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The dual configuration of the original one is proposed for the orbit design of Taiji spacecrafts. In terms of
these two configurations of Taiji, an algorithm is devised to expand the unperturbed Keplerian orbits of
spacecrafts to infinite order of e, the orbital eccentricity, in the heliocentric coordinate system. Further,
based on the algorithm, all the kinematic indicators of Taiji triangles, say three arm-lengths and their
corresponding rates of change, and three vertex angles, in both configurations are also be expanded to
infinite order of e, and it is proved that both configurations of Taiji possess the same symmetry: At every
order, three components of every kinematic indicator of the Taiji triangle are identical to each other up to a
phase shift of 27/3, which is independent on the tilt angle of the Taiji plane relative to the ecliptic plane.
Finally, the above algorithm is slightly modified, and according to it, by adjusting the tilt angle around /3
to any order of e, the orbits of Taiji spacecrafts in each configuration can be optimized.
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I. INTRODUCTION

Because of seismic noise, the ground-based detectors
like LIGO and Virgo [1-4] are powerless to detect the low
frequency gravitational waves (GWs) below 0.1 Hz [5-7],
which is why the space-based GW detectors like LISA
[8,9] or later Taiji [10-13] have been given serious
consideration. Taiji takes a similar formation as LISA.
Three spacecrafts (SCs) orbit the Sun and form an equi-
lateral triangle with an arm-length about 3 x 10° km, and
by using coherent laser beams exchanged between SCs,
Taiji observes GWs covering the range from 0.1 mHz
to 1.0 Hz.

The configuration in Refs. [8,9,14,15] designed for LISA
was used as one part of the prestudy of Taiji in our previous
paper [16], where the relationship between the inclination &
of the orbits of SCs with respect to the ecliptic plane and the
orbital eccentricity e is the key content. In this paper, we
find that there exists the dual relationship between ¢ and e,
and propose a new configuration for the orbits of SCs.
In these two configurations of Taiji, the orbits of SCk
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(x = 1, 2, 3) at every order are symmetric about either the z
axis or x-y plane in the heliocentric coordinate system,
which embodies the duality between them. Taiji can follow
or precede Earth by 7/9 from the viewpoint of the Sun, and
in each case, Taiji has two choices for orbits of SCs, which
are symmetric about the ecliptic plane. Therefore, in
practice, the new configuration provides four new feasible
orbit designs for Taiji.

As shown in Refs. [8,9,16], the fundamental treatment
for analytical analysis of the orbits of SCs is to expand them
in the small orbital eccentricity e. For the original con-
figuration of Taiji [16], the unperturbed Keplerian orbits of
SCs have been expanded to e? order, which is sufficient for
analyzing the main perturbative effect of Earth on SCs.
However, in the future, the actual operation of Taiji
probably requires one to further consider the post-
Newtonian effects of the Sun’s gravitational field and
the perturbative effects of the other celestial bodies like
Jupiter and the Moon etc., where these effects on SCs are
much weaker than that of Earth. If one wants to discuss
these effects, the unperturbed Keplerian orbits of SCs need
to be expanded to higher order. For both configurations of
Taiji, we devise an algorithm, in the present paper, to
expand the unperturbed Keplerian orbits of SCs to infinite
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order of e in the heliocentric coordinate system. When the
above effects on SCs are considered, the unperturbed
Keplerian orbits of SCs should be truncated to necessary
order and then be viewed as the zeroth-order approximation
of the corresponding perturbative solution. Therefore, the
algorithm lays the foundation for discussion of relativistic
and perturbative effects on Taiji.

Next, based on the above algorithm, all the kinematic
indicators of Taiji triangles in both configurations are also
expanded to infinite order of e, where as a preliminary
example, the expressions of arm-lengths and their rates of
change to ¢> order and the expressions of vertex angles to
e* order are presented when ¢ = x/3 with ¢* and ¢,
shown in FIG. 1, as the tilt angles of Taiji planes relative to
the ecliptic plane at t = 0 in both configurations, respec-
tively. These results show that two Taiji triangles have the
following feature: Their shapes depend on ¢*, and when
¢* = n/3, they are equilateral up to the leading order terms
of all the kinematic indicators, while to the higher order
terms, they undergo the inherent variations. Like LISA, the
instability of Taiji formation may lower its sensitivity [14],
so the inherent variation of the Taiji triangle is significant in
the data analysis, e.g., the inherent variations of arm-
lengths need to be deducted so as to acquire their accurate
variations induced by GWs. It is according to the above
algorithm that an accurate knowledge of the inherent
variations of Taiji triangles in both configurations can be
obtained. Note that the word “inherent” here denotes the
variation of the Taiji triangle only induced by the Sun in
the Newtonian framework. As mentioned above, the
relativistic effect of the Sun’s gravitational field and the
perturbative effects of some celestial bodies may need to
be taken into account in the future, which results in the
variation of the Taiji triangle as well. In this paper, we only
focus our attention on the inherent variation of the Taiji
triangle, and the other part will be left to a future task. In
Ref. [17], a special model is studied for the spaced-based
GW detector in triangular configuration, where the incli-
nation € of the orbits of SCs with respect to the ecliptic
plane is assumed to be v/3e, and three arm-lengths in this
model are identical to each other up to a phase shift of 2/3
up to e! order. We will generalize this conclusion for both
configurations of Taiji in the present paper, and with the
help of the above algorithm, it is proved that both
configurations possess the same symmetry: At every order,
three components of every kinematic indicator of the Taiji
triangle are identical to each other up to a phase shift of
27/3, which is independent on the tilt angle of the Taiji
plane relative to the ecliptic plane.

Like LISA [9], Taiji also needs to suppress the laser
frequency noise by time-delay interferometry (TDI). The
instability of the Taiji triangle may result in that the first
generation TDI works unsuccessfully, since it is only
applicable for the stationary configuration. One way to
deal with this difficulty is to turn to modified first

generation TDI or further, the second generation TDI
[14,18-20]. The application of the second generation
TDI involves the complex noncommuting time-delay
operators, which could possibly cause difficulty in the
data analysis [14], and therefore, as the case of original
LISA (presented in Refs. [8,9,14]), the reasonably opti-
mized model of Taiji could contribute to selecting a simpler
TDI technique. What needs to be pointed out is that
because the orbital eccentricity of Taiji SCs is smaller
than that of the original LISA SCs, the more stable
formation of the Taiji triangle means that Taiji has more
chance than original LISA to consider a simpler TDI
strategy by the optimization of orbits of SCs. Moreover,
optimizing the orbits of SCs also helps to reduce the
adverse effect brought about by the Doppler shift of the
laser frequency. For the original configuration of Taiji [16],
by adjusting the tilt angle ¢* around z/3 at e' order, the
orbits of SCs are optimized at the next leading orders of all
the kinematic indicators. This result can be generalized in
this paper by slightly modifying the above algorithm, i.e.,
by adjusting ¢* around /3 to any order of e, the orbits of
SCs in both configurations of Taiji can be optimized,
respectively, and that is to say, Taiji triangles can become as
stable as possible with the different specific problems
involved. As a preliminary example, the results of optimiz-
ing all the kinematic indicators in both configurations by
adjusting ¢* around /3 to e* order are provided in the
present paper. In the future, if the post-Newtonian effects of
the Sun’s gravitational field and the perturbative effects of
some celestial bodies are considered, the above algorithm
can be readily generalized so that the more stable formation
of Taiji can be obtained.

The paper is arranged as follows. In the next section, the
new configuration of Taiji is designed. Both configurations
of Taiji to infinite order of e are analyzed in Sec. III. In
Sec. IV, we shall make some concluding remarks. No
summation is taken for repeated indices in the present
paper. Throughout the paper, in the series expansion of a
quantity A in terms of the power of e, for example,

A= i(il)"Q(A,n)e",

n=0

O(A, -) denotes the discrete spectrum function of the power
for the quantity A. Moreover, the rule that the upper (lower)
symbols of “ £ or “  ” on both sides of each equation
correspond to each other is applied in the whole paper.

II. NEW CONFIGURATION OF TAILJI

We will discuss the orbit design of SCs in the helio-
centric coordinate system (x, y, z), which is defined as the
right-handed Cartesian coordinates with the center of mass
of the Sun as the origin and the ecliptic plane as the x-y
plane. Consider the ellipse in the x-y plane,
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where its semimajor axis R is equal to that of Earth’s orbit,
and its eccentricity is e. Translating this ellipse ¢R in the
positive direction and in the negative direction along the x
axis gives two ellipses, and then, rotating them by £* about
the y axis, respectively, provides two choices for the orbit
of SC1. Thus, the obtained two radial vectors of SC1 are
ri = (7.7, 2) with

-1, (1)

xi = R(cosyi + e) cos e*,

yi = RV1 — e*sinyt, (2)

zf = R(cosyi + e)sine*.
If the eccentric anomaly | satisfies Kepler’s equation
wi +esiny| = Qt (3)

with Q as the average angular velocity of SC1, r] mani-
festly represents the orbit of SC1 in the original configu-
ration [16], and in this case, SC1 is at the aphelion when
t = 0, namely, the point C+ presented in Fig. 1. From
ASAC +,

d+ = R(\/e2 + 2e + cos’¢pT — cos (f)*)- (4)

Defining dimensionless parameter a* := v/3d*/(2R), and
then, the relationship between inclination ™ of the orbit of
SC1 with respect to the ecliptic plane and orbital eccen-
tricity e can be expressed as

"
cos et — \/—\/_+2a cos
1+e ’ (5)
P \/_2(114r sin ¢t
smne’ = 3T 1re -

Equation (5) plays a key role in the expansion of the
Keplerian orbits of SCs, and it is the core content of the
original configuration of Taiji.

Cc- R(1+€) C+
R(1—
(1-e) - P
gt ¢ ¢*
g '
B S A

FIG. 1. Plot of the geometry of Taiji in both configurations.
S denotes the Sun, and the coordinates of A are (R, 0,0). C+ and
C— denote SC1 at t = 0 in the original configuration and in the
new configuration, respectively.

We propose a new configuration of Taiji, in which the
orbit of SC1 is represented by 7|, and the corresponding
eccentric anomaly | satisfies Kepler’s equation

wi —esiny] = Qt, (6)

which shows that SCI1 is at the perihelion when ¢t =0,
namely, the point C— presented in Fig. 1. Similarly,
ASAC- gives

d = R(—\/e2 —2e + cos’¢p™ + cos ¢‘>, (7)

and then, with the help of the dimensionless parameter

~:=\/3d~/(2R), the relationship between inclination &~
and orbital eccentricity e can be derived easily,

cose” = \/_ V3 —211_ ecosqﬁ
. \/§ 2a” singp™ (8)
sine™ = 225 .
—e

which is also the core content of the new configuration of
Taiji. According to the above derivation, we declare that the
relationships between inclinations ¢* and orbital eccen-
tricity e are dual for both configurations of Taiji.

For the original configuration of Taiji, rotating the orbit
of SC1 by 27/3 and 4x/3 about the z axis, respectively,
gives those of SC2 and SC3, where their phases need to be
adjusted correspondingly [8,9]. The expressions of r; and
r{, representing the orbits of SC2 and SC3, respectively,
have been obtained in our previous paper [16]. As for the
new configuration of Taiji, the above method can also be
applied to derive the orbits of SC2 and SC3, denoted by r;
and r3, respectively. Here, we directly present the results
together for both configurations: ry = (x3,y5,z5) with

5 =R(cosys +e)cose* cosZ— RV 1 —e?siny5 sin%,
y5 = R(cosyF +e)cose® 51n2”—|—Rv 1—e?siny3 cosZ,
+
2

75 =R(cosy; te)sine*™

©)
— (xk.y%.25) with

—RV1-e’sinys sm—

y; =R(cosys +e)cose® s1n4”—|—R\/1 e’ siny§ cos¥Z,

Z5 =R(cosy5 £ e)sine™,

x5 =R(cosy3 +e)cose® cos ¥

(10)

where their corresponding eccentric anomalies &
(x = 2, 3) satisfy
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2
wt £ esinyt =0, = Qt—(zc—])?ﬂ. (11)

Obviously, Eq. (11) holds for the case of x = 1 as well.

As illustrated in Fig. 1, ¢ are the tilt angles of Taiji
planes relative to the ecliptic plane at t =0 in both
configurations, respectively. For the original configuration
[16], ¢ can take values of +|¢™|, and thus, there are two
choices for orbits of SCs, which are symmetric about the
ecliptic plane. Further, seeing that Taiji can follow or
precede Earth by 7/9 from the viewpoint of the Sun, the
original configuration, in fact, provides four feasible orbit
designs for Taiji. Similarly, for the new configuration, two
values £|¢~| of ¢~ can provide another four feasible orbit
designs for Taiji, and consequently, eight kinds of potential
orbit schemes are available for Taiji SCs. In the following,
in order to highlight the main content about these two
configurations of Taiji and simplify the related derivations,
we set ¢ > 0.

III. ORBIT ANALYSIS ON BOTH
CONFIGURATIONS OF TALJI TO
INFINITE ORDER OF e

In this section, for both configurations of Taiji, we devise
an algorithm to expand the unperturbed Keplerian orbits of
SCs and all the kinematic indicators of Taiji triangles to
infinite order of e in the heliocentric coordinate system,
which lays the foundation for further discussing relativistic
and perturbative effects on SCs, and provides an accurate
knowledge of the inherent variations of Taiji triangles. One
of the most significant application of these results is that
they contribute to acquiring the accurate variations of arm-
lengths of the Taiji triangle induced by GWs in the data
analysis by deducting the inherent counterparts. Moreover,
by the way, based on the algorithm, we prove that both
configurations of Taiji possess the same symmetry: At
every order, three components of every kinematic indicator
of Taiji triangle are identical to each other up to a phase
shift of 2z/3, which is independent on the tilt angle of the
Taiji plane relative to the ecliptic plane. Finally, by slightly
modifying the above algorithm, the orbits of SCs in each
configuration of Taiji are optimized by adjusting the tilt
angle of the Taiji plane relative to the ecliptic plane around
7/3 to any order of e, which helps to consider a simpler
TDI strategy and reduce the adverse effect brought about by
the Doppler shift of the laser frequency.

A. Expansions of the orbits of Taiji SCs

The general idea is originated from the fact that Kepler’s
Eq. (11) can be expanded to infinite order of ¢ when e ~
5.789 x 1073 < 1 for Taiji [16] according to the method of
Lagrange [21], and then, the combination of Egs. (2), (4),
(5), and (7)—(10) can bring about the expansions of the
unperturbed Keplerian orbits of SCk (x = 1, 2, 3), denoted

by rf = (x£,yf,z5), in both configurations of Taiji to
infinite order of e. The detailed derivation is put in
Appendix A, and here, we only show the expansions of
x5, yE, and zt:

xi =Rcos(Qf) + RY®,(F 1)"Q(xE, n)e",
Yo =Rsin(Qf) + RYR, (F 1)"Q(yc.n)e".  (12)
e =R (F )0z n)e,

where Q(x£,n), Q(yE,n), and Q(zF,n), the discrete
spectrum functions of the power of e for xf, y&, and
7, are shown in Eq. (A7), respectively. It is easy to check
that the expansion of 7} (k = 1, 2, 3) to e* order in Eq (12)
is the same as that in our previous paper [16].

Obviously, Eq (12) shows that at €° order, the orbits of
all SCs in both configurations are the circle in the ecliptic
plane with the Sun as center and R as radius, and thus, the
trajectories of the barycenters of three SCs at ¢ order in
these two configurations are also this circle, which is the
basis for establishing the Clohessy-Wiltshire system [15].
The complete expressions for the trajectories of the bary-
centers of three SCs in both configurations are obtained by
Eq. (12) in Appendix A, and by using them, one can discuss
the actual trailing angle of the Taiji constellation following
Earth from the viewpoint of the Sun [16]. Moreover,
Eq. (12) implies that the orbits of SCk (x =1, 2, 3) at
every order in both configurations are symmetric about
either the z axis or the x-y plane, which embodies the
duality between these two configurations. Although
Eq. (12) is expressed in the form of a series, it is the
complete unperturbed Keplerian orbits of SCs. When the
post-Newtonian effects of the Sun’s gravitational field and
the perturbative effects of some celestial bodies are further
considered in the future, Eq. (12) truncated to the necessary
order should be viewed as the zeroth-order approximation
of the corresponding perturbative solution. Hence, Eq. (12)
is the basis for discussion of relativistic and perturbative
effects on SCs.

B. Expansions of all the kinematic indicators
of Taiji triangles
All the kinematic indicators of Taiji triangles, say three
arm-lengths and their corresponding rates of change, and
three vertex angles, depend on the relative radial vectors of
SCs, namely, rit, =rif —ri = (x5, v, 2) (0. v = 1,2,3,
u # v). By using Eq. (12), expanding rffy is easy, namely,

x;ttl/ =R fo:l (:F l)nQ(Xﬁ, n)en’
Y = RS2 (F 1)y, n)e”, (13)
G = R (F 1)1 0 (2, n)e”
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with their discrete spectrum functions of the power of e,
respectively,

.n) = Q(xF,n),
(viF. n),
Oz n) = Q(zp.n) — Q(Zﬁﬂ)-

(14)

rffy can be used to define the arm-lengths between SCu and

SCv and their rates of change, respectively,

+ +\2 + dlju
l;w = (ruzx) ’ qu = dt ’ (15)
which shows that it is necessary to first deal with
('fu)z = (x;:ttv)z + (y;:ltv)z + (Z/:::z)z' (16)

Expansions of (ri)? are readily derived with above

v

Egs. (13) and (14):

(o)

R (F 1)"0((rh)? n)e”,

n=2

)2

(i (17)

where the discrete spectrum functions of the power of e for
(rit,)* are

O((rin)* n) =) [0(xz,n—k)Q(x5, k)
k=1
+ Qa1 = k) Q (Vs k)
+ O(z. n — k) O(z5,. k). (18)

O((r,)*. n) are clearly rewritten as the functions of 7 in
Eq. (B1), from which, one can find that they possess the

following symmetry:

O((r)*.n) = F(0,,(Q1))  with
Qt—-%, for {u,v} ={1,2},
0,,(Q1) == ¢ Qt —z, for {u,v} = {2,3}, (19)
Qr—32 for {u,v} = {3,1},

where F is the corresponding function of a single
variable. The proof is easy. From the definitions ofr and
|

Eq. (17), O((ri)* n) = O((r;,)*. n), which means that
one only needs to consider (u,v) € {(1,2),(2,3),(3,1)}
in Eq. (19). The first term in Eq. (B1) keeps the same when
(u,v) takes the above three groups of values, and every
remaining term contains Ch, (Qr;e,n7) or S, (Qte.n)
whose expressions are shown in Eq. (B2), where both €
and 7 are integers. € — 5 is always even for € and # in
Eq. (B1). A direct calculation gives

CF (Qt;e,n) = cos <—eg> cos (n6,,(Q1)),

S;,(Qr;e,17) = sin (—e%) sin (16, (Q1)).

when (u,v) € {(1,2),(2,3),(3,1)}, which implies that
Eq. (19) holds.

Expansions of arm-lengths lﬂil, and their rates of change
vfy need to resort to the related results in Appendix C. From
Egs. (15) and (17),

7, =R, /Z ag,(n)e"  with
n=2

a(n) = (F 1)"Q((rn)?. n).

which can also be rewritten as the following forms by

p=n-—2:
5
> with

5 = eRy a5 (2) (Z b (p)er
p=0

@ (p +2)
an(2)

nv

(20)

by (p) = (21)
and plugging Eq. (B1) into the definitions of aj,(2) in
Eq. (20) gives

15 3

ai,(Z) = 7‘1— 2tan ¢

i <§ —%tanzqﬁi) cos (26,,(Qr)) > 0. (22)

By use of Egs. (C11)~(C13) and (C15), (3-% bir, (p)e? )/
in Eq. (21) can be expanded, namely,

& LR (2k = 3)!
Svier) =3 (6, + Z e B ) () )er
- - k)N

p=0 p=0

with
. bi(p), k=1,
(bﬂv)k(p) Jre1—1 j3— Jo—1 3+ . 4+ /. . + /. . 4+ /- (23)
Z}k 1=k—1 ij72=k—2"' 22]1_1 b;w(p_]k—l)b/w(]k—l _]k—Z)"'bﬂu(]2_]l)buv(]l)’ k22’
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where &, is the Kronecker symbol, >-9_,(---) =0, and
(=1)!! == 1. Substituting the above results to Eq. (21) by
p — p—1 gives

=R Z O(I%. p)e (24)
with the discrete spectrum functions of the power of
e for [,

Ol p)
& o 2k=3)1
= Jaz @) (6, + > (1) 2 Bi)p - 1)
— (2k)
(25)
Further, the rates of change of lffy are trivially obtained,
U/:::z/ = RQZ Q(U;:fw p>el7
p=1

with  Q(v, p) = ——Q(l,w,p) (26)

Qdt

With the above results, the inherent variations of arm-
lengths and their rates of change in both configurations of
Taiji can be discussed, and then, an important symmetry of
them is directly obtained from Egs. (19)—(23): For each
configuration of Taiji, three components of arm-lengths and
J

{li = R(2V3e + O(I5.2)e* + O(L5,. 3)e® + QL. 4)e* + O(I5,.5)ed),

their rates of change are identical to each other up to a phase
shift of 27z/3 at every order, which is independent on the tilt
angle of the Taiji plane relative to the ecliptic plane. From
Egs. (25) and (26),

1d

Q(lfw 1) ;5/(2)7 Q(Uin 1) = ﬁa a;zdtu(z)’

(27)

and then, Eq. (22) shows that when ¢* = 7/3, Q(I%,, 1) =

Hs
2V3 & o(vk U, 1) =0, which means that in this case,
Taiji triangles in both configurations are equilateral at
the leading order terms of arm-lengths and their rates of
change. However, at their higher order terms, further
calculations of Q(I5,, p) and Q(vi,. p)(p > 2) show that
even ¢ = r/3, Taiji triangles in both configurations still
undergo the inherent variations. Like LISA, this instability
of Taiji formation may lower its sensitivity [14], which
requires that an accurate analysis on the inherent variation
of the Taiji triangle should be made in the data analysis.
According to the above algorithm, one can acquire an
accurate knowledge of the inherent variations of arm-
lengths and their rates of change in two configurations
of Taiji when ¢* = /3. As a preliminary example, here,
we present the expansions of [;, and v, to e order,
namely,

(28)

= RQ(0e + Q(v;;,.2)e* + Q(v;5,. 3)e + Q(v;s,. 4)e* + Q(v35,. 5)e”),

where the expressions of Q(/5,, p) and Q(vj,, p) with 2 <
p < 5 are presented in Appendix D. In the data analysis, by
deducting the inherent variations of arm-lengths of the Taiji
triangle, one is able to acquire their accurate variations
induced by GWs, where without doubt, based on these
results, the variations of arm-lengths induced by the
relativistic effect of the Sun’s gravitational field and the
perturbative effects of some celestial bodies need to be
deducted as well.

The vertex angles of Taiji triangles between the relative
radial vectors of SCs r 5 and r; (u # v), denoted by S5, are
defined as

By = arccos (7, - 7,7), (29)

where f,j =r /1/1}”1 and 75, == r, /I are the corresponding
unit vectors, respectively. From Eq. (29), if the expansions
of 7,; and ,; are obtained, one is able to expand f,,.
Equation (21) provides

[
1

s ()

—_— = b (30)
3 2_bi :

L eR\/a, 2)

and as before, according to Egs. (C11)—(C13) and (C16),
(3% it (p)e?)™/* can be expanded, namely,

1

(i bﬁi(ﬁ)@”) h

=3 (e 2y

(2=

2k I (blll/>k(p>>epa

where the expression of (bi,).(p) refer to Eq. (23).
Substituting the above result to Eq. (30) gives

1 I & 1
E= >0 ) 61
— v
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with the discrete spectrum functions of the power of e for 1/[f s

L2k=1)1

o(zr) = ﬁ (r+ 2o B ).

The combination of Egs. (13) and (31) brings about the expansions of i‘ﬂil, = (xfy, j)ffb, ﬁffy)
j\ci = OQ( uvs )
ym/ = n:() Q(yﬂl/’ ) "
G = 20 Q(Zusn)e”

with the discrete spectrum functions of the power of e for &, 5., and Z;,, respectively,

O(55m) = Y o(F 1710k n = p + DO (. p).
O m) = Spo(F 1" "1 Q0.n = p + DQ(i . p).
O(h.m) = o(F 1" Q5 n = p+ DO ().
and by using this result, one easily gets
By, = cos By, =y 1y = Z O(B;,.p)el

with

p
Bi. p) =Y [0k, p — k) QRS k) + Q9. p — k) Q5. k) + Q2. p — K)Q(25. k).

k=0

According to Egs. (C11)—~(C13) again,

(s8]
B;t, = arccos B;f, = arccos < g O(B;,.p)e )
p=0

can be expanded, and then,
B = 0B pe’
p=0

with the discrete spectrum functions of the power of e for ﬁff,,,

?_ arccos®) (Q(B;,.0))
Q(ﬁfw p) = 60[) arccos /w’ + Z k' . Q (B/Tw p)
k=1

where
O(Bu» p) k=1,
—1 i —1 ii—1 i—1 . . .
Q (B/:::w ) = ]";71:]{_1 j'];,;:k 2" j’i=2 j‘?:l Q(Biwp _]k—l)Q(Bin Ji—1 _]k—2)"'
XQ(va1j2_jl)Q(Bﬂwjl) k=2,

and the expression of arccos®) (k > 1) refers to Eq. (C17).
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Next, the vertex angles of Taiji triangles will be dis-
cussed, and they also possess the symmetry: Three com-
ponents of the vertex angles of the Taiji triangle in each
configuration are also identical to each other up to a phase
shift of 2z/3 at every order, which is also independent on
the tilt angle of the Taiji plane relative to the ecliptic plane.
The proof is lengthy, so the detailed process is put in
Appendix B. From Eqs. (27) and (32), Q(1/I;,.0) =
1/(a%,(2))"? =1/Q(I,, 1), by which, one knows that
when ¢* =7/3, Q(1/[%.0)=1/(2V/3), and then,
Egs. (34) and (36) give

1
O(Bju,0) = 15 [Q(x; DO 1) + Qv O3 1)

+0(z5,1)0(z5, 1)].

By further using Eqgs. (A7) and (14), Q(B;,,0) = 1/2 is
obtained, and then, plugging this result into Eq. (38), one
|

A, i) =i = Av,i) =i,

AEE) i) =i+1= {

In the first step, following the process from Eq. (20)
to Eq. (21), (X%,b%(p)e’)? in Eq. (21) and
(> bj,,(}r))ef”)‘l/3 in Eq. (30) should be changed to
be (3071, b (p)e?)/2 and (0 b (p)e?) /2, respec-
tively, and in the spirit of Appendix C, one knows that
only their further expansions to e’~! order are kept. There-
fore, from Egs. (21) and (30), A(lffp, i)=1i and
A(1/I%, i) = i — 2. The above conclusion implies that if
i = 5, the following expansions of £, to e* order are indeed
compatible with those of arm-lengths and their rates of
changein Eq. (28). As mentioned before, in order to consider
the relativistic effect of the Sun’s gravitational field and the
perturbative effects of some celestial bodies, all the related
results in the form of series need to be truncated to necessary
order, so the above conclusion (40) plays an important role.

Here is the expansions of fi, to ¢* order:

B, = g + QL. Ve + O(fn. 2)e* + Q(pL. 3) e
+ OB 4)e, (41)

where expressions of Q(f5,, p) with 1 < p <4 are pre-
sented in Appendix D. From these results, one can check that
when p =1, 2, 3, 4,

O(Bi.p) + Q(B33.p) + O(B5,.p) =0,

which is compatible with the result of f;, + S5 + 5, = =
in Euclidean geometry.

A/, i) =i=2= A5, i) =i—1= ABE, i) =i—1= A5, i) =i—1.

finally arrives at Q(f;,.0) = arccos(Q(B;,.0)) = 7/3,
which shows that as expected, when ¢* = x/3, Taiji
triangles in both configurations are equilateral at the
leading order terms of the vertex angles. Similarly to the
cases of arm-lengths and their rates of change, the actual
calculations of Q(f;,. p)(p > 1) imply that at the higher
order terms, the vertex angles still undergo the inherent
variations even when ¢ = /3. In the following, we will
make use of the above algorithm to present the expansions
of A%, and prove that 5, up to ¢* order is compatible with
those of arm-lengths and their rates of change in Eq. (28).
Suppose that r;;, have been expanded to e’ order, and then
that the series expression of any related quantity A should
be truncated to e*) order. In order to make each term in
the truncated expression of A the same as its corresponding
one in the previous expression to infinite of e, one can
determine the value of A(A,i). Thus, the following con-
clusions are derived:

(40)

Hw

|
C. Optimization of the orbits of Taiji SCs

As indicated in Sec. III B, for both configurations of
Taiji, even when ¢* = 7/3, Taiji triangles are only equi-
lateral at the leading terms of their kinematic indicators, and
the higher order terms show that Taiji triangles undergo the
inherent variations. One adverse effect brought about by
such instability of the Taiji triangle is that the first
generation TDI may work unsuccessfully since the TDI
is only applicable for the stationary configuration, so that
the laser frequency noise cannot be suppressed effectively.
In order to deal with this problem, one perhaps needs to
turn to modified first generation TDI or further, the second
generation TDI [14,18-20]. The application of the second
generation TDI could be at the cost of possible difficulty in
the data analysis [14], because the complex noncommuting
time-delay operators are involved, and therefore, one
should select a simpler TDI technique by optimizing the
orbits of SCs, as the case of original LISA (presented in
Refs. [8,9,14]). The smaller orbital eccentricity of Taiji SCs
than that of the original LISA SCs means the more stable
formation of Taiji than that of the original LISA, which will
contribute to considering a simpler TDI strategy for Taiji by
the optimization of orbits of SCs. Another adverse effect of
the instability of the Taiji triangle is the Doppler shift of the
laser frequency, and optimizing the orbits of SCs also helps
to reduce it.

By adjusting the tilt angle ¢+ around z/3 at e' order, the
orbits of SCs are optimized at the next leading orders of all
the kinematic indicators in the original configuration of
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Taiji [16]. According to the algorithm devised in the
previous subsection, we will generalize this result in this
subsection, and namely, by adjusting ¢* around /3 to any
order of e, the orbits of SCs in both configurations of Taiji
will be optimized, respectively, which means that Taiji
triangles in both configurations can become as stable as
possible with the different specific problems involved. To
this end, suppose that ¢* have the forms of expansions
around /3 in e,

0

> rt(p)er with y*(0) =§

p=0

o 42)

which means that we should modify the previous algorithm
so that all the quantities involving ¢* can be reexpanded.
Let us start with the orbits of SCs, namely, ri =
(x5, yE z8) k=1, 2, 3), and from Egs. (2), (5), and
(8)—(11), one knows that their dependence on ¢* is
originated from cos e and sin e*, and with the assumption
|

L = R(2V3e + 375, Ol p)e?)  with O(l. p)
with Q( Vs p)
with Q(B,,, p) =

Vi = RQ(0e + 375, Qv p)e?)
B =5+ 21 QB p)e’

Q(ljw >’ Q( ﬂIJ’ )’ and Q(ﬁ/ﬂ/’ ) are so lengthy as p
increases that their expressions do not need to be presented,
but one should know that as before, Q(3,, p) and Q(f5,. p)
can be still written as the forms of the linear combination
of cos(n;6,,(Q1)), and Q(vii,. p) can be still written as the
form of the linear combination of sin(n,6,,(Qt¢)), where
both n; and n, are positive integers, and y*(1)... exist,
as parameters, in the discrete spectrum functions of the
power. The above choice about the truncated orders will
ensure that the final determined orders of the optimized
expressions of lffy, s and ﬁff,, are the same as their previous
those shown in Egs. (28) and (41), respectively.
Motivated by the idea in Ref. [22], if the following
functions

(lixf ﬂwﬁiz) = w[ D(li) + wiD( ) + w/}D(ﬁ;w)

(44)

take the minimums, the orbits of Taiji SCs in both
configurations are optimized, respectively, where

D(l/fv) = <(Al/fv)2> = <(li/ - <liv>)2>’
D(v) = ((Av,)*) = (v = (v))?).  (45)
D(Bu) = ((8Bw)*) = (B = (Bw))?)

(42), if cos e* and sin e* are reexpanded to infinite order of

e, one can acquire the reexpansions of r¢. Technically, if
cose® and sine® are reexpanded by redefining their
discrete spectrum functions of the power of e, namely,
Q(cose*, n) and Q(sine*, n) in Eq. (A6), while Eq. (AS5)
remains the same, one does not need to modify the
remaining part of the previous algorithm to obtain the
reexpansions of r{ and the further reexpansions of all
the kinematic indicators of Taiji triangles. In Appendix E
according to the related conclusions in Appendix C, the
modified expressions of Q(cose*,n) and Q(sine*, n) are
derived, which are presented in Eq. (E12).

Now, as mentioned above, according to the modified
algorithm, all the kinematic indicators of Taiji triangles
in both configurations can be reexpanded. Here, we take
the reexpansions of lﬂi and v, to €® order and the
reexpansions of ﬂff,, to e’ order as an example to explain
how to optimize the orbits of SCs, and the corresponding
results read

= Q- p3y=(1). ....y™(p = 1)),
1

O (v, P ( )’ re(p—1). (43)
O(Byw- 13 }’i(l)7 r=(p)).
[
are the variances of [, v, and S, with
<z;;> = 2 [P L g = R(2V/3e + O(e?),
(Vi) 1= o Ju 722 v di = 0, (46)

— Q t+2 Q
<ﬁ;u> 2nn 0 il ﬁ;wdt

as their averages within n(n = 1,2,3,...) year, and o},
¥, and wﬁi are their corresponding weights. To simplify
calculation, define the following corresponding dimension-
less quantities:

AlE Avi —_—
Al/i = RW , Av,jfy = Rfy; , Aﬂ;ty = e(Aﬂfy),

(47)
and then, from Eqgs. (45)-(47),

(l/:ltl/’ ﬂwﬁ;tu)
= (07 (ALL)? + @y (Av)* + wj (AB)%)

= (o (80)" + o (80 )" + o (88R) ). (48)

where

ot
== Rwf, = RPQ?w, ay = —/; (49)
e
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are the reduced weights of lﬁ, ff,,, and ﬂfj,,, respectively. Let the superscript [p] represents that the order of the
corresponding term is e”, and then, Eqs. (43) and (47) show

o) ( () s ()"
SE sk ()" - (8E) - mi (5E))” o
A =55, (86) " (865)" =2 ((a82)")"
Substituting this result to Eq. (48) gives
P, v Bit) = ZPlP s Ui B (51)
with
PG i ) = o ((812)) "+ o ((80))" + 27 ((882)') ") 2

The above equations imply that if PPI(I%, vk, pL)(p = 4.5, ...) take the minimums, P(I%, v, BE) will take their
minimums, and then after a tedious calculation, the following results are obtained:
re(1) =455,
4 _ Paa) @)
7*(2) = ~ e ez

Ps (a7, @)

r*0) =F Grrieariar

1(4) o 734(@%@%,@;)
Y = {a; + 1607 +ay )

with
=+ =+ =+
Pt 5%) = 10922&F + 17028 +1317w/,7
1024+/3
~+ =+ ~+
Py, 5% 5%) - (111147 + 17796 +1365wﬁ)’
4096+/3
1

1572864+/3
+28501108176(@f ) (@7)? + 16914868416(@7")* + 821189105 (a0 )* (@7)

1}

+2932122822(af ) (@7 ) (@ ) + 1888107408(@ )2 (@)F) + 79001022(7) (@7 )?
+35773092(@7 ) (@) — 866259 (@7 )?).

Py(@F . af . @F) = (1677590048(@7)® + 12778457960(@ ) (@)

In fact, the results in Eq. (53) are derived for [p]-order after [p — 1]-order. PI?)(L}, . Vi Bay) takes the minimum for even
orders and vanishes for odd orders. Then, from Eq. (43), [ L and v - are determined to e’ order, and ﬁffy are determined to e*
order, and after omitting their undetermined parts, one finally arrives at

li, IR(Q\/_e+Z (;w7 )ep)’
U = RQ(Oe + 37, O(vy, p)e?), (54)
B =+, 085 p)e”.

where the expressions of Q(5,. p), Q(vi,. p), and Q(f5,. p — 1) are provided in Appendix D.
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As depicted above, the truncated orders of [, vi,, and

P, in Eq. (43) result in that P(I5,, v;,. () should be
truncated to e'? order, from which, only y*(p) (p = 1, 2, 3,
4) are provided, and consequently, the final determined
orders of the optimized expressions of [, vi,, and S, are
the same as their previous shown in Egs. (28) and (41),
respectively. Although the above optimized expressions of
all the kinematic indicators seem lengthy, when their
weights, namely, w} (@), @ (@;), and @} (@} ) are given,
all the above complex coefficients are degenerated into the
corresponding numbers, so compared with their original
expressions, the optimized ones are indeed simpler and
more compact. Physically speaking, with these optimized
expressions of all the kinematic indicators in Eq. (54),
P(L,. vit,. Bs,) reach their minimums, which means that a
set of reasonably determined weights can result in that Taiji
triangles in both configurations become the most stable.
Further, without doubt, following the above algorithm
about optimization, no matter what the truncated orders
of all the kinematic indicators are, Taiji triangles in both
configurations can become as stable as possible, and
therefore, the above algorithm applies to the optimization
of the inherent orbital variations of SCs involving any
specific problems. Thus, as mentioned before, after such
optimization of the orbits of SCs, the more stable forma-
tion of Taiji may contribute to selecting a simpler TDI
technique to suppress the laser frequency noise and
reducing the adverse effect brought by the Doppler shift
of the laser frequency. Moreover, when considering the
post-Newtonian effects of the Sun’s gravitational field and
the perturbative effects of some celestial bodies, the above
algorithm can be readily generalized so that the more stable
formation of Taiji can be obtained.

IV. SUMMARY AND DISCUSSIONS

The space-based GW detectors like LISA [8,9] or later
Taiji [10—13] are becoming increasingly important, because
the ground-based detectors are unable to detect GWs below
0.1 Hz [5,7]. Like LISA, Taiji is composed of three
identical SCs orbiting the Sun and forming an equilateral
triangle whose arm-length is about 3 x 10 km. Taiji will
observe GWs covering the range from 0.1 mHz to 1.0 Hz
by using coherent laser beams exchanged between three
SCs. In this paper, a new configuration for the orbits of Taiji
SCs is proposed by finding the new relationship between
the inclination ¢ of the orbits of SCs with respect to the
ecliptic plane and the orbital eccentricity e. The original
configuration, designed for LISA [8,9,14,15], is studied as
one part of the prestudy of Taiji [16]. The orbits of SCk
(x = 1,2,3) at every order in these two configurations are
symmetric about either z axis or x-y plane in the helio-
centric coordinate system, which embodies the duality
between them. In view of the fact that the trailing angle
of Taiji constellation following Earth from the viewpoint of

the Sun can take values of +7/9, where the negative value
means that the constellation is preceding Earth, and that in
each case, Taiji has two symmetric orbits of SCs about the
ecliptic plane, these two configurations, in practice, provide
eight kinds of potential orbit schemes for Taiji.

For the unperturbed Keplerian orbits of SCs in both
configurations of Taiji, an algorithm is devised to expand
them to infinite order of e in the heliocentric coordinate
system. When the post-Newtonian effects of the Sun’s
gravitational field and the perturbative effects of some
celestial bodies from Jupiter and the Moon etc. are
considered, the unperturbed Keplerian orbits of SCs should
be truncated to necessary order and then viewed as the
zeroth-order approximation of the corresponding perturba-
tive solution. Therefore, the algorithm lays the foundation
for discussion of relativistic and perturbative effects on Taiji.
Further, based on the algorithm, all the kinematic indicators
of Taiji triangles in both configurations are also expanded to
infinite order of e. As an example, the expressions of arm-
lengths and their rates of change to ¢’ order, and the
expressions of vertex angles to e* order are presented when
¢* = /3. These results show that even when ¢* = 7/3,
Taiji triangles in both configurations are equilateral only up
to their leading order but undergoes the inherent variations
up to higher orders. Such inherent variation of Taiji could
lower its sensitivity [14], so the inherent variation of the
Taiji triangle is significant in the data analysis, e.g., the
inherent variations of arm-lengths need to be deducted so as
to acquire their accurate variations induced by GWs. By
using the above algorithm, an accurate knowledge of the
inherent variations of Taiji triangles in two configurations
can be obtained. Moreover, with the above algorithm, it is
proved that for both configurations of Taiji, three compo-
nents of every kinematic indicator are proved to be identical
to each other up to a phase shift of 2z/3 at every order,
which is independent on the value of the tilt angle of the
Taiji plane relative to the ecliptic plane.

The first generation TDI may not suppress the laser
frequency noise effectively, because of the instability of
the Taiji triangle resulted from its inherent variation. The
application of the second generation TDI [14,18-20] could
possibly cause difficulty in the data analysis [14] due to the
complex noncommuting time-delay operators. Therefore,
it is necessary to consider a simple TDI strategy for Taiji.
In this paper, by adjusting ¢ around /3 to any order of e,
the orbits of SCs in both configurations of Taiji are opti-
mized, respectively, which, as with the case of original
LISA (presented in Refs. [8,9,14]), may contribute to
Taiji’s selecting a simpler TDI technique. Technically,
under the assumption (42), by slightly modifying the
above algorithm, all the kinematic indicators of Taiji
triangles in both configurations are first reexpanded, and
their expressions certainly include the parameters y=(1),
y=(2) - - - in assumption (42). Then, if a set of reasonably
determined weights is given, by taking the minimums of
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P(L5,. vit,. Br), the parameters y*=(1),y*(2)--- can be
derived one after another, and with them, the optimized
expressions of all the kinematic indicators can be further
obtained. Compared with their previous expressions, the
optimized ones are indeed simpler and more compact.
Thus, following the above algorithm about optimization,
Taiji triangles in both configurations can become as stable
as possible with the different specific problems involved.
As a preliminary example, the results of optimizing all the
kinematic indicators in both configurations by adjusting ¢*
around 7/3 to e* order are provided in the present paper.
When the post-Newtonian effects of the Sun’s gravitational
field and the perturbative effects of some celestial bodies
are considered, the above algorithm can be readily gener-
alized so that the more stable formation of Taiji can be
obtained.

As mentioned in our previous paper [16], LISA and Taiji
might be in operation at the same time for a period in the
future, and based on the new configuration in this paper,
there are more combinations available to be chosen.
Moreover, these various combinations could be used to
design the next generation space-based GW detector, which
may need more SCs to form a better configuration in order
to improve the sensitivity and angle resolution for GW
detection. The algorithm devised in the present paper
actually applies to any space-based GW detector like
LISA in triangular configuration, and the expansions of
the unperturbed Keplerian orbits of SCs to infinite order of
e are essentially their complete series solutions. With these
solutions, all the kinematic indicators can also be expressed
in the form of a series, which is the main idea of the
algorithm. Moreover, by following the slightly modified
algorithm about optimization, Taiji triangles in both

|

{cosz,z/,j(E =+£- f;O%Q(cosy/K,n)e",

o (FD)"

sinyE =

1] _)k+1
{Q(COS wen) = YL, Sl

. 3 (=1F
Q(siny,, n) := Eg]:o(z—ln)cﬁﬂ

as the discrete spectrum functions of the power of e for cos < and cos y, where [n/2] is the integer part of n/2, C

n=0 (n+1)! Q(Sin Yis n)e

configurations can become as stable as possible with the
different specific problems involved. As far as we know,
these results have not been given before for Taiji or LISA,
so the results in the present paper may be useful for their
development. Further, based on this algorithm, as men-
tioned earlier, the relativistic effect of the Sun’s gravita-
tional field and the perturbative effects of some celestial
bodies can be taken into account, and thus, the analytic
framework used to calculate the practical solutions of the
orbits of SCs can be constructed in the following task,
where in this framework, the series solutions in this paper
need to be viewed as the zeroth-order approximation of the
corresponding perturbative solution.
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APPENDIX A: DERIVATION OF EQ. (12) AND
THE BARYCENTERS OF THREE SCs IN BOTH
CONFIGURATIONS OF TAIJI

By reasonably inducing the result about the expansion of
Kepler’s equation in Ref. [21], from Eq. (11), the expan-
sions of cosyy and siny{ to infinite order of e are,
respectively,

with «x = 1,2, 3, (A1)
n+1-=2k)"'cos((n+1-2k)s,),
(14 1= 260 cos (0 + 1 =20, o
(n+1-2k)"sin((n+ 1 —2k)o,)
k.1 isthe

binomial coefficients, and o, is defined in Eq. (11). In the expansions of cos iy, the additional terms 4-e/2 are added in
order to make Q(cosy,, n) be written in a unique form for any n. To expand cos e* and sin e, the Taylor expansions of a*
need to be dealt with firstly. From Eqs. (4), (7), and a* = v/3d*/(2R), one can derive

ai_

- ?'ﬁ;(il)"“Q(ai,n)e”

with the discrete spectrum functions of the power of e for a*,

n

S

Q(a*.n) ="

= k=0 2kk‘(n — Zk)!(COS ¢i)2”—2k—1 .

(A3)
(=1)"=*=1(2n — 2k — 3)!! (A4)
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Then, substituting the above result to Eqs. (5) and (8) gives the Taylor expansions of cos ™ and sin e, respectively,

{cos ef=1+>%,(£1)"Q(cos e+, n)e", (A3)

sine® = Y% | (£1)""1Q(sine*, n)e"
with their discrete spectrum functions of the power of e,

{ O(cose™ n) = (=1)" + 315 (=1)*Q(a*, n — k) cos ¢*, (A6)

Q(sine®, n) := > 1=b (=1)kQ(a*, n — k) sin ™.

The combination of Egs. (A1)~(A6) and the Taylor expansion of V1 — e, namely,

- kﬂ'k
l—e—l ; k” 2e

with (—=1)!! := 1 can bring about Eq. (12), where the discrete spectrum functions of the power of e for x, yZ, and z;- are,
respectively,

1k . .
Q(xk ’ I’l) Ci( ) COS P + ZAZ;(IJ Zﬁi(}[ %(”7 kv J) cos ()(nkjo-lc - pK) + g?: (n’ kv J) cos ()(nkjo-lc + pK)]’
n__k . . . .
Q(Y?(:7 n) = C}ﬂz: (n) Sin/)K - Z%ll) Zﬁ:zo] [f?: (nv k7 ]) sin ()(nkjak - pK) - g?:(nv k? ]) sm ()(nkjo'x + pk‘)]’ (A7)

nk
Q(in» n) = _Cbi"(n) - Zzzl Zﬁig hsi(n’ k, ]) Cos ()(nkjo'x)

with p, == (k = 1)27/3, yuj =n—k+1-2j,

Ci(n) =3 (=1)"Q(cose*,n — 1), As
{cﬂn) =3 (=1)"Q(sine*,n - 1), %)
and
fsi(”,k’j) = [Cff(n,k,j) + Cp(n, k, J)] n— k+1()(nk])" =
g (n. k. j) = [CE(n. k. j) = Cpu(n, k. ICE sy ()" " (A9)
hsi(rhk’]) = Cti(n’k ])Cn k+1()(nk]) _k_l'
Here,

Ch(n.k.j) = o520 Ofcos e, k),

k=3)" uij T
Con(n. k. j) 5= &) os2 ke (A10)

Ct(n.k, j) = (5—17% (sinet, k),

and the discrete spectrum functions of the power of e for cos e* and sin ™ refer to Eq. (A6). Then, the barycenters of three
SCs in both configurations of Taiji are trivially derived by

+

re = +ry ) = (57 a) (A11)

w|»—

with
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xZ =Rcos(Qf) + RY%,(F 1)"Q(xE, n)e"
ye =Rsin(Q1) + RS2 (F 1)"Q(vE, n)e”, (A12)
e =R (F )"0z n)e”,

where the discrete spectrum functions of the power of e for x, y*, and z7 are, respectively,
O(xz,n) =331 OZE[ v (n, k) 3231 €08 (o — pi) + g5 (k. ) 3231 €08 (Xakjox + P
Qv n) =~} Z’:nZ oLFE(n k) S sin (o = o) = g (nk. ) S0 sin (ruggoe +p,)). (A13)
O(ct m) = =C(n) = § 70, o7 I (n. k. ) S22 €05 (g0

APPENDIX B: EXPRESSIONS OF Q((rlﬁ)z,n) AS THE FUNCTIONS OF ¢ AND
THE PROOF OF THE SYMMETRY OF g,

By substituting Eqs. (A7) and (14) to Eq. (18), Q((r; )% n) can be rewritten as the functions of #, namely,

o((r)*.n) = :_11{2Ci n—p)Ci(p )[1 _COS<(ﬂ_y) 2;)]

n—p— A] pA

ﬂp[

+ 22 Z Z Z f:t —p.k, ])f?:(pv k/’j/)(C/§D<Qt; fnpkj —Xpk'j gnpkj _)(pk’j')

—CL(Qt: i + X prj + 2. Enp — Xpiej))

+ g5 (n=p.k, j)gs (. K J)Chu( Qs Enpij = X pie s Enphj = Xpi'y)
—Ch(Qt: & + Xpry — 2. Enpij — X o))

=2f5(n=p.k J)gs (P K J)(Coo(Qts Euprj = X piy + 24 Enpj + X i)
— CL Q8 Eupj + X pie > Enpii + 2 pi7))]

npk

B3~
Zzhsi n _pak .] h (p,k/ )SF (Qt énpkj’gnpkj) ;w(Qt X pk'js X pk'j ’)
=0 k'=1 ;=0

J=0 K¥=1j

np[

+4g

=5

n-p
+ 42 C}T(p)[f\i(n - D k’ ])(Cgl/(gt’ énpkjv gnpkj) ;w(Qt gnpkj + 2 gnpk)))

k=0 j—
[T 0

- gic(n 2 k, .]) (C;fy(gt; 5npkj -2, gnpkj) - C}}IIJ(QZ; gnpkj’ énpkj))]} (Bl)
with

{ Ch(Qtye,n) = cos (e(u — v) &) cos[n(Qr — (u + v —2)%)], (82)

3
Sh(Qt;e.n) = sin (e(u —v) %) sin[p(Qr — (4 + v —2)%)],

Eupkj=n—p—k=2j+1,and y,p; = p—k'—=2j'+ 1.  every order, which does not depend on ¢*. Technically,

This result can be used to prove the symmetry of arm-  one only needs to prove that Q(/}fv, p) in Eq. (37) can be
lengths and their rates of change as done in Sec. IIIB.  expressed as G(6,,(Qt)), where G is the corresponding
Here, we will prove that ﬁffy also possess the same  function of a single variable, and 6,,(Q¢) is defined in
symmetry, and namely, their three components are  Eq. (19). Firstly, from Eq. (29), ﬁj,, can be rewritten as
identical to each other up to a phase shift of 2z/3 at  the following form:
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. raT _ Equation (B3) shows that one should begin to deal with
v = Arccos l,ﬁl,i with rfﬁ -r} and r:j x r. From Egs. (13) and (14),
(Loln)? = (rhy - r)> + (g xr)*, (B3) o T = RS2 (F 1)'Q(r,, -1y n)e,
here 1), = BT (F 110((% x )y e
+ X + — R2 1)— X n’
e (X 153), = R 5 (F 17005, 75) 0 m)e
T = N S (), = RS 170 7). m)e
rlﬁ xrh = ((r:f/1 Xrh),, (rw1 X1y (rw1 xr5).) (85)
= (yilzli - yulz,uxl’ Z/:,ltﬂxwl - Zvﬂxj:i’xyﬂyw{ - xzzzt/ly;:ﬂ) . . 3 .
with their discrete spectrum functions of the power of e,
(B4) respectively,
|
O(ry - 155n) = Y0100, n = k) Q(x5;, k) + Qv n = k) Q(v;;, k) + Q(z;, n — k) Q(z;5, k)],
O((ry; x 1)) = 30240, n = k) Q2. k) = Q5. n = k) O(z,:. k)] (B6)
O((r; x13)ym) 3= 3202110 (2. n = k) Q (x5, k) — Q2. n = k) Q(x,;. k).
O((ry x 13).on) = 33071 [00x,. n = k) Qv k) — Q(x;. n = k) Qv k)]
and further,
(";ﬁ'rm) =R (F 1) 0((r, T 1) n)e’,
(",ﬁ X Ty ) hs = ((",M X1, + ((",4,1 X rwl) P =R L(F 1)"Q((",jf/1 X1 )y )€, (B7)
(r;t/l sz:i{)vs = ((l‘ eri) ) )1:4( )nQ(( HA Xrui)bwn)en
with their discrete spectrum functions of the power of e, respectively,
Q((r;ﬁ'rui)z ) Z (r/M rul’n_k)Q( A ru/l’k)
O((ry x 1) pee ) 5= 30530 ((r; X 1) = K)Q((ry X 153) . k) + Q((ry, x 153) . n = k) Q((ryy X 15),. b)) (BS)
O((r; X1,5) o) = Z (s X 75) o n = k) Q((ry; X 775). k).
Then, by Eq. (B3), one directly gets
(15)" = R Y 0L m)e” (B9)
n=4
with
O((Lp15)% n) = (F 1)"Q((ry; - r3)% n) + (F 1)"Q((ry; x 1) 1) + (F 1D)"Q((r; x75)n) - (B10)
as their discrete spectrum functions of the power of e, where from Egs. (22), (24), and (27), there are
(15 4) = O(E, 17015, 1) = 4 (2)ag(2) > 0. (B11)
Equation (B9) provides
1
,ﬁ e (Z ) with ¢, (p) = Q((515)% p +4) (B12)
17587

by p == n —4. From Egs. (B11) and (B12), (¢ ;M( e

(a£(2)a,(2))71/% # 0. According to Egs. (C11)~(C13) and

HA

(C16), ( ) uwl( p)e?)™'/% in Eq. (B12) can be expanded, and then, substituting the obtained result to Eq. (B12) gives
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1
ljllfj1 2R2 Z l,jl,j
with the corresponding discrete spectrum functions of the power of e,
1 1 - 2k=D1 (cuak(p)
Q(li I ’P> = %op n n T Z(_l)k( (Qk)u) n — n 211 ° (B14)
palia an2)a52) " (ea@a52)

where

(e e(p) = {C?;z(p) k=1,
A)e\P =1 - . . . .
= z“ (=k—1 Zﬁ,;:k—z‘“ h 2211 1 ,M(P Jr-1)€ ;;wl(]k—l —]k—z)"'cﬁz(h —Jl)c,i/l(h)v k=2

(B15)
Thus, from Egs. (B5) and (B13), one can derive
rl/
B, = cos i, = li = Z O(Bi,.p (B16)
/M. vA p=
with
£ 1

B.p Z )P (r i,p—k+2)Q<lili,k>. (B17)

k= HA VA

By substituting Egs. (A7) and (14) to Egs. (B6) and (B8), Q(r;j -rk.n), Q((rM xr5),.,n),and Q((r X F5) pss 1) Can be
rewritten as the functions of ¢, respectively,

n—1
(ry r;.n Z{4Ci n—p)Ci(p)Cs,(Qr1,1)
p=1

n—p [n p— A] [[)ZA]

+4) Z szs n—p.kj)ff(p. K. J)CoQt E i+ Ly pwy + 1)

k=0 / —
o ]OkOJO

+gg (ﬂ - P k7])g?:< ) /?u(gt; gnpkj - lv)(pk’j’ - 1)
+ffvt(n_p7k’.])g?:(p ) gv(Qt;gnpkj"i_l’_)(pk’j’+1)
+gsi(n—P,k,j)fsi(P7k/ ) gy(gt;gnpkj_17_)(pk’j’_1)]

k 4
n— p[np] )4 [,}2]

+2Z Z Zzh?: n—p, k, J hi(p K ])[ (Qt gnpkjv)(pk’ ’) +C/41/(Qt gl’lpkj’ A pk'j ’)]
k=1 j=0 k=1 ;=0
n—p (=54
+4y° Z Cr(P)If5 (n = p.k, J)CG(Q; Eupry + 1, 1) + 65 (n = p, k, J)CG(Q8 =&, iy + 1, 1)]
=
p 17
F4Y S Gl = UK IR ey 1)+ 6 (oK )05 Ly + 1] (B18)
1\; 0 j'=0
K1

064049-16



ANALYTICAL ANALYSIS ON THE ORBITS OF TAUI ... PHYS. REV. D 101, 064049 (2020)

O((ry; xry;).n

and

Q((",u X T ) pys ) =

with

where

n—1
{4ci n—p)Ci(p)SG Q1 1,1)

p=1

gk [Tk’]

+4Z Z = Pk )T (P K TS Sy + Lty +1)

k=0 =0
e I V2l J=

— s (l’l - D k, ])gs (p’ k/’j/)S/?u(Qt; fnpkj - lepk’j/ - 1)
+fsi(n - D k»])g\i(p7 k/»jl)S/?l/(Qt; énpkj + 17 _}(pk’j’ + l)
- g?i(n - D k j)fsi(p’kl»f)‘g;(iv(gt;énpkj -1, —Xpkj — 1)]

n—p 2= 4
+4z Z Ci fs n—p, k, ]) /w('Q‘t énpkj +1, 1) +gr (l’l—p k, ])Sgu(gt; _gnpkj—’_ 1, 1)]
e =0
p 15
+4 D Ciln=p)fF(p. K. J)SLQE Ly + 1) + gE(p K. J)SEQE L~y + 1>J},
1\’/7? j'=0
(B19)
n—2 n—s—1 p %] s—1 ps [%]
RO NS Ci(n =5 = p)AE(p. K. /)G (s = pWE (P K. 1)
5=2 p=1 K=1j=0 p=1 k=1 j,=0
x N (Qt:¢(=1.0,0),¢(=1.0,0).¢(p. K. ). (Ps,kQ,jé))
nslnsp[spk]p[pkSlsp)ijkx I’r
+16Z Z 202220 >, Zzhipvk’ s (s Ko i)
Jj=0 =1 j'=0 p,=1 ks;é? Js=0 Kki=1 ji=0
X {fsi(n_s_pvk’.])fs (S _psvksvjs)
XNZ/(QI;g(n_S_pak’j)’g(s_ps’ks’js)7g(pﬂk/ﬁj/>’G(ps’k_/wjls))
+gv(n—s=p.k j)gi (s = ps ks Js)
X N (Qt;—g(n = s = p.k. j).=(s = py. ke i) s(p. K. J) 6Py K. )
+2fﬁc(n =S _pvkvj)g.?:(s _ps’ks’js)
X N{ZD(QI’ g(l’l —S=D, k».i)? —g(S — Ps» ks»js)? g(pv k/nj/)’ g(pS’ k/s’]/s))]
n—s—1 p [1};/(/] s—1 s—p;g [#] V4 [m;k;]
S S S S S S s K ()
p=l K=1j=0p;=1 420 j,=0 k=1 j=0
X [f5 (s = Py ke JON i (Q1:6(=1,0,0),6(s = py. kg, o). 6(p. K ') 6 (pys K )
=+ gsi(s - pmks’js)N;[tiI/(Qt; g(_lvov 0)’ —g(s - psvksmjs)’ G(pvk/7j/)a G(psvk;m//s))]} (BZO)

Q(P,k,_]) ::p_k_2j+ 17
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)sin (o(v —4) %) cos[p(Qt — (u+4—2)5) —o(Qt — (v +1-2)%)]
)sin (o(v —4) %) sin[p(Qt — (u +1—-2)%) —6(Qt — (v+1-2)%)]

[SSIE]

{ C(Qt3p,0) = sin (p(u — 2)

G . " (B21)
Syu(Qt;p’g) =S (p(ﬂ_i) ’

Wiy

Nu(Qt;p.ps,0,0,) = K[L(Qt;p + 1, py + 1,6,64,p = p;, 0,0) Sin<6<9t -(+1-2) %))

T

X sin<0s (Qt— (v+1-2) 3>> + Kl (Qt;0,05,p+ 1,ps+1,0,p — p;, 0)

x sin(a(Qt— (yH—z)g)) sin(as(Ql‘— (ﬂ+ﬂ—2)§))

- KL (Qt:p+1,05,p,4 1,0,p.—ps, —1) sin(as <Qt —(u+1-2) ;[))
X sin(o-(Qt -
<5<Qt—

T
5)) - K (Qt;ps+1,0,p4+ 1,05, —ps.p, 1)

u+ﬁ—2)g>>sin(as<9t—(v+ﬂ—2)g)) (B22)

(v+1-2)
(

X sin

with
’C/[Z/(Qﬂ 1,1, 13,14, 91, 95, 93)
:= sin <z] (p—2) g) sin <12(,u — 1) g) sin (13 (v—2) g)
X sin <z4(u—/1)g> cos[&l <Qt— (/1—1—/1—2)%) +192<Qt— (V+/1—2)§) +193(/i—l/>g]-
o T (T X150 and (r X 1), show that all of them are symmetric about u, v, so from (ry; x ;)% = (ry; X

) + (r X 15;), and Eq. (B3), one only needs to consider (4,v) € {(1,2),(2,3), (3, 1)} when proving the symmetry

of fi,. All the terms of Q(rsy, -1y, n), Q((ry;, xr5;),,n), and Q((r;; X 15;),,n) contain, respectively, Cg, (Q1;p, 0),

S5 (Qt;p,0), and NTL(Q1: p. py. 0, 65) whose expressions refer to Eqs. (B21) and (B22), where p, 6, p,, o, are integers. By
a direct calculation, if (u,v) € {(1,2),(2,3),(3,1)}, there are

CS (Qt; p. o) = cos <(p ~6)0,,(Q1) + (2p - 0) g) sin <%”> sin <2;ﬂ> ,

201

Sp(Qt:p, o) = sin ((P = 0)0,,(Q1) + (2p = 0) §> sin (%T) sin (T) :
and

NB(Qt;p, py,0,0,) = MI(Q1;1,1,2,2,2,0,1,1) + MZ(Q1;2,2,1,1,1,0,2,2)
AME(Q1;2,1,1,2,2,-1,2,1) + ME(Q1;1,2,2,1,1,1,1,2)

with

T

MHE(QE 81,85 C3. Cn Cs Cor Can Cg) = sin (cl (p+1) 3> sin (@(ps + 1)%) sin <§3 ?) sin (¢4 ”;”)

cos [(p —py) (aﬂy(go + 2 g) +%(p—2) g] sin [a <9W(Qt) +& g)} sin [as (e,w(gt) + & g)} :

and then, Eq. (B8) implies that all of Q(r;; - 173, n), Q((ry; - 15)%, 1), Q((ry; X 153) 45, 1), and Q((r;; X 157) 5, 1) can be

expressed as the functions of 6, (Qt), respectively. Therefore, from Eqs. (B10)-(B12), (B14), (B15), and (B17), Q(B,f,,, p)
can also be expressed as the functions of ,,(Qr), and further with Egs. (38) and (39), one finally concludes that Q (/. p)

in Eq. (37) can be expressed as G(6,,(Q1)).

064049-18



ANALYTICAL ANALYSIS ON THE ORBITS OF TAUI ... PHYS. REV. D 101, 064049 (2020)

APPENDIX C: EXPANSION OF f(3"% d(p)e’) WITH £(d(0)) # 0 TO INFINITE ORDER OF e

To expand f(> %, d(p)e”) with f(d(0)) # 0 to infinite order of e, the expansion of f(
positive integer to e’ order should be first taken into account, and then, there should be

f@o; d<p>ep) _ }irgof(; d(p)ep) (1)

F(>2h_od(p)eP) can be rewritten as the following form:

Lo d(p)e?) with i as any

(Zd(p ) £(d(0) + A)  with A::zl:d(p)e/’, (C2)

and because A is small, the further Taylor expansion gives

i i (k)
p=0 k=0 :

where £ is the kth derivative of f with f(©) = f. Equation (C3) implies that the expansion of A¥(1 <k <i) to e order
needs to be dealt with.

Next, by induction, we will derive Ak = (Z’ d(p)e?)¥(1 < k < i), where the subscript i means that only the
expansion of A to e’ order is kept. For k = 1 and k 2, the expansions are trivial,

i 1 i

(S dwier) =S aitmer witn ar(p)=dp) ()

p=1 i pr=l
i 2 i
(Z d(p)eﬂ) =S (d(p - 1)d(1) + d(p—2)d(2) + -+ d(1)d(p - 1))er
p=1 i P2
i p—1

=Y dy(p)er with dy(p) = d(p—j1)d(jy). (C5)

[\S}

Ji=1

S

Then, Eqgs. (C4) and (C5) can be used to derive the expansion for k = 3, namely,

(Z d<p>ep)j - KZ atper) 1 (Z d(p)ep)z]i
KZ a(p)er) (Z dz(p)e”>]i

i

(di(p—=2)dy,(2) +di(p—3)dry(3) +--- +di(1)dr(p—1))e?

p=3
=) ds(p)e’ (C6)
p=3
with
-1 p—1 jr,—1
ds( Zd p — j2)d2(ja) Zde J2)d(ja = jr)d(jr)- (C7)
Ja= J2=2j1=1
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Similarly, the expansion for k = 4 can be further derived, and there are

i 4 i
(S atser) =S aprer (e
p=1 i p=4
with
-1 j3=1 jp-1
ZZZd P = J3)d(js = j2)d(j2 = j1)d(j)- (C9)
J3=3 =2 1=
Repeating the same procedure, the expansions for 5 < k < i can also be obtained, and then, one arrives at
(Zd )ep> de (C10)
with
I S )
di(p) = { . 1 o , . , s . Cil
Z,‘ k1 ',/'A:Z:L-z e ;‘zzlz 5?:11 d(p = ji-1)d(xr = Jxa) - d(ja = j1)d(jh), 2<k<i

Plugging Eq. (C10) into Eq. (C3) and setting i — oo
gives

(C12)

f(i d(p)e”) = g O(f.p)e?

with its discrete spectrum function of the power of e,
2L f®(d(0
0(f. p) = 0, 1(a0) + 3 T4 g ) ers)
=1 :

For a definite function f, in order to apply the above
result, one needs to know the expression of f (k), and here,
some typical examples are given.

(i) f(¢) =¢™ with m as any real number.

One can easily prove the following formula:

(i)

fR(E) = ket (C14)

(54

with CX, :== m(m —1)--- (m — k + 1)/k! as the gen-
eralized binomial coefficients, where if m is any
positive integer and k > m, Ck, = 0. The following
two formulas can be derived by this result:

roe) = (o B e o gy <
(Cl15)
2k — )1 o 1
700 =0 DR e or gy =
(C16)
where (=3)!!:= —1.
7(0) = arceos(¢).

By induction, one can obtain the following
formula:

(2k=2p =3)M(k—=1)!  k2p-]
) =- SE o
; 2p)!i(k—2p —1)! (1 -2
Now, we will prove it. If k = 1, Eq. (C17) gives f()(¢) = —1/(1 — £2)"/2, which holds. Suppose that when

k=1>1, Eq. (C17) holds, namely,

[121] 1

Q) = Za(ll___zw

1-2p—1
C !
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Then,
Fi-2p-1)al_,_, - El(-2p-1)al__, 22
f(lH)(ZJ) == 2]_1]—1—2p - 12: 12P
p=0 (1 - 52)7—p+1 p=0 ( Cz)
-1 1-1
_(2l—l)af ]évl_i:](z[_zp_l)al 2,012 T (1= 2p' + 1)d! a_, ’+2€1 2p'
(1 _ 4,2)214»1 p:1 (1 _ é,2)214»1 p/:1 (1 _ §2)21+1 I
= _
C@=Dap g G(Q=2p = a5, + (1= 2p + Daj_y, )¢
= (1 _ Cz 20+1 Z (1 _ Cz)ﬂ_p
U=2p al O
(1 _ é,2)21+1 P41
- %(21—2,9—1)”1' g2 (I=2p +1)aj__y, 2
@pNI=2p) (1-2)% (1-¢)5r p=I5+1

El

%(21—2,;—1)"1' si=2r
— 2p)(I=2p)! (1 =2)=r

where in the second step, p’ := p + 1, in the last second step,

Q-1 =@2l-1)d_,,
(21 =2p — 11!
2p)I(1=2p)!

have been used, and in the last step, when [ is even, by using [(/ —1)/2] + 1 = /2, one gets

=(20=-2p-1)aj__,, +(1=2p+1)a;_ 1-2(p-1)

(I=2p+ Daj_y 5, ¢ Q1-2p 1111 (=2

(1= 2)5r sz @P)NI=2p)! (1 - )5y

and when [ is odd, p=[({—-1)/2]+1=(I+1)/24 (I-2p+ 1) =0, which means that the above term
vanishes.

(iii) f(¢) = sec({).

In Ref. [23], the following formula is presented:

k

k
FO) = sect(vV=1 —1)7j1> ClS(p. )2 (V=Ttan¢ + 1), (C18)
P=J

k
]:0
where S(p, j) denotes the Stirling number of the second kind.

(iv) f(¢) = cos({).

The following formula is readily derived:
o (14 (=1)F 1 —(=1)*
FI(E) = (—1)HY (#cosm#smg). (C19)

V) f(§) =sin({).
From Eq. (C19), one can get the following formula:

FR©E) = (—1)[51 (#coséj + %_l)ksin cj). (C20)
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APPENDIX D: THE EXPRESSIONS OF Q(l,i,p),Q(in,p), AND Q(f, p-1) WITH2<p <5
AND THEIR CORRESPONDING OPTIMIZED EXPRESSIONS

From Egs. (B1), (20), (21), and (23), Egs. (25) and (26) give the expressions of Q(lffy, p) and Q(’U;tw p)with2 < p <5,
and further, from Eqgs. (A7), (14), (32), (34), (36), and (39), Eq. (38) gives the expressions of Q(ﬂff,,, p—1).

0(15,.2) =F 2 T 0,,(Q1) £

5489v/3 10953
0(l3.3) = V3 \/_co

% - 15\/§ 158\/§COS(29/4U(QI)) F %COS(?)GW,(QI)),

16239/3 2853
$0,,(Qf) - —— Y=
1024 256 H 2048 512

4413 15v3 3
— = cos(40,, (Qt 60, (Qt
1024 COS( ;ll/( )) + 512 2048C0S< /ll/( ))’
1656729v/3 11657913 288213V/3
¥ 086, (Qt) £ ———"—

65536 65536 H 8192
409473 495153

32768 16384

16353 26973
Q _- -
g10p C08(00(R0) F “3707>-¢

cos(26,,(Q1)) — cos(36,,(Qt1))

cos(56,,(Qt)) —

0Ly 4) = cos(26,,(Qt))

39993
cos(46,,(Qt)) £ 37768

45\/3
65536

cos(36,,(Qt)) £ cos(56,,(Qt1))

+

0s(76,,(Q1)) £ cos(86,,(Q1))

3
Q
31073 cos(96,,(Q1)),

2318991805+/3 1801783373 754445953+/3
+ _ [
QU5 =¢77m316 T 2097152 <O (@) = 4iom304
38010871/3 3237903959+/3 4280999+/3
R 0, (Q1)) ——————"" " cos(40,,(Q bt e
2007152 0830w () = o rey o840 (Q0) + o0y
__92332561yﬂ§ 685053 __1944549x/§
41943040 4194304 16777216
12
67125v3 5v3 - 6753\/§cos(109 ,(Q1)) + 775\/5
4194304 8388608 # 4194304
53
33554432

15V3
+ _
Q(v[ll/’z) ==+ 16

1095/3 . 16239/3 . 8
" se sin Hm,(Qt) + T sm(26’,w(£2t)) +
4413 . 753 . 3V3 .

556 sin(46,,(Qt1)) — =1 sin(56,, (1)) + 004 sin(66,,(Qt1)),

1165791 28821 122841
(v, 4) = :I:Msine Q1) F 88T936\/§sin(29ﬂ,,(9t)) F %sin(%’w(ﬂt))

65536 H
199951/3 4905/3 .

49515/3
TONVD Gn(46,, (Qr 66,, (1
2006 Sn(40(20) F 7768 2006 $1(60.(€20))

1887 4
%Smwa‘”(gm + Sﬁsm(fg%(@t)) + OV3 sin(96,, (1)),

8192 131072
__180178337\/§ - 754445953/3 . 11403261+/3

Qr 20,,(Q1)) - 30,,(Q1
2007152 0w+ sy (20w (@) = gy Sin(30. (1)

3237903959+/3 21404995+/3 2769976833
VY Gin(40,, (Q1)) = —————— " sin(50,,(Q (60 (O
41043040 (40 (90) == rg1504 S50 (L) + 071550 Sin(60u (1)

:F

cos(26,,(Qt1))

cos(56,,(Qt1))

cos(66,,(Qt1)) + cos(76,,(Qt1)) cos(86,,(Q1))

cos(96,,(Qt1)) cos(116,,(Q1))

cos(120,,(Q1)),

15;/? sin(20,,(Qt1)) £ % sin(36,,(Qt1)),

16
55vV/3 |
: sin(36,,(Q1))

sinf,, (Qf) F

Q(vu.3) =

+

sin(56,,(Qt)) F

Q(”/:::w 5) -
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4119323?({ (70, (1)) + %ﬁn@ w(Q1)) = 62;‘915;8{ n(96,, (1))
" 3413179353\4; n(106,, () = 481954\3€4 sin(110,,(€21)) + 831;3\?)8 sin (120, (1)),
0 (B, 1) = 5\/5005 0,,(Q1) £ 151\6/5 cos(20,,(Q)),
O(Bu-2) = 13152;{ cos 0, (Qr) — 592%1‘5 cos(26,,(Q1)) + 4?(?2\4/15 cos(46,,(Qt)) + ff cos(56,,(Q1)).
0(fn.3) =T %ﬁcos 0,,(Q1) £ %gcos(wﬂy(ﬁﬁ) F 6(;‘:)54;@ cos(40,,(Qt))
+ 219673\5 cos(56,, (1)) + 839277‘6/3 cos(76,,(Q1)) + 1123\5 cos(86),,(Q1)),
(B 4) = 98153217:3)77\2/§C0S(9ﬂl/(9t)) - %cos(%ﬂb(gﬂ) + % 05(46,,(Q1))
+ %COS(SHMM)) 359;?;;5{ 0s(76,,(Q1)) — %cos@eﬂy(m))
11(:);::;57\/36 cos(100,,(Q1)) + 51254\2/38 cos(116,,(Qr)).

The corresponding optimized expressions of Q([5,, p), Q( v, p), and Q(f,. p — 1) with 2 < p < 5in Eq. (54) can be
derived by plugging Eq. (53) into the expressions of Q(l5,, p), O(v,. p), and Q(fi. p) in Eq. (43).

15V3 V3

0(I5,.2) =F T 0,,(Q1) F —cos(39 L(Q1)),
Q@i dy . &) O, (af . &y, @5 ) 9/3 V3
I£.3) = L d 20, “¥2 cos(40, — = cos(60),
Q(h.3) T4aF + 1607 + @ | daF + 1607 + ﬂCOS( Q1)) + T05 €08 (40 (1)) = 5,5€05(60,, (1)),
Q) (af, of, &F oL (oF, @F, oF
0(lf,4) = + (@] i) —cos(0),,(Q1)) + (] ) cos(39 L(Q1))
4@F + 1607 + @ ﬂ 4@f + 1607 + @
Q45(wl ’a):b":’w‘:ﬂt) 3\/§ 3
50 (Q1)) + 70, (Qt 0. (Qn)).
Tt 1 160F 1 af oS00 (@0) £ 13775 070, (90)) F 35575 <050 (21)
oL (of, &f, & oL, (@ ,w?E,wi
(L. 5) = _EO( l T /_}l 3= 5 (7 7 5¢0s(26,,(Qt1))
(4a) + 160, +ay)’ (4o + 160, + @)
oL, (aF, o), & oL (@, of, &F
- _j“( . fi Scos(40,,(Q1)) - 5o ) cos(6e L(Q1))
(47 + 160, + @5) 4of + 160F + @
st(a)?:ﬁw’l)’a)ﬂ) 3\/§ 5\/§
86,,,(Q1)) — ——v——c05(106,,,(Q1)) — =—m cos(126,,,(Q1)),
407 + 1607 + ﬁCOS( A(0) ~ S3gg608 “0 1 00w () — 33557735 008120, ()
153 . 3V3
Q( ,:4’:1,,2) i? 9 (Qt):i:Tsm(?’H ( ))
204 (of, @f, @F) 9\/3 3v3
+ 3 2 1 v Th 20,,(Q1)) =~ sin(40,,(Qt in(66, (Qf
O(v.3) = 4o 1 1607 1 ﬁsm( V(Q1)) = S sin(46,, (Q1)) + 775 sin(66,,(Q1)),
Ql (@f, @y, @) 3QL (aF, @F, @F)
+ 4) — v B in(0. (Qf 43\*7] v B 30
Q(viu. 4) 4@%+16@i+@,§sm( ol )):':40) = 160t + @ Sm( o ($21))
5Q4s(@), @y, @) 213 93
Q i Q1) + i Q
GoF + 160F + o OO @0) F 137075 5070 (@0)) £ 1376755096, (1)),
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ZQI (@i,&)i,&)i) 4Ql (@i,@i,&)i)
=5 =— 22 1 0 P in(26,,(Qt ML TV TP sin(40,,(Qt
Q('U;w ) (4&)li+16&)i+6)i)3sm( ;w( ))+(4@?E+166)1T+&)i)2sm( /w( ))
60 (@i, wr, oF 8OL (@], @F, F
50(@1 / )sm(wﬂy(gz)) (@1 ﬂ)sm(ge L(Q1))
4df + 160+ —l—wﬂ 4F + 160F —l—wﬂ
15V3 15V3
—¥"_in(100,,(Q1)) + ——————sin(126,,(Q1)),
2192304 (100, (20)) + G205 SN (120, (1)
15\/5
OB 1) = 35 08 0. (820),
sz(a), L@y, @) 3V3
. v f 20,,(Q1)) — =" cos(40,, (Q
Ofu.2) = 3oF 11607 1 & COS( (1)) = 1555 €08(46,, (1))
Q31<w1 L @y vwi) Q35(w1 L@y, W) 3V3
= 3) = £ 0,,(Qt d 50, (Qt 70,,(Q41)),
Q(ﬁ;w ) 40)[ +16wi+ ;COS( ;w( )) 40)[ +16(0i—|— COS( ;w( >):F3276SCOS( pw( ))
Q42(a)1 L@y, @) Q44(w1 7wvva’i)
= 4) = b 20, (Qt i 40,,(Qt
Q(ﬂuv ) = (4601 + 160F —;) COS( ﬂl/( ))+(4a)li+16a)y /g‘}c) COS( ﬂv( )
Q48(0)1 X wﬁt)
86, (Q1)) — —————cos(100,,(Qr
407 + 160% + @ COS( /(9) = Toa8576 05100 (20))
with
L .. V3(10503@) + 28682 + 1919@;)
(@, a7, 5 ) = 512 )
L . .. V3(17368af + 16152a7 + 1515@;)
Q@7 oy, @) = 2048 ’
L. \V/3(1852288aF + 35167920 +256701wﬁ)
Qi (@7 v, ) = 65536
V3(4498@7 + 524532mF + 27981+
(@t ok, o) = V2B 2y
65536
L .. V3(245540] + 7155607 +4725a)ﬁ)
Qus(@p oy, d5) = 65536
V3
I (-t ~Et ~+) _ = 2
oL, (@; ,wy,a)ﬂ)—m(47642365472(w )? + 399069232000(@F ) (&7)
)2

+26075374104(@f )X(@}) + 1036985622144(7" ) (@i
+ 128928982880(a}" ) (@7 ) (@] ) + 4088092496 (@} ) (@) )?
+ 811946166784(w )’ + 148384407456(7 ) (@)
+9032642280(a7 ) (@) + 184675777(7)?),

A (@

4194304

1 3046484592(@F 2 (@7) + 97440130048 (@) (@ )2
(@

+ 11015200048 () (@7 ) (@] ) + 327885768 (@;" ) (@) )
+ 55054799872 (;")* + 7430284320(a0; )* (@)
+282997416(@; ) (@7 )* + 2487199(@5)?),

(6331721632() + 46245994048 ()2 (@7 )

Qéz(@?v@f»@;) =

064049-24



ANALYTICAL ANALYSIS ON THE ORBITS OF TAUI ... PHYS. REV. D 101, 064049 (2020)

V3
L (@ 0, 0F) = ————(3563227584(@F)? + 16611195072(a7 ) (@
Qs (@j, &y, @) 67773160 (3563227584 (@;")* + 16611195072(@; ) (@, )

+ 1150966632(6)?)(6)}) + 23648250944 (7 )?
+ 3137566528(6)?)(6)}) + 104999579(&)})2),

7\/5(1823132&),i + 6759328+ + 4275136)?;)

Il (- ~+ ~+
Dol @1 @3 D 41943040 :
3v/3(383927F + 100248+ + 6771t
Q@ %) = OS2 p),
16777216
V3(4987@7 + 6618@; + 540@7
oo ot af) = L 2,
F 1024
3v/3(33422@F + 537080E + 41150
(@t ot o) = 2222 2}
16384
-+ ~+ ~+
O (0% 5. o) — V3(17114@7 + 41796@; + 286507)
VT T Tp 65536 ’
fo =t b =ty V3 o) 16(@+)3 166147320(=)2 (*
Qp (@, @y, @) 1048576(69 633616(@;")° + 5166147320(@;")*(@; )

+336981015(@})*(@F) + 11296361392 (& ) (@7 )
+ 1236584274 (@) ) (@) (@) ) + 35603882 (") (@ )
+ 6855639872(@;")* + 891106656(a; )* (@} )
+30716436(@) (@) + 160544(j5 )?),
5 ‘ _ V3
41943040
— 5303164 () (@5 ) — 1632956848 (@)
— 188904056(af) (@5) — 5108353 (0})?).
V3(8575@F +20970a; + 1437@7)

Y/
Q@) @y, @) = 1048576 '

(220359572(@7 )* — 415245424(@7 ) (@)

APPENDIX E: REEXPANSIONS OF cos e* AND sine* BASED ON EQ. (42)

Equations (5) and (8) show that a* need to be first reexpanded, and then, one can acquire the reexpansions of cos e*
and sine*. From Eq. (A4), the expansions of sec ¢® = sec( i) y=(p)e”) need to be taken into account, and with

Egs. (C11)—~(C13) and (C18), there is
sec gt =3 Q(sec g, p)e? (E1)
p=0

with the discrete spectrum functions of the power of e,

P sec® (z/3)

Olsec ™. p) =200, + 3= 7k () (B2)
where
+ ) k - 19
ri(p) = {}, E)l—)l) jroi—1 =1 x~ja—l 4 . i . SNty (E3)
ke 2 Tk 2 2 (P = k)7 ket = Jk=2) v G =) G, k22
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Then, Eq. (A4) shows that sec” ¢p* = (
Egs. (C11)-(C14) gives

sec” ¢p*

oo Q(sec g™, per)”

with m = 2n — 2k — 1 should be expanded, and using

=3 0fsec” ¢, p)er (E4)
p=0

with their corresponding discrete spectrum functions of the power of e,

P
O(sec"p*, p) = 2"80, + Y _ Ch,2" 710y (sec *, p), (E5)

where Q(sec ¢*,0) =2 and

O(sec ¢*, p), =1,

=1
Ql(sec ¢i? p) = Z]l 1=l-1 Z;i—?{:l_z o

]3—22
xQ(sec g™, jo — j1)Q(sec ™, jy),

I=1

,]T 11 O(secdp™, p — ji_1)Q(secp™, ji_1 — jia) - (E6)

1>2.

By substituting Eq. (E4) to Egs. (A3) and (A4), a* are reexpanded by only modifying their discrete spectrum functions of

the power of e, namely,

n—1 [%] (211

— 25 — 2k = 3)!

Q((SCC ¢:ﬁ:)2n—2s—2k—17 S). (E7)

O(a*t, n) = Z(il)s Z(_l)n—s—k—l

s=0 k=0

One also needs to expand cos g™ = cos(D_5 v (p)e”)
and sing™ = sin(3°% 7 (p)e?) in Eq. (A6), which is
easy to deal with by use of Egs. (C11)-(C13) again, and
here, we directly present their results together,

=, Ocos . p)er

{cos Pt =
%0 Q(sing™, p)e”

singp* = (E8)

with their discrete spectrum functions of the power of e,
respectively,

COS(k) /3
{@mwtm=yw+zh Ln3) ok (), =)

. sin® (7
O(sing*, p) = %28, + S0, v (p),

where the expressions of yi¥(p) refer to Eq. (E3), and the

expressions of cos® and sin®) refer to Eqs. (C19) and
|

{Q(Cossi,n) (=1)" + 22550 (F1)° 20056

Q(sine*, n) = > 1=

2%k\(n — s — 2K)!

222k2%
&wzu12w<>“PwLﬁn%ﬁ

|
(C20), respectively. The combination of Egs. (E4) and (ES8)

provides
D (m) = sec” ¢ cos p* = 32, Q(@F(m). p)e”.
{ D (m) = sec” ¢ sin ™ = 370, Q(P5 (m). p)e?
(E10)

with their discrete spectrum functions of the power of e,
respectively,

{ Q@ (m). p) =
Q(@5 (m). p) =

> ko Q(sec™ ¢, p — k)Q(cos ¢~ k),

Zf:() Q(sec’” ¢i’ 2 k)Q(Sll’l ¢i’ k)a
(EIL1)

and then, plugging them into Eqgs. (A5) and (A6) gives the

reexpansions of cos e* and sin e* by only modifying their
discrete spectrum functions of the power of e, namely,

P (—1)rmsmpmt BBy D 6 (@ (2 — 25 — 2k = 2p — 1), ),

2P pl(n—s—k—=2p)!
Q(®F(2n —2s =2k —2p —1),5).
(E12)
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