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In this work, starting from a spherically symmetric scale-dependent black hole, a rotating solution
is obtained by following the Newman-Janis algorithm without complexification. Besides studying
the horizon, the static conditions and causality issues of the rotating solution, we get and discuss the

shape of its shadow.
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I. INTRODUCTION

Black holes (BHs) are a generic prediction of Einstein’s
general relativity (GR) and other metric theories of gravity,
and they are believed to be formed in the gravitational
collapse of massive stars during their final stages. BHs are
the simplest objects in the Universe, characterized entirely
by a handful of parameters, namely their mass, charges and
rotation speed, although they are way more than math-
ematical objects. Due to Hawking radiation [1,2] and black
hole thermodynamics [3,4], BHs are exciting objects that
link together several different disciplines from gravitation
and astrophysics to quantum mechanics and statistical
physics, and they may provide us with some insight into
the quantum nature of gravity.

We had to wait 100 years since the formulation of
GR [5] and the first black hole solution obtained by
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K. Schwarzschild [6] to get the strongest evidence so far
regarding their existence, and the first image of a black
hole. In particular, on one hand, four years ago the LIGO
collaboration directly detected for the first time the gravi-
tational waves emitted from a BH merger of ~60 M, [7],
but there was no information on the defining property of
BHs, which is no other than their horizon. On the other
hand, just a few weeks ago the Event Horizon Telescope
(EHT) project [8], a global very long baseline interferom-
eter array observing at a wavelength of 1.3 mm, observed a
characteristic shadowlike image [9] (see also [10-14] for
physical origin of the shadow, data processing and cali-
bration, instrumentation etc.), that is a darker region over a
brighter background, via strong gravitational lensing and
photon capture at the horizon. Thus, the observation of the
shadow does probe the spacetime geometry in the vicinity
of the horizon, and doing so it tests the existence and
properties of the latter [15], although one should keep in
mind that other horizonless objects that possess light rings
also cast shadows [16-23], and therefore the presence of a
shadow does not necessarily imply that the object is a BH.
Therefore, shadows as well as strong lensing [24,25]
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images provide us with the exciting opportunity (a) to
detect the nature of a compact object, and (b) to test
whether the gravitational field around a compact object is
described by a rotating or nonrotating geometry. For a
recent brief review on shadows see [26].

The shadow of the Schwarzschild geometry was con-
sidered in [27,28], while the shadow cast by the Kerr
solution [29] was studied in [30] (see also [31]). For
shadows of Kerr BHs with scalar hair see [32,33], and for
BH shadows in other frameworks see [34-55]. Nonrotating
solutions have been obtained in nonstandard scenarios,
such as polytropic BHs [56,57] or BHs with quintessential
energy [58], to mention just a few. To explore the physics
behind BH shadows, a useful tool is provided by the by
now well-known Newman-Janis algorithm (NJA),
described in [59,60]. It is an approach that allows us to
generate rotating BH solutions starting from nonrotating
seed spacetimes. To be more precise, in the present work
we will take a variation of the usual NJA, the only
difference being the omission of one of the steps of the
NJA, namely the complexification of coordinates [58].
Instead of this, we will follow an “alternate” coordinate
transformation, which will be explained in the next section.

In the present work, we propose to investigate the
shadow of a rotating scale-dependent BH. The nonrotating,
static, spherically symmetric geometry was obtained in
[61]. The metric tensor is a solution to the modified
Einstein’s field equations in the scale-dependent scenario.
In the rotating case, which will be studied in the present
work applying the NJA, the computation of the shadow
would constitute a valuable tool to confirm or refute
theoretical predictions regarding the intimate structure of
space and time at the strong field regime.

Our work is organized as follows. In the next section, we
briefly summarize the main aspects of the NJA, while in
Sec. III we study the conditions leading to unstable null
trajectories for a generic parametrization of a rotating BH.
After that, we review the Scale-Dependent (SD) scenario in
the Sec. IV, while in Sec. V we construct the rotating
solution applying the NJA starting from a static, spherically
symmetric SD BH, and we investigate some properties of
the solution; for instance, horizon and static conditions,
causality issues as well as the BH shadow. Finally, we
conclude our work in the last section. We choose natural
units in which ¢ =1=G, and we adopt the mostly
negative metric signature (+,—, —, —).

II. NEWMAN-JANIS ALGORITHM WITHOUT
COMPLEXIFICATION

The NJA is a solution generating technique which, in its
original formulation, generates rotating metrics starting
from static ones. Shortly after its discovery and its use to
rederive the Kerr metric [60], it was successfully used to
find the Kerr-Newman spacetime [59]. In particular, the
original method uses a complexification of both radial time

(and null) coordinates, together with a complex coordinate
transformation. At the end of the process, a change of
coordinates to write the result in Boyer—Lindquist coor-
dinates is performed. Although there are several alternative
formulations (apart from the original formulation) for the
NIJA, here we would like to highlight those by Giampieri
[62], Talbot [63], Schiffer [64], Newman [65], and Ferraro
[66] (see Ref. [67] and references therein for a recent and
very complete review of the algorithm). Regarding the wide
belief concerning that the algorithm is a trick without any
physical or mathematical basis, we would like to remark the
work by Drake and Szekeres, who proved that the only
perfect fluid generated by the NJA is the (vacuum) Kerr
metric and that the only Petrov—D solution to the Einstein—
Maxwell system is the Kerr—Newman metric [68]. More
recently, Azreg-Ainou [69] has developed a modification of
the algorithm to avoid the complexification process, which
is usually considered as the main bottleneck of the process
due to the absence rigorous statements concerning the
possible complexification of the involved functions. Due to
this particular feature, in the present manuscript, we will
employ this version of the algorithm in the SD context. In
this section, in order to facilitate the reading of the
manuscript, the main aspects of the NJA due to Azreg-
Ainou will be briefly reviewed.

The starting point is a static spherically symmetric metric
parametrized as

dr?
ds* = G(r)d* — Fo) H(r)dQ?, (1)

where dQ? is the usual round metric for the 2-sphere.
The next step consists in introducing advanced null
coordinates (u, r, 0, ¢) defined by

du = dt — dr/V'FG, (2)

from where the nonzero components of the inverse metric
can be obtained as ¢*¥ = I"n* + I*n* — m"m* — m*m* with

" =g, (3)
nt = \/F/G8i — (F/2)8, (4)
()

being a set of null tetrads with the following normalization
properties: [,/ = m,m" = n,n* = I, m" =n,m" =0 and
L, = —m,m" = 1.

After this step, the following complex transformation is
introduced:

H H H

r— r+iacos0, (6)
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u— u—iacosf. (7)

Then, if the transformations

G(r) = A(r, 0, a), (8)
F(r) = B(r,0,a), (9)
H(r) - ¥(r,0,a), (10)

are considered, we obtain

m =g, (11)
n* = \/BJ/A8 — (B/2)5" (12)

m = <5’; +iasinO(8 — 5 +L95§;)/@. (13)

Using the previous transformations, the line element can be
written in rotating Eddington-Finkelstein coordinates as

A A
ds® = Adu? + 2\/%dudr + 2asin?0 (\/% - A) dudgp

A
- 2asin20\/;drd¢ — W

— sin’6 (‘I’ + a’sin’0 (2\/% - A) d¢2> . (14)

After that, in order to write the metric (14) in Boyer-
Lindquist coordinates, we proceed to perform the following
global coordinate transformation

du = dt + A(r)dr, (15)

dp = dep + y(r)dr, (16)

where 4 and y must depend on r only to ensure the
integrability of Eq. (15).

The following step lies at the heart of the NJA without
complexification [69]. As it is well known, in the original
NIJA, the next step in the construction of the rotating metric
consists of complexifying the r coordinate. Interestingly, to
circumvent it, Azreg-Ainou proposed [69] an ansatz for the
unknown functions which are involved in the process.
Specifically, by taking

K
g= - KE) (17)
FH + a
a
S 18
Y= TFHt & (18)

where

K= @H, (19)

and
FH + a’cos*0
A(r,0) =——5—5— 20
(r.6) (K + a*cos?0)? (20)
FH + a? cos* 0
B(r.0) = +flpcos ’ 21)
the metric (14) takes a Kerr-like form given by
Y /A 2
ds? = — (5 (dt — asin?0dp)? =2 dr? - p2de?
PP A
. 29
~ 7 (adr - (K + a2)d¢)2> , (22)
with
p* = K + a*cos? 0, (23)

where a = J/M, with M, J being the mass and the angular
momentum, respectively, of the rotating geometry.

At this point some comments are in order. First, note that
although the function ¥(r, 6, a) remains unknown, it must
satisfy the following constraint

(K + a2y2)2(3‘P‘,‘I’0,2 —2¥Y, ») = 3a’K ,\¥?  (24)
which corresponds to imposing that the Einstein tensor
satisfies G,y = 0. Second, it can be shown (see Appendix A
of Ref. [69]) that the metric (22) satisfies Einstein’s field
equations G, = 8zT,, with a source given by an energy-
momentum tensor given by

TH = eefel + p.eiel + pyeyel, + p¢e$)el<7)’ (25)

with

o= (r* + a2, OOa)’ (26)

P*A

A(0,1,0,0

e = VA( : ), (27)

v

1
o= 0010 (28)

N

20, 1
o= (asin®6. 0,0, 1) ) (29)

\/751n6’

Finally, in order to ensure the consistency of Einstein’s field
equations, the unknown W must satisfy an extra constraint
given by
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(K,zr + K(z - K,rr) - a2y2(2 + K,rr))lp
+ (K + a2y) (4}72\11}2 -K,¥,) =0. (30)

It is worth mentioning that, in terms of a general
function, ¥, that solves Egs. (24) and (30), namely

2
¥, =He"V, (31)
with w = y(r,y* a?), the components of the energy-
momentum tensor can be written as (see, for example,

Ref. [70])

1 a®(20y* (K +a?)+24y* f + (1 —y})K?)
E=——

lP!I 4\ng4
3A(H ,+a*Hy ,)* —4a*y* (1 -y* ) H?y,
AH™,
N 2a*(a®y*(1+y*)—(1- 3y2)K)y/’yz
‘I’gp2
T2HY, (8a?y*(1=y)HY 22 + A ,(H , +a*Hy )
2a?
+ ZA(HJ’ + aZ(ZHJ’WJ + H<a2W,2r + W,rr)))) - \P—ﬂz
g
(32)
n 2a’>y’A  A(H,K,+ a’HK ,y)
Pr= "€ - -
‘Pyp4 H‘ng2
+ a (3H?% —2HH .y, + 2a°HH ,y
2 r grfr Yo
2H?Y,
+ a4H2W,2r) - 26lzl{zl/ﬁ,rr (33)
Do p _ (1=K 4dt(1-y)yy e
¢ 21ng4 ngPZ
+ 2a2(1=y") (@YY — 20y 20—y 2) (34)
¥, )
with
p? =r*+ a*cos* 0, (35)
2f =r*(1 = F), (36)
A==2f+a*+r7, (37)
T = (r* +a*)? - a*Asin® 6. (38)

In this sense, the Einstein field equations are satisfied
whenever the matter sector is given by the set of equa-
tions (32), (33), (34).

After implementing the protocol here reviewed, the
above expressions can be simplified in the particular case
G = F and H = r°. In this case it can be shown that one
possible solution of Eq. (24) is given by

¥ = r? + a? cos* 0 (39)

and, then, the metric given by (22) takes the form

2 ’ 4afsin’0
ds? = (1-2L)ap -2 gp 241506 gy
p A p
Tsin’f
— AP — S; g, (40)

showing that the nonrotating black hole solution is recov-
ered when a = 0. Note also that, in this particular case,
Eqgs. (32)-(34) reduce to (see, Ref. [71])

2(rf —
£ = —<”;4 /) (41)
Pr=—¢ (42)
Po=~D: —J’% (43)
Py = Po- (44)

Before concluding this section we would like to
highlight a couple of points. First, the NJ algorithm
summarized here (originally developed in [69] as stated
before) does not appear to present pathologies [72,73].
However, as claimed by Rodrigues and Junior in [72]
some inconsistencies could appear depending on the way
the method is used to generate rotating solutions. For
example, if the action contains a matter Lagrangian, the
correct way to implement the method could be to
integrate the equations of motion associated with varia-
tions of the action respect to the matter field and then to
insert this result into the Einstein equations projected
with tetrads given by Eqgs. (25)—(29). On the contrary, the
final result must be considered as an approximation of
the real rotating solution. We shall discuss more about
this point in the context of scale-dependent gravity at the
end of Sec. V. Second, the algorithm is not restricted to
asymptotically flat static seeds. Indeed, the only require-
ment to obtain rotating solutions using the algorithm
consists in imposing spherical symmetry for the corre-
sponding static solution. As an example for this asser-
tion, please see Ref. [71], where the steps here developed
are used to obtain an asymptotically de Sitter rotating
solution.

064053-4



BLACK HOLE SHADOW OF A ROTATING SCALE-DEPENDENT ...

PHYS. REV. D 101, 064053 (2020)

III. NULL GEODESICS AROUND THE ROTATING
BLACK HOLE

In this section, we use the well-known Hamilton—Jacobi
formalism to obtain the null geodesic equations in a
rotating space-time to find the celestial coordinates to
study the shadow of a generic rotating metric. From the
Hamilton—Jacobi equations [74]

1
g =5 90,50,5. (45)

where 7 is the proper time and S is the Jacobi action and
assuming that Eq. (45) is separable, Eq. (45) reads

S = —Et +®¢ + S,(r) + Sp(6). (46)

with £ and @ being the conserved energy and angular
momentum respectively. Plugging (46) in (45) we verify that

S,—/r

Sy = / " Je0)de, (48)

R(r)

dr, (47)

where
R=((rP+a*)E—-a®)?-A(Q+ (®-aE)?), (49)
0(0) = Q — (®?>csc? @ — a’E?) cos? 0, (50)
where Q is the Carter constant. Now, to obtain the unstable

photon orbits in the rotating space-time we impose R = 0
and R’ = 0, namely

(@*> —aé+r*)? = (a®>+r*F)((a=&)* +1n) =0, (51)
da*—at+ 1) = ((a=&? +n)(rF +2F) =0, (52)

where & = ®/E and n = Q/E? are the impact parameters.
Accordingly,

4(a® + r*F) r?
2@ rro) ~ 53
g a(rF’+2F)+a+a (53)
_ P(8a’F — r(rF' —2F)?)
B a*(rF' + 2F)?

(54)

In the above expressions, r stands for the radius of the
unstable null orbits.

Finally, the apparent shape of the shadow can be
obtained from the celestial coordinates which are given
by [75]

d
a = lim <—r(2) sin60—¢ ), (55)
rp—oo dr (VO.HO)
do
p = lim <r2 >, (56)
neo\ 'O dr (r0.60)

where (r(,0,) are the coordinates of the observer. As we
shall discuss in the next section, our seed solution is
aymptocally anti de Sitter. In this sense, as stated in [76]
in the context of shadows of Kerr-Newman-NUT black
holes with a cosmological constant, the case A <0 the
domain of outer communication of the black hole, namely,
the region between » = oo and the first horizon corresponds
to the region where we can place observers for observing
the shadow of the black hole.

IV. SCALE-DEPENDENCE IN BLACK HOLE
PHYSICS

This section is devoted to reviewing the essential
ingredients of the now well-known SD gravity. The
motivation of this alternative approach in which the
couplings evolve with respect to an arbitrary scale, which
is best understood in the context of quantum gravity [77]. Up
to now a “consistent and predictive” description of quantum
gravity is doubtlessly an open task. Among the numerous
attempts to theoretically tackle the problem of quantum
gravity, the asymptotic safety scenario [78] which is using
the tool of effective quantum actions and the technique of
exact renormalization groups (ERG), has generated prom-
ising results and increasing interest [79-101]. In those
effective actions, the quantum features appear through the
different field operators and most importantly, the running of
the corresponding coupling constants. The scale-dependent
effective average action, which is the final result of many
quantum approaches is the starting point of the SD approach.
The idea of the SD approach is to obtain self-consistent
quantum background solutions of the gap equations, derived
from an effective average action. This approach is comple-
mentary to the improving solutions approach, where sol-
utions of the classical field equations are improvement by
promoting coupling constants to running coupling constants
[102-125].

Even though SD gravity is quite recent (see [126—147]),
approaches where at least one of the parameters evolves
indeed exist in the literature. One of the most famous of
them is the Brans—Dicke (BD) theory [148]. In such theory,
the Newton coupling G, is taken to be an arbitrary scalar
field ¢ via the simple replacement G — ¢~'. Although the
BD theory is a classical theory, the computation is similar
to the SD approach but the foundation if quite different.

The solutions obtained from the SD scenario are gen-
eralizations of the classical solutions, which can be
recovered by setting the parameter controlling the amount
of scale dependence to zero. In the simplest case, one only
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has two couplings: (i) Newton’s coupling G, and (ii) the
cosmological coupling A;. As usual, we can define the
auxiliary parameter k;, = 87G. The “dynamical” fields are
the metric field g,, and the arbitrary renormalization
scale k.

The effective action is then written as

[lg. k] = / d4x\/_—g[2ikk (R=2A) +Lyl.  57)

where L), is the Lagrangian density of the matter fields.
The variation of the effective average action with respect
to the metric field gives the effective Einstein field
equations

G;w + Akg;w = KszEfec’ (58)

and the effective energy-momentum tensor satisfying
K'kT;f/feC = K'kT% - At/'”/' (59)

It is mandatory to point out that the effective energy-
momentum tensor takes into account two contributions:
(1) the usual matter content and (ii) the nonmatter source
(provided by the running of the gravitational coupling).
The additional tensor is

At,, = Gi(9,0-V, V)G (60)

Given that the purpose of this paper is to investigate a SD
BH in four-dimensional spacetime using the NJA for-
malism, we set T,% = 0 [which implies £, =0 in the
action (57)] for simplicity, although a matter source is
always an interesting ingredient in gravitational theories.

Now, varying the effective average action respect the
additional field k(x), we obtain an auxiliary equation to
complete the set. The last condition reads:

Ol (G- K]

=0, (61)

This restriction can be seen as an a posteriori condition
toward background independence [149-155]. The con-
dition (61) gives an immediate link between Gy and A,;.
In such, we observe that the cosmological parameter is
mandatory to obtain self-consistent SD solutions. As we
commented before, the above equation closes the
system.

|

Now, a crucial point in many approaches to SD arises
when one circumvents a particular choice of k(x). This is
a reasonable thing to do because, in general, when one
naively identifies the renormalization scale k(x) in terms
of the physical variables of the system under consider-
ation k — k(x, ...), the reparametrization symmetry is not
preserved anymore. One can then complete the set of
equations of motion by assuming some energy con-
straints. It is very well-known that the energy conditions
can be violated, but, in general, a physical solution
maintains the validity of, at least, one of the energy
conditions. In our case, we will use the null energy
condition (NEC) because it is the least restrictive of them.
In the extreme case, we have

Tellecpupr — _Ar,, 0467 =0, (62)

where ¥ is a null vector, similar to that considered in
[134]. For the line element

ds*> = Fdr* — F~'dr* — r?dQ?, (63)

A clever choice of this vector let us obtain a differential
equation for the gravitational coupling, namely

G £E0) (dG(r))Z o o)

dr? dr

the solution of the above differential equation is
given by

Gy

G(r) = 1+er’

(65)

and serves to decrease the number of unknown functions
of the problem. After replacing G(r) into the effective
Einstein field equations we then obtain the functions A(r)
and F(r) [61]. One finds [156]

26M AP
F=1 ——O—Tr—re(6G0Me+ 1) + 3GyMe
r
1
+ r2e?(6GyMe + 1) log <1 + —) , (66)
€r

and

_ 6GoMoe? = 12re*(re + 3)(re + 1)(GoMoe + ) log(“H) + r(72GoMye® +2A, + 11€?)

A(r)

2r(re + 1)?
+ 4A0r3€2 + r2(72G0M0€2 + 1263 + 6A0€)

2r(re 4+ 1)?

: (67)
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It is worth noticing that, one of the integration constants,
that appears when solving (62) can be identified as the
running parameter ¢, which measures the strength of the
scale-dependence of the modified solution. Even more, we
expect that the improved SD solution deviates slowly from
the classical one so that e corresponds to a small quantity.
Indeed, in the limit ¢ — O the classical solution is recov-
ered, namely G(r) — G, with G, the Newton constant and
F(r) = Fo(r) as in the classical SD Schwarzschild—(anti)
de Sitter space-time.

It is remarkable that for the case of coordinate trans-
formations we have

V¥G,, = 0. (68)

By inserting the solution, into I'; and applying the chain
rule for k = k(r) one can readily confirm that variational
implementation of scale independence (61) is indeed

fulfilled by the solution.
A surprising feature of the above solution is the behavior
for a very large and very small radius. This asymptotic
|

r?(=3r*e*(re + 1)(6GyMe + 1) log (

1
re

+ 1) +3GoMe(3re(2re + 1) = 1) + r(Ar(re + 1) + €(3re + 2)))

behavior reflects the gravitational instability predicted and
found in certain AS scenarios [142,157-159] and not the
k ~ 1/r relation one would obtain from a naive dimen-
sional guess.

V. ROTATING SCALE-DEPENDENT BLACK
HOLE SOLUTION

In this section we use the NJ algorithm to construct the
rotating BH solution from a static and spherically sym-
metric SD BH. Then the properties of this rotating SD
space-time are studied. Since we are mostly interested in
the black hole shadow we will leave the transcription of
G(r) and A(r) to the corresponding G(r, 0) and A(r, 0) to a
future study.

As a starting point, we consider the SD BH solution (66)
obtained in [61]. Note that, using this metric function, the
rotating metric reads as Eq. (40) where we must replace F
by F in all the definitions. Moreover, from Eqs. (41)—(44),
the matter sector which solve the Einstein field equa-
tions reads

£ (re + 1)(a? cos?(0) + r*)? (69)
Po = et l)z(azlcosz(e) e <67’2€2(V€ +1)?(6GOMe + 1) log <r1€ + 1) (2a*cos?(0) + r?)
— a*cos?(0)(6GOMe(2re + 1)(6re(re + 1) — 1) + r(4Ar(re + 1)? + e(re(12re + 19) + 6)))
+ r¥(—e(3re(2re + 3) + 2)(6GOMe + 1) — 2Ar(re + 1)2)>. (70)

It is noticeable that in the limit € — O the matter sector of
the rotating solution corresponds to the de Sitter solution
found in [71], namely,

Art
© T (@ cos(0) + 12)? )
_ Ar*(2a*cos’(0) + 1) (72)

Po = (a* cos?(0) + r*)?
The horizons of the solution correspond to the real roots
of A. However, given the nature of this function, numerical
computations are required. In Fig. 1 we show the behavior
of A for fixed values of {M, G, a, A} parametrized by the
running parameter,e. It is worth noticing that the size of the
BH decreases as the running parameter takes greater values.
Causality violation and closed timelike curves are possible
if g44 > 0, namely
)
_ Z‘.sm2 0) 0. (73)
p

|

from where, given that sin’(6)/p? is positive, the sign of £
plays a crucial role in the analysis. What is more, the
condition to avoid causality violation and closed timelike

0.4
0.2}
0.0
~0.2
—0.4
~0.6/
~0.8f

~1.0% ‘ ‘ ‘ ‘
0.0 0.5 1.0 1.5 2.0

~
N—
<

FIG. 1. Behavior of A(r) fora = 0.35, A = —0.01, M = 1 and
Gy = 1 with ¢ = 0.00 (black solid line), ¢ = 0.01 (blue dashed
line), € = 0.05 (red dotted line) and ¢ = 0.10 (green dotted line).
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FIG. 2. Behavior of X by the rotating SD BH for a = 0.35,
A =-0.01, M =1 and G, = 1 with € = 0.00 (black solid line),
¢ = 0.50 (blue dashed line) and ¢ = 0.80 (red dotted line).

curves is to impose £ > 0. In Fig. 2, it is shown that, in
contrast to Kerr solution, this requirement is fulfilled for
certain values of the parameters. Note that for the particular
values of {a,M,A, e} set in 2, £ is a monotonously
increasing function of r but is shifted downwards for
increasing values of the running parameter. Even more, it
can be demonstrated that there exists an upper bound on €
above which the emergence of a local maximum and, as a
consequence, the apparition of negatives values of X is
unavoidable. However, given the functional form of Z, the
bound can only be estimated by numerical calculation. In the
case shown in Fig. 2 the upper bound is around € = 0.89.
The BH shadow corresponds to the parametric function
of the celestial coordinates. In Fig. 3 the shadow of the
rotating BH is shown for different values of the parameters.
Note that for small values of the running parameter,
€ < 0.1, the shadow undergoes a shift to the left without
an important change in its size (Fig. 3, left panel). However,
for greater values of epsilon (Fig. 4, right panel), the effect

FIG. 3.

is on the size and the shape of the shadow. A similar effect
occurs when considering another set of parameters. In
particular, for a higher value of the spin parameter, a, the
effect on the shadow is shown in Fig. 4. Note that in this
case for € < 0.1 the shift of the shadow coincides with the
obtained in the previous case, but the effect is remarkable.
The same occurs for ¢ > 0.1, namely, the deformation of
the shadow is noteworthy.

Before concluding this section we would like to discuss
some issues we find when the NJA algorithm is imple-
mented regarding to either the final solution solve the
Einstein equations or not as was pointed out at the end of
Sec. II. To this end we shall follow the statements in
Refs. [72] and [73]. In these works, the authors claim that
the introduction of the rotation parameter by the NJA
algorithm must change the form of the nonlinear electro-
dynamics Lagrangain and its total derivative respect to the
Maxwell scalar, L£(F) and dL(F)/dF respectively.
However, the only way in which we can obtain such a
modification is using the rotating solution of the Einstein
field equations as a background to obtain the form for £(F)
and dL(F)/dF. Nevertheless, this strategy leads to five
independent equations that cannot be consistently solved
and in this sense, the solution obtained by the NJA must be
considered as an approximation. Regardingly, in this work,
the context of scale-dependent gravity, the Einstein field
equations, in vacuum, are given by Eq. (58). Note that,
Eq. (58), can be written as

G/w =L (74)

with

T, = —At,, = gu . (75)

Silhouette of the shadow cast by the rotating SD BH for @ = 0.35 with A = —0.01, M =1 and G, = 1. In the left panel

€ = 0.00 (black solid line), ¢ = 0.03 (blue dashed line) and ¢ = 0.06 (red dotted line) and ¢ = 0.09 (orange dotted line). In the right
panel € = 0.00 (black solid line), € = 0.10 (blue dashed line) and ¢ = 0.15 (red dotted line) and ¢ = 0.20 (orange dotted line).
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FIG. 4. Silhouette of the shadow cast by the rotating SD BH for a = 0.75 with A = -0.01, M = 1, G, = 1 and ¢, = 10. In the left
panel € = 0.00 (black solid line), € = 0.03 (blue dashed line) and ¢ = 0.06 (red dotted line) and ¢ = 0.09 (orange dotted line). In the
right panel ¢ = 0.00 (black solid line), ¢ = 0.10 (blue dashed line) and ¢ = 0.15 (red dotted line) and ¢ = 0.20 (orange dotted line).

Now, (as stated in Ref. [73] in the context of nonlinear
electrodynamics) the introduction of the rotation parameter
by the Newman—Janis algorithm must change the form of
the fields G and A given by Eqs. (65) and (67), respectively.
However, it is not possible to apply the Newman—Janis
algorithm directly in TW. The only way to find G(r, 8) and
A(r, ) of the rotating black hole, is to solve Einstein field
equations G, = T, with respect to G(r, 6) and A(r,6) in
the background defined by the rotating metric (40) Now, an
explicit calculation reveals that Eq. (74) leads to five
independent equations involving derivatives of G(r,0)
and constrained to

G(r.0) <2afec(r, 0) - M)
G(l" ’ 9) ar999

— 09G(1,0) (48,G(r, 0) +
Yoo

) =0, (76)

which arise after imposing 7,y = 0. However, up to now,
no analytical solution to this system is known. In this sense,
we conclude that it is not possible to solve consistently all
the equations to obtain G(r,0) and A(r,0) and, as a
consequence, it is not possible to demonstrate if the
solution corresponds to a solution of the Einstein field
equations. However we would like to point out that,
independent of whether this metric could be a solution
or not, it is interesting to see the lensing of light in this
geometry as a case study as we did in this work.

VI. CONCLUSIONS

In this work, we have reviewed some aspects on the
Newman—Janis algorithm without complexification that
allows us to construct generic four-dimensional rotating

black holes. In particular, we have constructed a rotating
scale-dependent black hole, and we have studied the main
aspects of the construction of its unstable null orbits. These
are new results since to the best of our knowledge this has
not been considered before. Moreover, some physical
properties, such as the position of the horizons, the static
limit, and causality issues, have been investigated.

One of the main results obtained here is that the running
parameter induces significant variations in the behavior of
the rotating solutions in comparison with its classical
counterpart. To be more precise, we found that the size
of the rotating scale-dependent black hole decreases as the
running parameter takes greater values. Moreover, we
demonstrated that, in contrast to the Kerr solution, the
causality issues can be circumvented for certain values of
the free parameters of the solution. What is more, for fixed
{a, M, A} we can obtain a bound on the running parameter
to ensure the positivity of X. We also obtained that the black
hole shadow is affected by the running parameter. Indeed,
the shadow undergoes a deformation and its size is reduced
as the running parameter increases.

We would like to emphasize that the Newman—Janis
algorithm implemeted here is free of pathologies (in the
sense described in Ref. [72]) that could appear when a
matter Lagrangian is considered into the action. Indeed,
as we have commented after Eq. (60), there is not any
matter field in the system under study. Even more, the
equations of motion we solved correspond to the scale-
dependent Einstein field equations that arise as a conse-
quence of variations of the scaledependent action respect
to the metric field. To be more precise, the Lagrangian
density appearing in Eq. (57) vanishes and the only
contribution to the effective energy momentum tensor is
given by the so-called nonmatter energy momentum tensor
given by Eq. (60).
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Finally, it would be interesting to obtain the scale-
dependent Newton’s constant and cosmological constant
for the rotating solution, namely G(r, 8) and A(r, 8) respec-
tively, after solving the scale-dependent Einstein’s equation

G, +A(r.0)g,, =8xG(r,0)T,, — At

we (77)
considering (40) as the line element of the solution. However,
as it was not the main goal of this work, we hope to consider
this and other issues in future work.
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