,
with n =1,3,5,7, ... are parity-violating terms.

In the Fourier space, the quadratic action in Eq. (46)
becomes

d*k
S [ 05 1= 1. = 1B
) W1, k)y (1, ~K). (49)
with
G (1, —ik)
- o (=D K
Gon ()51 = Gy (41 = ) £ (50)
n=0

a

and

WK (1, —ik)

. B —i km k2n+2
= Z (Wzn(Z)SU'M — Wiy (1) ATKLm ( 3 ) 22
n=0
(51)

We decompose the tensor perturbation y;; into the
polarization modes:

> el )y (1. k), (52)

s==42

vij(t.k) =

where k = k/|k|, ef;)(ic) are the circular polarization
tensors with the helicity states s = +2, satisfying the
traceless and transverse conditions

el (k) = kiel) (k) = 0. (53)

We follow the convention in Ref. [23] and choose the phase
of egj) (k) such that
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(k) = eV (k) = e (k) (54)

J

where an asterisk denotes the complex conjugate. The two
polarization tensors are normalized to be

el (k)e =" (k) = 6. (55)
We make use of the relation [89,91,123]
S

ikley e (k) (k) = 25 (56)

after some manipulations, the quadratic action for the
polarization modes is

&k a?
$:= [ a5 Y0 e (000(m000 .~

27)3 2 =
W) (z, k)
— k28 (7, k) s) ,_k>, 57
g R k) (57)
where 7 is the conformal time defined by dr = adz, and
GO (2, k) = Zg () sk " (58)
e 2a
WOz, k) = S W, (@) (£5)") (59)
n=0 ! 2a

From Eq. (57), the two circular polarization modes of the
gravitational waves are decoupled, even if the parity-
violating terms are present. Eq. (57) [together with
Egs. (58) and (59)] is one of the main results in this paper.

The equations of motion for the polarization modes are
thus

02y) (z,k) + H(2 + y(S))aTy(S) (z.k)
+ ()Y k) =0, s=%2.  (60)

where H is the comoving Hubble parameter defined by
‘H = 0,Ina, and

~ 19.69(z,k)

(7 k) = -2 =
PR = ek

(61)

WO Wo(t) + Wi () 55+ Wa( 5+ W335+ W) %

2 W) (z, k)

(s T
(er (7. k) GO (z,k)

(62)

Equations (60)—(62) can be compared with the relevant
equations in Ref. [24] (see also Refs. [73,121]). The
parameter (*) is identified to be the Planck mass running
rate, which modifies the amplitude of the gravitational
waves and is related to the strength of the gravity. The effect
of a running Planck mass on the GWs was recently

discussed in Ref. [124]. The parameter c(TS ) is identified
to be the propagation speed (phase velocity) of the

gravitational waves. In the case of GR, v*) =0 and

c(TS J=1.Ina general modified theory of gravity, both

V) (7, k) and c(TS ) (z,k) depend on the time 7, the wave
number k and the helicity s.

Generally, v # v~2 and thus the left/right-hand polar-
izations of the GWs acquire different dampings, which is the
effect of “amplitude birefringence” [112,115,116,123,125].

On the other hand, c(T+2) # c(T_z) implies that the left/right-
hand polarizations of the GWs propagate with different
velocities, which is the effect of “velocity birefringence”
[94,96,97,121].

IV. PROPAGATION SPEED OF THE
GRAVITATIONAL WAVES

Massless fields must propagate in the same speed as that of
the light, as demanded by the Einstein equivalence principle
(EEP). However, EEP says nothing about the propagation
speed of gravitational waves, which may vary from theory to
theory. This has been known for theories respecting general
covariance, e.g., Horndeski theory [22], in which the
gravitational waves obey a linear dispersion relation. For
Lorentz breaking gravity theories, the gravitational waves
may even propagate with nonlinear dispersion relations.

We will pay special attention to the propagation speed of
gravitational waves in our framework. For concreteness, we
consider G and W) up to k*, which corresponds to the
case where the original action (4) is up to the sixth order in
derivatives. From Egs. (58)—(59), the propagation speeds of
the polarization modes are thus

The expression (63) is quite general and can be applied to
many modified gravity theories studied before, such as the
Horndeski theory etc., of which the contributions to g
and W) are summarized in Table L.

T3 G+ G110+ G()E+ G+ G, &

Jdt (63)

The requirement that there is no ghost and tachyon
instabilities indicates that

Wbl > 0. (64)
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TABLE 1. Contributions to G and W) in specific modified gravity theories.

Theories gl W) References

General relativity: R : 3 e

f(#.R) 5[k 3fr [126]
Gauss-Bonnet: £(¢p)Lgp 2EH 2 [127-129]

Horndeski theory %(b —3cH) %(d1 -a) [22,24] (also Sec. IIB 1)
Chern-Simons: f(¢)P —2sfk =2sf%  [110,112,115] (also Sec. II B 2)
Lorentz breaking Weyl gravity: Lpggy k_f 0 [86] (also eq. (22) in Sec. I B 2)

Parity-violating scalar-tensor theories
(ay, oy etc. are constants): @y La | + apLar + L+ 7L

—s[b+ (20, +ay—y)H) 0

[87] (also Sec. II B 3)

From Table I, it is easy to read the no instability conditions
in various modified gravity theories. In the case of f(¢, R)
theory, this implies that f x > 0. In the case of Gauss-

Bonnet theory, this implies 5 > 0 and & > 0 in an expand-
ing FLRW background. In the case of Horndeski theory,
this implies » — 3cH > 0 and d; — a; > 0. Note for Chern-
Simons theory, Lorentz breaking Weyl gravity [86], and
parity-violating scalar-tensor theories studied in [87], con-
tributions to G&) and W) start from the first or the second
order in k/a, which implies that they should be supple-
mented by terms that contribute to G*) and W) starting
from the zeroth order in k/a (e.g., the GR or the Horndeski
theory), when being considered as a viable cosmologi-
cal model.

Comparing with the propagation speed that arises in
usual case (e.g., in the Horndeski theory), the propagation
speed in the form of Eq. (63) has at least two distinctive
features.

(1) Generally, the two circular polarization modes
propagate in different speeds, i.e., c(T+2) # c(T_2>,
due to the presence of parity-violating terms. How-
ever, it is possible that the coefficients in the original
action are turned such that the two polarization
modes propagate in the same speed in the presence
of parity-violating terms. This has been known for
the case of CS gravity [110,112,115,121].

(i) There are k-dependence in the denominator of
(c<TS ))2. The k-dependence in G arises due to
spatial derivative terms of the extrinsic curvature
K;; in the original action. This is different from usual
Lorentz-breaking theories such as Horava gravity,
where the propagation speed is a polynomial in £,
which corresponds to G, = 0 for n > 0. A simpler
version of Eq. (63) arises in Ref. [121] (see also
Ref. [130]) in the study of a variation of the CS
gravity.

These introduce new features of the propagation of the
gravitational waves. Especially, this makes the two polari-
zation modes propagate in the same speed possible, even in
the presence of parity-violating terms in the original action.
In fact, as we shall see in Sec. IV B, the CS gravity is not

the only parity-violating gravity theory in which the two
polarization modes of the gravitational waves propagate in
the speed of light. There are more general parity-violating
gravity theories have this property.

Before proceeding, let us compare our result Eq. (63)
with the propagation speed of gravitational waves in parity-
violating gravity theories studied before. If in G¢*) and W)
only the parity-violating terms with the lowest order in
spatial derivatives are present, Eq. (63) reduces to

s Wo(t) + W (1) 5%
(C’(T))Z — O( ) l( )sig (65)
Go(1) + G (1) 34
In the case of CS gravity
Go =W, =1, g =W, (66)

which yields c%f) =1 in CS gravity. In a more general

setting with Gy =W, =1 but G, # W,, one get the
conclusion that if one polarization mode is enhanced/
superluminal, the other is suppressed/subluminal [121].
In general, this is not the case for the propagation speeds
given in Eq. (63).

A. On the case of c<T+2) =c(T_2)

As mentioned in the above, there is room for parameters
such that the two polarization modes propagate with the
same speed, despite of the presence of parity-violating
terms in the action. Mathematically, this is because the s-
dependence of cg) can be balanced between G*) and W),
In particular, this can be achieved only if G*) itself has
functional dependence on s and k, which is due to the
presence of spatial derivatives of the extrinsic curvature K;;
in our framework.

For consistency, we assume G, # 0 and W, # 0 (other-
wise the case of GR cannot be recovered). Requiring
that the two polarization modes propagate with the same
speed, i.e.,

() = (7)) (67)
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yields 4 constraints among the 8 coefficients G, ..., G4 and
Wy, ..., Wy

260V, =26 W, =0, (68)
=2G: Wy +2G, WV, =2G, W, +2G, W5 =0,  (69)
2G, W = 2G3W, +2G, W3 —2G W, =0,  (70)
2G, W5 —2G3W, = 0. (71)

There are 3 branches of solutions.

(i) Case 1: The first branch of solutions is

G =0, G;=0, W; =0, W;=0. (72)

This case is trivial, since there is no parity-violating
term at all. The two polarization modes propagate
with the same speed

2 Wot W E+w, K
(CT ) = k2 k4 . (73)
Go+ G, -z + Gy e
Note the spatially covariant gravity considered in
Refs. [67,82] (including the Horava gravity [65])

belongs to this case, where G, = G, = 0.
Case 2: In the case with G; # 0, we get another
branch of solutions

(i)

G, = 929, (74)
g
GiW,
=2 75
W= (75)
GWo  G:Wy | GoWVs
= - . 76
4%} Go G, + G (76)
W, = MW& (77)
Gi
The propagation speed is given by
Po p W, &
(W) = G5t Wse (78)

g1+g35—2

In this case, since G;, W, # 0, the theory contains
parity-violating terms. Nevertheless, the parity-
violating effects do not show up in the propagation
speed of the polarization modes.

(iii) Case 3: We also have a special case with

AL G,
Wl - go ’ W2 - go )
g3WO g4W0
=—, =—. 79
Ws Go W, Go (79)

In this case the propagation speed is simply

_ W
Go
in which the k-dependence of c(TS ) completely drops
out. We emphasize that “Case 2” does not include
“Case 3” as a special case.
In “case 17, there is no parity-violating terms by con-
struction, and thus both polarization modes also have the
same amplitude when being quantized, although the
dispersion relation is highly nonlinear. This can be seen
also from Eq. (61), which implies 22) = 1(~2) in “Case 1”.
On the other hand, in “Case 2” and “Case 3”, although the
two polarization modes propagate in the same speed, they
have different amplitudes since generally v(?) # (=2 due
to the presence of parity-violating terms G; and Gj.

(80)

B. Models with c(T+2) =c(T_2) =1

The detection of GW170817 [20] and GRB170817A
[21] indicates that the propagation speed of the gravita-
tional waves coincides with the speed of light with tiny
deviations (1). Limit of the same order has already reported
in the gravitational Cherenkov effect [131]. Although the
physics of GW170817 may be different from that in the
primordial universe, it has already been used to restrict
the structure of scalar-tensor theories [41-44,46]. Within
our framework, this corresponds to a special case of Case 3
in the above, which implies

W, =G,. n=0,1,2,3,4. (81)

In the following, we investigate a concrete model of
which the Lagrangian is a polynomial built of the extrinsic
curvature K;; and intrinsic curvature R;; as well as their
spatial derivatives. We classify each monomial according to
the orders of time and spatial derivatives of h;;. Note K;;
contains the first order time derivative of &;;, R;; contains
up to the second order in spatial derivatives of h;;. In
Table II, we list all the possible terms up to the fourth order
in derivatives of 4;;. In Table II, d; and d are the numbers
of time derivative and spatial derivative, respectively. We
emphasize that not all the terms in the above table (e.g., K2,
K3, VIVIK,; etc.) contribute to the quadratic action of the
gravitational waves. There are 35 individual terms in the
above table, while only 21 terms contribute to the propa-
gation of linear gravitational waves. Second, we do not list
terms involving spatial derivatives of the lapse function N,
since which do not contribute to the quadratic action of the
gravitational waves in a cosmological background.

Our starting point is the action

S:/dtd%N\/E(L(@+L<1>+L<2)+L<3>+L<4>), (82)
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TABLE II.  All the possible monomials built of K;;, R;; and
their spatial derivatives, up to the fourth order in derivatives.

d(d,, dy) Operators

0 (0,0) 1
1 (1,00 K
©,1) ---
2 20) K;;KV, K?
(1’1)
0,2) R
3 3.0) K;;K*K, K; KK, K3
2.1) & KiV/KH
(1,2) VVfK,,, V2K, RUK;;, RK
0.3) -
4 (4,0) Ki_inkK;'(K, (K;;K7)?, K;KVK? K*
G.D) &, V, KKK, e VIKLKEK™, €, VK KMK
(2,2) ViK;VEK, VK VK'Y, VKV K5, VKV K,
V.KV'K, R;K.K*, RK;KY, R;KK, RK>
(1.3) ¢, R"VIKY, &, VRIKY

04) VIVIR,;, V?R, R;RY, R

where L@ stands for the linear combinations of terms in
the above table satisfying d, + d, = d, such as

LO =00, (83)
LW ="k, (84)

and
L® = POk KT+ FOR + PR, (85)

etc. All the coefficients cil 0 C(lz.o)

and N, e.g.,

etc. are functions of ¢

A (A )] (86)

Note generally the coefficients may also depend on spatial
derivatives of lapse function N, and there are terms involving
spatial derivatives of N which we do not include in Eq. (82).
Terms involving spatial derivatives of N do not contribute to
the linear gravitational waves in the FLRW background,
although they may be considered when analyzing the
background evolution and scalar perturbations.

We will study the linear gravitational waves of the action
Eq. (82) around the FLRW background. To this end, we
consider the perturbed metric

ds? = —dr* + a’g;;dx'dx/, (87)

with a = a(r) being the scale-factor. At the background
level g;; =6;;. It is proved convenient to define the
perturbation of g;; in the “exponential” manner:

gij = 5ik<ey)kj

1

:5ij+7ij+5}’ik7kj+"" (88)

where 7' is the tensor perturbation satisfying 9,7’ = 0 and
v p ying 97

yi =0, and we define

Yij = 5ik}’kj- (89)

The advantage of defining g;; in the exponential manner is
that detg;; =1 (in the presence of tensor modes only),
which is unperturbed. With Egs. (87) and (88), we consider
only the tensor modes, which is justified by the fact that the
scalar, vector, and tensor perturbations are decoupled at the
linear order in the FLRW background.

After some manipulations, the contribution of the action
Eq. (82) to the quadratic action for the tensor modes takes
the form of Eq. (46), i.e.,

o 1
S = /dld}x <g0( )iy + Gi(t)e ”lez 07}
A A
=G (71— 7" +Wo(t)rij—5rY
a a
3,'75(

.. 1A AZ
+ W1(f)€”k71i5? - W2(t)7ijF7U)a (90)

where G, and W, are given by

1
Go(1) = 5 (e +3(ci™" + ") H
+33c 428 3609 B2, (91)
1
Gi(0) =5 [ = (e =2 =3 H). (92)
1 (2
Galr) = 57, (93)
1
Wo(t) = 26 4 9,¢{?
(3c§1’2’ +6c"? +28, 22’2) +3a, Vel
+ (4cP 4 6c8 +9¢8Y + 18 H?
+ (287 +3cé VA, (94)
1
Wi(0) = 70i(e;"” + &5, (95)
1
Wh(1) = —5c<3°~4>. (96)

GR only contains terms proportional to 7;;7"/ and y;;Ay".
Other terms in Eq. (90) arise due to the modification of
gravity. The term proportional to 7;;Ay"/ was considered in
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Refs. [86,132]. The two parity-violating terms in Eq. (90),
ie., €*y,0;7, and €%y, A0y}, are considered in
Ref. [121] (see also Ref. [133]). Note for the term
€077, Ref. [121] considered the contribution from
cgz D (e, ;i KiV/KX in the action) only.

From Eq. (90) and the various coefficients G, and W,
given in Egs. (91)-(96), there are 21 terms in the original

action (82) (with 21 free coefficients c<12 0 c<13'0> etc.) that
contribute to the propagation of linear gravitational waves.

According to Eq. (81), in order to make both polarization

modes propagate in the speed of light, i.e. C~(r+2) = C<T_2) =1,

we must require that Gy = W,, G; = Wy, and G, =
Moreover, these should be satisfied with any value of H(¢), or
in other words, they should be stable against the variation of
H. With these requirements, we get 7 constraints for the 21
coefficients:

I R IS
D = (B9 4 B0 _%cgl 2 (106)
cg3,1) _ % (653 1 2c(23 Dy, (107)

céz‘z) = —%céz'z), (108)

1
ng.z) =5 (9054,0) n 6C§4'0) n 9Cg4,o) n Céz.z) B 3652,2)>’
(109)
cg0'4) = —C§2'2>. (110)

The other 14 coefficients are left undetermined.

200 1a,cgl’z) =0, (97) After plugging Eqgs. (104)-(110) into Eq. (82), and
2 rearranging terms according to the independent coeffi-
6 C§3,0) +6 c§3’0> _3 cgl’2> _6 cil’z) ~20, 62272) ~30, Céﬂ) —0 cients, the action that satisfies ¢y = 1 is given by
98 - -
O8) 5 - / Qi x NVA(LO + L0 4 L&) 1 1O 4 L@,
40 40 40 22 22
18¢449 4 12689 4 18640 — 4c*?) — 66122 a1
—9c7 — 18 =0, (99)
where L(®) and L(!) are the same in Eqgs. (83)—(84), which
2c((,)2’2) + 3c§2'2> =0, (100) do not contribute to the gravitational waves,
1 72 _ (20 ij (2.0) 2
C<21>_§3t( (13) 4 13y — o, (101) L® =" (K;K7+R)+ ¢y "K?,  (112)
3.1 3.1 3.1 and
R S P S ) (102)
L0 = POk, -kaK;; +RK) + (K ;KT + R)K
P P =0 (103) 12
! 3 ' +§VK 4 VIR SPIVRK
From Egs. (97)-(103), we may solve 7 coefficients to be n cg1’2> Gil K, - . 8,c31’ R, (113)
02 o 1, a2
- = 104
€ €1 2@03 ’ (104) and
|
- I . 2 i,
L@ = (kKK + RK)K + 5 <(Kij1('f)2 + gRl(z) + S (KK + R)K? + O K
2.
+ ey (v KLKI"KR 42 Ly K’K"’K) + Ve (v K KEK™ — §V‘K§K’<’K>
+ c1 (ka VKK — R,;RV) + c2 VK VKU + c v, KV K+ c4 AvA KV K
. o2 - 1
+ cPIVKVIK + PR <K2Kjk —3 KK+ §h’fK2) + e YR (K K — §K2>
1 .
+ ey RIVIKE 4 ey VIRIKH + ﬁa,(cﬁl Vg Mg KiVIRH
+ "IVIVIR, 4 (YVER 4 ¢ PYR2 (114)

064057-11



XIAN GAO and XUN-YANG HONG

PHYS. REV. D 101, 064057 (2020)

We conclude that the action Eq. (111) represents a large
class of gravity theories respecting the spatial symmetry, in
which both polarization modes of the gravitational waves
propagate in the speed of light in the cosmological back-
ground. Please note that terms involving the spatial
derivatives of N can be added into Eq. (111), which do
not affect the propagation of the linear GWs.

1. On the Horndeski theory with ¢t =1

As a simple application of our result, let us consider the
Horndeski theory, of which the Lagrangian in the unitary
gauge is given in Eq. (7). The conditions Eqs. (97)-(103)
simply reduce to

1
b—d1+ﬁ8,a1 :O, (115)
and

c=0. (116)

Equation (115) implies

1 0Gs 1 0G;s

b — — =N—+—-5—=0. 117
d] +N8,a1 N ON N2 or 0 ( )

On the other hand, from Eq. (11), Eq. (116) implies
G5 = Gs(1). Using Eq. (117), we may rewrite b to be

1 0G;s
b=Gy————, 118
*TON? O (118)
and thus
ob _8G4 1 0Gs _

= ———=0, 119

oN 9N TN or (119)
which implies b = b(t). Finally, after some manipulations,
we arrive at the conclusion that under the requirement

cr = 1, the Horndeski action in the unitary gauge reduces
to be

Sg‘fj:l = / dtd’x NVR[b(1)(K ;K7 — K* + R)

+ aoK + do], (120)

where a; and d, can be general functions of ¢ and N. The
above analysis is consistent with the previous results
(e.g.,) [41].

2. On parity-violating gravity

In Eq. (114), we recognize four parity-violating terms
that preserve ¢y = 1 for both polarization modes”:

We keep O, in Eq. (124) for completeness, although which
can be reduced to O; in Eq. (123) (with extra terms involving
spatial derivatives of N) by integrations by part.

o 1.
O = ci€ijk (va;Kmek" +§V’K{K"1K>, (121)
i gk 2g J gkl
O, = cr8j1 V’KmKnK’"”—gvK,K K), (122
o 1 .
O3 = € (C3RZIVJK]1( + ﬁatc?)K;ijkl)’ (123)

o 1 -
Oy =¢&jp (c4VlR;K’d + ﬁa,cm;wl(kl), (124)

where cy, ..., ¢4 are general functions of # and N, although
generally they may also depend on spatial derivatives of
lapse function N. At this point, it is interesting to note that
the CS gravity (21) corresponds to the special choice of
parameters with

¢ = —8f, (125)
¢, = +8f, (126)
c3 = —16f, (127)
¢ =0. (128)

This explains the fact that the speed of gravitational waves
in CS gravity is not modified. One finding in this work is
that there exist more general parity-violating terms that
have this property.

C. Other bounds

Up to now our discussion mainly focuses on the
coefficient c%v) defined in (62), which corresponds to the
phase velocity of the GWs. We have seen that requiring
c%y) =1 (thus there is no velocity birefringence) for both
polarization modes of the GWs has strictly constrained our
theory. In the following, we examine if further constraints
would arise by investigating the group velocity as well as
the amplitude birefringence effect of the GWs in our theory.

1. On the group velocities

Note y*)(z,k) can be further expanded in terms of the
Fourier modes as

d s : s i
7O (2, k) = / 2 (A (@)e ™ + By (w)eti o). (129)

2z
which can be plugging in (60) to yield the equation for @
s =+£2.

—? £i(24+ VY Hw+ k() =0, (130)

From (130) we may solve
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s H \? 1 2 1
o) = c(T)k 1-|(— T+ ) +iH | 1+ ).
Wk 2 2
T

(131)

Here the imaginary part of »(*) indicates that the amplitude
of GWs is also affected due to the nonvanishing

H(1+ %z/(‘*)). The “group velocity” is identified to be

omncl) 11 1 \2 | e
dOal) o T (F0) 0 +805e

=c
dk T 2

If the condition

(132)

=1 is satisfied,

d(Re™)
- @Ry

1 (H\?2 1 1 o)
~ — | — — (‘) _ (‘)_
Hz(k) (sz )<1+2y amk)

)

+---, (133)
where ““- - - indicates terms of higher orders in H/k. Thus
for GWs with short wavelengths H/k > 1,

d(Re'
d@e™™) S, (134)
dk =1

and thus requiring the group velocity of GWs with short
wavelengths to be the speed of light does not yield further
constraint for our theory.

2. On the absence of amplitude birefringence

Generally, even C<T+2) =c{™ and thus there is no

“velocity birefringence”, v*> and v=> can be different,
which is the effect of the so-called “amplitude birefrin-
gence” [112,115,116,123,125]. Thus requiring the absence
of amplitude birefringence, i.e.,

12) = p(=2) (135)

o
would further constrain our theory.
From (61), the absence of amplitude birefringence
implies

0.6+2) 9. ¢g(-2)
9 - G =0. (136)
Gg+2) g2
Similar to (63), we consider the case with up to k*:
. sk k> s k3 Kt
g(‘):go+g155+g2;+g35§+g4;. (137)

With this ansatz, (136) yields

k(2GoG| — 2G1Gpy) + 2k (=G3Gpy + G2 G, — G1 G + GoGy)
+ 2k5(G4G) — G365 + G2, — G1GL)

+ k7(2G4G5 — 2G;G,) = 0, (138)
we thus have 4 differential equations for G, ..., G,:
GGy — GGy =0, (139)
G3Gy + G165 — G,G) — GoGh = 0, (140)
G491 + 6,05 — G365, - GG, =0, (141)
949/3 - g3gﬁx =0. (142)
There is a unique set of solutions
G, = 1,9, A, = const. (143)
As a result, Q(S)(T, k) in (137) must take the form
G (7, k) = Gy(7) <1 + ¢ %g + 02];—24— c3 %I;—Z + c4z—z>.
(144)

Let us consider again the model (82), of which the
quadratic action for the GWs is given in (90). For G; and
G,, this yields

1 @1 3.1 3.1 3.1
Sl = (e =26 = 3¢5 H]

(2,0)

1 3.0 3.0
PR 60) , B9

+3(c; + ¢y

+ 2c§4'0)

VH

(4.0)

+3(3¢! +3c¢M M|, (145)

and

1
052‘2) =hx

2
+ 3(30(14’0)

(2,0) (3.0) (3.0)

ey +3(e; + ¢y )H

+ 3c§4’0)

1
2
(4.0)

+ 28 VH?,  (146)

respectively. Rearrange terms according to the powers of
H, we get

0= 052,1) - /110(12’0)
=l =265 =36 430, (0 + 5
(4.0 (4,0) (147)

=32,3¢4M 4280 4 34N |2,

and
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0= ng,z) - Azcgz,o)
— 34 (0 + FNH
=353 428 13 E2. (148)

Similar to the analysis in Sec. IV B, the above equalities
should hold in any expanding background (i.e, against the
variation of H), we thus get 5 independent algebraic
equations for 11 coefficients:

652,1) — ﬂlcgz,o) =0, (149)
B 2 -3 1 32,0 4 B9 0, (150

PPV =0, (152)

(0, B0 _g

o ey (153)

Together with the conditions for ct = 1 (97)—(103), we get
a unique set of solutions

1
Lol i) = 1,2, (154)
1
= Lot ss)
Cé&o) _ g? 0 (156)
(12) 1 (2
€4 =734 (157)
2
Céz,z) _ —§C(6M>’ (158)
@0) _ (40 _2 40 1
cy = 1 §C2 5 ( 59)
22 1 22 2,2
cé >_§( é )_3C§ )), (160)
ng’l) = ﬂ,]cgzq()), (161)
3y 1, @3 3.1
BV = g(c§ ) (162)
2D = 3,29, (163)
c§°’4> _ C§2,2>. (164)

Equations (154)—(164) can be compared with the solutions
(104)—(110), which are special cases of the former. We thus

conclude that there is no amplitude birefringence and
both polarization modes propagate in the speed of light
in our theory as long as the coefficients satisfy the relations
(154)-(164).

D. Effective mass in the UV

Due to the presence of spatial derivatives of K;; in the
theory, the appearance of the k-dependence in G*) introduces
new features for the propagation of the gravitational waves.
Here we briefly mention one interesting feature by revealing
that the gravitational waves may become effectively massive
in the short-wavelength limit (or ultraviolet limit).

First let us consider a simpler case where both G») and
W) are up to k2, which imply that G, # 0 and W, # 0. In
this case Eq. (63) becomes

(s))Z _ Wo(t) + Wi (1) 5%+ Wz(t)ij—i

Go(t) + G, (I)% + Gy (1) 2*

In the short-wavelength limit (i.e., k/a — co0) we have

(165)

g W G =G s
(cr’)” = A + & 7%
n GW, = G (G + GoW,) + GWy a®
3 k2
+O(k™). (166)

If we further require

GWi —GiW, =0, (167)
we get
(Y)Y > Ak +my +O(kY),  (168)
with
2, = Vg"—; (169)
miy = azw. (170)
2

Here cyy is the propagation speed in the UV limit, and myy
is the effective mass for the gravitational waves in the
UV limit.

For the full-version of Eq. (63), in the limit of k/a — o
we have

(12 _, % (GaW5 — g3W4)£§
(1) 6. @ (171)
+Q%W4—g4(g3w3+gzw4)+942¢W2a2
g3 K>
+0O(k™3). (172)
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If we further require

GWs —GsW, =0, (173)
we get
(Y)Y > Ay +mdy + Ok, (174)
with
v =g (175)
2 29V =G W (176)

m =
uv 2
Ya

Again, in the UV limit the gravitational waves acquire an
effective mass term myy. Of course, the above results are
derived in the UV limit, which implies that the effective
mass must be of the subleading order. Nevertheless, it is
interesting to explore this effect, which is a distinctive
feature of the spatial derivatives of the extrinsic curvature.

V. CONCLUSION

In this work we investigated the propagation of the
gravitational waves in a cosmological background. Based
on the framework of spatially covariant gravity proposed in
Refs. [67,68], we derived the general quadratic action for
the gravitational waves (46). Two types of terms were
systematically introduced: the spatial derivatives of the
extrinsic curvature and the parity-violating terms. From
Eq. (46) and the resulting equation of motion Eq. (60),
spatial derivatives of the extrinsic curvature will modify the
dispersion relation in a different manner and make the
Planck mass running rate k-dependent, which thus modify
the amplitude of the gravitational waves in a k-dependent
manner. This, on the other hand, raises the possibility of
keeping the propagation speed ct unchanged while modi-
fying the Planck mass running rate only.

We paid special attention to the propagation speed of the
gravitational waves. The detection of GW170817 and its
electromagnetic counterpart [20,21] implies the coinci-
dence of the propagation speeds of the GWs and of the
light. In this work, we tried to explore the possibility of
having ¢t = 1 within the framework of spatially covariant
gravity. We found that it is possible to make the two circular
polarization modes propagate in the same speed, even in the
presence of parity-violating terms. In particular, we found a
large class of spatially covariant gravity theories (111) with
parity-violating terms given in Egs. (121)—(124), in which
both polarization modes of the GWs propagate in the speed
of light. Previously, this property was known for the CS
gravity. In this work we shown that there are more general
parity-violating gravity theories having this property, or in
other words, surviving under the restriction ¢y = 1. Our

results indicate that, although the parameter space of the
covariant scalar-tensor theories is heavily restricted, the
spatially covariant gravity may provide us more possibil-
ities in light of the propagation of the gravitational waves.
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APPENDIX: PARITY-VIOLATING THEORIES

Some interesting parity-violating gravity theories that are
free of extra ghostlike degree(s) of freedom when the scalar
field is timelike (so that the so-called unitary gauge is
applicable) were found in Ref. [87]. Here we reformulate
their results.

One class of terms considered in Ref. [87] are quadratic
in the Riemann tensor and involve only the first derivative
of the scalar field. There are 4 independent terms:

O = &R ,05"R,,* NP V9, (A1)
O, = PR ,,05*RP NPV ., (A2)
O3 = &R 105 RPNV , V. (A3)
Oy = PR 05 RN,V . (A4)
If we consider the linear combination
4
S = / d4x\/:§<ZA,,O,,>, (A5)
n=1

where A;,...,A; are general functions of ¢ and X =
—3(0¢)?, the coefficients must satisfy

4A1 + Az + 2A3 + 8A4 - 0, (A6)

in order to make the theory to be healthy when the unitary
gauge is applicable [87]. This can be understood more
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transparently by observing that in the unitary gauge, there
are 3 independent combinations of Oy, ..., O, in which the
“dangerous” term £,K;; exactly drops out:

1 1 1

O, —5047 O, —§O4’ O3 _104’ (A7)
which are nothing but L4 1, £4,, L£43 in Egs. (25), (26),
and (27), respectively. The corresponding expressions in
the unitary gauge are given in Egs. (28), (29), and (30),
respectively.

Another class of terms considered in Ref. [87] are linear
in the Riemann tensor and quadratic in the second
derivative of the scalar field. There are 5 independent terms

Oy = 7R NV PV, GV, V', (A8)
O, = &R VIV GV, VPGV . (A9)
O3 = &R, VIV GV, pVGV ., (A10)
Oy = &R VNV VIV, GV, $Vih, (Al
Os = &R, NN, $pVPV,$V $V s6b, (A12)

up to the quadratic order in the first derivative V,¢. If we
consider the combination

5
s = /d“x, /_—g<ZAn(’)n>, (A13)
n=1
where A;,...,As are general functions of ¢ and
= —1(0¢)?, the coefficients must satisfy
4A| +2A, +2A5 — A5 =0, (A14)
2A1 +A2 +A4 - O, (AIS)

in order to make the theory to be healthy when the unitary
gauge is applicable, where the “dangerous” terms £,K;; and
£,N exactly get canceled. There are thus 3 combinations

0,-20,+40s, O,—04+205, O;+205, (Al6)
which are exactly L¢j, Lco, Lc3 in Egs. (33), (34), and
(35), respectively. The corresponding expressions in the
unitary gauge are given in Eqgs. (36) and (37), respectively.
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