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Motivated by the recent research of black holes with NUT charge, we investigate the validity of the weak
cosmic censorship conjecture for the Kerr-Taub-NUT black hole with a test massive scalar field and a test
particle, respectively. For the scalar field scattering gedanken experiment, we consider an infinitesimal time
interval process. The result shows that both extremal and near-extremal Kerr-Taub-NUT black holes cannot
be overspun. For the test particle thought experiment, the study suggests that the extremal Kerr-Taub-NUT
black hole cannot be overspun; while the near-extremal Kerr-Taub-NUT black hole can be overspun. By
comparing the two methods, the results indicate the time interval for particles crossing the black hole
horizon might be important for consideration of the weak cosmic censorship conjecture.
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I. INTRODUCTION

In order to preserve the predictability of classical gravity
theory, Penrose proposed the weak cosmic censorship
conjecture [1], which states that space-time singularities
arising in gravitational collapse should be always hidden
behind black hole event horizons and can never be seen by
distant observers. The conjecture has become one of the
cornerstones of black hole physics. A general proof of the
conjecture is still beyond reach and it is one of the most
outstanding unresolved problems in classical gravity theory
[2]. It is known that there are some methods to test the
conjecture, such as numerically analyzing gravitational
collapse of a scalar field or other matters [3–8], numerical
simulations of collision and merger of two black holes
[9–11], analytically and numerically evolving perturbed
black rings or black holes [12–17]. One way we are
interested in is to ask whether it is possible to destroy a
black hole horizon.
A classical thought experiment to destroy a black hole

horizon by throwing large angular momentum and charged
test particles into an extremal Kerr-Newman black hole was
first proposed by Wald. The investigation showed that
particles which would cause the destruction of the black
hole horizon will not be captured by the black hole. This
suggests that the horizon of an extremal Kerr-Newman
black hole cannot be destroyed by test particles [18]. The
result is supported by similar but systematic works of

Rocha and Cardoso et al. for Bañados-Teitelboim-Zanelli
(BTZ) black holes [19], higher-dimensional Myers-Perry
family of rotating black holes and a large class of five-
dimensional black rings [20,21]. While, further investiga-
tions turn out that the test particle approximation actually
allows a black hole to “jump over” the extremal limit [22].
Hubeny showed that a near-extremal charged black hole
can be overcharged by capturing a charged test particle
[23]. By extending Hubeny’s analysis, Jacobson and
Sotiriou found that, for a near-extremal Kerr black hole,
particle capture can indeed overspin the black hole and
create a naked singularity in the absence of backreaction
effects [24]. The result violates the cosmic censorship
conjecture. However, once radiation and self-force are
taken into account, it is inspiring that these effects can
prevent the formation of naked singularities. Radiation
reaction can affect some of the orbits, and self-force may
make comparable effects to the terms giving rise to naked
singularities [25–29].
Another intriguing way to destroy a black hole horizon is

the scattering of classical or quantum fields from a black
hole. Such scattering provides unexpected features due to
superradiance. In the process of superradiance, the fields
extract energy from the charged or rotational black hole.
Superradiance could prohibit the dangerous wave modes to
be absorbed by the black hole. Semiz showed that classical
complex massive scalar fields cannot destroy extremal
dyonic Kerr-Newman black holes [30]. Further exploration
of Gwak indicates that both extremal and near-extremal
Kerr-(anti) de Sitter black holes cannot be overspun by
classical fields [31]. Following this line, a series of works
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have shown that BTZ black holes [32,33], four-dimensional
and higher-dimensional charged AdS black holes [34,35]
cannot be overspun or overcharged by classical test fields.
These results suggest that the weak cosmic censorship
conjecture is preserved in classical wave scattering process.
However, quantum mechanically, near-extremal black
holes may capture dangerous quanta to become naked
singularities due to quantum tunneling process. By ignor-
ing backreaction effects on background space-time, Matsas
and Silva showed that the quantized Klein-Gordon field can
overspin a near-extremal charged black hole to become a
Kerr-Newman naked singularity, thus the weak cosmic
censorship conjecture is violated [36]. When backreaction
effects are taken into account, the fields would trigger the
black hole to rotate, and the Reissner-Nordström space-
time would become a charged slowly rotating black hole
background. Hod showed that a quantized scalar field
cannot destroy the horizon of the Reissner-Nordström
black hole [37]. But further investigations suggest that
the weak cosmic censorship conjecture may indeed be
violated by the quantized wave scattering process [38–40].
Black holes with NUT charge have attracted some

interesting research, such as gravitational lensing [41],
thermodynamics and phase transition [42–47], strong
cosmic censorship conjecture [48] and weak cosmic
censorship conjecture [49]. To check the validity of the
weak cosmic censorship conjecture by throwing test
particle or scattering of fields, a key problem is how the
black hole parameters change. This is closely related to the
first law of black hole thermodynamics. The previous study
about the weak cosmic censorship conjecture [49] for black
hole with NUT parameter did not taken into consideration
the black hole thermodynamics. However, the thermody-
namics of black holes with a NUT parameter poses
perplexing problems due to the presence of Misner strings
[43–47]. For instance, there are viewpoints that the NUT
parameter should be regarded as two independent thermo-
dynamical hairs [47].
Recently, Kubizňák et al. have formulated a reasonable

thermodynamical law for black holes with a NUT param-
eter by introducing a new pair of conjugate quantities: the
Misner potential ψ and the Misner gravitational charge N
[44,45]. In this paper, we use this new result to investigate
the validity of the weak cosmic censorship conjecture for
Kerr-Taub-NUT black holes by considering scattering of a
test massive scalar field and injection of a test particle,
respectively. For scattering of a scalar field, our result
suggests that both extremal and near-extremal Kerr-Taub-
NUT black holes cannot be destroyed. For test particle
injection, particles leading to violation of the weak cosmic
censorship conjecture cannot be captured by the extremal
black hole, but can be captured by the near-extremal black
hole. Therefore, the particles would destroy the horizon of
the near-extremal black hole.

The outline of the paper is as follows. In Sec. II, we
briefly review the Kerr-Taub-NUT black hole and its
thermodynamics. In Sec. III, we explore the scattering of
a massive scalar field in Kerr-Taub-NUT black hole back-
ground and obtain the energy and angular momentum of
the scalar field. In Sec. IV, we test the validity of the weak
cosmic censorship conjecture for the extremal and near-
extremal Kerr-Taub-NUT black holes by considering scat-
tering of the scalar field. In Sec. V, we check the validity of
the weak cosmic censorship conjecture by investigating
injection of a test particle. The last section is devoted to
discussions and conclusions.

II. KERR-TAUB-NUT BLACK HOLE
AND ITS THERMODYNAMICS

The Kerr-Taub-NUT black hole is a four-dimensional
rotating black hole. It is a vacuum solution of the Einstein’s
equation. In Boyer-Lindquist coordinates ðt; r; θ;ϕÞ, the
Kerr-Taub-NUT metric can be written as

ds2 ¼ −
Δ
Σ
½dtþ ð2n cos θ − asin2θÞdϕ�2 þ Σ

Δ
dr2

þ sin2θ
Σ

½adt − ðr2 þ a2 þ n2Þdϕ�2 þ Σdθ2; ð1Þ

with the metric functions

Δ ¼ r2 − 2Mrþ a2 − n2; ð2Þ

Σ ¼ r2 þ ðnþ a cos θÞ2; ð3Þ

where M, a and n are the mass, rotation parameter and
NUT parameter respectively.
The above metric describes a black hole where the

Misner strings are symmetrically distributed on the north
and south poles, see Fig. 1. Space-time singularity occurs
for Σ ¼ 0. For a2 < n2, Σ is always positive. In this case,
there is no space-time singularity and the black hole is
regular [50]. For a2 ≥ n2, space-time singularity occurs. In
this paper, we only consider the later case.
For a nonextremal Kerr-Taub-NUT black hole, two

horizons occur on the surfaces:

Δ ¼ r2 − 2Mrþ a2 − n2 ¼ 0; ð4Þ

which gives the outer and inner horizons

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ n2 − a2

p
: ð5Þ

The outer horizon corresponds to the event horizon. For an
extremal black hole, the two horizons coincide and the
degenerate horizon locates at rex ¼ M. The horizon dis-
appears forM2 þ n2 < a2. In this case, the metric describes
a naked singularity. In the following, we will denote the
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event horizon with rh. The Kerr-Taub-NUT black hole
solution reduces to a Taub-NUT regular black hole when
a ¼ 0, and the solution becomes a Kerr black hole solution
in the absence of the NUT charge.
The area of the event horizon of the Kerr-Taub-NUT

black hole is

A ¼ 4πðr2h þ a2 þ n2Þ; ð6Þ

while its temperature reads

T ¼ rh −M
2πðr2h þ a2 þ n2Þ : ð7Þ

The angular velocity of the black hole is given by

Ωh ¼
a

r2h þ a2 þ n2
: ð8Þ

The thermodynamics of black holes with NUT parameter
have been investigated extensively [43–47]. The first law
of thermodynamics for the Kerr-Taub-NUT black hole is
[44–46]

dM ¼ TdSþ ΩhdJ þ ψdN; ð9Þ

where the angular momentum J and the thermodynamical
charge N of the black hole are

J ¼
�
M þ n2

rh

�
a; ð10Þ

N ¼ −
4πn3

rh
; ð11Þ

and ψ is the Misner potential

ψ ¼ 1

8πn
: ð12Þ

III. MASSIVE SCALAR FIELD
IN KERR-TAUB-NUT SPACE-TIME

A. The scattering for massive scalar field

The dynamics of a minimally coupled massive scalar
field Ψ with mass μ in the Kerr-Taub-NUT space-time is
governed by the Klein-Gordon equation

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΨÞ − μ2Ψ ¼ 0: ð13Þ

To make the whole problem more tractable, it is convenient
to make the following decomposition for the scalar field
[51,52]:

Ψðt; r; θ;ϕÞ ¼ e−iωtRlmðrÞSlmðθÞeimϕ; ð14Þ

where SlmðθÞ are spheroidal angular functions, and the
azimuthal number m is an integer. Inserting this into
the Klein-Gordon equation, we get the angular part of
the equation,

1

sin θ
d
dθ

�
sin θ

dSlm
dθ

�
−
�ð2nω cos θ − aωsin2θ þmÞ2

sin2θ

þ μ2ðnþ a cos θÞ2 − λlm

�
Slm ¼ 0; ð15Þ

and the radial part

d
dr

�
Δ
dRlm

dr

�
þ
�
G2

Δ
− μ2r2 − λlm

�
Rlm ¼ 0; ð16Þ

where λlm is the separation constant and is given by λlm ¼
lðlþ 1Þ þOða2ω2Þ [53], and

G ¼ ω

�
r2 þ n2 þ a2Þ − am: ð17Þ

The solutions to the angular part of the equation are the
spheroidal angular functions [53]. Here, we are more
concerned with the radial part. The contribution of the
angular part in Eq. (8) will be reduced to unity in the fluxes
by the normalization condition [31]. The equation for the
radial part can be simplified by introducing the tortoise
coordinate with the definition

dr
dr�

¼ Δ
r2 þ a2 þ n2

: ð18Þ

As usual, the tortoise coordinate ranges from −∞ to þ∞
when r varies from the horizon rh to infinity, and thus
covers the whole space outside the horizon. Then, the radial
equation becomes

FIG. 1. Kerr-Taub-NUT boundaries: Misner tubes [45]. Apart
from the standard boundary the event horizon H and spatial
infinity Σ∞, Kerr-Taub-NUT space-time has two Misner tubes T�
located at the north and the south pole.
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d2Rlm

dr2�
þ 2rΔ
ðr2 þ a2 þ n2Þ2

dRlm

dr�

þ
��

ω−
ma

r2 þ a2 þ n2

�
2

−
μ2r2 þ λlm

ðr2 þ a2 þ n2Þ2Δ
�
Rlm ¼ 0:

ð19Þ

Since we are more concerned with waves incident into the
black hole horizon, it is convenient to investigate the radial
equation near the horizon. Near the horizon, it can be
written as

d2Rlm

dr2�
þ
�
ω −m

a
r2h þ a2 þ n2

�
2

Rlm ¼ 0; ð20Þ

which can be rewritten as

d2Rlm

dr2�
þ ðω −mΩhÞ2Rlm ¼ 0: ð21Þ

It has the solution

RlmðrÞ ∼ exp½�iðω −mΩhÞr��: ð22Þ

The positive and minus signs correspond to the outgoing
and ingoing wave modes, respectively. Requiring ingoing
waves at the horizon, which is a physically acceptable
solution, we choose the negative sign. Thus, the field near
the horizon is

Ψ ¼ exp½−iðω −mΩhÞr��SlmðθÞeimϕe−iωt: ð23Þ

Having the wave function, we can calculate the changes
of the energy and angular momentum of the black hole
through the flux of the scalar field.

B. Conserved charges under scattering
of the scalar field

Since the physical origin of the NUT charge is still an
open issue, we use the black hole thermodynamics to argue
the parameter change of the black hole during the absorp-
tion of a test field or particle with energy dE and angular
momentum dJ.
We shoot a single wave mode ðl; mÞ into the Kerr-Taub-

NUT black hole to investigate the changes of the param-
eters of the black hole. The energy and angular momentum
carried by the scalar field can be estimated from their fluxes
at the event horizon. The energy-momentum tensor corre-
sponding to this wave mode is given by

Tμν ¼ ∂ðμΨ∂νÞΨ� −
1

2
gμνð∂αΨ∂αΨ� þ μ2ΨΨ�Þ: ð24Þ

The energy flux through the event horizon is [54]

dE
dt

¼
Z
H
Tr
t

ffiffiffiffiffiffi
−g

p
dθdϕ ¼ ωðω −mΩhÞðr2h þ a2 þ n2Þ;

ð25Þ

and the angular momentum flux through the event
horizon is

dJ
dt

¼ −
Z
H
Tr
ϕ

ffiffiffiffiffiffi
−g

p
dθdϕ ¼ mðω −mΩhÞðr2h þ a2 þ n2Þ;

ð26Þ

where we have used the normalization condition of the
angular functions SlmðθÞ in the integration [31]. For waves
with ω > mΩh, the energy and angular momentum flow
into the event horizon; while, for waves with ω < mΩh, the
energy and angular momentum fluxes are negative, which
implies that waves with ω < mΩh extract rotational energy
from the black hole. This is called black hole super-
radiance [55].
During an infinitesimal time interval dt, the changes in

the mass and angular momentum of the black hole are

dM ¼ dE ¼ ωðω −mΩhÞðr2h þ a2 þ n2Þdt; ð27Þ

dJ ¼ mðω −mΩhÞðr2h þ a2 þ n2Þdt: ð28Þ

For a black hole far from extremal, after the absorption of
the infinitesimal energy and angular momentum of the
field, the final state is still a black hole. Then, we can use
the black hole thermodynamics.
The Kerr-Taub-NUT black hole has three parameters,

the mass M, angular momentum parameter a and NUT
parameter n. If we assume the NUT parameter n stays fixed
in the absorption of a test field, from the first law of black
hole thermodynamics,

dM ¼ TdSþ ΩhdJ þ ψdN; ð29Þ

we have

dA ¼ 4

T
½ðdM −ΩhdJÞ − ψdN�

¼ 4

T

�
ðω −mΩhÞ2ðr2h þ a2 þ n2Þdt − n2

2r2h
drh

�

¼ 8πm2rhðr2h þ a2Þ
2a2n2 þ rhðrh −MÞðr2h þ a2 þ n2Þ

�
ω

m
−Ω0

�

×
�
ω

m
− Ωh

�
ðr2h þ a2 þ n2Þ2dt; ð30Þ

where we have defined

Ω0 ¼ 2Marh
ðr2h þ a2 þ n2Þðr2h þ a2Þ : ð31Þ
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It can be simplified as

Ω0 ¼
�
1 −

n2

r2h þ a2

�
Ωh: ð32Þ

It is clear that Ω0 is smaller than the angular velocity of the
event horizon. Hence, there exists an interval of wave
modes

Ω0 <
ω

m
< Ωh; ð33Þ

such that the area of the event horizon decreases during the
scattering process,

dA < 0: ð34Þ

This leads to the violation of Hawking’s area increasing
theory, which states that during any classical process the
area of a black hole event horizon never decreases [56,57].
This suggests that the assumption for the fixed NUT
parameter in the absorption of a test field with energy
δE and angular momentum δJ is inappropriate. Therefore,
the NUT parameter should change during the scattering
process. This leads us to consider the thermodynamical
charge N is fixed during the absorption process.
If we assume the thermodynamical charge N is con-

served during the scattering, from the first law of black hole
thermodynamics, Hawking’s area increasing theory is
preserved naturally during the scattering process,

dA ¼ 4

T
ðdM −ΩhdJÞ

¼ 4

T
ðω −mΩhÞ2ðr2h þ a2 þ n2Þdt; ð35Þ

which is always positive. This indicates that the area of the
event horizon increases during the scattering of the waves,
and it is consistent with Hawking’s area increasing
theorem.
In the following discussion of weak cosmic censorship

conjecture for the Kerr-Taub-NUT black hole, we will
assume the thermodynamical charge N does not change in
the absorption of a scalar field or test particle with energy
dE and angular momentum dJ.

IV. WEAK COSMIC CENSORSHIP
CONJECTURE FOR KERR-TAUB-NUT

BLACK HOLE WITH TEST SCALAR FIELD

In this section, we examine the validity of the weak
cosmic censorship conjecture by shooting a monotonic
classical test scalar field with frequency ω and azimuthal
harmonic index m into the extremal and near-extremal
Kerr-Taub-NUT black holes, and argue whether we can
push the resulting composite object over the extremal limit,

thus destroying the event horizon to form a naked
singularity.
The event horizon of the black hole is determined by the

metric function

Δ ¼ r2 − 2Mrþ a2 − n2; ð36Þ

with the minimum of Δ

Δmin ¼ a2 −M2 − n2 ð37Þ

at the point rmin ¼ M. For a black hole, the minimum of the
metric function Δ is negative or zero; while, for a naked
singularity, it is positive and there is no solution for Δ ¼ 0.
In the process of absorbing a test body (scalar field or

particle) with energy dE and angular momentum dJ, the
changes of the parameters of the black hole are

M → M0 ¼ M þ dM;

J → J0 ¼ J þ dJ;

N → N0 ¼ N: ð38Þ

From the expressions (37), (10) and (11), we have

�∂Δmin

∂M
�

J;N
¼ −2

ϒ
Θ
; ð39Þ

�∂Δmin

∂J
�

M;N
¼ 12

arh
Θ

; ð40Þ

where

Θ ¼ 3r2h þ 3a2 þ n2; ð41Þ

ϒ ¼ 2rhð3a2 þ n2Þ þMΘ: ð42Þ

After the absorption of the test body, the minimum of the
metric function Δmin changes to Δ0

min,

Δ0
min ¼ Δ0

minðM þ dM; J þ dJ;NÞ

¼ Δmin þ
�∂Δmin

∂M
�

J;N
dM þ

�∂Δmin

∂J
�

M;N
dJ

¼ −ðM2 þ n2 − a2Þ − 2ϒ
Θ

dM þ 12arh
Θ

dJ: ð43Þ

The value of the event horizon is extremely close to the
minimal point for a near-extremal black hole, and the value
of the event horizon coincides with the minimal point for an
extremal black hole.
Now we consider the extremal and near-extremal black

holes. The question, then, is whether Δ ¼ 0 has a positive
solution after the black hole absorbs the test field, or
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equivalently, whether the minimum Δmin of the metric
function is positive.
Since the event horizon radius rh is extremely close to

the minimal radius rmin ¼ M for the near-extremal black
hole, we can define an infinitesimal distance ϵ between rh
and rmin:

rh ¼ rmin þ ϵ: ð44Þ

We can see that ϵ > 0 and ϵ ¼ 0 correspond to the near-
extremal and extremal black holes, respectively. Before the
absorption of the scalar field, the minimum of the metric
function Δ can be written as

Δmin ¼ a2 −M2 − n2 ¼ −ϵ2: ð45Þ

Without loss of generality, we consider an infinitesimal
time interval dt. For a long period of time, we can divide it
into a lot of small time intervals dt, and consider the
scattering process for each time interval separately by only
changing the black hole parameters.
After the absorption of the scalar field, the minimum of

the metric function Δmin becomes Δ0
min:

Δ0
min ¼ −ðM2 þ n2 − a2Þ − 2ϒ

Θ
dM þ 12arh

Θ
dJ: ð46Þ

To first order in dt, we have

Δ0
min¼−ϵ2−2m2

ϒ
Θ

�
ω

m
−Ω

��
ω

m
−Ωh

�
ðr2hþa2þn2Þdt;

ð47Þ

where Ωh is the angular velocity of the horizon defined in
(8), and Ω is an effective angular velocity:

Ω ¼ 6arh
ϒ

: ð48Þ

Now, we can check whether the Kerr-Taub-NUT black hole
can be overspun. This can be done by judging whetherΔ0

min
in (47) is positive. For a naked singularity, Δ0

min > 0, while
for a black hole, Δ0

min ≤ 0.
For the extremal Kerr-Taub-NUT black hole, the effec-

tive angular velocity and the angular velocity of the black
hole are the same, i.e., Ω ¼ Ωh, and the minimum of Δ0 is

Δ0
min ¼ −

24Mm2a4

M2 þ 2a2

�
ω

m
−Ωh

�
2

dt; ð49Þ

which is always nonpositive. For ω ≠ mΩh, there will be
two horizons after the absorption of the field and so the
extremal Kerr-Taub-NUT black hole will become a non-
extremal one after the scattering. While for ω ¼ mΩh, it

will still be extremal. This indicates the extremal Kerr-
Taub-NUT black hole cannot be overspun.
For a near-extremal Kerr-Taub-NUT black hole, with the

expressions (48) and (44), we have

Ω ¼ Ωh þ
4ð3M2 þ n2Þϵþ 18Mϵ2 þ 6ϵ3

ϒ
; ð50Þ

which shows that the effective angular velocity Ω is larger
than the angular velocity of the black hole, Ω > Ωh. It is
clear that, for wave modes with

ω

m
¼ Ωh þ Ω

2
; ð51Þ

the value of Δ0
min is the largest. Thus, if these wave modes

cannot overspin the near-extremal Kerr-Taub-NUT black
hole, all the wave modes cannot overspin the near-extremal
black hole either. We shoot one of these wave modes into
the near-extremal black hole. Then, by substituting (50) and
(51) into (47), we have

Δ0
min¼−ϵ2þ8m2ð3M2þn2Þ2

Θϒ
ðr2hþa2þn2Þ½ϵ2þOðϵ3Þ�dt:

ð52Þ

By choosing the infinitesimal time interval dt < ϵ, we can
see that

Δ0
min < −ϵ2 þ 8m2ð3M2 þ n2Þ2

Θϒ
ðr2h þ a2 þ n2Þ½ϵ3

þOðϵ4Þ� < 0; ð53Þ

which shows that it is impossible to form a naked
singularity and the event horizon cannot be destroyed.
Thus, both the extremal and near-extremal Kerr-Taub-

NUT black holes cannot be overspun by test scalar fields.
Hence, the weak cosmic censorship conjecture is preserved.

V. WEAK COSMIC CENSORSHIP CONJECTURE
FOR KERR-TAUB-NUT BLACK HOLE WITH

TEST PARTICLE

Another method to check weak cosmic censorship
conjecture is throwing a test particle with large angular
momentum into the extremal or near-extremal black hole.
This gedanken experiment was first proposed byWald [18],
and further developed by Hubeny, Jacobson and Sotiriou
[23,24]. It was shown that the event horizon of a near-
extremal Reissner-Nordström black hole or a Kerr black
hole can be destroyed [23,24]. In this section, we use this
method to check whether the event horizon of a Kerr-Taub-
NUT black hole can be destroyed.
A test particle with rest massmmoving in the Kerr-Taub-

NUT space-time can be described by the geodesic equation
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d2xμ

dτ2
þ Γμ

αβ

dxα

dτ
dxβ

dτ
¼ 0; ð54Þ

which can be derived from the Lagrangian

L ¼ 1

2
mgμν

dxμ

dτ
dxν

dτ
: ð55Þ

The energy δE and angular momentum δJ of the particle
are

δE ¼ −Pt ¼ −
∂L
∂_t ¼ −mg0ν

dxν

dτ
; ð56Þ

δJ ¼ Pϕ ¼ ∂L
∂ _ϕ ¼ mg3ν

dxν

dτ
: ð57Þ

We first find the condition for a particle with energy δE
and angular momentum δJ to enter the black hole, and then
check whether such particle violates the weak cosmic
censorship conjecture.
The four velocity of a massive particle is a timelike and

unit vector,

gμν
dxμ

dτ
dxν

dτ
¼ 1

m2
gμνPμPν ¼ −1: ð58Þ

Substituting the energy δE (56) and angular momentum δJ
(57) into the above equation, we get

g00δE2 − 2g03δJδEþ g11P2
r þ g22P2

θ þ g33δJ2 ¼ −m2:

ð59Þ

Then the energy of the particle is

δE ¼ g03

g00
δJ −

1

g00
½ðg03Þ2δJ2 − g00g33δJ2

− g00ðg11P2
r þ g22P2

θ þm2Þ�12: ð60Þ

Since the motion of a massive particle outside the event
horizon should be future directed and timelike, we have
chosen the future directed solution dt=dτ > 0, which is
equivalent to the requirement

δE > −
g03
g33

δJ: ð61Þ

If the particle enters the black hole, it must cross the event
horizon. On the event horizon, the condition becomes

δE >
a

r2h þ a2 þ n2
δJ ¼ ΩhδJ: ð62Þ

Thus, for the particle to be absorbed by the black hole, the
angular momentum of the particle must satisfy

δJ < δJmax ¼
1

Ωh
δE: ð63Þ

On the other hand, in order to overspin the black hole, the
minimum of the metric function Δ should be positive after
the absorption of the particle. To first order, the condition is

Δ0
min ¼ −ðM2 þ n2 − a2Þ − 2ϒ

Θ
δM þ 12arh

Θ
δJ > 0; ð64Þ

which is from (43) and can be rewritten as

δJ > δJmin ¼
1

Ω
δEþ Θ

12arh
ðM2 þ n2 − a2Þ: ð65Þ

When the two conditions (63) and (65) are satisfied
simultaneously, the black hole can be overspun and weak
cosmic censorship conjecture is violated.
For the extremal Kerr-Taub-NUT black hole, we have

M2 þ n2 − a2 ¼ 0 and Ω ¼ Ωh. Therefore,

δJmax ¼
1

Ωh
δE ¼ δJmin; ð66Þ

which means that the two conditions (63) and (65) cannot
be satisfied simultaneously. Thus, the weak cosmic censor-
ship conjecture is preserved for the extremal Kerr-Taub-
NUT black hole.
For the near-extremal Kerr-Taub-NUT black hole, as

indicated by Eq. (50), the effective angular velocity is larger
than the angular velocity of the black hole, i.e.,Ω > Ωh. To
first order, obviously there exist particles with energy δE
such that δJmax > δJmin, which shows that the two con-
ditions (63) and (65) can be satisfied simultaneously. Thus,
the near-extremal Kerr-Taub-NUT black hole can be over-
spun by the test particle.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have investigated the validity of the
weak cosmic censorship conjecture for a Kerr-Taub-NUT
black hole by test scalar fields and particles. For the test
scalar field scattering gedanken experiment, we considered
an infinitesimal time interval. The result suggests that both
extremal and near-extremal Kerr-Taub-NUT black holes
cannot be overspun. For the test particle thought experi-
ment, the study suggests that extremal Kerr-Taub-NUT
black hole cannot be overspun, while near-extremal Kerr-
Taub-NUT black hole can be overspun. Although the first-
order approximation was considered in our procedure, it
has strong evidence that, for the test particle approximation,
the result might still be the same as in the Kerr black
hole case [24]. By comparing the two methods, the
results indicate the time interval for particles crossing
the black hole horizon might be important for consideration
of the weak cosmic censorship conjecture as indicated by
Gwak [58,59].
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