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In this work we focus on the situation where a significant amount of matter could be located close to the
event horizon of the central black hole and how it affects the gravitational lensing signal. We consider a
simple toy model where matter is concentrated in the rather small region between the inner photon sphere
associated with the mass of central black hole and outer photon sphere associated with the total mass
outside. If no photon sphere is present inside the matter distribution, then effective potential displays an
interesting trend with maxima at inner and outer photon sphere, with peak at inner photon sphere higher
than that at outer photon sphere. In such a case we get three distinct set of infinitely many relativistic images
and Einstein rings that occur due to the light rays that approach the black hole from distant source and get
reflected back just outside the outer photon sphere, due to light rays that enter the outer photon sphere
slightly above the outer peak and get reflected off the potential barrier inside the matter distribution and
due to the light rays that get reflected just outside the inner photon sphere. This kind of pattern of images is
quite unprecedented. We show that since relativistic images are highly demagnified, only three images are
prominently visible from the point of observations in the presence of matter as opposed to only one
prominent image in case of single isolated black hole and also compute the time delay between them. This
provides a smoking gun signature of presence of matter lump around black hole. We further argue that if the
mass of the black hole inferred from the observation of size of its shadow is less than the mass inferred from
the motion of objects around it, it signals the presence of matter in the vicinity of black hole.
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I. INTRODUCTION

Einstein proposed the general theory of relativity in
1915, a theory of gravity which superseded the Newtonian
theory proposed almost four hundred years ago. General
relativity came up with many new predictions of the
phenomenon which were absent in the Newtonian theory
of gravity. We shall focus on two such predictions in this
paper, namely the black hole and gravitational lensing.
Black holes are the objects endowed with a one-way
surface known as event horizon which absorbs all incoming
matter and radiation and does not let anything go out. The
first exact solution was proposed way back in 1917 which
represents a spherically symmetric black hole parametrized
by its mass. It is referred to as Schwarzschild black hole.
Gravitational lensing is a phenomenon where light from a
source gets bent as it passes by a gravitating object and thus
affecting the location of the source as inferred by the
observer [1]. Bending of the light around sun was observed
during solar eclipse in 1919 and was consistent with the
theoretical prediction based on general relativity. In this
paper we study the gravitational relativistic gravitational
lensing by a Schwarzschild black hole surrounded by

matter in its vicinity and contrast it with gravitational
lensing by an isolated black hole. The lensing said to be
relativistic if the deflection angle is more than 3

2
π [2,3]. We

show that in the presence of matter the pattern of images is
very peculiar and quite unprecedented.
As mentioned earlier first black hole solution was

proposed way back in 1917 almost immediately after
Einstein proposed General relativity [4]. But because of
the esoteric nature of the object is represents, it was
considered to be a mathematical artifact and it was believed
that it does not represent a realistic object that can exist in
the universe. The dynamical solution that represents gravi-
tational collapse of homogeneous dust, a pressureless
matter, that produced Schwarzschild black hole as an
end state was found in 1939 [5]. The black holes were
taken seriously in the 1960s when extremely energetic
phenomenon such as quasars and active galactic nuclei
were discovered and there was no other alternative explan-
ation for production of large amount of energy on such a
small timescales [6]. But now black holes lie at the heart of
both observational astronomy as well as theoretical phys-
ics. We believe that there is a supermassive black hole at the
center of almost every galaxy with the masses that range
from million to billion times the mass of the sun [7]. It is*mandar@iitdh.ac.in
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estimated that there are several million to billion black
holes which have mass comparable to the mass of sun
lurking around in our galaxy. Yet another prediction of
general relativity is gravitational waves which are tiny
fluctuations of geometry of spacetime that travel at speed
of light. We have detected gravitational waves from the
merger to two black holes, an astrophysical event where
two black holes spiral around one another and eventually
merge together to form a single black hole [8,9]. It is
believed that the black hole forms when the stars with large
enough mass at the end of their life cycle when they run out
of fuel implode due to self-gravity and eventually turn into
black hole [10]. Thus black holes are everywhere and
inevitable. Since gravity in their vicinity of black holes is
strong it offers us an opportunity to understand the general
relativity and its alternatives in strong field regime.
Gravitational lensing around stars such as sun is small

with tiny bending angle which results into tiny displace-
ment of image of the source [11]. Things change drastically
in the vicinity of black holes where gravity is strong and
light can suffer a significant bending, the phenomenon
which is referred to as relativistic gravitational lensing [2].
Light can go around the black hole in the circular orbit
which is called photon sphere that is located at r ¼ 3M
while event horizon is located at r ¼ 2M. Here we work in
geometrical units where c ¼ G ¼ 1. The amount of deflec-
tion suffered by light depends on the minimum distance of
approach or the radius at which light ray approaching the
black hole turns back and starts its outward journey. As the
turning point gets closer to the photon sphere deflection
angle goes on increasing and shows divergence as it
approaches the photon sphere. So, depending on the
location of the turning point we can have light rays that
go around the black hole once, twice, thrice and so on all
the way up to infinite turns, which leads to the formation of
infinitely many images of the same source. If this inves-
tigation we assume that the source is located almost exactly
behind the black hole slightly off. If it is in turn exactly
behind the source then the image is ring which is referred to
as Einstein ring. We get infinitely many concentric rings. If
the light ray were to turn back it must turn back outside the
photon sphere. If light ray enters the photon sphere it will
inevitably be engulfed by the black hole event horizon,
essentially because of which we get a dark patch in the
middle where no images or rings can lie. It is referred to as
the shadow of a black hole. There are many investigations
in the literature which deal with the gravitational lensing by
different kinds of black holes [2,12–14]. People also study
gravitational lensing around more exotic objects such as
naked singularities, wormholes etc [15–23] where photon
sphere may or may not be present. In this paper we focus
our attention on black holes. Photon sphere which is the
circular photon can be easily obtained by locating maxi-
mum of effective potential in Schwarzschild spacetime.
The concept of photon sphere in Schwarzschild spacetime

has been generalized to arbitrary spacetimes [24]. Since we
consider essentially the Schwarzschild photon spheres,
the general definition should quite naturally reduce to
the notion of photon spheres used in our paper.
Black holes are compact objects. Event horizon of one

solar mass black hole is of the size 3 km, an opposed to the
size of the sun which is around 0.7 million km. The radius
of the event horizon of the black hole is proportional to its
mass. Approximately the angle subtended by the black hole
at earth is the size of the black hole over distance to the
black hole which is ridiculously small. Thus we need
telescope with extremely large resolution in order to
observe the black hole and the phenomenon occurring in
its vicinity. This is an impossible task with a single
telescope. Thus we invoke the technique of interferometry
where we combine the data from different telescopes
widely separated so as to form a virtual telescope with
large size, significantly improving the sensitivity and
resolution. The GRAVITY experiment combines four tele-
scopes to form an optical telescope with effective diameter
of around 100 m [25]. Whereas Event Horizon Telescope
combines various radio telescopes across continents gen-
erating a telescope with effective diameter comparable to
the size of the earth. Event Horizon Telescope has observed
a black hole at the center of our neighboring Andromeda
galaxy [26]. So far the observation is consistent with both
general relativity and the black hole nature of central object.
But observations in future with better sensitivities of
instrument involved, not only with light but also with
gravitational waves, neutrinos etc might throw surprises.
Many investigations were done exploring possibility
beyond simple Kerr-black hole nature of compact object
at the center of andromeda galaxy [27–30].
In this investigation we study the gravitational lensing by

a Schwarzschild black hole surrounded by spherically
symmetric matter distribution. The black hole at the center
is assumed to have massM1 and its event horizon is located
at r ¼ 2M1. The photon sphere is located at rph1 ¼ 3M1.
The mass outside is M2 with M2 > M1 and thus photon
sphere associated with it is located at rph2 ¼ 3M2. We
assume that the mass distribution is located between two
photon spheres. If mass lies between r ¼ r1 to r ¼ r2 with
r2 > r1, then we have rph1 < r1 < r2 < rph2. With further
assumptions on the mass distribution we get an effective
potential for radial motion of light rays that displays an
interesting trend. It admits two maxima, one at the inner
photon sphere r ¼ rph1 and one at outer photon sphere
r ¼ rph2. The value of the potential at maximum is larger at
inner photon sphere. We get three sets of infinitely many
images and Einstein rings. One set is due to the light rays
that get reflected back at the location outside the outer
photon sphere. The second set of images is due to the light
rays that enter the outer photon sphere just above the
maximum and get reflected at in the region where mass is
distributed. And the third set of images is due to the light
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rays that get reflected back close to the inner photon sphere.
This pattern of images is quite unprecedented and differs
significantly from that of an isolated single Schwarzschild
black hole. Relativistic images are highly demagnified as
the number of turns around black hole increases. We show
that in the presence of matter around black hole three
images are quite prominently visible as compared just one
prominent image in case of single isolated black hole,
which would provide a smoking gun signature of distri-
bution of matter close to the black hole. We also compute
time delays between three image which would be relevant if
the source is variable. Further, the size of the shadow is
dictated by the inner photon sphere, since peak in the
effective potential is higher and thus inferred mass from
the shadow will beM1. Whereas the inferred mass from the
motion of the objects in the vicinity will be outer massM2.
Thus we can infer the presence of the matter close to the
black hole from the mismatch of the inference from two
different observations. The effect of matter distribution
surrounding black hole on its shadow was investigated in
[31–35] where different kinds of matter fields such as scalar
field, perfect fluid dark matter, dark energy etc. were
considered. Here the matter affects the spacetime geometry
and thereby affecting the propagation of light. If the plasma
is present around black hole it can also affect the propa-
gation of light due to the electromagnetic interaction
[36–38]. But rigorous analysis exploring effect of pattern
of relativistic images and whether or not it displays
interesting trend is not explored so far. Here we consider
a very simplistic toy model with minimal assumptions
about the nature of matter and show that under the
circumstances considered here we get very interesting
and novel pattern of images due to the presence of multiple
photon spheres.
An investigation somewhat similar to this was carried out

by one of us (MP) where we studied gravitational lensing
by binary black holes. We consider Majumdar-Papapetrou
spacetime which represent two identical mass black holes
in equilibrium [39]. We focus our attention on the light rays
that move on the plane midway between the two black
holes. If the two black holes are close enough then the
effective potential looks similar to the one in this paper
except for the fact that inner photon sphere in absent and
potential diverges as we go in the inward direction. Thus we
get two set of relativistic images. One set is due to the light
rays that get reflected back just outside photon sphere and
other set is due to the light rays that enter photon sphere just
above the maximum and then get reflected black off the
potential barrier. We had developed a formalism to calcu-
late location of images in terms of effective potential [39].
We import and use those techniques here in this paper.
The organization of paper is as follows. In Sec. II we

discuss null geodesics in spherically symmetric spacetime
and around the Schwarzschild black hole. In Sec. III we
present the gravitational lensing formalism. In Sec. IV we

describe the system under consideration i.e., black hole
with matter surrounding it. In Sec. V we describe image
formation due to the light rays that turn back outside the
outer photon sphere. In Sec. VI we discuss images due to
the light rays that enter outer photon sphere just above the
peak and get reflected inside matter. In Sec. VII we discuss
formation of images due to the light rays that get reflected
outside inner photon sphere. In Sec. VIII we discuss the
shadow cast by the black hole with matter in the surround-
ing. In Sec. IX we discuss the properties of most prominent
images that would be relevant for observations. In Sec. X
we provide a summary and concluding remarks.

II. NULL GEODESICS IN SPHERICALLY
SYMMETRIC SPACETIME AND AROUND

SCHWARZSCHILD BLACK HOLE

In this section we review the null geodesics in static
spherically symmetric spacetimes, in particular focusing on
Schwarzschild metric which is the case of interest to us. We
consider general static spherically symmetric spacetime. Its
line element is given by

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ ð1Þ

In general the inverse of a coefficient of dr2 could be
different from coefficient of dt2, but we focus on the case
where they are identical. We consider a light ray that
follows geodesic motion. We can get equations describing
geodesic by varying the Lagrangian L given below

L ¼ 1

2
gμν _xμ _xν ¼

1

2

�
−fðrÞ_t2 þ _r2

fðrÞ þ r2ð_θ2 þ sin2θ _ϕ2Þ
�

ð2Þ

where derivative is with respect to affine parameter λ and _xμ

is the four-velocity of the light ray. Euler-Lagrange
equation of motion are given by

d
dλ

�∂L
∂ _xα

�
¼ ∂L

∂xα : ð3Þ

They are supplemented with the normalization condition
L ¼ 0 for null geodesic. The θ—component of Euler-
Lagrange equation of motion turns out to be

θ̈ ¼ _ϕ2 sin θ cos θ − 2
_r _θ
r
: ð4Þ

So if at the initial moment t ¼ ti particle is moving on
the equatorial plane, i.e., θðtiÞ ¼ π

2
and _θðtiÞ ¼ 0, then

θ̈ðtiÞ ¼ 0 and it implies that particle would continue to
move on the equatorial plane. We focus our attention on the
light rays that move on the equatorial plane and thus now
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onward θ will take a value θ ¼ π
2
. This is not a loss of

generality, since in spherically symmetric spacetime light
will move on a plane passing through the center, which
by relabeling the coordinates can be turned into the
equatorial plane. Since none of the metric coefficients
depend explicitly on time t and azimuthal angle ϕ, right
hand side of t—component and ϕ—component of Eq. (3)
will be zero and hence the quantities in the parenthesis on
the left-hand side would be constants of motion, which are
referred to as conserved energy E and conserved angular
momentum L. From this consideration we get equations
for the time and azimuthal components of four-velocity.
Combining these equations with Eq. (2) and the normali-
zation condition L ¼ 0, we also get the equation for the
radial component of velocity. We have

_t ¼ E
fðrÞ

_ϕ ¼ L
r2

_r2 þ L2

r2
fðrÞ ¼ E2: ð5Þ

We can write down the equations above with the repar-
ametrization λ → λ=jLj. We get

_t ¼ 1

bfðrÞ
_ϕ ¼ � 1

r2

_r2 þ 1

r2
fðrÞ ¼ 1

b2
: ð6Þ

The parameter b which appears in the equations above is
b ¼ jLj

E and called the impact parameter. Plus and minus
sign corresponds to the light rays that travel in counter-
clockwise and clockwise respectively along azimuthal
direction. We can rewrite the last equation as

_r2 þ VðrÞ ¼ 1

b2
with VðrÞ ¼ 1

r2
fðrÞ; ð7Þ

where V is known as effective potential.
The conditions for the light to move along the circular

orbit are _r ¼ 0 and ̈r ¼ 0, which can be translated to

VðrÞ ¼ 1

b2
and V 0ðrÞ ¼ 0: ð8Þ

Here prime stands for the first derivative with respect to
radial coordinate r. The circular orbit is called photon
sphere. It is stable or unstable depending on whether the
second order derivative of effective potential is positive or
negative. The unstable photon sphere plays a crucial role in
the gravitational lensing as we shall see later.

Now we now focus our attention on Schwarzschild
spacetime. The metric is given by the expression

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ dr2

ð1 − 2M
r Þ

þ r2ðdθ2 þ sin2θdϕ2Þ:

ð9Þ

It represents a black hole whose event horizon is located
at r ¼ 2M. Nonvanishing components of four-velocity of
the light ray traveling along the equatorial plane of
Schwarzschild black hole can be obtained by substituting
fðrÞ ¼ ð1 − 2M

r Þ in Eq. (6) and are given by

_t ¼ 1

bð1 − 2M
r Þ

_ϕ ¼ � 1

r2

_r2 þ 1

r2

�
1 −

2M
r

�
¼ 1

b2
: ð10Þ

The equation for the radial motion can be rewritten using
Eq. (7) and is given by

_r2 þ VðrÞ ¼ 1

b2
with VðrÞ ¼ 1

r2

�
1 −

2M
r

�
: ð11Þ

The location of photon sphere can be obtained easily by
solving Eq. (8). The photon sphere is situated at the radial
location

rph ¼ 3M: ð12Þ

It is an unstable photon sphere. The maximum value of
the potential and impact parameter associated with it is
given by

Vm ¼ VðrphÞ ¼
1

27M2
and bph ¼ 3

ffiffiffi
3

p
M: ð13Þ

We note that the height at the peak is inversely proportional
to the square of the mass while impact parameter is directly
proportional to the mass of the black hole, which will be
used later.
The effective potential is depicted in Fig. 1. It is zero at

the event horizon. It increases as we move outwards. It
admits a maximum at the photon sphere located at r ¼ 3M.
Then it goes on decreasing and goes to zero at infinity
which is the manifestation of the fact that Schwarzschild
black hole spacetime is asymptotically flat.
Consider a light ray moving in the radially inward

direction starting from infinity. From Eq. (11) it is evident
that motion of light ray in the radial direction is equivalent
to the motion of particle moving under a potential in
one dimension. If 1

b2 <
1

27M2, the light will encounter the
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potential barrier and it will be reflected back in the outward
direction at a radial location outside the photon sphere. If
1
b2 >

1
27M2 then the light will continue moving in the inward

direction as it does not encounter potential barrier and it
would enter the event horizon of the black hole. If 1

b2 ¼ 1
27M2

it will asymptotically approach the photon sphere as both _r
and ̈r would tend to zero close to photon sphere. However
since the angular velocity is nonzero it will revolve around
the black hole infinitely many times. We will be interested
in the case where 1

b2 is slightly less that 1
27M2. In this case

light ray will eventually turn back, but it will spend a lot of
time close to the photon sphere. Since angular velocity is
finite, it will revolve around the black hole large number of
times and thus suffering from large deflection, which is the
situation of interest to us.

III. GRAVITATIONAL LENSING FORMALISM

In this section we review the basic gravitational lensing
formalism employed in this paper to compute location of
images, Einstein rings and their properties. Gravitational
lensing calculation has two basic components, lens diagram
and deflection angle. Lens diagram allows us to relate the
location of image to the location of source given the total
deflection suffered by the light as it travels from source to
observer. So we need to compute the deflection angle which
is the only input from general relativity that can be obtained
by integrating the geodesic equations.

We assume that the source is almost exactly behind the
black hole so that source, black hole and observer are
nearly aligned. We also assume that both source and
observer are sufficiently far from the length scale over
which spacetime acting as a lens is curved, which is
approximately size of the event horizon of the black hole.
Thus for all practical purposes lens can be thought of as a
point. Except for in the vicinity of the black hole where
light suffers deflection, light would travel in the straight
line. Thus we can assume that the we are dealing with flat
space with one point in the middle acting as a lens. Light
travels in the straight line and only when it encounters the
lens it suffers from the deflection as depicted in the lens
diagram Fig. 2.
In the lens diagram L stands for the lens which is the

black hole. S and O stand for the source and observer
respectively which are located faraway in the asymptoti-
cally flat region. The line joining observer and lens is
known as optic axis. In the absence of any lens light will
travel along the straight line SO. It makes an angle β with
respect to the optic axis and depicts the source location
with respect to the observer. In the presence of lens it will
suffer deflection at point C, with the deflection angle α̂.
It will travel along OC. It makes an angle θ with respect
to the optic axis. Hence the light seems to originate from I
which is the image and θ depicts the image location for
observer. Dd, Dds and Ds are the distances between
observer and lens, lens and source, and observer and
source respectively.

FIG. 1. In this figure we plot the effective potential for radial motion of the light ray traveling on the equatorial plane of Schwarzschild
black hole. We have taken M ¼ 1 to make this plot. Effective potential starts from zero at the event horizon, it increases and admits
maximum at r ¼ 3M with the peak value Vm ¼ 1

27M2. It is called photon sphere. Then it decreases and goes to zero at infinity. The
ingoing light ray with impact parameter b with 1

b2 < Vm gets reflected back at the radial location outside the photon sphere. If 1
b2 > Vm,

the light ray enters event horizon. If 1
b2 ¼ Vm light ray asymptotically approaches the photon sphere.
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Since we are dealing with the near-aligned situation,
angles β and consequently angle θ would be very small.
Deflection angle α̂ can be very large as light ray can go
around the lens multiple times. It will be approximately
equal to the multiple of 2π. LN is perpendicular to the OI
drawn from the lens and b is an impact parameter. From the
lens diagram we get

sin θ ¼ b
Dd

ð14Þ

The location of image can be related to the location of
source given the deflection angle α̂ by following relation,

tan β ¼ tan θ −
Dds

Ds
ðtan θ þ tan ðα̂ − θÞÞ: ð15Þ

The equation above is known as Virbhadra-Ellis lens
equation which is very popular in the literature. There
are other equations available in literature which include the
exact lens equation [15,40]. The comparison of various lens
equations appears in [41]. As quoted there, the Virbhadra-
Ellis lens equation is put in the very simple form that is very
easy to use in various realistic situations as it is expressed in
terms of distance between source, lens and observer planes.
The light ray emitted by the source will travel in inward

direction toward the black hole. Since we are interested in
gravitational lensing, we focus on those light rays which
get reflected back at some radial location r0 outside the
photon sphere and reach observer. The total amount of
deflection suffered by the light in its journey from source to
observer is given by the following expression,

α̂ðr0Þ ¼ 2

Z
∞

r0

dϕ
dr

dr − π ¼ 2

Z
∞

r0

_ϕ

_r
dr − π

¼ 2

Z
∞

r0

dr

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðr0Þ − VðrÞp − π: ð16Þ

To derive the equation above we have used Eq. (6) and
Eq. (7). We have also used the result

b ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
Vðr0Þ

p ; ð17Þ

which follows from Eq. (7).
The way we obtain images from the equations given

above in this section is as follows. We obtain deflection
angle α̂ as a function of turning point r0 using Eq. (16).
Using Eq. (14) and Eq. (17) we express it as a function of θ.
Then we substitute that into the lens equation. i.e., Eq. (15).
For a given value of β we solve equation to obtain the
values of θ, i.e., image locations. For nonzero value of β
we can get multiple images. When β ¼ 0 we get Einstein
rings since light which starts off from the source can reach
observer from all possible directions and hence the solution
to lens equation gives us the radii of Einstein rings. Solving
lens equation is a daunting task because it is a complicated
transcendental equation. But under the assumptions we
make it can be solved analytically [12]. We had developed
an approach based on effective potential which we employ
here to obtain images [39].
The magnification of images μ is given by

μ ¼ sin θ
sin β

dθ
dβ

¼ μtμr; ð18Þ

where μt and μr are tangential and radial magnifications
respectively with μt ¼ sin θ

sin β and μr ¼ dθ
dβ. The divergence of

tangential and radial magnifications are called tangential
caustic and radial caustic. Quite evidently Einstein rings
formed when β ¼ 0 correspond to the tangential caustic.
Since β and θ are very small and deflection angle α̂ is

approximately multiple of 2π, Eq. (14) and Eq. (15) can be
approximated to

θ ¼ b
Dd

β ¼ θ −
Dds

Ds
δαn

α ¼ 2πnþ δαn with jδαnj ≪ 1 ð19Þ

We use effective potential formalism to write approximate
expression for δαn and then use the equations above to
obtain image locations. Further the value of tangential
magnification can be approximated to

FIG. 2. Lens diagram is depicted in this picture. L, S, I, O stand
for the lens, source, image and observer.Dd,Dds,Ds stand for the
distances between lens and observer, lens and source, source and
observer respectively. Angles β and θ stand for the source and
image location. Angle α̂ stands for the deflection angle. b is am
impact parameter.
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μt ¼
θ

β
: ð20Þ

Different light rays that circle the black hole different
number of times follow different trajectories in space and
thus would take different amount of time to reach the
observer although they might originate from the source at
the same time. The time taken by time to depart from the
source and reach the observer is given by

t ¼ 2

Z
Dd

r0

dϕ
dr

dr ¼ 2

Z
Dd

r0

_ϕ

_r
dr

¼ 2

Z
Dd

r0

ffiffiffiffiffiffiffiffiffiffiffiffi
Vðr0Þ

p
fðrÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vðr0Þ − VðrÞp dr; ð21Þ

Where Dd is the distance between lens and source or
observer which is very large, thus if needed it can be taken
to be infinity when it would be appropriate to do so. Since
observer and source are located at large distance from the
lens, light will take large amount of time to reach lens and it
will diverge if we set upper limit of integration to infinity.
Thus we have Dd as the upper limit of integration and not
infinity as we had while calculating deflection angle. The
light will also spend a lot of time circling the black hole
depending on number of times. We compute the time delay
between arrival of light rays which circle around the black
hole different number of times.
We conclude the discussion on gravitational lensing

formalism here. In the next section we describe the
gravitating system of black hole surrounded by matter that
we consider in this paper.

IV. BLACK HOLE WITH MATTER AROUND IT

We now describe the situation under consideration as
depicted in Fig. 3,wherewe have a black holewith significant
amount of matter surrounding it. The mass associated with
black hole isM1. So its event horizon is located at r ¼ 2M1

and photon sphere is located at r ¼ 3M1. The mass outside
the matter distribution isM2, so the photon sphere associated
with it is located at r ¼ 3M2. Further the height of the
potential at the inner photon sphere where it admits a peak is
higher than theheight of the peak at outer photon sphere, since
potential at maximum scales inversely with the square of the
mass.We assume thatmatter is located from radial location r1
to r2 which lie between the two photon spheres. So that we
have 3M1 < r1 < r2 < 3M2.
We assume that the metric inside the region where matter

is located is given by

ds2 ¼ −
�
1 −

2mðrÞ
r

�
dt2 þ dr2

ð1 − 2mðrÞ
r Þ

þ r2ðdθ2 þ sin θ2dϕ2Þ; ð22Þ

where mðrÞ is monotonically increasing function which
interpolates between M1 at r ¼ r1 to M2 at r ¼ r2. The
effective potential is given by the expression

VðrÞ ¼ 1

r2

�
1 −

2mðrÞ
r

�
; ð23Þ

which we assume to be the monotonically decreasing
function in the region where matter is located. This is true
if ðr − 3mðrÞ þ rm0ðrÞÞ > 0. So effective potential is
continuous at r ¼ r1 and r ¼ r2 and also there is no
unstable photon sphere in this region.
The overall the effective potential looks as depicted in

the Fig. 4. It admits the value zero at the event horizon of
the black hole. It goes on increasing and admits a maximum
with the value at peak V ¼ 1

27M2
1

at the location of inner

photon sphere located at r ¼ 3M1. It then decreases
until the inner boundary of matter distribution r ¼ r1. It
further decreases within the matter distribution all the
way up to outer edge at r ¼ r2. It then increases in the
outer region and admits maximum at r ¼ 3M2 with the
peak value V ¼ 1

27M2
2

. The outer peak has less height as

compared to the inner peak. It then decreases and goes to
zero at infinity.
This is very peculiar behavior which leads to novel

features in the distribution of images when we study the
gravitational lensing. We get three distinct set of infinitely
many images as opposed to just one set for isolated
Schwarzschild black hole. We get one set of images due
to the light rays that get reflected back close to the outer
photon sphere. We get second set of images due to the light
rays that enter the outer photon sphere just above the peak
and get reflected back in the region where matter is situated.
We get third set of images due to the light rays that get
reflected back just outside the inner photon sphere.

Mass M1
Black holeOuter region

Mass M2

Outer photon sphere

Matter

Inner photon sphere

FIG. 3. In this figure we depict the gravitating system acting as
a lens under investigation. We have a black hole with mass M1 at
the center. The photon sphere associated with it i.e., inner photon
sphere is depicted in the figure. The mass associated with outer
region is M2 and the photon sphere associated with it i.e., outer
photon sphere is depicted in the figure. Matter is distributed in the
region between two photon spheres.
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Different kind of light rays are depicted in Fig. 5. The
region where is matter is located will be denoted with
subscript m. The inner region and outer regions will be
denoted by the subscript 1 and 2 respectively throughout
the manuscript.

V. IMAGES DUE TO THE LIGHT RAYS THAT
TURN BACK OUTSIDE OUTER PHOTON SPHERE

In the section we discuss the ingoing light rays from
the source for which 1

b2 is slightly less that the maximum

FIG. 4. In this figure we plot the effective potential for radial motion. The mass associated with inner region isM1 and outer region is
M2. In order to make this plot we have chosen M1 ¼ 1 and M2 ¼ 1.5. Locations of inner photon sphere and outer photon sphere are
depicted in the figure. The peak value at inner photon sphere is larger than that at outer photon sphere. Matter distribution extends
between the region in between two photon spheres. The effective potential is a monotonically decreasing function inside the matter
region.

FIG. 5. In this figure we depict three different cases of interest to us. First case denoted by LR1 corresponds to the ingoing light rays
that admit turning point just outside the outer photon sphere. LRm corresponds to the light rays that enter the inner photon sphere just
above the peak enter into the region where matter is located and turn back. LR2 corresponds to the light rays that turn back in the vicinity
of inner photon sphere. LRs correspond to the light rays that enter the inner photon sphere and are eventually engulfed by the black hole.
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V2m ¼ 1
27M2

2

which get reflected back off the potential just

outside the outer photon sphere located at rph2 ¼ 3M2.
Since the effective potential admits maximum at the photon
sphere, in its vicinity both _r and ̈r are very small and thus
light ray spends a lot of time circling around the black hole
with finite angular speed. Thus deflection angle suffered by
it is very large. Light can go around the black hole once,
twice and so on all the way up to infinitely many turns
which results into formation of infinitely many images.
Range of radial coordinate r is infinite since it varies

from r0 which is slightly above radial location of outer
photon sphere rph2 to infinity. We redefine radial coordinate
in order to make the range finite. We define coordinate y as

y ¼ f2ðrÞ − f2ðr0Þ
1 − f2ðr0Þ

ð24Þ

where f2ðrÞ ¼ ð1 − 2M2

r Þ. It is quite evident from the
definition above that y is monotonically increasing function
of r and it varies from 0 to 1 as r varies from r0 to∞. Thus
we can invert it and write down radial coordinate r as a
function of y as

rðyÞ ¼ r0
1 − y

: ð25Þ

We define a quantity T2ðr0; rÞ which is the derivative of the
two radial coordinates as

T2ðr0; rðyÞÞ ¼
dr
dy

¼ 1 − f2ðr0Þ
f02ðrðyÞÞ

; ð26Þ

which will be useful later.
The deflection suffered by the light as it travels from

source to observer is given by

α̂2 ¼ I2 − π; ð27Þ

where I2 is given by

I2 ¼ 2

Z
∞

r0

1

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2ðr0Þ − V2ðrÞ

p dr

¼
Z

1

0

F2ðr0; rðyÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2ðr0Þ − V2ðrðyÞÞ

p dy; ð28Þ

where function F2ðr0; rðyÞÞ is given by

F2ðr0; rðyÞÞ ¼
2T2ðr0; rðyÞÞ

rðyÞ2 : ð29Þ

Since we are integrating over a finite range and integrand
if finite everywhere except at the turning point, the
divergence of the integral can arise only due to the
divergent behavior at y ¼ 0. While F2ðr0; rðyÞÞ is always

a well-behaved function in the entire range of y, func-
tion 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2ðr0Þ−V2ðrðyÞÞ
p diverges at y ¼ 0. Taylor-expanding

V2ðr0Þ − V2ðrðyÞÞ around y ¼ 0, we obtain

V2ðr0Þ − V2ðrðyÞÞ ¼ α2ðr0Þyþ β2ðr0Þy2 þOðy3Þ; ð30Þ

where

α2ðr0Þ ¼ −T2ðr0; r0ÞV 0
2ðr0Þ

β2ðr0Þ ¼ −
1

2
ðT2ðr0; r0ÞT 0

2ðr0; r0ÞV 0
2ðr0Þ

þ T2ðr0; r0ÞV00
2ðr0ÞÞ: ð31Þ

Quite evidently if the turning point r ¼ r0 is far from the
outer photon sphere, Taylor-expansion up to first term
would suffice and integral and thus the deflection angle is
finite.
The situation is different when the turning point is close

to the photon sphere when the first derivative term will be
vanishingly small and thus we need to retain in the Taylor-
expansion terms up to the second order, leading to the
logarithmic divergence of the integral.
To isolate the divergent term and to understand the

logarithmic nature of divergence we Taylor expand α2ðr0Þ
and β2ðr0Þ around r0 ¼ rph2. We get

α2ðr0Þ ¼ −T2ðrph2; rph2ÞV 00
2ðrph2Þrph2

�
1 −

rph2
r0

�

þO

��
1 −

rph2
r0

�
2
�

β2ðr0Þ ¼ −
1

2
T2
2ðrph2; rph2ÞV 00

2ðrph2Þ þO

�
1 −

rph2
r0

�
:

ð32Þ

The divergent piece in the deflection angle is given by

ID2 ¼ F2ðrph2; rph2Þ
Z

1

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2ðr0Þyþ β2ðr0Þy2

p dy

¼ −A2 log

�
1 −

rph2
r0

�
þ B̃2 þO

�
1 −

rph2
r0

�
; ð33Þ

where

A2 ¼
F2ðrph2; rph2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β2ðrph2Þ
p

B̃2 ¼
F2ðrph2; rph2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β2ðrph2Þ
p log

�
2T2ðrph2; rph2Þ

rph2

�
; ð34Þ

and regular piece is given by
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I2R ¼
Z

1

0

�
F2ðr0; rðyÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2ðr0Þ − V2ðrðyÞÞ
p

−
F2ðrph2; rph2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2ðr0Þyþ β2ðr0Þy2
p

�
dy ð35Þ

¼ I2Rðrph2Þ þO

�
1 −

rph2
r0

�
: ð36Þ

Combining divergent and convergent pieces we can
write down deflection angle as

α̂2¼−A2 log

�
B2

�
1−

rph2
r0

��
−πþO

�
1−

rph2
r0

�
; ð37Þ

where B2 is given by

B2 ¼ exp

�
−
B̃2 þ I2Rðrph2Þ

A2

�
: ð38Þ

Thus we have demonstrated the logarithmic divergence of
deflection angle we had anticipated earlier.
We can also Taylor-expand the impact parameter around

the outer photon sphere. Using Eq. (17) we get

b2 ¼ C2 þD2

�
1 −

rph2
r0

�
2

; ð39Þ

where

C2 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2ðrph2Þ
p

D2 ¼ −
1

4

V 00
2ðrph2Þ

V
3
2

2ðrph2Þ
r2ph2: ð40Þ

Using Eq. (19), Eq. (37), Eq. (39) we get the location as
images as

θ2;n ¼
C2

Dd
þ 1

Dd

D2

B2
2

exp

�
−
2ð2nþ 1Þπ

A2

��
1þ 2

A2

Ds

Dds
β

�
;

ð41Þ

where the subscript n stands for the number of times light
winds around the black hole in its journey from source to
observer. Since the deflection angle diverges as the turning
point approaches the outer photon sphere, all values of n all
the way up to infinity are realized leading to the formation
of infinitely many relativistic images. All the images lie on
the right side of critical angle

θ̄2 ¼
C2

Dd
¼ 3

ffiffiffi
3

p
M2

Dd
; ð42Þ

and separation from the critical angle goes on decreasing
exponentially as winding number n increases.
From Eq. (18), Eq. (41) we obtain the expression for the

magnification of images as

μ2;n ¼
2

β

Ds

DdsD2
d

D2

A2B2
2

�
D2

B2
2

exp
�
−
4ð2nþ 1Þπ

A2

�

þ C2 exp

�
−
2ð2nþ 1Þπ

A2

��
: ð43Þ

These are the results for the clockwise winding of light
around black hole when images lie on the same side as that
of source. For the counterclockwise winding the location of
images are given by

θ̄2;n ¼ −
C2

Dd
þ 1

Dd

D2

B2
2

exp

�
−
2ð2nþ 1Þπ

A2

�

×

�
−1þ 2

A2

Ds

Dds
β

�
; ð44Þ

Magnification diverges when β ¼ 0 i.e., when the source
is exactly behind the lens which corresponds to the
tangential caustic. Since light emitted by source can reach
observer from all possible directions we get rings as
images, known as Einstein rings. The radii of Einstein
rings are given by

θ2E;n ¼
C2

Dd
þ 1

Dd

D2

B2
2

Exp

�
−
2ð2nþ 1Þπ

A2

�
: ð45Þ

As it can be seen from the expression above, all rings lie
beyond the critical angular radius θ̄2. There are infinitely
many rings with separation of rings from critical value
decreasing as n increases.
We now compute the time required for the light ray to

originate from the source and reach observer. The time is
given by the expression

t2 ¼ 2

Z
Dd

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
V2ðr0Þ

p
f2ðrÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2ðr0Þ − V2ðrÞ

p dr

¼ 2

Z
ymax

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
V2ðr0Þ

p
f2ðrðyÞÞ

T2ðr0; yÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2ðr0Þ − V2ðrðyÞÞ
p dy

¼ 2

Z
ymax

0

G2ðr0; yÞg2ðr0; yÞdy: ð46Þ

Here ymax corresponds to the location of source and
observer from lens, which is a number very close to
one. G2ðr0; yÞ and g2ðro; yÞ are given by
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G2ðr0; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
V2ðr0Þ

p
f2ðrðyÞÞ

T2ðr0; yÞ;

g2ðr0; yÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2ðr0Þ − V2ðrðyÞÞ
p : ð47Þ

There are two reason this integral will diverge. First
because the integrand in the first line of Eq. (46) is finite
for the large values if r and we integrate up to extremely
large value of r. So the divergence is sourced by infinity.
Second, because integrand will diverge due to the factor of
(V2ðr0Þ − V2ðrÞ) in the denominator at r0 which is very
close to the outer photon sphere located at r ¼ rph2.
We now write down the term which captures the

divergence sourced from infinity as

ID2;1 ¼ 2

Z
ymax

0

G2ðrph2; yÞg2ðrph2; y ¼ ymaxÞdy; ð48Þ

which can be evaluated from Eq. (25), Eq. (26), Eq. (47)
and turns out to be

ID2;1 ¼
4M2

ð1 − f2ðrph2ÞÞ

×
Z

ymax

0

1

ð1 − yÞ2ðf2ðrph2Þ þ ð1 − f2ðrph2ÞÞyÞ
dy:

ð49Þ

Upon computing the integral we get

ID2;1 ¼ 2Dd − 4M2 log

�
3M2

Dd

�
− 6M2

− 4M2 log ðf2ðrph2ÞÞ: ð50Þ

The first two terms in the expression above are extremely
large because of the largeness of distance Dd. The rest of
the terms are finite.
We now try to capture the divergence arising because of

the proximity of turning point to the outer photon sphere.
As before upon Taylor expanding (V2ðr0Þ − V2ðrÞ) and
keeping the terms up to second order we get the divergent
term ID2;2.

ID2;2 ¼ 2

Z
1

0

G2ðrph2; y ¼ 0Þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2yþ β2y2

p dy; ð51Þ

where α2, β2 are the terms as defined earlier in Eq. (31).
Upon computing the integral and Taylor expanding around
the outer photon sphere we get

ID2;2 ¼ −Ā2 log

�
1 −

rph2
r0

�
þ B̄2 þO

�
1 −

rph2
r0

�
; ð52Þ

where Ā2 and B̄2 are given by

Ā2 ¼
2G2ðrph2; y ¼ 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β2ðrph2Þ
p

B̄2 ¼
2G2ðrph2; y ¼ 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β2ðrph2Þ
p log

�
2T2ðrph2; rph2Þ

rph2

�
: ð53Þ

The regular part of the integral is given by

IR2;2ðr0Þ ¼ 2

Z
ymax

0

G2ðr0; yÞg2ðr0; yÞdy

− 2

Z
ymax

0

G2ðrph2; yÞg2ðrph2; y ¼ 1Þdy

− 2

Z
1

0

G2ðrph2; y ¼ 0Þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2yþ β2y2

p dy

¼ IR2;2ðrph2Þ þO

�
1 −

rph2
r0

�
: ð54Þ

Combining all the contributions we get an expression for
time t2

t2ðr0Þ ¼ 2Ds − 4M2 log

�
3M2

Ds

�
− Ā2 log

�
1 −

rph2
r0

�
þ B̄2

− 6M2 − 4M2 log ðf2ðrph2ÞÞ þ IR2;2ðr0Þ: ð55Þ

Note that not all values of r0 correspond to images. Only
those values for which deflection angle is approximately
equal to integral multiple of π correspond to images. From
Eq. (37) we gets

α̂n ¼ −A2 log

�
1 −

rph2
r0

�
þ B̃2 þ I2Rðrph2Þ − π ≈ 2nπ:

ð56Þ

Combining the two equations above we get time required
for light to travel from source to observer leading to the
formation of nth image.

t2;n¼2Dd−4M2 log

�
3M2

Dd

�
þ Ā2

A2

ð2nþ1ÞπþI02R; ð57Þ

where I02R is given by

I02R ¼ −
Ā2

A2

B2 þ B̄2 − 6M2 − 4M2 log f2ðrph2Þ

þ Ā2

A2

I2Rðrph2Þ: ð58Þ

Thus the time delay between nth order and mth order
images is given by

t2;n − t2;m ¼ 2
Ā2

A2

ðn −mÞπ: ð59Þ
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This is the time delay between two images that correspond
to the same set, i.e., images formed due to the light rays that
get reflected outside the outer photon sphere.

VI. IMAGES DUE TO THE LIGHT RAYS
THAT ENTER OUTER PHOTON SPHERE

JUST ABOVE PEAK AND GET REFLECTED
INSIDE THE MATTER

In this section we deal with images formed due to the
ingoing light rays which enter the outer photon sphere just
above the peak in the effective potential and enter the
region where matter is located where they get reflected
back. Since the 1

b2 is just above the peak in potential at outer
photon sphere V2ðrph2Þ both _r and ̈r go to zero from above
at the location photon sphere. The light ray spends a lot of
time near photon sphere r ¼ rph2, while it moves along the
azimuthal direction with finite angular velocity. Thus it
suffers a large deflection. As 1

b2 → V2ðrph2Þ, the deflection
shows divergence. Thus we can have infinitely many
images due to the light that winds once, twice and so
on, all the way up to infinity.
We define rm as the radial location where the potential

inside matter region is equal to the peak of the potential at
outer photon sphere,

VmðrmÞ ¼ V2ðrph2Þ ¼
1

27M2
2

: ð60Þ

The deflection suffered by the light ray in this case is
given by

α̂m ¼ Im − π ð61Þ

where Im is given by

Im ¼ 2

Z
r2

r0

1

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vmðr0Þ − VmðrÞ

p dr

þ 2

Z
∞

r2

1

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vmðr0Þ − V2ðrÞ

p dr ð62Þ

where r0 is a turning point which lies in the region
containing matter. The first and second integrals corre-
spond to the contribution to the deflection angle from the
matter region and outside region respectively. The first
integral is evaluated over the finite range of the radial
coordinate, while in the second integral, value of radial
coordinate varies from r2 to infinity. In order to make the
range finite we introduce a new radial coordinate x as

x ¼ f2ðrÞ − f2ðr2Þ
1 − f2ðr2Þ

: ð63Þ

x is a monotonically increasing function of r and it varies
from 0 to 1 as we vary r from r2 to ∞. We can invert this
relation and write x in terms of r as

r ¼ r2
1 − x

: ð64Þ

We define function Tm which is the derivative of two
variables as

TmðrðxÞÞ ¼
dr
dx

¼ 1 − f2ðr2Þ
f02ðrðxÞÞ

: ð65Þ

Thus the integral can be written as

Im ¼ 2

Z
r2

r0

1

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vmðr0Þ − VmðrÞ

p dr

þ
Z

1

0

FmðrðxÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vmðr0Þ − V2ðrðxÞÞ

p dx; ð66Þ

where FmðrðxÞÞ ¼ 2
rðxÞ2 TmðrðxÞÞ.

The first integral in the Eq. (66) is computed over the
finite range of radial coordinate. The integrand is finite
everywhere except for at turning point r0. But since close to
the turning point we have

Vmðr0Þ − VmðrÞ ¼ α3ðr0Þðr0 − rÞ; ð67Þ

where α3ðr0Þ ¼ − dVm
dr ðr0Þ is a finite nonzero number,

integral turns out to be finite. Thus first term in the integral
is finite.
The divergence can however arise due to the second term

if 1
b2
2

¼ Vmðr0Þ is close to VmðrmÞ ¼ V2ðrph2Þ, i.e., if

turning point r0 is close to the rm. We integrate over finite
range and the term in the numerator i.e., FmðrðxÞÞ is finite
everywhere. Thus the divergence can come from the term in
the denominator Vmðr0Þ − V2ðrðxÞÞ which can go to zero
as the light ray travels just above the peak of potential at the
location of outer photon sphere.
We Taylor-expand Vmðr0Þ − V2ðrðxÞÞ around x ¼ xph2,

where xph2 is the location of outer photon sphere expressed
in terms of x coordinate. We get

Vmðr0Þ − V2ðrðxÞÞ ¼ αmðr0Þ þ βmðx − xph2Þ2
þOððx − xph2Þ3Þ; ð68Þ

where

αmðr0Þ ¼ Vmðr0Þ − V2ðrph2Þ ¼ Vmðr0Þ − VmðrmÞ

βm ¼ −
1

2
T2
mðrph2ÞV 00

2ðrph2Þ: ð69Þ

If r0 is sufficiently away from rm, αðr0Þ is finite. Thus
Taylor-expansion up to the leading constant term would
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suffice. Integrand is finite at the location of outer photon
sphere and consequently the deflection angle is finite.
However if r0 is close to rm the leading term approaches
zero and we have to Taylor-expand up to the second order.
The integral would diverge logarithmically. If r0 is close
to rm then we can write αðr0Þ as

αmðr0Þ¼−V 0
mðrmÞrm

�
1−

r0
rm

�
þO

��
1−

r0
rm

�
2
�
: ð70Þ

We can isolate the divergent part of the integral as

IDm ¼
Z

1

0

Fmðrph2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αm þ βmðx − xph2Þ2

q dx

¼ −Am log

�
1 −

r0
rm

�
þ B̃m þO

��
1 −

r0
rm

��
; ð71Þ

where

Am ¼ Fmðrph2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βmðrph2Þ

p

B̃m ¼ Fmðrph2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βmðrph2Þ

p log

�
4xph2ð1 − xph2Þβm

−V 0
mðrmÞrm

�
: ð72Þ

The regular part of the integral is given by

IRm ¼ 2

Z
r2

r0

1

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vmðr0Þ − VmðrÞ

p dr

þ
Z

1

0

0
B@ FmðrðxÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vmðr0Þ − V2ðrðxÞÞ
p

−
Fmðrph2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αm þ βmðx − xph2Þ2
q

1
CAdx

¼ IR2ðrmÞ þO

�
1 −

r0
rm

�
: ð73Þ

Thus the deflection angle can be written as

α̂m ¼ −Am log

�
Bm

�
1 −

r0
rm

��
− π þO

�
1 −

r0
rm

�
; ð74Þ

where

Bm ¼ Exp

�
−
IRmðrmÞ þ B̃m

Am

�
: ð75Þ

Starting from Eq. (17) we can Taylor-expand impact
parameter as

bm ¼ Cm −Dm

�
1 −

r0
rm

�
; ð76Þ

where

Cm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VmðrmÞ

p

Dm ¼ −
1

2

V0
mðrmÞ

V
3
2
mðrmÞ

rm: ð77Þ

From Eq. (19), Eq. (74), Eq. (76) we can we obtain the
location of images which is given by the expression

θm;n ¼
Cm

Dd
−

1

Dd

Dm

Bm
exp

�
−
ð2nþ 1Þπ

Am

��
1þ 1

Am

Ds

Dds
β

�
:

ð78Þ

Again n is stands for the number of times light ray winds
around the black hole. Since the deflection angle shows
divergence all values of n are possible all the way up to
infinity. It is clear from the expression above all the images
lie below the critical angle

θ̄m ¼ Cm

Dd
¼ 3

ffiffiffi
3

p
M2

Dd
; ð79Þ

and the angular separation between the images from θ̄m
goes on decreasing as we increase value of n. It is clear
from Eq. (42), Eq. (79) that two critical angles are equal.

θ̄2 ¼ θ̄m: ð80Þ
Thus images due to the light rays that are reflected back
slightly below the outer photon sphere and images due to
the light rays that enter outer photon sphere just above the
peak are cluttered together above and below the critical
angle stated above.
From Eq. (18), Eq. (78) we get magnification of the

images

μm;n ¼
1

β

Ds

DdsD2
d

Dm

AmBm

�
Dm

Bm
exp

�
−
2ð2nþ 1Þπ

Am

�

− Cm exp

�
−
ð2nþ 1Þπ

Am

��
: ð81Þ

Results obtained so far are for the light rays that go
around the black hole in clockwise sense and images which
lie on the same side of optic axis as the source. Location of
images which lie on the opposite side of the optic axis as
source are given by the following expression

θm;n ¼−
Cm

Dd
þ 1

Dd

Dm

Bm
exp

�
−
ð2nþ1Þπ

Am

��
1−

1

Am

Ds

Dds
β

�
:

ð82Þ
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When the source is exactly behind the lens i.e., when
β ¼ 0, the magnification diverges. It corresponds to the
tangential caustic. We get Einstein rings whose radii are
given by

θEm;n ¼
Cm

Dd
−

1

Dd

Dm

Bm
exp

�
−
ð2nþ 1Þπ

Am

�
: ð83Þ

There are no radial caustics.
Thus we get new infinite set of images and Einstein rings

below the critical angle due to the light rays that enter the
outer photon sphere just above the peak and get reflected
inside the matter region.
The time required for the light to travel from source to

observer is given by

tm ¼ 2

Z
r2

r0

Vmðr0Þ
fmðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vmðr0Þ − VmðrÞ

p dr

þ 2

Z
Dd

r2

Vmðr0Þ
f2ðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vmðr0Þ − V2ðrÞ

p dr

¼ 2

Z
r2

r0

Vmðr0Þ
fmðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vmðr0Þ − VmðrÞ

p dr

þ 2

Z
xmax

0

Vmðr0Þ
f2ðrðxÞÞ

TmðrðxÞÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vmðr0Þ − V2ðrðxÞÞ
p dx

ð84Þ

xmax which is very close to one corresponds to the
r ¼ Dd. The first term in the first line in the equation
above gives finite contribution since the range of
integration is finite and further although integrand
diverges at r0 the integral is finite since slope of
VmðrÞ is finite. Whereas second term will diverge, first
because the integrand is finite at infinity and second
because (Vmðr0Þ − V2ðrÞ) goes to zero at outer photon
sphere r ¼ rph2 if r0 is close to rm.
The expression for tm can be written as

tm ¼ 2

Z
r2

r0

Vmðr0Þ
fmðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vmðr0Þ − VmðrÞ

p dr

þ 2

Z
xmax

0

Gmðr0; xÞgmðr0; xÞdx; ð85Þ

where Gmðr0; xÞ and gmðr0; xÞ are given by

Gmðr0; xÞ ¼
Vmðr0Þ
f2ðrðxÞÞ

TmðrðxÞÞ

gmðr0; xÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vmðr0Þ − V2ðrðxÞÞ
p : ð86Þ

We now write down the term that is sourced by infinity.
While writing down the expression below we make use of
Eq. (64), Eq. (65), Eq. (85).

IDm;1 ¼
Z

1

0

Gmðrm;xÞgmðrm;x¼ 1Þdx

¼ 4M2

1−f2ðr2Þ
Z

1

0

1

ð1−xÞ2ðf2ðr2Þþð1−f2ðr2ÞÞxÞ
dx:

ð87Þ
Evaluating the integral above we get

IDm;1 ¼ 2Dd − 4M2 log

�
r2
Dd

�
− 6M2 − 4M2 logðf2ðr2ÞÞ;

ð88Þ
where Dd is distance from lens to observer or source.
We now try to capture arising from the photon sphere

when r0 is very close to rph2.

IDm;2 ¼ 2

Z
1

0

Gmðrm;rph2Þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αmþβmðx−xph2Þ2
q dx; ð89Þ

where αm, βm were defined earlier in Eq. (69). We compute
the integral above and Taylor expand the result about outer
photon sphere. We get

IDm;2 ¼ −Ām log

�
1 −

r0
rm

�
þ B̄m þO

�
1 −

r0
rm

�
; ð90Þ

where

Ām ¼ 2Gmðrm; x ¼ xph2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βmðrph2Þ

p ;

B̄m ¼ 2Gmðrm; x ¼ xph2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βmðrph2Þ

p log

�
4xph2ð1 − xph2Þβmðrph2Þ

−V 0
mðrmÞrm

�
:

ð91Þ
Regular part of the integral is given by

IRm;2ðr0Þ ¼ 2

Z
r2

r0

Vmðr0Þ
fmðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vmðr0Þ − VmðrÞ

p dr

þ 2

Z
xmax

0

Gmðr0; xÞg2ðr0; xÞdx

− 2

Z
xmax

0

Gmðrph2; x ¼ 1Þg2ðr0; xÞdx

− 2

Z
1

0

Gmðrm; xph2Þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αm þ βmðx − xph2Þ2
q dx

¼ IRm;2ðrmÞ þO

�
1 −

r0
rm

�
: ð92Þ
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Combining regular and divergent terms we get

tmðr0Þ ¼ 2Dd − 4M2 log

�
r2
Dd

�
− 6M2 − 4M2 log ðf2ðr2ÞÞ

− Ām log

�
1 −

r0
rm

�
þ B̄m þ IRm;2ðr0Þ ð93Þ

Not for all values of reflection point r0 images are
formed, i.e., light from the source getting reflected back
would reach the observer. For an image to form the
following condition should be met.

α̂m;n ¼ −Am log

�
1 −

r0
rm

�
þ B̃m þ IRm − π ≈ 2nπ: ð94Þ

Combining the equations Eq. (93), Eq. (94) we get time
required for the formation of nth image.

tm;n ¼ 2Dd − 4M2 log
r2
Dd

þ Ām

Am
ð2nþ 1Þπ þ I0m; ð95Þ

where

I0m ¼ −6M2 − 4M2 log ðfmðrmÞÞ −
Ām

Am
B̃m

−
Ām

Am
IRm þ B̄m þ IRm;2ðrmÞ: ð96Þ

Time delay between pth and qth order images is given by

tm;p − tm;q ¼ 2
Ām

Am
ðp − qÞπ: ð97Þ

This is the time delay between the same set of images i.e.,
images formed due to the light rays that get reflected in the
matter region.

VII. IMAGES DUE TO THE LIGHT RAYS THAT
GET REFLECTED JUST OUTSIDE THE INNER

PHOTON SPHERE

In this section we focus on the light rays that enter outer
photon sphere, pass over to the inner region through the
matter and get reflected back just outside the inner photon
sphere located at rph1 ¼ 3M1. The value of 1

b2 is slightly
below the maximum of the effective potential V1m ¼ 1

27M2
1

and therefore both _r and ̈r tend to zero in this region.
Consequently light spends a lot of time in this region while
it circles the black hole with finite angular velocity resulting
into large deflection of light.
The deflection angle is given by the expression

α̂1 ¼ I1 − π; ð98Þ

where I1 is given by

I1 ¼ 2

Z
r1

r0

1

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðr0Þ − V1ðrÞ

p dr

þ 2

Z
r2

r1

1

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðr0Þ − VmðrÞ

p dr

þ 2

Z
∞

r2

1

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðr0Þ − V2ðrÞ

p dr: ð99Þ

Here r0 corresponds to the radial location where light turns
back in the vicinity of inner photon sphere. First, second
and third integrals correspond to the contribution to the
deflection angle in the inner region, matter region and outer
region respectively. The second integral is finite because it
is computed over a finite range of radial coordinate and
integrand is finite. Third integral is computed over the
infinite range of radial coordinates. We an easily verify that

it is finite by redefining new coordinate ω ¼ f2ðrÞ−f2ðr2Þ
1−f2ðr2Þ and

writing integral in terms of it since the range of integration
becomes finite and also the integrand is finite everywhere.
In order to compute the first integral we make the

coordinate change

z ¼ f1ðrÞ − f1ðr0Þ
f1ðr1Þ − f1ðr0Þ

: ð100Þ

z is a monotonically increasing function of r. It varies
from 0 to 1 as r varies from r0 to r1. We can invert it to
write down

r ¼ 1
ð1−zÞ
r0

− z
r1

: ð101Þ

We define function T1ðr0; rÞ as

T1ðr0; rÞ ¼
dr
dz

¼ f1ðr1Þ − f1ðr0Þ
f01ðrÞ

; ð102Þ

which is the derivative of two radial coordinates. The
integral I1 can now be written as

I1 ¼
Z

1

0

F1ðr0; rðzÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðr0Þ − V1ðrðzÞÞ

p dz

þ 2

Z
r2

r1

1

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðr0Þ − VmðrÞ

p dr

þ 2

Z
∞

r2

1

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðr0Þ − V2ðrÞ

p dr; ð103Þ

where F1ðr0; rðzÞÞ ¼ 2T1ðr0;rðzÞÞ
rðzÞ2 .

We can carry out analysis similar to the one in Sec. V,
and write down the divergent part of the integral as
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ID1 ¼ F1ðrph1; rph1Þ
Z

1

0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α1zþ β1z2

p

¼ −A1 log

�
1 −

rph1
r0

�
þ B̃1 þO

�
1 −

rph1
r0

�
; ð104Þ

with A1 and B̃1 as

A1 ¼
F1ðrph1; rph1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β1ðrph1Þ
p

B̃1 ¼
F1ðrph1; rph1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β1ðrph1Þ
p log

�
2T1ðrph1; rph1Þ

rph1

�
; ð105Þ

where

α1ðr0Þ ¼ −T1ðrph1; rph1ÞV 00
1ðrph1Þrph1

�
1 −

rph1
r0

�

þO

��
1 −

rph1
r0

�
2
�

β1ðr0Þ ¼ −
1

2
T2
1ðrph1; rph1ÞV 00

1ðrph1Þ þO

�
1 −

rph1
r0

�
:

ð106Þ

Regular part of integral is given by

IR1ðr0Þ ¼
Z

1

0

�
F1ðr0; rðzÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V1ðr0Þ − V1ðrðzÞÞ
p −

F1ðrph1; rph1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α1zþ β1z2

p
�
dz

þ 2

Z
r2

r1

1

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðr0Þ − VmðrÞ

p dr

þ 2

Z
∞

r2

1

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðr0Þ − V2ðrÞ

p dr

¼ IR1ðrph1Þ þO

��
1 −

rph1
r0

��
: ð107Þ

Combining together regular and divergent part we get an
expression for deflection angle

α̂1 ¼ −A1 log

�
B1

�
1 −

rph1
r0

��
− π þO

��
1 −

rph1
r0

��
;

ð108Þ

where

B1 ¼ exp

�
−
B̃1 þ IR1

A1

�
: ð109Þ

We Taylor-expand impact parameter around the inner
photon sphere

b2 ¼ C1 þD1

�
1 −

rph1
r0

�
2

þO

��
1 −

rph1
r0

�
3
�
; ð110Þ

where

C1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V1ðrph1Þ
p

D1 ¼ −
1

4

ðV 00
1ðrph1ÞÞ

V
3
2

1ðrph1Þ
r2ph1: ð111Þ

Location of images is given by

θ1;n ¼
C1

Dd
þ 1

Dd

D1

B2
1

exp

�
−
2ð2nþ 1Þπ

A1

��
1þ 2

A1

Ds

Dds
β

�
:

ð112Þ

We get infinitely many images which lie toward right in the
vicinity of critical angle given by

θ̄1 ¼
C1

Dd
¼ 3

ffiffiffi
3

p
M1

Dd
: ð113Þ

Note that this critical angle is smaller than the critical angle
encountered earlier, i.e.,

θ̄1 < θ̄2 ¼ θ̄m: ð114Þ

Magnification of images is given by

μ1;n ¼
2

β

Ds

DdsD2
d

D1

A1B2
1

�
D1

B2
1

exp

�
−
4ð2nþ 1Þπ

A1

�

þ C1 exp

�
−
2ð2nþ 1Þπ

A1

��
: ð115Þ

These are the results for the images that lie on the same side
as of the optic axis as source. Location of images that lie on
the opposite side is given by

θ̄1;n ¼ −
C1

Dd
þ 1

Dd

D1

B2
1

exp

�
−
2ð2nþ 1Þπ

A1

��
1−

2

A1

Ds

Dds
β

�
:

ð116Þ

There is no radial caustic. Tangential caustic occurs
when the source is located exactly behind the lens, i.e.,
when β ¼ 0 and we get Einstein rings whose angular radius
is given by
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θE1;n ¼
C1

Dd
þD1

B2
1

1

Dd
exp

�
−
2ð2nþ 1Þπ

A1

�
: ð117Þ

All the rings are located slightly above the critical angle θ̄1.
Thus we get very interesting pattern for images and

Einstein rings. We get three distinct set of infinite images
and rings as depicted in Fig. 6 and Fig. 7. For the isolated
black hole we get only one set of images and rings. Thus
gravitational lensing signature for matter distribution con-
sidered here is very peculiar and distinct.
The time required for light to travel from source to

observer is given by

t1 ¼ 2

Z
r1

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðr0Þ

p
f1ðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðr0Þ − V1ðrÞ

p dr

þ 2

Z
r2

r1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðr0Þ

p
fmðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðr0Þ − VmðrÞ

p dr

þ 2

Z
Dd

r2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðr0Þ

p
f2ðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðr0Þ − V2ðrÞ

p dr

¼ 2

Z
1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðr0Þ

p
f1ðrðzÞÞ

T1ðr0; rðzÞÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V1ðr0Þ − V1ðrðzÞÞ
p dz

þ 2

Z
r2

r1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðr0Þ

p
fmðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðr0Þ − VmðrÞ

p dr

þ 2

Z
xmax

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðr0Þ

p
f2ðrðxÞÞ

TmðrðxÞÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V1ðr0Þ − V2ðrðxÞÞ
p dx:

ð118Þ

xmax is very close to one and corresponds to r ¼ Dd.
The first term in the diverges because the termffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðr0Þ − V1ðrÞ

p
goes to zero at r ¼ r0 which is in the

proximity of the inner photon sphere r ¼ rph1, while
the second term is finite. The third term diverges as the
integrand is finite at infinity. The expression for t2 can be
rewritten as

t1 ¼ 2

Z
1

0

G1ðr0; zÞg1ðr0; zÞdz

þ 2

Z
r2

r1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðr0Þ

p
fmðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðr0Þ − VmðrÞ

p dr

þ 2

Z
xmax

0

G2ðr0; xÞg2ðr0; xÞdx; ð119Þ

where

G1ðr0; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðr0Þ

p
f1ðrðzÞÞ

T1ðr0; rðzÞÞ

g1ðr0; zÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V1ðr0Þ − V1ðrðzÞÞ
p ð120Þ

Black hole shadow

FIG. 6. In this figure we depict the pattern of images formed by
the black hole surrounded by matter. Images drawn as green dots
are formed due to the light rays that get reflected just outside the
outer photon sphere. Images lie beyond and are cluttered near the
critical angle θ ¼ θ̄2. Images depicted by blue dots are formed
due to the light rays that enter outer photon sphere just above the
peak and get reflected back in matter region. They are cluttered
just below the critical angle θ ¼ θ̄2 ¼ θ̄m. Images due to the light
rays that get reflected just outside the inner photon sphere are
depicted by red dots. They are cluttered just outside θ ¼ θ̄1,
where θ̄1 < θ̄2. No images occur below θ ¼ θ̄shadow ¼ θ̄1. This
region is shadow of the black hole.

Black hole shadow

FIG. 7. In this figure we depict the pattern of Einstein rings
formed by the black hole surrounded by matter when the source is
exactly behind the lens. In the middle we get region with radius
θ ¼ θ̄shadow where no Einstein rings appear. This is called black
hole shadow. Red circles depict Einstein rings formed due to the
light rays that get reflected back just outside the inner photon
sphere. Rings lie just outside and are cluttered around
θ ¼ θ̄1 ¼ θ̄shadow. Blue rings are formed due to the light rays
that enter outer photon sphere just above the peak and get
reflected in the matter region. These lie below and are cluttered
around θ ¼ θ̄m. Green rings are formed due to the light rays that
get reflected just outside the outer photon sphere. They lie outside
and are cluttered around the critical angle θ ¼ θ̄1 ¼ θ̄m.
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G2ðr0; xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðr0Þ

p
f2ðrÞ

TmðrðxÞÞ

g2ðr0; xÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V1ðr0Þ − V2ðrðxÞÞ
p : ð121Þ

We now write down the term that diverges when r0 is
very close to the inner photon sphere rph1.

ID1;1 ¼ 2

Z
1

0

G1ðrph1; z ¼ 0Þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α1zþ β1z2

p dz: ð122Þ

By following similar calculations as done in earlier sections,
the divergent part of the integral can be calculated as

ID1;1 ¼ −Ā1 log

�
1 −

rph1
r0

�
þ B̄1 þO

�
1 −

rph1
r0

�
; ð123Þ

where

Ā1 ¼
2G1ðrph1; z ¼ 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β1ðrph1Þ
p ;

B̄1 ¼
2G1ðrph1; z ¼ 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β1ðrph1Þ
p log

�
2T1ðrph1; rph1Þ

rph1

�
: ð124Þ

Now, we try to find the contribution to divergence due to
the third integral in the expression for t.

ID1;2 ¼ 2

Z
xmax

0

G2ðr0; xÞg1ðr0; x ¼ xmaxÞdx: ð125Þ

Evaluating the above integral we get

ID1;2¼2Dd−4M2 log

�
3M2

Dd

�
−6M2−4M2 logðf2ðrph2ÞÞ:

ð126Þ

Now, the regular part of the integral is given by,

IR1;2ðr0Þ ¼ 2

Z
1

0

G1ðr0; zÞg1ðr0; zÞdz

þ 2

Z
r2

r1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðr0Þ

p
fmðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðr0Þ − VmðrÞ

p dr

þ 2

Z
xmax

0

G2ðr0; xÞg2ðr0; xÞdx

− 2

Z
1

0

G1ðr0; zÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α1zþ β1z2
p dz

− 2

Z
xmax

0

G2ðrph1; x ¼ xmaxÞg2ðr0; xÞdx

¼ IR1;2ðrph1Þ þO

�
1 −

rph1
r0

�
: ð127Þ

Combining the regular and divergent part, we get

t1ðr0Þ ¼ 2Dd − 4M2 log

�
3M2

Dd

�
− 6M2

− 4M2 log ðf2ðrph2ÞÞ − Ā1 log
�
1 −

rph1
r0

�

þ B̄1 þ IR1;2ðr0Þ: ð128Þ

The images are not formed for all values r0, but only for the
values of r0 close to the inner photon sphere. The condition
to be met for the formation of image is

α̂1;n ¼ −A1 log

�
1 −

rph1
r0

�
þ B̃1 þ IR1 − π ≈ 2nπ: ð129Þ

Combining the above two equations, we get time required
for the formation of nth image.

t1;n ¼ 2Dd − 4M2 log

�
3M2

Dd

�
þ Ā1

A1

ð2nþ 1Þπþ I01; ð130Þ

where

I01 ¼ −6M2 − 4M2 log ðf2ðrph2ÞÞ −
Ā1

A1

B̃1 −
Ā1

A1

IR1

þ B̄1 þ IR1;2ðrph1Þ: ð131Þ

Time delay between pth and qth order images is given by

t1;p − t1;q ¼ 2
Ā1

A1

ðp − qÞπ: ð132Þ

This is the time delay between the same set of images i.e.,
images formed due to the light rays that get reflected close
to the inner photon sphere.

VIII. LIGHT RAYS WHICH ENTER INNER
PHOTON SPHERE AND BLACK HOLE SHADOW

We considered three distinct scenarios depending on the
location of turning point for the light rays and showed that
we get three distinct set of infinitely many images and
Einstein rings. We now consider the fourth category of the
light rays. The rays for which 1

b2 is larger compared to the
potential maximum at inner photon sphere V1m ¼ 1

27M2
1

.

These light rays enter the inner photon sphere, beyond
which they do not encounter any other potential barrier and
hence admit no turning point. Thus they are destined to
enter the event horizon and are engulfed by the black hole.
Thus the ingoing light rays do not reach infinity. Thus we
would see a dark region below critical angle θ̄1 circular in
shape. This is known as the shadow of the black hole.
Shadow has an angular size given by expression
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θ̄shadow ¼ θ̄1 ¼
3

ffiffiffi
3

p
M1

Dd
: ð133Þ

The shadow is depicted in the Fig. 6, Fig. 7.
Since size of the shadow is dictated by the inner photon

sphere it will be proportional to massM1. So if we observe
the shadow of the configuration considered here, its angular
size will allow us to infer the massM1. The situation would
be very different if we try to infer the mass associated with
configuration based on the observation of motion of the
distant object. The mass inferred from such a consideration
will beM2. This results in the situation where mass inferred
from two different methods would yield conflicting
answers. This would imply the existence of matter sur-
rounding black hole. Thus before arriving at radical
conclusions such as breakdown of general relativity or
new physics, we should consider conservative scenarios
such as existence of matter, perhaps dark matter, in the
vicinity of black hole.

IX. IMAGE LOCATION, MAGNIFICATION AND
TIME DELAY BETWEEN THE MOST

PROMINENT IMAGES

It is quite clear from the expression for the magnification
that it decays exponentially as the number of turns light
takes around the black hole goes on increasing. Generally,
in case of a single black hole, the first images would be
relevant from the point of view of observation and other
infinite set of higher order images can be ignored since they
are highly demagnified. In presence of matter as we have
shown earlier three set of infinitely many images would
occur depending on their turning points. In this section,
we enlist the most prominent images that would be of
consequence from the point of observations.
For this calculation we work in the units where M1 ¼ 1.

We takeM2 ¼ 1.5. So the photon spheres occur at rph1 ¼ 3

and rph2 ¼ 4.5. The matter distribution extends from
r1 ¼ 3.5 to r2 ¼ 3.7. We use a mass function in the matter
region that is used in [35]. The distance between source and
lens as well as observer and lens is taken to be
Dd ¼ Dds ¼ 1000. The source location is β ¼ 10−2.
In the absence of any matter, if we have a black hole

with mass M2 ¼ 1.5 as seen from outside, the brightest
image will be the first order image. It will occur at θ2;1 ¼
0.00780411 and will have magnification μ2;1¼1.51×10−5.
In the presence of the matter the brightest image will be the
first order image due to the light rays turn back inside
matter region and occur at θm;1 ¼ 0.00764038 and it will
have magnification μm;1 ¼ 1.16 × 10−4 which is ten times
brighter. Second order image will occur at θm;2 ¼
0.00778755 and will have magnification 5.12 × 10−5

which will be five times brighter. All other images will
have smaller magnification (See Tables I, II, III.) which we
ignore. Thus in the presence of matter we will have two

images brighter than what we would have in case of a single
isolated black holes.
If the source is variable, then the variability will be

reflected onto the three images at different time. The time
taken by the rays getting reflected back outside outer photon
sphere and constituting first order is t2;1 ¼ 2099.58, onto
which the variability will be reflected initially. Then it would
then be reflected onto the first order image for the light
rays that get reflected in the matter region after time
tm;1 − t2;1 ¼ 213.31. It will be almost 10 times brighter.
Following which it will be reflected onto the second order
image with light turning back in middle region after
tm;2 − tm;1 ¼ 0.69. It will be dimmer by the factor of 2.
The appearance of the two new prominent images due to

the light rays reflecting back inside the matter region, as
opposed to just one prominent image in case of an isolated
single black hole and peculiar time delay between the
images are the smoking gun signature of the presence of
matter surrounding the black hole.

TABLE II. In this table we list the image location, magnifica-
tion and the time taken for light ray to reach the observer from the
source in case of light rays that get reflected in the matter region.
The first two image has magnification comparable to the
magnification of images due the first set of light rays (reflected
near outer photon sphere). The magnification of images beyond
this are minuscule.

θm μm tm

n ¼ 1 0.00764038 −1.16 × 10−4 2312.89
n ¼ 2 0.00778755 −5.12 × 10−5 2313.58
n ¼ 3 0.00779391 −2.22 × 10−7 2314.28

TABLE III. In this table we list the image location and
magnification for light ray to reach the observer from the source
in case of light rays that get reflected close to the inner photon-
sphere. Images have magnification that is four orders of magni-
tude smaller than that of lighter image.

θ1 μ1

n ¼ 1 0.00519615777 4.94 × 10−9

n ¼ 2 0.00519615016 1.01 × 10−10

TABLE I. In this table we list the image location, magnification
and the time taken for light rays to reach the observer from the
source to observer for light rays that get reflected near the outer
photon sphere. Only the first image is prominent as the magni-
fication of the other images are much smaller.

θ2 μ2 t2

n ¼ 1 0.00780411 1.51 × 10−5 2099.58
n ¼ 2 0.00779424 2.82 × 10−8 2148.55
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X. SUMMARY AND CONCLUSION

With observational probes such as Event Horizon tele-
scope reaching unprecedented accuracy, we are living in the
era where direct observation of black holes is possible. It
will allow us to study the astrophysical environment and
various physical processes that occur in the vicinity of
black holes at the center of our and neighboring galaxies. It
could be the case that significant amount of matter, which
could be the conglomeration of dark matter for instance,
could be present in the vicinity of black holes. In the work
we try to consider such a situation and made an attempt to
understand whether matter distribution around the central
black hole could significantly affect the observations,
specifically focusing on the gravitational lensing, pattern
of images, Einstein rings and shadow cast by such a
configuration. For this purpose instead of getting into
detailed modeling of such a scenario we deal with a very
simple toy-model for the matter distribution and show that
it can affect the gravitational lensing in a crucial way and
leave its imprint on the pattern of images, Einstein rings as
well on the shadow of the black hole. As it turns out photon
sphere plays a very important role in the gravitational
lensing investigations.
We consider a Scharzschild black hole with mass M1

located at center. Its photon sphere is located at rph1 ¼
3M1. The mass outside the matter distribution is M2, the
photon sphere associated with which is located at
rph2 ¼ 3M2. We assume that the matter lies entirely
between radii r ¼ r1 and r ¼ r2 which in turn lie between
the two photon spheres. We assume that the mass function
mðrÞ which is constant for Schwarzschild metric, varies
between r ¼ r1 and r ¼ r2, i.e., in the region where matter
is located. It is a monotonically increasing function and
interpolates between the mass in the inner region M1 and
M2 which is the mass in the outer region as we go from r1
to r2. We make a further assumption that mass function
mðrÞ is chosen in such a way that effective potential
decreases monotonically and does not admit any peak,
i.e., no unstable photon sphere in the region where matter is
located. As a consequence of which effective potential for
the radial motion of light rays admits an interesting pattern.
It starts from a zero value at event horizon located at
r ¼ 2M1, goes on increasing, admits a maximum at inner
photon sphere r ¼ rph1 ¼ 3M1. It then goes on decreasing
all the way up to outer boundary of the photon sphere
r ¼ r2. It then increases and admits a maximum at the
location of outer photon sphere r ¼ rph2 ¼ 3M2 and then
goes to zero at we reach infinity. Since the maximum of the
potential is given by the expression V ¼ 1

27M2, the height of
maximum at outer photon sphere is smaller compared to the
height at the inner photon sphere. Thus we encountered
different scenarios. Depending on the value of impact
parameter b we can have initially ingoing light rays that
turn back outside the outer photon sphere, light rays which

enter outer photon sphere above the peak at maximum and
encounter potential barrier in the matter region and get
reflected back and the light rays which enter the inner
region passing over the outer and matter region and get
reflected back outside the inner photon sphere. If the
reflection point is very close to the photon sphere or if
light ray passes just above the peak of the potential, both
radial velocity _r and rate of change of radial velocity ̈r
approach zero. Thus the light ray spends a lot of time close
to the photon sphere. Since it has finite angular speed it will
go around the black hole a large number of times resulting
in an extremely large deflection angle, which shows
divergence in the limit when the proximity to the photon
sphere tends to zero. Thus we get light rays which go
around the black hole once, twice, and all the way up to
infinitely many times resulting into infinitely many rela-
tivistic images. If the source is exactly behind the black
hole we get Einstein rings. Thus in this case we would get
three distinct sets of infinitely many images and Einstein
rings corresponding to three different scenarios described
earlier depending on where light turns back. This is a very
peculiar and distinct feature. This is in contrast with the
situation where we have only one set of infinite images and
Einstein rings in case of the single isolated black hole.
Since the relativistic images are highly demagnified and
brightness decreases exponentially as the number of turns
light takes around black hole goes on increasing, we try to
identify most prominent images. We infer that three images
are prominently visible as compared all other infinitely
many higher order images as compared to just one image
for single isolated black hole.
The relativistic images are demagnified exponentially as

the number of turns light takes around the black hole
increases. Hence very few out of the infinitely many images
are relevant from the point of view of observations. We
compute magnification and time delays in a specific case
and infer that three images are relevant from the point of
view of observation. This includes two images from the
light rays which enter outer photon sphere and get reflected
back in the matter region and one image from the light rays
that get reflected back outside outer photon sphere. This is
quite different from the case of single isolated black hole
where only the first relativistic image will be relevant
from the point of view of observations. This is very peculiar
feature would be a smoking gun signature of matter
distribution around black hole.
If light enters the inner photon sphere, it does not

encounter a potential barrier. Thus it inevitably enters
the event horizon and is engulfed by the black hole.
Thus we get a dark circular patch in the middle devoid
of any image or Einstein ring. It is known as the shadow of
the black hole. In this case size of the shadow of the black
hole, i.e., angular radius of the dark patch is dictated by the
inner photon sphere and is thus proportional to massM1. If
we observe the shadow of the black hole, the mass inferred
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from it will beM1. We can also estimate mass of the whole
configuration by monitoring the motion of the distant
objects in the gravitational field. Mass inferred from such
a method would yield M2. So there is a discrepancy in the
inference about the mass made from two different obser-
vations. It will provide yet another evidence in favor of
mass distribution around the black hole.
By invoking a simplistic toy model of matter distribution

we demonstrated that pattern of images and Einstein
rings as well as shadow measurement displays a very

interesting trend quite distinct from that of a single isolated
black hole. In future we intend to study more realistic
scenarios with better modeling of the matter distribution
around black holes.
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