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The existence of light, fundamental bosonic fields is an attractive possibility that can be tested via black
hole observations. We study the effect of a tidal field—caused by a companion star or black hole—on the
evolution of superradiant scalar-field states around spinning black holes. For small tidal fields, the
superradiant “cloud” puffs up by transitioning to excited states and acquires a new spatial distribution
through transitions to higher multipoles, establishing new equilibrium configurations. For large tidal fields,
the scalar condensates are disrupted; we determine numerically the critical tidal moments for this to happen
and find good agreement with Newtonian estimates. We show that the impact of tides can be relevant for
known black hole systems such as the one at the center of our Galaxy or the Cygnus X-1 system. The
companion of Cygnus X-1, for example, will disrupt possible scalar structures around the black hole for
gravitational couplings as large as Mμ ∼ 2 × 10−3.
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I. INTRODUCTION

The matter content of our Universe is largely unknown
and has been the focus of an incredible effort in the last
decades [1]. Most experimental searches are based on
putative couplings between dark matter (DM) and standard
model fields. The null results of such experiments provide
interesting constraints on the strength of such couplings but
are otherwise unable to shed light on new fundamental
constituents of the Universe.
The universal nature of gravity suggests that new fields

or particles behave in the same way as their standard model
cousins when placed in gravitational fields. It is no surprise
therefore that the only but solid evidence for DM inter-
action is so far of a purely gravitational nature. The advent
of gravitational-wave (GW) astronomy provides a compel-
ling case to understand further the behavior of DM in
strong gravity situations [2–4]. Of particular relevance in
this context are black hole (BH) spacetimes. In vacuum
general relativity, these are the simplest macroscopic object
one can conceive of and ideal to be used as testing grounds
for the presence of new fields or extensions of general
relativity [1–6].
The DM density in our Universe is measured to be

small enough that its effects on the dynamics of compact
objects—BHs in particular—are perturbatively small. The
imprint that DM leaves on the GW is correspondingly
small, but potentially measurable by future GW detectors
[7–10]. However, should ultralight bosonic degrees of
freedom exist in nature [11,12], superradiance will give
rise to the development of massive structures (“clouds”)

around spinning astrophysical BHs. This is a general
mechanism that requires only minimal ingredients. A
simple minimally coupled massive field with no initial
abundance suffices; a superradiant instability sets in,
extracting rotational energy away from the BH and depos-
iting it in any small boson fluctuation outside the BH. For
the mechanism to be effective, the BH radius 2GM=c2

needs to be of the order of the boson Compton wavelength
G=ðc2μÞ for a particle of mass mB [here, μ ¼ GmB=ðcℏÞ is
the mass parameter that will appear in all our equations]. In
other words, the mechanism is effective when Mμ ∼ 1.
However, because BHs in our Universe appear in a wide
range of masses—that vary over 8 or more orders of
magnitude—superradiance allows us to effectively study or
rule out boson masses varying by correspondingly large
orders of magnitude [6,13,14].
The existence of superradiant clouds would lead to

observable signatures, such as peculiar holes in the
mass-spin plane of BHs [13,14], to monochromatic
emission of GWs [14,15] and to a significant stochastic
background of GWs [16,17]. The presence of such
periodic, nonaxisymmetric structures can leave imprints
in planetary and stellar orbits, through Lindblad and
corotation resonances [18,19], or—of interest for GW
astronomy—through floating or sinking orbits [20–23].
There has been significant progress in our understanding
of the development of the superradiant instabilities [6].
There are two main factors that could alter, in a
significant way, the formation of heavy boson clouds
around BHs. In the presence of couplings between the
ultralight boson and standard model fields, for example,

PHYSICAL REVIEW D 101, 064054 (2020)

2470-0010=2020=101(6)=064054(12) 064054-1 © 2020 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.064054&domain=pdf&date_stamp=2020-03-25
https://doi.org/10.1103/PhysRevD.101.064054
https://doi.org/10.1103/PhysRevD.101.064054
https://doi.org/10.1103/PhysRevD.101.064054
https://doi.org/10.1103/PhysRevD.101.064054


the cloud growth can be suppressed, while stimulating
bursts of light [24,25].
Here, we focus instead on the effects that a companion

star or BH have on the structure of the boson cloud. Tidal
effects were studied recently, at an analytical level, using
Newtonian dynamics for nonrelativistic fields [21–23,
26–28]. The motion of the binary can, at specific orbital
frequencies, induce resonant transitions between growing
and decaying modes of the boson, that enhance the cloud’s
depletion and/or transfer energy and angular momentum to
the companion through tidal acceleration [29]. This behav-
ior would leave distinctive imprints in the GW signal
emitted by the binary, both as a monochromatic signal from
the cloud and as modifications in the GW waveform of the
binary, due to finite-size effects (e.g., variations on the spin-
induced quadrupole or the tidal Love numbers) [27]. This
situation could be of interest for eccentric BH binaries
targeted by the space interferometer LISA [28].

II. SETUP

Our starting point is that of a Kerr BH spacetime
perturbed by a distant companion. The BH is surrounded
by a superradiant cloud, which is assumed to cause
negligible backreaction in the spacetime. The geometry
will always be kept fixed in this work, in the sense that the
scalar field never backreacts back. This working hypothesis
holds true for most of the situations of interest [14] and is
specially appropriate here; as we explain below, the time-
scales that we can probe are much shorter than any
superradiant-growth timescales. A companion of mass
Mc is now present, at a distance R, and located at
θ ¼ θc, ϕ ¼ ϕc in the BH sky. The companion induces
a change δds2tidal in the geometry. Thus, our spacetime
geometry is described by

ds2 ¼ ds2Kerr þ δds2tidal: ð1Þ

For the tidal perturbation induced by the companion, we
consider the nonspinning approximation, and we find in
Regge-Wheeler gauge that the dominant quadrupole tidal
contribution is [30–32]

δds2 ¼
X
m

r2E2mY2mðθ;ϕÞðf2dt2þdr2þðr2−2M2ÞdΩ2Þ

E2m ¼ 8πϵ

5M2
Y�
2mðθc;ϕcÞ; ð2Þ

where f ¼ 1 − 2M=r and we neglect subdominant mag-
netic-type contributions and multipoles higher than the
quadrupole. For more details, see Appendix A. We intro-
duce a dimensionless tidal parameter,

ϵ ¼ McM2

R3
; ð3Þ

which measures the strength of the tidal moment.
Coordinates are Boyer-Lindquist at large distance. This
approximation is not accurate close to the BH horizon,
where spin effects change the tidal description. However,
for all the parameters considered here, the cloud is localized
sufficiently far away enough that these effects ought to be
very small. We will focus exclusively on static tides (or in
other words, we consider large separations R). We stress
that we are using coordinates adapted to the BH; the
companion position should in general be time dependent,
but we focus exclusively on slowly moving companions.
We consider a massive, minimally coupled scalar fieldΦ

evolving on the above fixed geometry. The scalar is
described by the Klein-Gordon equation

ð∇μ∇μ − μ2ÞΦ ¼ 0: ð4Þ

Note that, for zero rotation, distances r ≫ M, and non-
relativistic fields, the Klein-Gordon equation can be
expressed as in Eq. (3.4) of Ref. [27], amenable to a
perturbation treatment. Some of the implications are sum-
marized in the Appendix. However, we consider the Klein-
Gordon in full generality, by evolving it numerically. To
express Eq. (4) as a Cauchy problem, we use the standard
3þ 1 decomposition of the metric,

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð5Þ

whereα is the lapse function, βi is a shift vector, and γij is the
3-metric on spacial hypersurface. We also introduce the
scalar momentum Π,

Π ¼ −nμ∇μΦ: ð6Þ

The evolution equation for the axion field is written as

∂tΦ ¼ −αΠþ LβΦ;

∂tΠ ¼ αð−D2Φþ μ2Φþ KΠÞ −DiαDiΦþ LβΠ:

We use Cartesian Kerr-Schild coordinates ðt; x; y; zÞ [33].
The quantities extracted from our numerical simulation

are multipolar components of the scalar Φ,

Φl;mðt; rÞ ¼
Z

dΩΦðt; r; θ;ϕÞYl;mðθ;ϕÞ: ð7Þ

We use as initial data the following profile, adequate to
describing quasistationary states around a BH [14,34]:

Φðt; r; θ;ϕÞ ¼ A0rMμ2e−rMμ2=2 cosðϕ − ωRtÞ sin θ: ð8Þ

We will also show below that these are indeed a good
description of stationary states for small couplingsMμ≲0.2.
Here, A0 is an arbitrary amplitude related to the mass in the
axion cloud, and ωR ∼ μ is the bound-state frequency.
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The spacetime of a real astrophysical binary is asymp-
totically flat. However, because we are using only an
approximation to the full problem, where the companion
is supposed to be a large distance away, the geometry (2) is
no longer asymptotically flat. To avoid unphysical behavior
at large distances, we force the geometry to be asymptoti-
cally flat, by replacing the far region with

ds2 ¼ ds2Kerr þ ð1 −WÞδds2tidal; ð9Þ

where W ¼ Wðr̃Þ is a following piecewise function:

Wðr̃Þ ¼

8>><
>>:

1 ðr̃ > 1Þ
W5 ð0 < r̃ < 1Þ
0 ðr̃ < 0Þ:

ð10Þ

Here, r̃ ¼ ðr − rthÞ=w, and W5ðr̃Þ is chosen to match
smoothly with the required asymptotic behavior, so we
choose a fifth-order polynomial satisfying W5ð1Þ ¼ 1,
W5ð0Þ ¼ W 0

5ð0Þ ¼ W 00
5ð0Þ ¼ W 0

5ð1Þ ¼ W 00
5ð1Þ ¼ 0. The

transition region has a width w ¼ 500M and is located
at rth=M≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.9×5=ð8πϵÞp

. These parameters were chosen
to ensure that the bosonic cloud sits entirely in a region
described by Eq. (2).
The evolution equations were integrated using fourth-

order spatial discretization and a Runge-Kutta method.
Accuracy requirements, finite size of the numerical grid,
and computational power all contribute to limit the time-
scales that one is able to access. Here, we evolve these
systems for timescales approximately 7000M.
Although we have results for general BH spin parameter,

we focus mostly on states around a nonspinning BH. These
states are not superradiant in origin and arise due to the
fine-tuned initial data. However, they are extremely long
lived (the decay timescale is of the order of the superradiant
growth timescale if the BH was spinning), as we show
below, with a lifetime that far exceeds that of all the tidally
induced transitions studied here. Thus, BH spin is impor-
tant to generate the scalar clouds but has little impact on
some of the physics of tides. In addition, the tidal field in
Eq. (2) is adapted to a nonspinning BH. Our numerical
results indeed show only a very mild dependence on BH
spin. With the exception of Ref. [28], all previous results on
tidal effects in superradiant clouds focus on the small Mμ
coupling parameter, consider a flat background on which
the superradiant states evolve, and have only used linear-
ized analysis for small tidal fields. Our framework can go
beyond all these limitations.

III. RESULTS

A. Weak tides: Transitions to new stationary states

We start by evolving the initial data described
above around an isolated, nonspinning BH (ϵ ¼ 0). The

nonvanishing multipolar component of the field is shown in
Fig. 1. The amplitude of the field varies by a few percent
over the time interval of approximately 7000M. This time
interval (7000 dynamical timescales) also corresponds to
approximately 100 scalar-field periods of oscillation. The
scalar field and energy density along an equatorial slice are
shown in Fig. 2 at t ¼ 7000M. The density is almost (but
not exactly) symmetric along this slice.
We now turn on a weak tidal field by letting ϵ ¼ 10−8,

produced by a companion star on the x axis. We call this a
weak tide since no nonperturbative feature is seen on
timescales of approximately 6000M. As we will argue
below, it is possible that new features appear at very late
times, which we are unable to probe currently. Previous,
analytical studies focused on transitions between the over-
tones [27,28]. We do see transitions between overtones
with the same angular index, leading to an expansion of the
cloud; overtones are localized at rBohr ∼ n2=ðMμ2Þ. The
appearance of higher overtones is apparent in Fig. 3,

FIG. 1. A dipolar scalar cloud around a Schwarzschild BH.
This figure shows the time evolution of initial conditions (8) for a
dipole with gravitational coupling Mμ ¼ 0.1 around a nonspin-
ning BH and in the absence of a companion (ϵ ¼ 0). The field is
extracted at r ¼ 60M.

FIG. 2. Field (left) and energy density (right) distribution along
the equatorial plane for the same initial data as Fig. 1. The field is
dipolar, as expected, whereas the energy density at the equator is
almost—but not exactly—symmetric along the rotation axis. The
length scale of these images is of order 100M.
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showing the x dependence of the field initially and at
t ¼ 2000M. It is clear that the companion triggers excita-
tion of overtones, which manifest themselves via nodes in
the field. Although this profile also includes the octupolar
l ¼ 3 component, it is 2 orders of magnitude smaller than
the dipolar term, as we discuss below, and unable to explain
all the structure in Fig. 3.
The data in Fig. 3 indicate that on timescales ≲2000M

the second excited state n ¼ 4 (in our convention, states are
labeled by an integer n ¼ lþ 1; lþ 2;…) dominates the
transitions. In fact, a small coupling Mμ expansion (see
Appendix B) shows that the n ¼ 3 state has extrema at
r=M ¼ 175; 1024 which are not apparent in Fig. 3. The
second excited state n ¼ 4, however, is predicted to have
extrema at r=M ¼ 170, 875, 2155 in agreement with our
numerical results (but note that the last point is challenging
to confirm numerically, as the grid size and spurious
reflections affect a proper evaluation of eigenfunctions at
large distances).
One can quantify the relative excitation using the

orthonormality between eigenstates corresponding to dif-
ferent overtones, which enable us to extract the amplitude
cn of a specific overtone from the numerical data via

cn ¼
Z

∞

0

dr r2R�
n1ðrÞΦðrÞ; ð11Þ

where RnlðrÞ are the radial “hydrogenic” functions dis-
cussed in the Appendix B and ΦðrÞ corresponds to the

numerical data at a given radial direction (e.g., θ ¼ π=2 and
φ ¼ 0). We are implicitly taking the numerical data to be
only composed by l ¼ 1 modes, which is a reasonable
assumption considering our previous discussion. This
expression is actually only valid in the nonrelativistic
(and far-region) limit, but we expect it to provide reason-
able estimates at small Mμ when the cloud is localized far
away from the BH. As we explained, our grid size is
limited, and for these parameters (Mμ ¼ 0.1), it captures a
couple of nodes but not more. Thus, the relative amplitude
excitation determined in this way is affected by some
numerical error and is expected to be more accurate at early
times when the signal is dominated by the fundamental
mode. To avoid reflections from the outer boundary of our
numerical grid and transition radius of our metric, we use
time-domain data for t≲ 1000M.
Our results are shown in Table I and include estimates for

the transition timescale from time-dependent perturbation
theory. Our numerical results are within a factor 2 from the
prediction from perturbation theory. This disagreement can
be explained by (at least) two factors:

(i) Perturbation theory uses a small Mμ expansion,
which is inaccurate atMμ≳ 0.1 (a glance at Fig. 1 in
Ref. [28] shows how factors of 2 can easily arise
from such an approximation).

(ii) Transitions between intermediate states complicate
substantially the calculation of mode excitation.

Bearing this in mind, our results along with perturbation
theory explain why the first excited state is not yet
dominant: the timescale for its excitation is the largest
among those in the table. In fact, our results are consistent
with transition occurring on the timescales predicted from
the table for the n ¼ 3, 4, 5 modes.
The most apparent feature of our simulations, however,

is transitions to octupolar and higher poles, induced by the

FIG. 3. Dependence of the field Φ along the x axis at different
instants for a coupling Mμ ¼ 0.1. In the absence of a companion
(ϵ ¼ 0) and despite a slight change in the profile, the field has no
nodes. It has a local extremum at approximately r ¼ 200M as
predicted by a smallMμ expansion for the fundamental mode (in
the convention adopted in this paper, n ¼ lþ 1 ¼ 2). In the
presence of a weak tidal field (ϵ ¼ 10−8), the field develops a
different radial profile with one node, pointing to a significant
component of overtones. Our results indicate a sizeable excitation
of the second excited state n ¼ 4, which has extrema at
r=M ∼ 170, 850.

TABLE I. Timescales ttrans and relative amplitudes predicted by
time-independent perturbation theory and those obtained from
numerical data (at t ¼ 1000M), for the most relevant first-order
transitions from the initial state l ¼ 1 state, with Mμ ¼ 0.1. The
second column shows the timescale to transition from the initial
to the ðnlmÞ state, as obtained from time-dependent perturbation
theory. The third column shows the relative amplitude of over-
tones, relative to the fundamental mode, from time-independent
perturbation theory (and in parentheses the corresponding ratio of
the field components at r ¼ 60M). Finally, the last column shows
the relative amplitude of overtones as obtained from our
numerical data. The entries in the third and fourth columns
agree to within a factor 2, with the exception of the l ¼ m ¼ 1,
n ¼ 3 mode, for which the timescale needed for excitation is
larger than the instant at which the coefficients were extracted.

(n lm) ttrans=M cnlm
c211

(ϕnlm
ϕ211

) cNumn
cNum
2

3 1 1 1888 1.03 (0.85) 0.221
4 1 1 458 0.236 (0.13) 0.094
5 1 1 173 0.113 (0.046) 0.058
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external tide. This is depicted in Fig. 4, in which we show
the evolution of the dipolar l ¼ m ¼ 1 and octupolar l ¼
m ¼ 3 mode as time progresses. It is apparent that the
magnitude of the dipolar mode is now decreasing and that a
fraction of this energy is going into higher modes,
specifically the octupolar l ¼ 3, m ¼ 1, 3. Such migration
changes the spatial distribution of energy density, apparent
in Fig. 5.
Our results in the small external tide regime are con-

sistent with perturbation theory prediction, in particular that

the amplitude of the l ¼ 3 mode scales with the external
tide ϵ [27,28]. Perhaps one of the cleanest indications of the
validity of the perturbative framework is the excitation of
the l ¼ 3; m ¼ 1 mode. Perturbation theory predicts that
the relative amplitude of the l ¼ m ¼ 3 mode is

ffiffiffiffiffiffiffiffi
5=3

p
∼

1.29 larger than that of the l ¼ 3, m ¼ 1 mode, and this
depends exclusively on an angular matrix (no radial
dependence). Our numerical results show a relative ampli-
tude across all times and extraction radii consistent with
such prediction, as shown in the figure. The l ¼ 3 mode
seems to saturate, but as can be seen from the figure, the
l ¼ 1 is still decreasing. Some energy is most likely
flowing down the horizon, but we do not fully understand
this behavior.

B. Strong tides: Tidal disruption of clouds

For large tidal fields, one expects the scalar configuration
to be disrupted. A star of mass M� and radius R�, in the
presence of a companion of massMc at distance R is on the
verge of disruption if, up to numerical factors of order
unity,

M�=R2� ¼ 2McR�=R3: ð12Þ

For configurations in which the mass in the scalar cloud is a
fraction of that of the BH, M� ¼ M, and its radius is of the
order of R� ≳ 5=ðMμ2Þ (see the Appendix). As such, we
find the critical moment

ϵcrit ≈
ðMμÞ6
250

: ð13Þ

Our simulations are consistent with this behavior.
Figures 6 and 7 summarize our findings at large companion

FIG. 4. Dipolar (l ¼ m ¼ 1, left) and octupolar (l ¼ 3,m ¼ 1, 3 right) components of the scalar cloud when in the presence of a weak
tidal field, for the same initial conditions as in Fig. 1 (nonspinning BH and gravitational couplingMμ ¼ 0.1), but now in the presence of
a companion of mass ϵ ¼ 10−8. The l ¼ 3, m ¼ 1 mode amplitude relative to the l ¼ m ¼ 3 was rescaled by the perturbation theory
prediction (

ffiffiffiffiffiffiffiffi
5=3

p
∼ 1.29). The agreement is very good throughout the evolution.

FIG. 5. Snapshot of a tidally deformed scalar cloud. The
snapshot depicts the energy density along the equator of a scalar
cloud which was set initially around a nonspinning BH. In the
absence of a companion mass, the energy density is almost
spherical and remains so for thousands of dynamical timescales.
Here, the simulation starts with one symmetric initial scalar
energy distribution, but in the presence of a star, such that the tidal
parameter ϵ ¼ 10−8. The gravitational coupling Mμ ¼ 0.1. The
snapshot is taken after 7000M by which the system settled to a
new stationary configuration.
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masses. We find that the initial dipolar mode quickly
transfers energy to the octupole, which then drains into
higher and higher multipoles. This signals a transfer of
energy to lower and lower angular scales, and in our case, it
is telling us that the cloud is being disrupted, losing mass to
asymptotic regions. A snapshot of the energy density in
Fig. 7 shows precisely this.

Extracting precise values for the critical tide from our
numerical simulations is complicated by two facts: these
are extended scalar configurations, and to understand
whether there is mass being lost to large distances requires
large numerical grids. In addition, a seemingly stable cloud
on some timescale can eventually be disruptedwhen evolved
on longer timescales. Typically, our numerical simulations
last for approximately 6000M. With this in mind, we
estimate a threshold ϵcrit ∼ 2 × 10−7 for Mμ ¼ 0.2, for
which disruption is clearly seen after 4000M. This critical
value agrees remarkably well with Eq. (13). On the other
hand, for Mμ ¼ 0.1, we see disruption on the simulated
timescales only for ϵ≳ 2 × 10−8, a factor 4 difference from
the prediction of Eq. (13). It is possible that disruption does
happen for smaller tides, but on timescales that we are
currently unable to probe. Note also that disruption can be
stimulated by transitions to overtones, an intermediate
process which occurs as we have just discussed and which
“puffs up” the cloud, increasing its size to a few times the
estimate 1=ðMμ2Þ and therefore reducing the critical tide.
However, such transitions can occur on large timescales. To
summarize, our results are consistent with the behavior of
Eq. (13), though clearly evolutions lasting for 1 order of
magnitude more could zoom in better on the prefactor.

IV. APPLICATION TO ASTROPHYSICAL
SYSTEMS

Known BHs with companions include the Cygnus X-1
system and the center of our Galaxy. Cygnus X-1 is a binary
system composed of a BH of mass MBH ∼ 15M⊙, a
companion withMc ∼ 20M⊙ at a distanceR∼0.2AU∼3×
1010 m [35]. With these parameters, we find ϵ ∼ 5 × 10−19.
For it to sit at the critical tide,Mμ ∼ 2 × 10−3. The timescale

FIG. 6. Tidally disrupting cloud and cascading to lower scales. This figure shows the time evolution of the dipolar and octupolar
components of the scalar field (with gravitational coupling Mμ ¼ 0.1) for a companion with ϵ ¼ 10−7 such that the cloud is disrupted.
We observe that the cloud is torn apart, losing energy to asymptotically large distances, away from the BH. Thus, energy is cascading to
higher and higher multipoles as time progresses. The field is extracted at r ¼ 60M.

FIG. 7. Snapshot of a tidally disrupting cloud. The snapshot
depicts the energy density along the equator of a scalar cloud
which was set initially around a nonspinning BH. In the absence
of a companion mass, the energy density is almost spherical and
remains so for thousands of dynamical timescales. Here, the
simulation starts with one symmetric initial scalar energy dis-
tribution, but in the presence of a star for which ϵ ¼ 10−7. The
gravitational coupling Mμ ¼ 0.1. The snapshot is taken after
7000M and is leading to disruption of the cloud.
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τ for growth of clouds via superradiance is of order τ ∼
ðMμÞ−9M [6], too large to be meaningful for scalar fields,
but potentially affecting vectors [τ ∼ ðMμÞ−7M] [33,36,37].
The tide is also small enough that it should not be affecting
any of the constraints derived from the possible nonobser-
vation of GWs from the system [38,39].
On the other hand, at the center of our Galaxy there is a

supermassive BH of mass approximately 4 × 106M⊙ with
known companions [40,41]. For the closest known star, S2,
with a pericenter distance of approximately 1400MBH, we
find ϵ ∼ 2 × 10−15, or a critical coupling Mμ ∼ 9 × 10−3

(we assumeMc ∼ 20M⊙, but the result above is only mildly
dependent on the unknown mass of S2). This is now a
potential source of tidal disruption for interesting coupling
parameters and will certainly affect the estimates using pure
dipolar modes to estimate GW emission. However, note
that our approximations always require that the companion
sits outside the cloud [R > R�, or the approximation in
Eq. (2) would break down]. Using Eq. (12), disruption
together with such a condition always requiresMc > M=2.
Note that, at the verge of tidal disruption by a

companion, the binary itself is emitting GWs at a rate

_Ebinary ¼
32

5

M2
cM3

R5
; ð14Þ

where we assume the companion to be much lighter than
the BH. The GW flux emitted by the cloud-BH system
scales as [14,16,34]

_Ecloud ∼
1

50

�
MS

M

�
2

ðMμÞ14: ð15Þ

Thus, GW emission by the binary dominates the signal
whenever

Mc

MS
≳ ðMS=MÞ5ð5Mμ=2Þ12; ð16Þ

withMS the mass in the scalar cloud [14,16,34]. Therefore,
in the context of GW emission and detection, for all
practical purposes, disruption will not affect our ability
to probe the system; if it was visible via monochromatic
emission by the cloud before disruption, it will be seen after
disruption as a binary.
Note that tidal disruption of the cloud is a relevant

possibility for these systems, since the cloud is generically
not depleted due to mode mixing by the time the system
reaches the Roche radius; in fact, for cloud depletion due to
mode mixing to be effective, the system needs to be in a
resonant epoch for a long time [27]. This requires a
particular combination of the mass ratio and gravitational
coupling Mμ, which can only be realized in a small region
in the possible parameter space (see Figs. 7 and 8
in Ref. [27]).

V. CONCLUSIONS

Massive, spinning BHs provide us with the tantalizing
possibility to test fundamental fields on scales which are
otherwise inaccessible. These fields can be all or a fraction
of DM and may or not couple to standard model fields. In
other words, BHs are ideal detectors of ultralight
fields [6,13,23].
The mechanism behind this extraordinary ability is

superradiance, which works very much like tidal accel-
eration in the Earth-moon system [6,29]. In the presence of
a light field, a spinningBHmay transfer a large fraction of its
rotational energy to a cloud of bosons orbiting the BH. Such
an effect leads to BH spindown, emission of nearly mono-
chromatic radiation, etc. We started here a numerical study
of the impact of a possible companion star or BH on the
development of such a superradiant cloud. We see transi-
tions to higher overtones and to higher multipoles, stretch-
ing and deforming the cloud. Weak tidal fields (i.e., light or
far-away companions) slightly deform the cloud, affecting
GW emission by the system. The changes induced by tidal
fields havenot been computed yet. For tidal fields larger than
the threshold of Eq. (13), the companion simply breaks the
cloud apart. Since such structures are usually much larger
than the BH—as shown by Eq. (B7)—superradiant clouds
are typically easier to disrupt than stars. In fact, BH systems
such as the one at the center of ourGalaxy or the CygnusX-1
binary system may easily disrupt scalar clouds.
Our results generalize to a number of situations.

Although we have discussed only tides acting along the
equator, we have performed evolutions for polar tides
(along the z axis) and found the same phenomenology.
This includes overtone and transitions between multipoles
and tidal disruption, even if quantitatively different. Our
setup is that of a real scalar field, but the results generalize
to complex scalars. These are interesting from a BH
uniqueness perspective since they can lead to truly sta-
tionary hairy solutions (as opposed to real fields which lead
to long-lived states which are not of the Kerr family, but
which eventually must decay to Kerr) [6,42].
Simulations of binaries are challenging. To overcome

issues with long-term simulations of two bodies, we replace
the companion with its lowest-order tidal moment. Such
approximation has problems of its own and requires careful
handling of boundary conditions, grid sizes, etc. Currently,
we are unable to probe tidal fields which vary on short
timescales, as these would lead to “superluminal” motion
on the outer part of our computational domain, and as such,
we are unable to probe resonances arising from tidal effects.
Resonances are interesting on their own [23,27] and might
lead to floating or sinking orbits which lead to clear
imprints in GW signals [18,20,21,23].
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APPENDIX A: TIDES IN GENERAL RELATIVITY

The general theory of tidally deformed compact objects
in General Relativity lays its foundations on linear pertur-
bations around a background spacetime describing the
compact object [30,43,44]

gμν ¼ gð0Þμν þ hμν; ðA1Þ

where gð0Þμν is the background spacetime metric and hμν is a
small perturbation. For a body perturbed by an external
field, we expect hμν to encapsule the direct contribution of
that external field and the corresponding linear response of
the perturbed object due to gravitational interaction.
The standard strategy to compute hμν is to pick a specific

gauge and solve the linearized field equations for a chosen
background. The most practical situation is when the
background is spherically symmetric and static, in which
case the line element reads

ds2¼−FðrÞdt2þGðrÞdr2þ r2dθ2þ r2sin2θdφ2: ðA2Þ

In this scenario, the perturbation hμν is expanded in
spherical harmonics,

Ylmðθ;φÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

ðl −mÞ!
ðlþmÞ!

s
Pm
l ðcos θÞeimφ; ðA3Þ

and, due to axisymmetry, decomposed in even and odd
parts. In the Regge-Wheeler gauge, these read

hevenμν ¼

0
BBBBB@

FðrÞHlm
0 ðt; rÞYlm Hlm

1 ðt; rÞYlm 0 0

Hlm
1 ðt; rÞYlm GðrÞHlm

2 ðt; rÞYlm 0 0

0 0 r2Klmðt; rÞYlm 0

0 0 0 r2sin2θKlmðt; rÞYlm

1
CCCCCA; ðA4Þ

hoddμν ¼

0
BBBBB@

0 0 hlm0 ðt; rÞSlmθ hlm0 ðt; rÞSlmφ
0 0 hlm1 ðt; rÞSlmθ hlm1 ðt; rÞSlmφ

hlm0 ðt; rÞSlmθ hlm1 ðt; rÞSlmθ 0 0

hlm0 ðt; rÞSlmφ hlm1 ðt; rÞSlmφ 0 0

1
CCCCCA; ðA5Þ

where

ðSlmθ ; Slmφ Þ≡ ð−Ylm
;φ =sin θ; sin θYlm

;θ Þ: ðA6Þ

The aforementioned separation of hμν into the external
field and respective tidal response can be made explicit by
means of an asymptotic expansion in multipole moments
(check Eqs. (B9) and (B10) of Ref. [44]). The even-parity
sector is controlled by the polar tidal moments EL, where
the subscript L≡ a1a2…al is a multi-index labeling the
ð2lþ 1Þ components of this symmetric-trace-free tensor.
One can further decomposed these in spherical harmonics

through ELðtÞxL ¼ rl
P

m ElmðtÞYlmðθ;φÞ. The same pro-
cedure applies to the axial sector, but here they are controlled
by the axial tidal moments BL, which follow the same
decomposition, BLðtÞxL ¼ P

m rlBlmðtÞYlmðθ;φÞ.
For a specific tidal field, the tidal moments can be

determined by performing an asymptotic matching with a
post-Newtonian environment, in a domain much larger than
the typical length scale of the deformed compact object
[32,45]. We are interested in a binary system in which
one of bodies is a BH. Centering ourselves in it, and
treating the corresponding companion as a post-Newtonian
monopole of massMc at distance R, the lowest contribution
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to the tidal field is given by the l ¼ 2 quadrupolar
moments [32]

Eab ¼ −3
Mc

R3
nhabi þOðc−2Þ; ðA7Þ

Bab ¼ −6
Mc

R3
½n × v�ðanbÞ þOðc−2Þ; ðA8Þ

where R is the position of the companion in the BH frame
centered, n≡R=R, the brackets h…i denote symmetriza-
tion and trace removal, and v is the relative velocity
of the binary. We stress that the two terms displayed are
not of the same post-Newtonian (PN) order. While the first
term in Eab corresponds to the Newtonian limit and the
omitted term is a first post-Newtonian (1PN) correction, the
lowest-order term in Bab is already considered to be a 1PN
contribution, despite not being directly suppressed by c−2

(see Sec. II of Ref. [32]). Higher multipole moments are
also subleading with respect to the above quadrupoles.
Finally, a further simplification is introduced by assum-

ing that hμν is independent of time. This is the so-called
regime of static tides, when the binary evolution happens in
much larger timescales than the internal dynamics of
each body, and the whole system evolves adiabatically.
This is what happens in the inspiraling phase of the binary.
The corresponding perturbations for a Schwarzschild
background are those presented in the main text in
Eq. (2), where we took the Newtonian limit of the tidal
quadrupole moments expanded in spherical harmonics, as
explained above.

APPENDIX B: PERTURBATION THEORY IN
QUANTUM MECHANICS

In the nonrelativistic limit, the scalar cloud obeys an
equation which is formally equivalent to Schrödinger’s
equation with a Coulomb potential, governed by a single
parameter,

α≡Mμ: ðB1Þ
This can be seen by making the standard ansatz for the
dynamical evolution of Φ [27,46,47],

Φðt; rÞ ¼ 1ffiffiffiffiffi
2μ

p ðψðt; rÞe−iμt þ ψ�ðt; rÞeiμtÞ; ðB2Þ

where ψ is a complex field which varies on timescales
much larger than 1=μ. Then, one can rewrite Eq. (4) as

i
∂
∂tψ ¼

�
−

1

2μ
∇2 −

α

r

�
ψ ; ðB3Þ

where we kept only terms of order Oðr−1Þ and linear in α.
The normalized eigenstates of the system are hydro-

geniclike, with an adapted “fine structure constant” α and
“reduced Bohr radius” a0 [6,48],

ψnlm ¼ e−iðωnlm−μÞtRnlðrÞYlmðθ;ϕÞ; ðB4Þ

RnlðrÞ ¼ C

�
2r
na0

�
l
L2lþ1
n−l−1

�
2r
na0

�
e−

r
na0 ;

a0 ¼ 1=μα; C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

2

na0

�
3 ðn − l − 1Þ!
2nðnþ lÞ!

s
; ðB5Þ

where L2lþ1
n−l−1 is a generalized Laguerre polynomial.1

We are adopting the convention for the quantum numbers
used in Refs. [27,28]. The eigenvalue is, up to terms of
order α5 [49],

ωnlm ¼ μ

�
1 −

α2

2n2
−

α4

8n4
þ ð2l − 3nþ 1Þα4

n4ðlþ 1=2Þ
�
: ðB6Þ

We can estimate the size of the axion cloud by computing
the expectation value of the radius on a given state

hri ¼
Z

∞

0

dr r3R2
nlðrÞ ¼

a0
2
ð3n2 − lðlþ 1ÞÞ: ðB7Þ

When the binary companion is included, the tidal
perturbation can be treated in the framework of perturbation
theory in quantum mechanics. The tidal potential δV
entering in Schrödinger’s equation due to δds2tidal (2) is
represented by a step function,

δV ¼ −θðt − t0Þ
Mcμ

R

X
jmj≤2

4π

5

�
r
R

�
2

Y�
lmðθc;ϕcÞYlmðθ;ϕÞ;

ðB8Þ

where t0 is the instant when we turn it on and θðtÞ is the
Heaviside function. Therefore, though there is an implicit
time dependence, if one lets the system evolve for sufficient
time, it will end in a final stationary state (ignoring the loss
of energy at the horizon). To describe the final picture,
time-independent perturbation theory is enough.
Let us recall the standard procedure of time-independent

perturbation theory. We work in the Schrödinger’s picture
(though there are no ambiguities for the time-independent
problem) and are trying to solve Schrödinger’s equation

Hjψ ii ¼ ωijψ ii; ðB9Þ

H ¼ H0 þ λδV; ðB10Þ

where H0 is the Hamiltonian of the unperturbed problem,
δV is the potential corresponding to the perturbation, and λ
is a dimensionless expansion parameter varying between 0
(no perturbation) and 1 (full perturbation). Since we are

1We adopt the same normalization as the built-in function of
Mathematica.
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now referring to a generic problem, we have dropped the
triple indices of the hydrogenic spectrum and instead label
different eigenstates jψ ii of the Hamiltonian (and the
respective eigenvalue frequencies ωi) by a single index.2

When the system is nondegenerate, the eigenstates jψ ð0Þ
k i

of the unperturbed problem [which are assumed to be
known and in our case are given by Eq. (B5)] are in one-to-

one correspondence with the eingenvalues, ωð0Þ
k ,

H0jψ ð0Þ
i i ¼ ωð0Þ

i jψ ð0Þ
i i; ðB11Þ

and fψ ð0Þ
n g form a complete orthonormal basis

hψ ð0Þ
m jψ ð0Þ

n i ¼ δmn: ðB12Þ

Now, we expand the eigenstates of the perturbed system,

ψ i, in terms of the basis fψ ð0Þ
k g

jψ ii ¼
X
k

ckijψ ð0Þ
k i; ðB13Þ

and plugging in this ansatz in (B9), the coefficients cki and
the eigenvalues ωi can be obtained as a power series in λ. If
the perturbation is small enough, we expect the first-order
expansions to be a good approximation [50],

ωi ¼ ωð0Þ
i þ λωð1Þ

i ; ðB14Þ

cki ¼ cð0Þki þ λcð1Þki ; ðB15Þ

ωð1Þ
i ¼ hψ ð0Þ

i jδVjψ ð0Þ
i i; ðB16Þ

cð1Þki ¼ hψ ð0Þ
k jδVjψ ð0Þ

i i
ωð0Þ
i − ωð0Þ

k

; k ≠ i; ðB17Þ

where we omitted terms of order Oðλ2Þ. In the end, we set
λ ¼ 1, which is the same as reabsorbing it in δV.
The timescales for the transitions between two modes

can be estimated using time-dependent perturbation theory.
This involves introducing the interaction picture and
perform a Dyson series on the time-evolution operator.
Since the eigenstates remain the same as in the time-
independent unperturbed case, we will skip details on this
procedure and directly import the result for the first-order
correction on the coefficients cki for a step-function
perturbation [51],

cð1Þki ¼ hψkjδVjψ ii
ωi − ωk

ð1 − e−iðωi−ωkÞtÞ: ðB18Þ

Both the states jψ ii and frequencies ωi should be under-
stood as the ones for the unperturbed system, but we omit
subscripts to avoid clustering, Then, the probability of the
transition jii → jki is

jcð1Þki j2 ¼ 4

���� hψkjδVjψ ii
ωi − ωk

����2sin2
�ðωk − ωiÞt

2

�
: ðB19Þ

Although we do not have a continuum spectrum, for
large timescales, we can take this limit. Then, at fixed t, we

can treat the probabilities jcð1Þki j2 as functions of

Δωki ¼ jωk − ωij: ðB20Þ

Plotting it for different instants of time, one can
verify this function becomes increasingly peaked around
Δωki ¼ 0 as t increases (check Fig. 5.8 of Ref. [51]). This
central peak scales with t2 and has a typical width of 1=t. If
we wait enough time Δt since the perturbation is intro-
duced, the only transitions with appreciable probability are
those satisfying

Δt ¼ 2π=Δωki: ðB21Þ

The final conclusion is that the typical timescale Δt for
the transition jiii → jki to happen is

ΔωkiΔt ∼ 1; ðB22Þ

which, if we momentarily insert factors of ℏ, can be
seen as a manifestation of the energy-time uncertainty
principle [51]

ΔEΔt ∼ ℏ: ðB23Þ

Returning to our problem, the initial data (8) correspond
to the stationary state (reintroducing the triple hydrogenic
indices)

jii ∝ ðjψ ð0Þ
211i − jψ ð0Þ

21−1iÞ; ðB24Þ

up to a proportionality constant reflecting the renormaliza-
tion done for numerical purposes. The final state should
correspond to a stationary state jfi, which we can compute
using the machinery developed before. There is still a
caveat, which is the degeneracy between states with the
same quantum number m (B5). Though a rotating BH will
lift this degeneracy, the energy shifts due to the perturba-
tions considered are orders of magnitude higher than the
energy scale associated with the rotation. Thus, for non-
degenerate perturbation theory to be controlled, we would
have to perform it at orders higher than what we presented.

2In quantummechanics literature, it is common to use E for the
(energy) eigenvalues, but since we are working in natural units,
ℏ ¼ 1, and there is no distinction between these and the
(frequency) eigenvalues being used.
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In the degenerate scenario, the equations presented are

invalid [for example, Eq. (B17) diverges when ωð0Þ
k ¼ωð0Þ

i ].
Instead, we use the freedom in making a linear combination
of unperturbed degenerate eigenstates, so that in every
degenerate subspace, we pick a basis of the Hilbert space
that diagonalizes the full Hamiltonian H (B10). After this
step, we can apply nondegenerate perturbation theory,
namely Eqs. (B16) and (B17), using the new “good” basis.
Finally, the numerical data we present in the main text

corresponds to multipole expansions of the field Φ and not
to the coefficients cki (B13) describing the mix of the
unperturbed states. To obtain these multipoles, we have to
select them from the space representation of the final
state. The amplitude coefficients of the mode jψnlmi are
obtained via

cnlm ∝
hψnlmjδVjii
ωð0Þ
21 − ωð0Þ

nl

; ðB25Þ

ϕnlmðrÞ ∝ cnlmRnlðrÞ: ðB26Þ
In the end, we are interested in the ratio between

amplitudes so the constant of proportionality is irrelevant.
The matrix elements appearing here are explicitly presented
in Eqs. (3.7)–(3.9) of Ref. [27]. Notice that the relative
amplitude between modes with the same quantum numbers
n and l is completely determined by the angular integrals,
and since these are (quasi)degenerate, they will also follow
similar time evolutions. As a consequence, their relative
amplitude is independent of time and the value of α, even at

higher orders in perturbation theory. This is illustrated in
Fig. 4 for ϕn33=ϕn31.
A summary of the time-independent perturbation theory

for transitions between overtones is shown in Table I for
Mμ ¼ 0.1, ϵ ¼ 10−8. The relative amplitudes cnlm=c211
indicate that the perturbation is not that small. This is even
more obvious if we compute the first order corrections to
the frequency eigenvalues (B16) which, for this configu-
ration, are of Oð10−3Þ for overtones n > 3, as illustrated in
Table II. For this reason, when computing the timescales
of the transitions (B22), we used the first-order
corrected ωnlm.

[1] G. Bertone and T. M. P. Tait, A new era in the search for dark
matter, Nature (London) 562, 51 (2018).

[2] L. Barack et al., Black holes, gravitational waves and
fundamental physics: A roadmap, Classical Quantum
Gravity 36, 143001 (2019).

[3] V. Baibhav et al., Probing the nature of black holes: Deep in
the mHz gravitational-wave sky, arXiv:1908.11390.

[4] M. Maggiore et al., Science case for the Einstein Telescope,
arXiv:1912.02622.

[5] V. Cardoso and L. Gualtieri, Testing the black hole no-
hair hypothesis, Classical Quantum Gravity 33, 174001
(2016).

[6] R. Brito, V. Cardoso, and P. Pani, Superradiance, Lect.
Notes Phys. 906, 1 (2015).

[7] K. Eda, Y. Itoh, S. Kuroyanagi, and J. Silk, Gravitational
waves as a probe of dark matter minispikes, Phys. Rev. D
91, 044045 (2015).

[8] C. F. B. Macedo, P. Pani, V. Cardoso, and L. C. B. Crispino,
Into the lair: Gravitational-wave signatures of dark matter,
Astrophys. J. 774, 48 (2013).

[9] E. Barausse, V. Cardoso, and P. Pani, Can environmental
effects spoil precision gravitational-wave astrophysics?,
Phys. Rev. D 89, 104059 (2014).

[10] V. Cardoso and A. Maselli, Constraints on the astrophysical
environment of binaries with gravitational-wave observa-
tions, arXiv:1909.05870.

[11] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper,
and J. March-Russell, String axiverse, Phys. Rev. D 81,
123530 (2010).

[12] D. J. E. Marsh, Axion cosmology, Phys. Rep. 643, 1
(2016).

[13] A. Arvanitaki and S. Dubovsky, Exploring the string
axiverse with precision black hole physics, Phys. Rev. D
83, 044026 (2011).

[14] R. Brito, V. Cardoso, and P. Pani, Black holes as particle
detectors: Evolution of superradiant instabilities, Classical
Quantum Gravity 32, 134001 (2015).

[15] A. Arvanitaki, M. Baryakhtar, S. Dimopoulos, S. Dubovsky,
and R. Lasenby, Black hole mergers and the QCD axion at
advanced LIGO, Phys. Rev. D 95, 043001 (2017).

TABLE II. First-order corrected frequencies ωnlm predicted by
time-independent theory, for a nonrotating BH and a companion
with the configuration Mμ ¼ 0.1, ϵ ¼ 10−8. A spinning BH
would break the degeneracy between states with the same l but
different m quantum number. However, these corrections enter
the frequency spectrum (B6) only at order α5. For the above
configuration, these would yield ωn33 − ωn31 ∼ 10−6a=Mn3,
where a is the angular momentum parameter a ¼ J=M.

(n l) ωnlm × 102

2 1 9.9754
3 1 9.9224
4 1 9.7570
5 1 9.3980
4 3 9.9001

TIDAL EFFECTS AND DISRUPTION IN SUPERRADIANT … PHYS. REV. D 101, 064054 (2020)

064054-11

https://doi.org/10.1038/s41586-018-0542-z
https://doi.org/10.1088/1361-6382/ab0587
https://doi.org/10.1088/1361-6382/ab0587
https://arXiv.org/abs/1908.11390
https://arXiv.org/abs/1912.02622
https://doi.org/10.1088/0264-9381/33/17/174001
https://doi.org/10.1088/0264-9381/33/17/174001
https://doi.org/10.1007/978-3-319-19000-6
https://doi.org/10.1007/978-3-319-19000-6
https://doi.org/10.1103/PhysRevD.91.044045
https://doi.org/10.1103/PhysRevD.91.044045
https://doi.org/10.1088/0004-637X/774/1/48
https://doi.org/10.1103/PhysRevD.89.104059
https://arXiv.org/abs/1909.05870
https://doi.org/10.1103/PhysRevD.81.123530
https://doi.org/10.1103/PhysRevD.81.123530
https://doi.org/10.1016/j.physrep.2016.06.005
https://doi.org/10.1016/j.physrep.2016.06.005
https://doi.org/10.1103/PhysRevD.83.044026
https://doi.org/10.1103/PhysRevD.83.044026
https://doi.org/10.1088/0264-9381/32/13/134001
https://doi.org/10.1088/0264-9381/32/13/134001
https://doi.org/10.1103/PhysRevD.95.043001


[16] R. Brito, S. Ghosh, E. Barausse, E. Berti, V. Cardoso, I.
Dvorkin, A. Klein, and P. Pani, Gravitational wave searches
for ultralight bosons with LIGO and LISA, Phys. Rev. D 96,
064050 (2017).

[17] R. Brito, S. Ghosh, E. Barausse, E. Berti, V. Cardoso, I.
Dvorkin, A. Klein, and P. Pani, Stochastic and Resolvable
Gravitational Waves from Ultralight Bosons, Phys. Rev.
Lett. 119, 131101 (2017).

[18] M. C. Ferreira, C. F. B. Macedo, and V. Cardoso, Orbital
fingerprints of ultralight scalar fields around black holes,
Phys. Rev. D 96, 083017 (2017).

[19] M. Boskovic, F. Duque, M. C. Ferreira, F. S. Miguel, and V.
Cardoso, Motion in time-periodic backgrounds with appli-
cations to ultralight dark matter haloes at galactic centers,
Phys. Rev. D 98, 024037 (2018).

[20] V. Cardoso, S. Chakrabarti, P. Pani, E. Berti, and L.
Gualtieri, Floating and Sinking: The Imprint of Massive
Scalars around Rotating Black Holes, Phys. Rev. Lett. 107,
241101 (2011).

[21] J. Zhang and H. Yang, Gravitational floating orbits around
hairy black holes, Phys. Rev. D 99, 064018 (2019).

[22] J. Zhang and H. Yang, Dynamic signatures of black hole
binaries with superradiant clouds, Phys. Rev. D 101, 043020
(2020).

[23] D. Baumann, H. S. Chia, R. A. Porto, and J. Stout, Gravi-
tational collider physics, arXiv:1912.04932.

[24] T. Ikeda, R. Brito, and V. Cardoso, Blasts of Light from
Axions, Phys. Rev. Lett. 122, 081101 (2019).

[25] M. Boskovic, R. Brito, V. Cardoso, T. Ikeda, and H. Witek,
Axionic instabilities and new black hole solutions, Phys.
Rev. D 99, 035006 (2019).

[26] A. Arvanitaki, M. Baryakhtar, and X. Huang, Discovering
the QCD axion with black holes and gravitational waves,
Phys. Rev. D 91, 084011 (2015).

[27] D. Baumann, H. S. Chia, and R. A. Porto, Probing ultralight
bosons with binary black holes, Phys. Rev. D 99, 044001
(2019).

[28] E. Berti, R. Brito, C. F. B. Macedo, G. Raposo, and J. L.
Rosa, Ultralight boson cloud depletion in binary systems,
Phys. Rev. D 99, 104039 (2019).

[29] V. Cardoso and P. Pani, Tidal acceleration of black holes and
superradiance, Classical Quantum Gravity 30, 045011
(2013).

[30] V. Cardoso, E. Franzin, A. Maselli, P. Pani, and G. Raposo,
Testing strong-field gravity with tidal Love numbers, Phys.
Rev. D 95, 084014 (2017).

[31] V. Cardoso and F. Duque, Environmental effects in GW
physics: Tidal deformability of black holes immersed in
matter, arXiv:1912.07616.

[32] S. Taylor and E. Poisson, Nonrotating black hole in a post-
Newtonian tidal environment, Phys. Rev. D 78, 084016
(2008).

[33] H. Witek, V. Cardoso, A. Ishibashi, and U. Sperhake,
Superradiant instabilities in astrophysical systems, Phys.
Rev. D 87, 043513 (2013).

[34] H. Yoshino and H. Kodama, Gravitational radiation from an
axion cloud around a black hole: Superradiant phase, Prog.
Theor. Exp. Phys. 2014, 043E02 (2014).

[35] J. A. Orosz, J. E. McClintock, J. P. Aufdenberg, R. A.
Remillard, M. J. Reid, R. Narayan, and L. Gou, The mass
of the black hole in cygnus x-1, Astrophys. J. 742, 84 (2011).

[36] P. Pani, V. Cardoso, L. Gualtieri, E. Berti, and A. Ishibashi,
Black Hole Bombs and Photon Mass Bounds, Phys. Rev.
Lett. 109, 131102 (2012).

[37] V. Cardoso, O. J. C. Dias, G. S. Hartnett, M. Middleton, P.
Pani, and J. E. Santos, Constraining the mass of dark
photons and axion-like particles through black-hole super-
radiance, J. Cosmol. Astropart. Phys. 03 (2018) 043.

[38] H. Yoshino and H. Kodama, Probing the string axiverse by
gravitational waves from Cygnus X-1, Prog. Theor. Exp.
Phys. 2015, 61E01 (2015).

[39] L. Sun, R. Brito, and M. Isi, Search for ultralight bosons in
Cygnus X-1 with advanced LIGO, arXiv:1909.11267.

[40] R. Abuter et al. (GRAVITY Collaboration), Detection of the
gravitational redshift in the orbit of the star S2 near the
Galactic centre massive black hole, Astron. Astrophys. 615,
L15 (2018).

[41] S. Naoz, C. M.Will, E. Ramirez-Ruiz, A. Hees, A. M. Ghez,
and T. Do, A hidden friend for the galactic center black hole,
Sgr A*, Astrophys. J. 888, L8 (2020).

[42] C. A. R. Herdeiro and E. Radu, Kerr Black Holes with
Scalar Hair, Phys. Rev. Lett. 112, 221101 (2014).

[43] T. Binnington and E. Poisson, Relativistic theory of tidal
Love numbers, Phys. Rev. D 80, 084018 (2009).

[44] T. Damour and A. Nagar, Relativistic tidal properties of
neutron stars, Phys. Rev. D 80, 084035 (2009).

[45] E. Poisson and C. M. Will, Gravity: Newtonian,
Post-Newtonian, Relativistic (Cambridge University Press,
Cambridge, England, 2014).

[46] D. N. Page, Classical and quantum decay of oscillatons:
Oscillating selfgravitating real scalar field solitons, Phys.
Rev. D 70, 023002 (2004).

[47] R. F. P. Mendes and H. Yang, Tidal deformability of boson
stars and dark matter clumps, Classical Quantum Gravity
34, 185001 (2017).

[48] S. L. Detweiler, Klein-Gordon equation and rotataing black
holes, Phys. Rev. D 22, 2323 (1980).

[49] D. Baumann, H. S. Chia, J. Stout, and L. ter Haar, The
spectra of gravitational atoms, J. Cosmol. Astropart. Phys.
12 (2019) 006.

[50] D. Griffiths, Introduction to Quantum Mechanics
(Cambridge University Press, Cambridge, England, 2017).

[51] J. Sakurai and J. Napolitano, Modern Quantum Mechanics
(Addison-Wesley, Reading, MA, 2011).

CARDOSO, DUQUE, and IKEDA PHYS. REV. D 101, 064054 (2020)

064054-12

https://doi.org/10.1103/PhysRevD.96.064050
https://doi.org/10.1103/PhysRevD.96.064050
https://doi.org/10.1103/PhysRevLett.119.131101
https://doi.org/10.1103/PhysRevLett.119.131101
https://doi.org/10.1103/PhysRevD.96.083017
https://doi.org/10.1103/PhysRevD.98.024037
https://doi.org/10.1103/PhysRevLett.107.241101
https://doi.org/10.1103/PhysRevLett.107.241101
https://doi.org/10.1103/PhysRevD.99.064018
https://doi.org/10.1103/PhysRevD.101.043020
https://doi.org/10.1103/PhysRevD.101.043020
https://arXiv.org/abs/1912.04932
https://doi.org/10.1103/PhysRevLett.122.081101
https://doi.org/10.1103/PhysRevD.99.035006
https://doi.org/10.1103/PhysRevD.99.035006
https://doi.org/10.1103/PhysRevD.91.084011
https://doi.org/10.1103/PhysRevD.99.044001
https://doi.org/10.1103/PhysRevD.99.044001
https://doi.org/10.1103/PhysRevD.99.104039
https://doi.org/10.1088/0264-9381/30/4/045011
https://doi.org/10.1088/0264-9381/30/4/045011
https://doi.org/10.1103/PhysRevD.95.084014
https://doi.org/10.1103/PhysRevD.95.084014
https://arXiv.org/abs/1912.07616
https://doi.org/10.1103/PhysRevD.78.084016
https://doi.org/10.1103/PhysRevD.78.084016
https://doi.org/10.1103/PhysRevD.87.043513
https://doi.org/10.1103/PhysRevD.87.043513
https://doi.org/10.1093/ptep/ptu029
https://doi.org/10.1093/ptep/ptu029
https://doi.org/10.1088/0004-637X/742/2/84
https://doi.org/10.1103/PhysRevLett.109.131102
https://doi.org/10.1103/PhysRevLett.109.131102
https://doi.org/10.1088/1475-7516/2018/03/043
https://doi.org/10.1093/ptep/ptv067
https://doi.org/10.1093/ptep/ptv067
https://arXiv.org/abs/1909.11267
https://doi.org/10.1051/0004-6361/201833718
https://doi.org/10.1051/0004-6361/201833718
https://doi.org/10.3847/2041-8213/ab5e3b
https://doi.org/10.1103/PhysRevLett.112.221101
https://doi.org/10.1103/PhysRevD.80.084018
https://doi.org/10.1103/PhysRevD.80.084035
https://doi.org/10.1103/PhysRevD.70.023002
https://doi.org/10.1103/PhysRevD.70.023002
https://doi.org/10.1088/1361-6382/aa842d
https://doi.org/10.1088/1361-6382/aa842d
https://doi.org/10.1103/PhysRevD.22.2323
https://doi.org/10.1088/1475-7516/2019/12/006
https://doi.org/10.1088/1475-7516/2019/12/006

