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As a first step in the computation of the orbital phase evolution of spinless compact binaries including
tidal effects up to the next-to-next-to-leading (NNL) order, we obtain the equations of motion of those
systems and the associated conserved integrals in harmonic coordinates. The internal structure and finite
size effects of the compact objects are described by means of an effective Fokker-type action. Our results,
complete to the NNL order, correspond to the second-post-Newtonian (2PN) approximation beyond the
leading tidal effect itself, already occurring at the 5PN order. They are parametrized by three polarizability
(or deformability) coefficients describing the mass-quadrupolar, mass-octupolar, and current-quadrupolar
deformations of the objects through tidal interactions. Up to the next-to-leading (NL) order, we recover
previous results in the literature; up to the NNL order for quasicircular orbits, we confirm the known tidal
effects in the (PN reexpansion of the) effective-one-body (EOB) Hamiltonian. In a future work, we shall
derive the tidal contributions to the gravitational-wave flux up to the NNL order, which is the second step
required to find the orbital phase evolution.
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I. INTRODUCTION

The direct detection of gravitational waves (GW) gen-
erated by the orbital motion and merger of compact binary
systems [1,2] opens up a new avenue in fundamental
physics. Notably, it will play a paramount role in under-
standing the physics of compact objects, mainly black holes
or neutron stars. The tidal effects between such objects are
particularly interesting because they permit revealing and
probing their internal structure, as well as eventually
distinguishing between black holes, neutron stars or,
possibly, more exotic entities like boson stars [3,4].
The tidal interaction affects both the conservative equa-

tions of motion (EOM) and the GW emission of the
compact binary system. This results in a modification of
the time evolution of the binary’s orbital frequency and
phase which is directly observable (see, e.g., Refs. [5–8]).
The tidal distortion depends on the Love numbers [9],
characterizing the rigidity and the deformability of the
body, i.e., its capacity to change shape under the influence
of an external tidal field. Those Love numbers depend in
turn on the internal equation of state (EOS) of the body,
which is uncertain at high densities [10,11]. They decrease
as the compactness of the body increases, reaching zero in
the limit of a maximally compact object, i.e., for a black
hole [12–14].

The leading tidal contributions to the orbital dynamics
are due to quadrupolar deformations and, for compact
binaries, manifest themselves as formally very small
corrections in the accelerations, of the order of 5PN or
∼ðv=cÞ10, where v denotes the relative orbital velocity.
However, the 5PN coefficient appearing in front of the
small 5PN factor ðv=cÞ10 can be quite large, and the effect
is measurable.1 It scales like the dimensionless parameter

Λð2Þ ¼ 2

3
kð2Þ

�
Rc2

Gm

�
5

; ð1:1Þ

where kð2Þ denotes the mass-type quadrupolar second
Love number of the body, while m and R represent its
mass and radius. Typically, the compactness parameter
C ∼Gm=ðRc2Þ is of order 0.15 for neutron stars, while the
Love number is kð2Þ ∼ 0.1 (depending on the EOS) [13,14];
hence we expect Λð2Þ ∼ 1000. With the binary neutron-star
event GW170817 [2], the detectors LIGO and Virgo have
already been able to put an observational constraint on the

particular combination of Λð2Þ
1 , Λð2Þ

2 and the masses that
enters the orbital phase evolution of the two neutron stars
[6,8]. This constraint permitted the exclusion of some of the
stiffest EOS, for which the neutron stars are less compact
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1One can speculate that the tidal 5PN coefficient is larger than
the purely orbital 5PN contribution to the orbital phase for point
particles, which is currently unknown.
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[15,16]. However, the majority of softer EOS are still
allowed (see also [17] and references therein).
The problem of tidal interactions between compact

objects beyond the leading quadrupolar level has been
addressed in Refs. [18–23]. The conservative dynamics,
from which follow the EOM, was obtained in the work [21]
at leading order but including linear spin couplings. In [20]
and [19], it was obtained up to the next-to-leading (NL)
and the next-to-next-to-leading (NNL) orders, respectively,
while the energy flux, waveform amplitude, and phase
evolution have been computed to leading order in the
presence of spin couplings, and NL order, equivalent to the
formal 6PN level [18,22,23], in the nonspinning case.2

The tidal interactions in both the dynamics and waveform
have also been included in the effective-one-body (EOB)
models for template generation [7,19].
In the present paper, we compute the tidal effects in the

conservative EOM, as well as all associated conserved
quantities, at the NNL order for spinless neutron stars on
generic binary orbits in harmonic coordinates. We follow
closely the method proposed in Ref. [19], describing the
internal structure and finite size effects of the compact
objects by means of an effective Fokker-type action.
Our final NNL results are parametrized by three polariza-
bility (or deformability) coefficients describing the mass-
quadrupolar, mass-octupolar, and current-quadrupolar
deformations of the objects through tidal interactions. In
the case of quasicircular orbits, we confirm the expression
of the tidal terms in the EOB Hamiltonian up to the NNL
order [19]. To compute the tidal contribution to the orbital
phase at the NNL order, we need both the conservative
NNL energy of the system and the GW energy flux at the
same NNL order. In a forthcoming paper [24], we shall
complete the present work by computing the latter effect for
the GW flux, which will yield the orbital phase evolution at
the NNL order.
Although the knowledge of the NNL/2PN relative tidal

effect is probably not directly useful for the data analysis of
the advanced LIGO and Virgo detectors, it may become
relevant for the future third-generation detectors, like the
Einstein Telescope or the Cosmic Observatory. On the other
hand, detailed comparisons with numerical relativity (NR)
simulations of binary neutron-star mergers require the
control of high-order tidal interactions on the analytic side.
Yet, such comparisons are essential to get a grip on the
errors of the predicted waveforms and to properly calibrate
EOB models. More generally, adding analytic tidal effects
on top of PN templates of point particles is a good way of
controlling the systematic errors due to our lack of knowl-
edge of the higher-order terms in the PN expansion [4,8].

This article is organized as follows. In Sec. II, we define
the effective Fokker action with appropriate nonminimal
matter couplings describing finite size effects. The quan-
tities entering this action are determined by the 2PN metric,
presented in Sec. III and computed off shell, i.e., without
the replacement of accelerations by the EOM, ready for
insertion into the action. Our final Lagrangian, accurate
to NNL order for tidal effects, is displayed in Sec. IV,
together with the associated NL center-of-mass (c.m.)
position. We then derive, in Sec. V, the tidal dynamics
in the c.m. frame for general orbits, as well as the reduction
for quasicircular orbits. Appendix A is devoted to basic
recalls and motivation concerning the treatment of tidal
effects in Newtonian theory. In Appendix B we show, using
standard techniques of Lagrangian formalism, that the tidal
multipole moments up to the NNL order can be defined
equivalently by means of either the Riemann tensor or the
Weyl tensor. Finally, we give in Appendix C the complete
tidal acceleration in a general frame for arbitrary orbits to
NNL order.

II. EFFECTIVE FOKKER ACTION WITH
NONMINIMAL MATTER COUPLINGS

The model we use is defined by the gravitation-plus-
matter action S ¼ Sg þ Sm, where the gravitational part Sg
is the standard Einstein-Hilbert action, to which we add the
appropriate harmonic-gauge fixing term:

Sg ¼
c3

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2
gμνΓμΓν

�
; ð2:1Þ

where R is the curvature scalar, Γμ
ρσ is the usual Christoffel

symbol, and Γμ ¼ gρσΓμ
ρσ. In practical calculations, we

rather use the Laudau-Lifshitz [25] form of the action.3

The matter part of the action Sm describes massive
pointlike particles with internal structure. It contains
specific nonminimal couplings to the space-time curvature
that describe the finite size effects of the compact bodies
solely due to the tidal interactions, all spins being taken to
zero. Since the matter action is regarded as localized on the
worldline of the particles, it is generally referred to as a
“skeletonized” effective action. In order to define it, we
introduce a local inertial coordinate frame along each body
worldline, together with the associated local tetrad eα̂μ.
More precisely, we pose eα̂μ ¼ ∂xμ=∂Xα̂, where fxμg is a
global coordinate system and fXα̂g is the local inertial
frame in the vicinity of the body in question. We may
choose fXα̂g to be a Fermi local normal coordinate system
[27,28], so that the tetrad is orthonormal on the worldline,

2The NNL order in the dynamics corresponds to 2PN order
beyond the leading 5PN quadrupolar tidal effect and is thus
formally equivalent to a 7PN orbital effect; similarly, the NL
order means 1PN beyond the leading 5PN effect.

3Throughout the paper, we use the conventions of MTW [26];
in particular, the metric signature is ð−;þ;þ;þÞ, and the
Riemann tensor satisfies the identity ð∇μ∇ν −∇ν∇μÞVλ ¼
Rλ

κμνVκ .
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the time coordinate of the Fermi coordinates coincides with
the proper time along the worldline, and the zeroth timelike
tetrad vector is the four-velocity of the particle. In its own
local frame, the body feels the tidal multipole moments
generated by the other bodies at its very location, namely,
the l-th order mass-type moments GL̂ and the current-type
ones HL̂, where those quantities refer to the spatial tetradic
components of the moments, i.e., projected along the local
tetrad, with L̂ ¼ î1 � � � îl denoting a multispatial index
composed of l spatial tetradic indices.
In this paper, we assume that each body stays in static

equilibrium at any instant. In the absence of spin, the
internal structure is then entirely determined by the mass
and the EOS. Thus, the elementary bricks that are allowed
to construct Sm are tensors defined from the metric only and
evaluated at the given particle position, with all indices
contracted so as to preserve the invariance under rotation
and parity in the corresponding constant-time hypersurface
of the local Fermi rest frame. For our purpose, it will be
sufficient to consider the same nonminimal terms as in
Ref. [29], built from quadratic (kineticlike) couplings in the
tidal moments GL̂ and HL̂. Hence, the form of the matter
action (also adding the particle’s label A ∈ f1; 2g)4

Sm ¼
X
A

Z
dτA

�
−mAc2 þ

Xþ∞

l¼2

1

2l!

�
μðlÞA ðGA

L̂
Þ2

þ l
ðlþ 1Þc2 σ

ðlÞ
A ðHA

L̂
Þ2
�
þ � � �

�
: ð2:2Þ

The ellipsis indicates many higher-order nonlinear com-
binations of the tidal moments and their covariant (proper-
time) derivatives, which we do not need to include here
[see, e.g., Eq. (2.3) of [19] ]. For more insight and moti-
vation about the nonminimal action, see Refs. [19,30–32]
and the treatment of tidal effects in the Newtonian model as
recalled in Appendix A.
The above tidal moments are given by appropriate

covariant derivatives of the Weyl tensor. We first define
the spatial tetradic components of the moments appearing
in Eq. (2.2) (for l ≥ 2) as

GA
L̂
¼ −c2½∇hî1 � � �∇îl−2

Cîl−10̂îli0̂�A; ð2:3aÞ

HA
L̂
¼ 2c3½∇hî1 � � �∇îl−2

C�
îl−10̂îli0̂�A: ð2:3bÞ

The angle brackets over the l free spatial indices L̂ ¼
î1 � � � îl of the above tensor expressions mean that they
must be replaced by their symmetric and trace-free (STF)
parts over those indices, the underlined indices being
excluded from the STF projection. We denote by ∇α̂ the
usual covariant tetradic derivative [we pose α̂ ¼ ð0̂; îÞ],
whereas Cα̂ β̂ γ̂ δ̂ and C�

α̂ β̂ γ̂ δ̂
represent the tetradic compo-

nents of the Weyl tensor [whose definition is recalled in
Eq. (B2) below] and its dual.5 By construction, the tidal
moments (2.3) are symmetric over their spatial indices L̂,
and all their traces are zero, i.e., δî1 î2Gî1 î2���îl ¼ 0.
Next, we introduce the covariant versions of the pre-

vious tidal tensors. Since uμ ¼ e0̂
μ, this is achieved by

imposing that they live in the particle’s local spatial
hypersurface, which is orthogonal to the four-velocity.
Thus, we complete the definition of the tidal moments
(2.3) by requiring them to obey

GA
0̂α̂2���α̂l ¼ HA

0̂α̂2���α̂l ¼ 0: ð2:4Þ

In this way,Gα̂1���α̂l andHα̂1���α̂l are both Lorentz tensors and
covariant scalars, while their covariant versions in an
arbitrary coordinate system fxμg read

GA
μ1���μl ¼ −c2½∇⊥

hμ1 � � �∇⊥
μl−2Cμl−1ρμliσ�AuρAuσA; ð2:5aÞ

HA
μ1���μl ¼ 2c3½∇⊥

hμ1 � � �∇⊥
μl−2C

�
μl−1ρμliσ�Au

ρ
Au

σ
A: ð2:5bÞ

Here, we denote ∇⊥
μ ¼ ⊥ν

μ∇ν, with ⊥ν
μ ¼ δνμ þ uμuν being

the projector onto the hypersurface orthogonal to the four-
velocity [notice that ⊥μ

α̂ ¼ ð0; eμ
î
Þ]. The tidal moments are

both STF over all their space-time indices and transverse to
the four-velocity, namely, uμGμμ2���μl ¼ uμHμμ2���μl ¼ 0,
which is equivalent to (2.4).
Very important to the formalism is the fact that the Weyl

tensor and its covariant derivatives in (2.5) are to be
evaluated at the location of the particle A following the
regularization, as indicated by the square brackets ½� � ��A.
Physically, the regularization is crucial because it removes
the self-field of the particle A and therefore permits
automatically selecting the external (tidal) field due to
the other particles B ≠ A. We know of one regularization
able to give a complete, consistent, and physical answer in
high PN approximations, namely, dimensional regulariza-
tion (see, e.g., Refs. [33,34]). In this paper, we systemati-
cally use this regularization. However, in our practical
calculations at the relatively low NNL/2PN order, it is4The constant mass of body A is denoted mA and its proper

time dτA ¼ ð−½gμν�AdyμAdyνA=c2Þ1=2, where yμAðτAÞ is the par-
ticle’s worldline. The four-velocity uμA ¼ dyμA=ðcdτAÞ is such
that ½gμν�AuμAuμA ¼ −1, with ½gμν�A denoting the metric regularized
at the location of body A; this is of course nothing but the
time-time component of the orthonormalizing condition of the
tetrad, ηα̂ β̂ ¼ ½gμν�AeAμα̂ eAν

β̂
.

5In our convention, C�
α̂ β̂ γ̂ δ̂

≡ 1
2
εα̂ β̂ η̂ ζ̂C

η̂ ζ̂
γ̂ δ̂ or, in covariant

form, C�
μνρσ ≡ 1

2
εμνλκCλκ

ρσ , where εα̂ β̂ γ̂ δ̂ denotes the tetradic
components of the completely antisymmetric Levi-Civita tensor
εμνρσ , defined by ε0̂ 1̂ 2̂ 3̂ ¼ 1 and ε0123 ¼ ffiffiffiffiffiffi−gp

. The tetradic
covariant derivative obeys, e.g., ∇α̂V β̂ ¼ eα̂μeβ̂ν∇μVν.
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simpler to use the Hadamard “partie finie” regularization
since it has been shown [19] to yield the same result for the
specific system we are interested in (see also discussions
in Ref. [34]).
On the other hand, as argued in Refs. [19,35], we can

choose to use, for our purpose, the Riemann tensor instead
of the Weyl tensor in the definitions (2.5) of the tidal
moments. Indeed, the contributions due to the trace terms
of the Riemann tensor may be absorbed in the off-shell
metric by redefining it in a certain way. In Appendix B, we
give a detailed proof of this statement valid up to the NNL/
2PN level.
Note finally that the tidal moments (2.5) have been

normalized in such a way that they admit a finite nonzero
Newtonian limit when c → þ∞, and that the mass-type
moments then match those of Newtonian mechanics given
in Appendix A. In this limit, only the space components
survive. We then get

GA
L ¼ ∂A

LU
ext
A þO

�
1

c2

�
; ð2:6aÞ

HA
L ¼ 4εjkðilð∂A

L−1ÞkU
A ext
j þ vkA∂A

L−1ÞjU
ext
A Þ þO

�
1

c2

�
;

ð2:6bÞ

where ∂A
L ¼ ∂A

i1
� � � ∂A

il
with ∂A

i ¼ ∂=∂yiA; the potentials
Uext

A ¼ P
B≠A GmB=rB and Ui ext

A ¼ P
B≠A GmBviB=rB

denote the Newtonian and gravitomagnetic potentials
regularized at point A.
As the tidal moments are transverse to the velocity, the

action (2.2) can be rewritten in covariant form as

Sm ¼
X
A

Z
dτA

�
−mAc2 þ

Xþ∞

l¼2

1

2l!

�
μðlÞA GA

μ1���μlG
μ1���μl
A

þ l
ðlþ 1Þc2 σ

ðlÞ
A HA

μ1���μlH
μ1���μl
A

�
þ � � �

�
: ð2:7Þ

We observe that the reference to the local tetrad has
completely disappeared from the action. For convenience,
we work only with the global (tensorial) components
Gμ1���μl and Hμ1���μl of the moments henceforth.
The coefficients μðlÞ and σðlÞ entering the nonminimal

action characterize the deformability and polarizability of
the body under the influence of the external tidal field. They
are linked to the dimensionless mass-type kðlÞ and current-
type jðlÞ second Love numbers as [19]

GμðlÞA ¼ 2

ð2l − 1Þ!! k
ðlÞ
A R2lþ1

A ;

GσðlÞA ¼ l − 1

4ðlþ 2Þð2l − 1Þ!! j
ðlÞ
A R2lþ1

A ; ð2:8Þ

where R is the radius of the body (in a coordinate system
such that the area of the sphere of radius R is 4πR2). In the
effective description, Eq. (2.7), of compact objects, only the

coefficients μðlÞA and σðlÞA are measurable. The normaliza-
tion constants in the first equation of (2.8) are chosen to
match the usual Newtonian definitions.
The polarizability coefficients (2.8) actually determine

the formal PN order at which the tidal effects appear.
For compact objects, indeed, the compactness parameter
defined as the ratio C ∼Gm=ðRc2Þ is of order one. Inserting
C ∼ 1 in Eq. (2.8), we recover the fact that the dominant
tidal effect is due to the mass quadrupole and is formally
of order

ϵtidal ∼
1

c10
; ð2:9Þ

i.e., is comparable to a 5PN orbital effect. With the notation
(2.9) for the dominant effect, we see that the deformability
coefficients in the action scale like

fμðlÞA ; σðlÞA g ¼ O
�
ϵtidal
c4l−8

�
: ð2:10Þ

As we aim at computing tidal effects up to NNL/2PN order,
inspection of the action (2.7) shows that we may consider
only the mass-quadrupole, current-quadrupole, and mass-
octupole interactions:

Sm ¼
X
A

Z
dτA

�
−mAc2 þ

μð2ÞA

4
GA

μνG
μν
A þ σð2ÞA

6c2
HA

μνH
μν
A

þ μð3ÞA

12
GA

λμνG
λμν
A þO

�
ϵtidal
c6

��
; ð2:11Þ

where the specified remainder means that we neglect higher
order—NNNL and beyond—terms. Direct application of
the general scaling relation (2.10) shows that μð2Þ ¼
OðϵtidalÞ, σð2Þ ¼ OðϵtidalÞ, and μð3Þ ¼ Oðϵtidal=c4Þ. Thus,
the first tidal term in (2.11) yields the leading effect
together with NL and NNL corrections, the second tidal
term contains NL and NNL effects (because of the explicit
factor 1=c2 in the action), and the third one represents a
purely NNL effect.

III. METRIC AND REQUIRED
ELEMENTARY POTENTIALS

To build an action for the sole matter variables, we
(i) start from the Einstein-Hilbert action (2.1) with the
nonminimal matter couplings (2.2), (ii) solve the Einstein
field equations resulting from the metric variation by means
of a direct PN iteration, and (iii) insert the explicit PN
solution for the metric back into Eqs. (2.1) and (2.2),
which defines the so-called (PN) Fokker action, say SF.
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An important point is that, at the NNL/2PN level, it is
necessary and sufficient to insert into Eqs. (2.1) and (2.2)
the metric generated by a system of point particles, omitting
all the terms associated with the body’s internal structure.
To see this, we write, as in Ref. [36], the (allegedly

“exact”) PN solution of the Einstein field equations in terms
of the gothic metric deviation hμν ¼ ffiffiffiffiffiffi−gp

gμν − ημν, using
the particular vector variable

h ¼ ðh00ii; h0i; hijÞ; with h00ii ≡ h00 þ δijhij: ð3:1Þ
We already know that the dominant tidal effect is due to the
mass-quadrupole moment, and it appears in the EOM at the
order displayed in (2.9). We can thus write the previous
solution as

h ¼ hpp þ htidal; ð3:2Þ
where the first term is just the result for the metric generated
by point particles (pp) without internal structure and where
the tidal corrections therein are at least of the order of (with
obvious notation)

htidal ¼ O
�
ϵtidal
c2

;
ϵtidal
c3

;
ϵtidal
c4

�
: ð3:3Þ

Since h is an exact solution of the Einstein field equations,
we have δSF=δh ¼ 0, which implies that the functional
derivative of the Fokker action evaluated for the “approxi-
mate” solution hpp will be of the order of the committed
error, namely [taking into account the coupling constant
c4=ð16πGÞ in the field equations]

δSF
δh

½hpp� ¼ Oðc2ϵtidal; cϵtidal; ϵtidalÞ: ð3:4Þ

Equations (3.3) and (3.4), combined together in a Taylor
expansion of the action, imply that

SF½h� ¼ SF½hpp� þ
Z

d4x
δSF
δh

½hpp�htidal þOðh2tidalÞ

¼ SF½hpp� þOðϵ2tidalÞ; ð3:5Þ
and we conclude that the final remainderOðϵ2tidalÞ is at least
comparable to a 10PN effect Oðc−20Þ [see Eq. (2.9)].
Therefore, it is amply sufficient to insert into the Fokker
action the metric hpp for point particles without internal
structure. We can recover this conclusion from a general
statement proved in Ref. [36], called the “nþ 2” method,
according to which, in order to control the Fokker action at
some nPN order, it is necessary and sufficient to insert the
components of the metric h with all the PN corrections up
to the order 1=cnþ2 included. In our case, we want the
Fokker action up to NNL order, which means, formally,
7PN, hence n ¼ 7; thus, we require the metric up to the
maximal order 1=c9, while tidal effects are of higher order
[see Eq. (3.3)]. The same argument has also been shown
and used in Sec. II.E of Ref. [19].

In this paper, we do not try to compute the full action,
including all the terms up to NNL order Oðϵtidal=c4Þ, but
only the tidal NNL contributions therein, proceeding
essentially as in Ref. [19], although staying in harmonic
coordinates. Consequently, we need the point-particle
metric up to 2PN order only, so as to obtain the regularized
Weyl or Riemann tensor of point particles at 2PN order,
which is the minimum requirement to control the tidal
moments at the same accuracy level:

GA
μν ¼ −c2½Rμρνσ�AuρAuσA; ð3:6aÞ

HA
μν ¼ 2c3½R�

ðμρνÞσ�AuρAuσA; ð3:6bÞ

GA
λμν ¼ −c2½∇⊥

ðλRμρνÞσ�AuρAuσA: ð3:6cÞ

Indeed, for this calculation, the Weyl and the Riemann
tensors give an equivalent dynamics (see Appendix B).
On the other hand, one can show that replacing the
STF operator by the symmetrization operator in the defi-
nitions (2.5) for the mass-quadrupole, current-quadrupole,
and mass-octupole moments does not affect the values of
those tensors. The resulting expressions, provided in
Appendix B, are simpler than the original formulas. The
tensors (3.6) are then obtained by substituting the Riemann
tensor for the Weyl one. However, the off-shell mass-type
tidal moments defined in this manner are no longer trace-
free, contrary to their Weyl counterparts.
At 2PN order, the metric of a general matter system in

harmonic coordinates can be parametrized by the set of
potentials fV; Vi; Ŵij; R̂i; X̂g in the following way:

g00 ¼ −1þ 2V
c2

−
2V2

c4
þ 8

c6

�
X̂ þ ViVi þ

V3

6

�
þO

�
1

c8

�
;

ð3:7aÞ

g0i ¼ −
4Vi

c3
−
8R̂i

c5
þO

�
1

c7

�
; ð3:7bÞ

gij ¼ δij

�
1þ 2V

c2
þ 2V2

c4

�
þ 4Ŵij

c4
þO

�
1

c6

�
: ð3:7cÞ

These potentials admit a nonzero, finite Newtonian limit
and solve the flat-space wave equations (with □ ¼ ημν∂μν)

□V ¼ −4πGσ; ð3:8aÞ

□Vi ¼ −4πGσi; ð3:8bÞ

□Ŵij ¼ −4πGðσij − δijσkkÞ − ∂iV∂jV; ð3:8cÞ

□R̂i ¼ −4πGðVσi − ViσÞ − 2∂kV∂iVk −
3

2
∂tV∂iV;

ð3:8dÞ
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□X̂ ¼ −4πGVσkk þ 2Vk∂t∂kV þ V∂2
t V

þ 3

2
ð∂tVÞ2 − 2∂iVj∂jVi þ Ŵij∂ijV; ð3:8eÞ

where the matter source densities are defined in terms of the
components of the matter stress-energy tensor as

σ ¼ T00 þ Tii

c2
; σi ¼

T0i

c
; σij ¼ Tij; ð3:9Þ

with Tii ¼ δijTij. To perform a consistent Fokker reduction
of the original action, the solutions of Eqs. (3.8) must, in
principle, be constructed with the symmetric Green func-
tion, which kills all contributions of odd powers of 1=c
at the current approximation level. As discussed above,
thanks to the properties of the Fokker action, we only need
the metric produced by pointlike particles and can neglect
tidal effects when inserting the metric (3.7) into the Fokker
action. Therefore, we compute the potentials for point
particles without including any internal structure effect.
The requested potentials have already been published
elsewhere [37], but here we compute their off-shell values,
without replacement of accelerations by means of the EOM
(we then call them the “unreduced” potentials). However, it
is known that the replacement of accelerations in the action
is equivalent to performing an unphysical shift of the
particles’worldlines [38]. We have checked that, indeed, by
inserting the reduced (“on-shell”) versions of the potentials
into the action, the final gauge invariant result for the
conserved energy reduced to circular orbits, which we
obtain below [in Eq. (6.5)], is the same.
For point particles without spins, the matter source terms

(3.9) take the form

σðx; tÞ ¼
X
A

μ̃AðtÞδð3Þðx − yAðtÞÞ; ð3:10aÞ

σiðx; tÞ ¼
X
A

μAviAδ
ð3Þðx − yAðtÞÞ; ð3:10bÞ

σijðx; tÞ ¼
X
A

μAviAv
j
Aδ

ð3Þðx − yAðtÞÞ; ð3:10cÞ

where the three-dimensional Dirac function is confined to
the worldline yAðtÞ and we pose, for the effective time-
varying masses (with mA the constant PN mass),

μAðtÞ ¼
mAcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ggμν�AvμAvνA
q ; μ̃A ¼

�
1þ v2A

c2

�
μA: ð3:11Þ

In Eqs. (3.10) and (3.11), the worldlines are parametrized
by the coordinate time t ¼ x0=c of the harmonic coordi-
nates; the coordinate velocities are vμA ¼ ðc; viAÞ, with
viA ¼ cuiA=u

0
A ¼ dyiA=dt, and the relativistic Lorentz factor

reads u0A ¼ ð−½gμν�AvμAvνA=c2Þ−1=2. The metric is computed
at the location of the particle A following dimensional
regularization; in particular, we have ½ggμν�A ¼ ½g�A½gμν�A in
(3.11). As already mentioned, in practical calculations, we
use the Hadamard regularization, which is equivalent to
dimensional regularization up to the relatively low NNL/
2PN order [19,34].
To summarize, the metric in Eq. (3.7) is not the full

metric and does not contain tidal effects. However, as
proved in Eqs. (3.1)–(3.5), it is sufficient to insert it into
the Fokker action Sg þ Sm, to obtain the tidal effects in the
equations of motion at the requested order. In our work,
the full metric is not controlled since we only compute the
equations of motion of the particles (and the associated
conserved quantities). With the Fokker method, we do not
need nor have access to the full metric outside the particle’s
worldlines.

IV. TIDAL EFFECTS IN THE EQUATIONS OF
MOTION TO NNL ORDER

From the discussion in the previous section, we know
that, up to NNL order, the only terms in the Fokker action
that depend on the bodies’ internal structure are those that
are explicitly present in the matter action (2.11). Here, we
provide the results for the (coordinate-basis components of
the) tidal mass-quadrupole, mass-octupole, and current-
quadrupole moments at NNL order felt by body 1, i.e.,
regularized at point 1. We find6

½Gij�1 ¼
Gm2

r312

�
3n12hin12ji þ

1

c2

�
n12hin12ji

�
−
15

2
ðn12v2Þ2 þ 6v212 −

3

2
r12ðn12a2Þ −

3Gm1

r12
−
3Gm2

r12

�

− 6n12hiv1jiðn12v12Þ þ 2v1hiv1ji þ n12hiv2jið12ðn12v1Þ − 6ðn12v2ÞÞ − 6v1hiv2ji þ 3v2hiv2ji − 3a2hin12jir12

þ δij

�
ðn12v1Þ2 −

1

3
v21

��
þ 1

c4

�
n12hin12ji

�
105

8
ðn12v2Þ4 þ 30ðn12v2Þ2ðv1v2Þ þ 6ðv1v2Þ2 − 15ðn12v2Þ2v21

6The notation r12 ¼ jy1 − y2j represents the Euclidean distance between the two bodies (at constant time y01 ¼ y02 ¼ ct); the unit
direction from body 2 to body 1 is then ni12 ¼ ðyi1 − yi2Þ=r12; vi12 ¼ vi1 − vi2 stands for the relative velocity; the usual Euclidean scalar
product of vectors is denoted with parentheses, e.g., ðn12v1Þ ¼ n12 · ν1; the cross product is denoted, e.g., ðn12 × v12Þi, and the mixed
product, e.g., ðn12; v1; v2Þ ¼ ðn12v1 × v2Þ. All calculations are done with the software Mathematica and the tensor package xAct [39].
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− 12ðv1v2Þv21 þ 6v41 −
45

2
ðn12v2Þ2v22 − 12ðv1v2Þv22 þ 6v21v

2
2 þ 6v42 þ Gm2ðn12a2Þ

þ Gm1

r12

�
−
291

2
ðn12v1Þ2 þ 291ðn12v1Þðn12v2Þ −

273

2
ðn12v2Þ2 þ 35v212

�
þ Gm1ð14ðn12a1Þ − 10ðn12a2ÞÞ

þ Gm2

r12
ð9ðn12v2Þ2 þ 18v212Þ þ

1

8
r312ðä2n12Þ −

15G2m2
1

14r212
þ 35G2m1m2

r212
þ 5G2m2

2

r212
þ r12

�
12ðv1a2Þðn12v2Þ

−
27

2
ðv2a2Þðn12v2Þ þ

45

4
ðn12a2Þðn12v2Þ2 þ 6ðn12a2Þðv1v2Þ − 3ðn12a2Þv21 −

9

2
ðn12a2Þv22

�

þ r212

�
9

8
ðn12a2Þ2 −

15

8
a22 þ

3

2
ðn12v2Þðn12 _a2Þ þ 2ðv1 _a2Þ − 2ðv2 _a2Þ

��
þ n12hiv1ji

�
62Gm1

r12
ðn12v12Þ

−
18Gm2

r12
ðn12v12Þ þ 15ðn12v1Þðn12v2Þ2 − 15ðn12v2Þ3 þ 6ðn12v2Þðv1v2Þ þ 6ðn12v2Þv212 − 6ðn12v1Þv21

þ r12ð−ðv12a2Þ þ 3ðn12a2Þðn12v1Þ − 9ðn12a2Þðn12v2ÞÞ − r212ðn12 _a2Þ
�
þ v1hiv1ji

�
−3ðn12v2Þ2 þ 2v21

− r12ðn12a2Þ −
3Gm1

r12
þ 6Gm2

r12

�
þ n12hiv2ji

�
−30ðn12v1Þðn12v2Þ2 þ 15ðn12v2Þ3 − 12ðn12v1Þðv1v2Þ

þ 12ðn12v1Þv21 þ 12ðn12v1Þv22 − 6ðn12v2Þv22 þ
Gm1

r12
ð−68ðn12v1Þ þ 62ðn12v2ÞÞ þ

Gm2

r12
ð12ðn12v1Þ

− 18ðn12v2ÞÞ þ r212ðn12 _a2Þ þ r12ð−2ðv1a2Þ − 6ðn12a2Þðn12v1Þ − ðv2a2Þ þ 9ðn12a2Þðn12v2ÞÞ
�

þ v1hiv2ji

�
−6ðn12v1Þðn12v2Þ þ 15ðn12v2Þ2 − 6ðv1v2Þ − 6v212 þ 5r12ðn12a2Þ þ

8Gm1

r12
−
10Gm2

r12

�

þ v2hiv2ji

�
6ðn12v1Þ2 −

15

2
ðn12v2Þ2 þ 3v22 −

5

2
r12ðn12a2Þ −

4Gm1

r12
þ 5Gm2

r12

�
þ 4Gm1a1hin12ji

þ a2hin12ji

�
r12

�
−12ðn12v1Þðn12v2Þ þ

27

2
ðn12v2Þ2 þ 4ðv1v2Þ − 2v21 − 5v22

�
þ 9

2
r212ðn12a2Þ − 3Gm1

−Gm2

�
þ a2hiv1jir12ð−ðn12v1Þ þ 7ðn12v2ÞÞ þ a2hiv2jir12ð−2ðn12v1Þ − 7ðn12v2ÞÞ −

5

4
a2hia2jir212

þ n12hi _a2jir212ð−2ðn12v1Þ þ 5ðn12v2ÞÞ þ 3v1hi _a2jir212 − 3v2hi _a2jir212 þ
7

4
n12hiä2jir312 þ δij

�
−
5

2
ðn12v1Þ2ðn12v2Þ2

− 2ðn12v1Þðn12v2Þðv1v2Þ þ ðv1v2Þ2 þ ðn12v1Þ2v21 þ
3

2
ðn12v2Þ2v21 −

1

3
v41 þ 2ðn12v1Þ2v22 − v21v

2
2

−
4

3
Gm1ðn12a2Þ þ

Gm1

r12

�
−
16

3
ðn12v12Þ2 − ðn12v1Þ2 þ

4

3
v212 þ

1

3
v21

�
þ Gm2

r12

�
4ðn12v12Þ2 − ðn12v1Þ2

−
4

3
v212 þ

1

3
v21

�
þ r12

�
4

3
ðv12a2Þðn12v12Þ − ðv1a2Þðn12v1Þ −

1

2
ðn12a2Þðn12v1Þ2 þ

1

2
ðn12a2Þv21

�

−
16G2m1m2

3r212
þ 2G2m2

2

3r212
þ r212

�
4

3
a22 −

4

3
ðv1 _a2Þ þ

4

3
ðv2 _a2Þ

����
þO

�
1

c6

�
; ð4:1aÞ

½Hij�1 ¼
Gm2

r312

�
12ðn12 × v12Þhin12ji þ

1

c2

�
ðn12 × v12Þhin12ji

�
−30ðn12v2Þ2 þ 12ðv1v2Þ þ 12v212 − 6r12ðn12a2Þ

þ 4Gm1

r12
þ 12Gm2

r12

�
− 12ða2 × n12Þhin12jir12ðn12v2Þ þ 12ðn12 × v12Þhiv2jiðn12v1Þ − 2ða2 × v12Þhin12jir12

− 2a2hiðn12 × v12Þjir12 þ 2ðn12 × _a2Þhin12jir212 þ 4δijðn12; v1; v2Þðn12v1Þ
��

þO
�
1

c4

�
; ð4:1bÞ
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½Gijk�1 ¼ −
15Gm2n12hin12jn12ki

r412
þO

�
1

c2

�
: ð4:1cÞ

The other components of the tidal moments are readily
obtained from, e.g., the relations ½G0i�1 ¼ −vj1½Gij�1=c and
½G00�1 ¼ vi1v

j
1½Gij�1=c2, which are equivalent to ½G0̂ 0̂�1 ¼

½G0̂ î�1 ¼ 0 in tetradic notation. In Eqs. (4.1), most of the
terms are STF, which we denote by angular brackets
surrounding the indices. Note, however, as mentioned in
Sec. III, the appearance of pure trace contributions, due to
the fact that we have not resorted to tetradic projections and
have used the Riemann tensor instead of the Weyl tensor
(see the discussion in Appendix B).
With the latter results and the 2PN metric (3.7), it is

straightforward to get the Lagrangian up to the relative

NNL/2PN order for the finite-size tidal contributions. As
usual, we apply a number of procedures to eliminate
multiple time derivatives of the accelerations and reduce
the numbers of terms, in particular, removing those that
contain higher time derivatives of the accelerations by
adding suitable double-zero terms and total time derivatives
[40]. Recalling our notation introduced in Eq. (3.2), we
write

L ¼ Lpp þ Ltidal; ð4:2Þ
where, to be consistent with the NNL order truncation, we
recall the Lagrangian for point particles up to 2PN order in
harmonic coordinates, which is a generalized Lagrangian
depending on positions yiAðtÞ, velocities viAðtÞ, as well as
accelerations aiAðtÞ ¼ dviA=dt [see, e.g., Eq. (209) of [41] ]:

Lpp ¼
m1v21
2

þGm1m2

2r12

þ 1

c2

�
−
G2m2

1m2

2r212
þm1v41

8
þ Gm1m2

r12

�
−
1

4
ðn12v1Þðn12v2Þ þ

3

2
v21 −

7

4
ðv1v2Þ

��

þ 1

c4

�
G3m3

1m2

2r312
þ 19G3m2

1m
2
2

8r312

þ G2m2
1m2

r212

�
7

2
ðn12v1Þ2 −

7

2
ðn12v1Þðn12v2Þ þ

1

2
ðn12v2Þ2 þ

1

4
v21 −

7

4
ðv1v2Þ þ

7

4
v22

�

þ Gm1m2

r12

�
3

16
ðn12v1Þ2ðn12v2Þ2 −

7

8
ðn12v2Þ2v21 þ

7

8
v41 þ

3

4
ðn12v1Þðn12v2Þðv1v2Þ

− 2v21ðv1v2Þ þ
1

8
ðv1v2Þ2 þ

15

16
v21v

2
2

�
þm1v61

16

þ Gm1m2

�
−
7

4
ða1v2Þðn12v2Þ −

1

8
ðn12a1Þðn12v2Þ2 þ

7

8
ðn12a1Þv22

��
þ 1 ↔ 2þO

�
1

c5

�
: ð4:3Þ

To the terms given above, we must add their symmetric counterpart in the exchange of the two particles, as indicated by the
notation 1 ↔ 2. Now, the main result of the present paper is the complete expression of the tidal part of the Lagrangian up to
NNL/2PN order in harmonic coordinates. It reads

Ltidal ¼
G2m2

2

r612

�
3

2
μð2Þ1 þ 1

c2

�
μð2Þ1

�
−
9

2
ðn12v1Þ2 − 18ðn12v1Þðn12v2Þ þ 18ðn12v2Þ2 −

9

2
ðv1v2Þ þ

15

4
v21

�

þ σð2Þ1 ð−12ðn12v12Þ2 þ 12v212Þ −
3Gm1μ

ð2Þ
1

r12
−
21Gm2μ

ð2Þ
1

2r12

�
þ 1

c4

�
μð2Þ1

�
9

2
ðn12v1Þ4

− 18ðn12v1Þ3ðn12v2Þ þ 45ðn12v1Þ2ðn12v2Þ2 − 54ðn12v1Þðn12v2Þ3 þ
63

2
ðn12v2Þ4 þ 9ðn12v1Þðn12v2Þðv1v2Þ

− 18ðn12v2Þ2ðv1v2Þ þ
9

2
ðv1v2Þ2 − 9ðn12v1Þ2v212 þ 27ðn12v1Þðn12v2Þv212 − 36ðn12v2Þ2v212

þ 9ðv1v2Þv212 þ 9v412 −
9

4
ðn12v1Þ2v21 −

9

2
ðn12v1Þðn12v2Þv21 þ

27

2
ðn12v2Þ2v21 − 9ðv1v2Þv21

−
27

4
v212v

2
1 þ

69

16
v41

�
þ μð2Þ1 r12

�
−12ðv12a2Þðn12v1Þ þ 60ðn12a2Þðn12v1Þ2 þ 21ðv12a2Þðn12v2Þ
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−
9

2
ðv1a2Þðn12v2Þ − 102ðn12a2Þðn12v1Þðn12v2Þ þ 60ðn12a2Þðn12v2Þ2 þ

69

2
ðn12a2Þðv1v2Þ −

69

4
ðn12a2Þv21

−
39

2
ðn12a2Þv22

�
þ σð2Þ1 ð60ðn12v12Þ4 − 96ðn12v12Þ3ðn12v1Þ þ 48ðn12v12Þ2ðn12v1Þ2 − 24ðn12v12Þ2ðv1v2Þ

þ 24ðn12v12Þðn12v1Þðv1v2Þ þ 12ðv1v2Þ2 − 84ðn12v12Þ2v212 þ 96ðn12v12Þðn12v1Þv212 − 36ðn12v1Þ2v212
þ 24ðv1v2Þv212 þ 24v412 þ 18ðn12v12Þ2v21 − 24ðn12v12Þðn12v1Þv21 − 24ðv1v2Þv21 − 18v212v

2
1 þ 12v41Þ

þ σð2Þ1 r12ð16ðn12a2Þðn12v12Þ2 þ 24ðv12a2Þðn12v1Þ − 24ðn12a2Þðn12v12Þðn12v1Þ − 16ðn12a2Þv212Þ

þ Gm1μ
ð2Þ
1

r12

�
807

8
ðn12v1Þ2 þ

381

8
ðn12v1Þðn12v2Þ − 138ðn12v2Þ2 −

387

8
ðv1v2Þ þ

63

8
v21 þ 42v22

�

þ Gm2μ
ð2Þ
1

r12

�
27

2
ðn12v1Þ2 þ

1051

8
ðn12v1Þðn12v2Þ −

865

8
ðn12v2Þ2 þ

83

8
ðv1v2Þ −

45

4
v21 þ

49

8
v22

�

þ Gm1σ
ð2Þ
1

r12
ð−8ðn12v12Þ2 þ 8v212Þ þ

Gm2σ
ð2Þ
1

r12
ð36ðn12v12Þ2 − 36v212Þ −

60G2m2
1μ

ð2Þ
1

7r212

þ 707G2m1m2μ
ð2Þ
1

8r212
þ 165G2m2

2μ
ð2Þ
1

4r212

�
þ 15μð3Þ1

2r212

�
þ 1 ↔ 2þO

�
ϵtidal
c6

�
: ð4:4Þ

Note that the last term, although it does not contain
any explicit 1=c factor, is actually a NNL term [see
Eq. (2.10)].
The long EOM derived by varying the Lagrangian (4.4)

are relegated to Appendix C. We have verified that the latter
EOM in harmonic coordinates stay manifestly invariant
when we perform a global (PN-expanded) Lorentz boost
with constant velocity V. All the formulas employed to
check the Lorentz invariance are given by Eqs. (3.20)–
(3.23) of Ref. [42]. Furthermore, as a confirmation of the
boost invariance of the EOM, we can compute the
Noetherian invariant associated with this symmetry, which
is nothing but the (mass weighted) position of the center of
massGi of the binary system. We obtainGi ¼ Gi

pp þGi
tidal,

where the point-particle piece is given by Eq. (4.4) in [43],
i.e., at 1PN order by

Gi
pp ¼ m1yi1 þ

m1

2c2

�
v21 −

Gm2

r12

�
yi1 þ 1 ↔ 2þO

�
1

c4

�
;

ð4:5Þ

and where the dominant tidal piece appears only at NL/1PN
order and is given by

Gi
tidal ¼

3G2m2
2

2r512c
2
μð2Þ1

�
3ni12 −

yi1
r12

�
þ 1 ↔ 2þO

�
ϵtidal
c4

�
:

ð4:6Þ

For simplicity, since it is not needed in the following, we
do not present the complicated NNL/2PN contributions
beyond the result (4.6).

V. TIDAL EFFECTS IN THE
CENTER-OF-MASS FRAME

The c.m. frame is defined as the frame for which the
equation Gi ¼ 0 holds, consistently including the tidal
terms. The structure of the leading order of the EOM and
energy allows one to compute the corresponding c.m.
quantities at the 2PN relative order without requesting
Gi itself at that order. By contrast, it is sufficient to knowGi

at 1PN relative order for this calculation, which means
including the tidal effects at NL/1PN order as given by
Eq. (4.6). Solving for Gi ¼ 0 then yields the c.m. position
of particle 1 as a function of the relative separation and
velocity.7 We find yi1 ¼ ðyi1Þpp þ ðyi1Þtidal, where the known
1PN expression for the point-particle piece reads

ðyi1Þpp ¼
�
X2 þ

νΔ
2c2

�
v2 −

Gm
r

��
xi þO

�
1

c4

�
; ð5:1Þ

with the position of particle 2 obtained by the exchange
1 ↔ 2. Now, the point is that, because of the tidal
contribution to the c.m. position found in (4.6), there also
exists a NL/1PN contribution given by

ðyi1Þtidal ¼ −
3G2mν

2r6c2
ðΔμð2Þþ þ 5μð2Þ− Þxi þO

�
ϵtidal
c4

�
: ð5:2Þ

7We pose xi ¼ yi1 − yi2 and v
i ¼ dxi=dt; r ¼ jxj ¼ r12 denotes

the separation, ni ¼ xi=r the unit direction, and we have
_r ¼ ðnvÞ ¼ n · ν. Mass parameters are as follows: the total mass
m ¼ m1 þm2, the symmetric mass ratio ν ¼ m1m2=m2 ¼ X1X2,
and the mass difference Δ ¼ X1 − X2, with XA ¼ mA=m.
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The velocities vi1 ¼ ðvi1Þpp þ ðvi1Þtidal are found by itera-
tively differentiating Eqs. (5.1) and (5.2), using in that
process the full EOM, which include the tidal effect. Here
and below, we define the following convenient combina-
tions of the tidal polarizabilities:

μðlÞ� ¼ 1

2

�
m2

m1

μðlÞ1 �m1

m2

μðlÞ2

�
;

σðlÞ� ¼ 1

2

�
m2

m1

σðlÞ1 �m1

m2

σðlÞ2

�
; ð5:3Þ

where the chosen normalization is such that μðlÞþ ¼ μðlÞ1 ¼
μðlÞ2 and μðlÞ− ¼ 0 when the two bodies are identical,

with the same mass and internal structure, and likewise

for σðlÞ� .
At this stage, the EOM in the c.m. frame can be derived

in two possible ways: either by computing the c.m.
acceleration ai ¼ ai1 − ai2 directly, based on the replace-
ment rules (5.1) and (5.2), or by first getting the expression
of the Lagrangian in the c.m. frame from the Lagrangian in
a general frame, varying it to recover the EOM.We resort to
the two methods, and the results are in full agreement (see
also [44] for further details on the second method). The
c.m. Lagrangian may be decomposed as L ¼ Lpp þ Ltidal,
where Lpp is, e.g., given by Eq. (4.2) in [45], while the tidal
part is, up to NNL order,

Ltidal

μ
¼ G2m

r6

�
3μð2Þþ þ 1

c2

��
μð2Þþ

�
27

2
þ 9ν

�
þ 45

2
Δμð2Þ− − 24σð2Þþ

�
_r2 þ

�
μð2Þþ

�
15

4
þ 3

2
ν

�
−
15

4
Δμð2Þ−

þ 24σð2Þþ

�
v2 þ Gm

r

�
−
27

2
μð2Þþ þ 15

2
Δμð2Þ−

��
þ 1

c4

�
r

��
μð2Þþ

�
21 −

45

2
ν

�
þ Δμð2Þ−

�
21 −

9

2
ν

�

− 48νσð2Þþ

�
av _rþ ½μð2Þþ ð−60þ 18νÞ þ Δμð2Þ− ð−60þ 18νÞ þ σð2Þþ ð−16þ 48νÞ − 16Δσð2Þ− �an _r2

þ
�
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�
39

2
−
27

4
ν

�
þ Δμð2Þ−

�
39

2
−
9

4
ν

�
þ 16σð2Þþ þ 16Δσð2Þ−

�
anv2

�
þ ½μð2Þþ ð36 − 72νþ 18ν2Þ
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�
−
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45

2
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�
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�
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r
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�
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4
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�
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�

þG2m2
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�
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�
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28
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28
ν

�
−
1395

28
Δμð2Þ−

��
þ μð3Þþ

15

r2

�
þO

�
ϵtidal
c6

�
: ð5:4Þ

Note again that the last term is actually a NNL/2PN contribution. The corresponding relative c.m. acceleration is displayed
in Appendix C. Similarly, we show here the tidal part of the conserved energy E ¼ Epp þ Etidal:

Etidal

mν
¼ −3

G2m
r6

μð2Þþ þ 1

c2

�
G2m
r6

���
27

2
þ 9ν

�
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�
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��
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2
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�
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�
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�
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2
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��

þ 1
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�
G2m
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�
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4
−
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2
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2
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�
μð2Þþ þ

�
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�
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�
_r2v2

þ
��

99

16
−
27

4
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8
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þG3m2
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−
267

2
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Finally, for the c.m. angular momentum Ji ¼ Jipp þ Jitidal, we find (denoting Li ¼ εijkxjvk)

Jitidal
mν

¼ G2m
c2r6
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�
: ð5:6Þ

The point-particle pieces Epp and Jipp are depicted in
Eqs. (4.8) and (4.9) of Ref. [45].

VI. TIDAL EFFECTS FOR
QUASICIRCULAR ORBITS

We consider quasicircular orbits, i.e., orbits that are
circular in our harmonic coordinate system but for the
dissipative radiation-reaction effects. For such orbits, we
can neglect _r ¼ Oðc−5Þ, which is precisely of the order of
radiation-reaction effects. Under this assumption, we see
from Eq. (C2) that the c.m. acceleration becomes purely
radial, ai ¼ −ω2xi, from which we can read off the orbital
angular frequency ω. Relevant quantities will then depend
only on the bodies’ separation r or, equivalently (via a
generalized Kepler third law), on the orbital frequency ω. In
the case of circular orbits, it is convenient to introduce the

dimensionless PN parameters associated with the separa-
tion and orbital frequency as

γ ¼ Gm
rc2

; x ¼
�
Gmω

c3

�
2=3

; ð6:1Þ

as well as to adimensionalize the polarizability coefficients
defined in Eqs. (5.3) by considering the “tilded” quantities8

μ̃ðlÞ� ¼
�

c2

Gm

�
2lþ1

GμðlÞ� ; σ̃ðlÞ� ¼
�

c2

Gm

�
2lþ1

GσðlÞ� :

ð6:2Þ
By identifying the expression of ω2 from the circular-orbit
EOM as explained above and replacing γ iteratively, we
recover the well-known formula for point masses at 2PN
order, with a nontrivial NNL/2PN relative tidal contribution:

ðω2Þpp ¼
Gm
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νþ ν2
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; ð6:3aÞ

ðω2Þtidal ¼
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�
: ð6:3bÞ

8The quantity κT2 defined in Ref. [7] is related to our definition μ̃ð2Þþ by κT2 ¼ 6μ̃ð2Þþ .
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Next, we may determine the relation between γ and x, defined in Eqs. (6.1), by inverting Eqs. (6.3), with the result

γpp ¼ x

�
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ν

3

�
xþ

�
1 −

65

12
ν

�
x2
�
þO

�
1

c6

�
; ð6:4aÞ

γtidal ¼ x
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: ð6:4bÞ

The conserved energy for circular orbits can now be computed. To do so, we take Eq. (5.5) to which we add the point-
particle part, set _r ¼ 0, and replace v2 ¼ r2ω2 by its expression in terms of the parameter γ using Eqs. (6.3). This yields E
first as a function of γ. We finally insert the previous relation (6.4) between γ and x to get an important result, namely, the
expression of the circular energy as a function of the frequency-dependent parameter x:
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; ð6:5aÞ

Etidal ¼ −
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We can also compute, by the same method, the constant angular momentum for circular orbits, which reads

Jpp ¼
Gm2ν
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Jtidal ¼
Gm2ν
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We have verified that the energy E and angular momentum
J for circular orbits, including all the tidal contributions
given in (6.5) and (6.6), are linked by the famous relation

∂E
∂ω ¼ ω

∂J
∂ωþO

�
1

c6
;
ϵtidal
c6

�
; ð6:7Þ

which is just one aspect of the “first law of binary point-
particle mechanics” [46].

VII. SUMMARY AND CONCLUSIONS

We have computed the Lagrangian and associated
conserved quantities of compact binaries including tidal
interactions up to NNL order, corresponding to the 2PN

approximation beyond the leading quadrupolar tidal effect
occurring at 5PN order. The results follow from the
effective Fokker action (2.1) and (2.2) with nonminimal
matter couplings and are parametrized by polarizability
coefficients describing the mass-quadrupole, mass-octu-
pole, and current-quadrupole tidal interactions. In particu-
lar, we have obtained the NNL conserved invariant energy
of the compact binary for quasicircular orbits.
To conclude, let us compare our expressions for the

invariant energy as given by (6.5) with existing results in
the literature. In the following table, we provide, for
each order and for each multipolar piece contributing to
the conserved energy EtidalðxÞ, the references with which
we agree:
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Etidal Mass quadrupole Current quadrupole Mass octupole

5PN (L) [6,8,18–20] × ×
6PN (NL) [19–21] [19,21,22] ×
7PN (NNL) [19] [19] [19,23]

Note, in particular, that we are in full agreement with all
results of Ref. [19]. We have checked, notably, that by
reexpanding the tidal effects entering the EOB Hamiltonian
[19] in the form of a PN Taylor series, we recover exactly
our Eq. (6.5).9

Now that the problem of the Lagrangian and EOM is
solved (Ref. [19] and this work), we shall compute in a
second paper [24] the gravitational-wave energy flux for
quasicircular orbits and then, from it, deduce, through the
energy balance equation, the crucial orbital phase and
frequency evolution (or “chirp”) of compact binaries in
circular orbits including tidal effects up to NNL/2PN order
beyond the Einstein quadrupole formula.
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APPENDIX A: NEWTONIAN TREATMENT OF
THE TIDAL EFFECTS

In this appendix, we derive the Newtonian EOM and the
Lagrangian of a system of N extended compact bodies
without spins, including multipolar tidal interaction effects.
The mass and the c.m. position of each of the objects are
defined by

mA ¼
Z
VA

d3xρðx; tÞ; yiAðtÞ ¼
1

mA

Z
VA

d3xρðx; tÞxi;

ðA1Þ
where the integrals extend over the volume VA of body A
and where ρðx; tÞ denotes the Eulerian density of the
N-body system satisfying the usual continuity equation
∂tρþ ∂iðρviÞ ¼ 0 (hence the mass mA is constant). The
equation of motion verified by the c.m. line of body A is
then given by

mA
d2yiA
dt2

¼
X
B≠A

Z
VA

d3xρ∂iUB; ðA2Þ

where we have discarded the self-field of body A, which is
zero by Newton’s action-reaction theorem (so the sum runs

over all the bodies B ≠ A), and where the Newtonian
potential generated by body B reads

UBðx; tÞ ¼ G
Z
VB

d3x0

jx − x0j ρðx
0; tÞ: ðA3Þ

For any point outside body B—thus, in particular, located
inside body A, distinct from B—we have ΔUB ¼ 0. Next,
we define the Newtonian STF multipole moment of body A
to be

ILAðtÞ ¼
Z
VA

d3zAρAðzA; tÞẑLA; ðA4Þ

where we adopted as an integration variable the vector zA ¼
x − yAðtÞ linking the line of the c.m. yAðtÞ to the generic
point x ∈ VA, where ẑLA ¼ STFðzLAÞ denotes the STF prod-
uct of l spatial vectors zLA ¼ zi1A � � � zilA (with L¼ i1 � ��il a
multispatial index) and where we have posed ρAðzA; tÞ ¼
ρðyA þ zA; tÞ. With this notation the mass monopole moment
is just the constant mass, while the c.m. position yiA is
defined by the nullity of the mass dipole moment:

IA ¼ mA; IiA ¼ 0: ðA5Þ

On the other hand, the Newtonian tidal moments,
starting with the quadrupole moment (l ≥ 2), are defined
quite naturally as the multigradients of the total external
potential due to the other bodies felt by body A at the
location of its c.m. yA:

GL
AðtÞ ¼

X
B≠A

ð∂LUBÞðyAÞ ðfor l ≥ 2Þ; ðA6Þ

with ∂L ¼ ∂i1 � � � ∂il . Since ΔUB ¼ 0 inside body A, the
tidal moments are automatically STF in all of their indices
L, namely, ∂LUB ¼ ∂̂LUB. For the dipolar tidal moment
(with l ¼ 1) it is convenient to pose

Gi
A ¼

X
B≠A

ð∂iUBÞðyAÞ −
d2yiA
dt2

; ðA7Þ

so Gi
A ¼ 0 for a system of point particles described only by

their masses, their higher multipole moments being
neglected. The EOM may then be rewritten in elegant
form as (see, e.g., Ref. [32])

mAGi
A þ

Xþ∞

l¼2

1

l!
ILAG

iL
A ¼ 0: ðA8Þ

Using the fact that for any x outside body B we have the
multipole decomposition

UB ¼ G
Xþ∞

k¼0

ð−Þk
k!

IKB∂K

�
1

rB

�
; ðA9Þ

9However, we do not recover the 1PN coefficient for the
current-quadrupole piece in Ref. [23], where the discrepancy is
by a factor 2.
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with rB ¼ jx − yBj, we see that the tidal moments them-
selves (A6) can be expanded in terms of the multipole
moments of the other bodies as (for l ≥ 2)

GL
A ¼ G

X
B≠A

Xþ∞

k¼0

ð−Þk
k!

IKB∂A
LK

�
1

rAB

�
; ðA10Þ

where rAB ¼ jyA − yBj is the distance between the c.m. of
bodies A and B, the gradient is taken with respect to point
A, i.e., ∂A

i ¼ ∂=∂yiA, and we denote ∂A
LK ¼ ∂A

L∂A
K with

∂A
L ¼ ∂A

i1
� � � ∂A

il
. Finally, the EOM admit the double multi-

pole expansion series

mA
d2yiA
dt2

¼ G
X
B≠A

Xþ∞

l¼0

Xþ∞

k¼0

ð−Þk
l!k!

ILAI
K
B∂A

iLK

�
1

rAB

�
; ðA11Þ

or, in more detail [see, e.g., Eq. (1.201) of [47] ],

mA
d2yiA
dt2

¼ G
X
B≠A

�
mAmB∂A

i

�
1

rAB

�

þ
Xþ∞

l¼2

ð−Þl
l!

½mAILB þ ð−ÞlmBILA�∂A
iL

�
1

rAB

�

þ
Xþ∞

l¼2

Xþ∞

k¼2

ð−Þk
l!k!

ILAI
K
B∂A

iLK

�
1

rAB

��
: ðA12Þ

Those equations have been generalized to 1PN order
[20,48–50] using the DSX formalism [32,51].
We now consider the case where the multipole moments

are exclusively induced by the tidal field of the other
bodies. To describe this situation, we assume that each
extended body is at hydrodynamical equilibrium at every
time, so the mass distribution at any instant is aligned on the
equipotentials of the external gravitational field. We are
thus in the so-called adiabatic regime where the relaxation
timescale of the body’s internal dynamics is significantly
smaller than the orbital timescale. In particular, we neglect
the dissipative effects due to the tides, considering only the
conservative dynamics of the system, and look for a
Lagrangian. In this case, we introduce a linear-response
coefficient μðlÞ depending on the internal structure of the
body and characterizing its deformability or “polarizabil-
ity” under the influence of the external field, such that its
multipole moments obey

ILA ¼ μðlÞA GL
A: ðA13Þ

Following the usual definitions (see, e.g., Refs. [10,13,14]),
this coefficient is related to the radius R of the body and the
(mass-type) multipolar Love numbers kðlÞ by

GμðlÞA ¼ 2

ð2l − 1Þ!! k
ðlÞ
A R2lþ1

A : ðA14Þ

The Newtonian EOM (A12) now become

mA
d2yiA
dt2

¼ G
X
B≠A

�
mAmB∂A

i

�
1

rAB

�

þ
Xþ∞

l¼2

ð−Þl
l!

½mAμ
ðlÞ
B GL

B þ ð−ÞlmBμ
ðlÞ
A GL

A�∂A
iL

�
1

rAB

�

þ
Xþ∞

l¼2

Xþ∞

k¼2

ð−Þk
l!k!

μðlÞA μðkÞB GL
AG

K
B∂A

iLK

�
1

rAB

��
; ðA15Þ

in which the tidal moments obey the implicit relation

GL
A ¼ G

X
B≠A

�
mB∂A

L

�
1

rAB

�
þ
Xþ∞

k¼2

ð−Þk
k!

μðkÞB GK
B∂A

LK

�
1

rAB

��
:

ðA16Þ
The latter equations describe the conservative dynamics of
the system of N extended bodies. The dependence on the
internal structure is entirely carried out by the coefficients
μðlÞ, which are supposed to be constant. The dynamics is
conservative in the sense that it can be derived from the
following exact Lagrangian, valid up to any order in the
multipole expansion and the tidal moments:

L ¼
X
A

�
1

2
mAv2A þ 1

2
mA

X
B≠A

UBðyAÞ
�

¼
X
A

�
1

2
mAv2A þ 1

2

Xþ∞

l¼2

1

l!
μðlÞA GL

AG
L
A

þ G
X
B>A

�
mAmB

rAB
−
Xþ∞

l¼2

Xþ∞

k¼2

ð−Þk
l!k!

μðlÞA μðkÞB GL
AG

K
B

× ∂A
LK

�
1

rAB

���
: ðA17Þ

The Newtonian action is formally the Newtonian limit, at
the quadratic level, of the nonminimal matter action (2.2) in
general relativity. However, the action (2.2) is effective (or
“skeletonized”), with each compact object described by an
effective point particle endowed with internal structure.
The mass-type moments GL̂ (even parity sector) entering
Eq. (2.2) tend towards the Newtonian tidal momentsGL, so
they can be regarded as their legitimate relativistic versions,
and the corresponding response coefficients μðlÞ identify
with the Newtonian tidal deformabilities. Moreover, the
relativistic action also depends on current-type moments
HL̂ (odd parity sector) with associated response coefficients
σðlÞ, first arising at the 1PN relativistic order.
Both sets of relativistic tidal moments are given by

appropriate covariant derivatives of the Riemann tensor,
which is nothing but the relativistic tidal field felt by the
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body. Those moments are evaluated at the location of the
particle, and a UV-type regularization is required to remove
the self-field of that particle. Thus, in the effective action,
the self-field regularization automatically selects the exter-
nal tidal field experienced by the body due to the other
bodies composing the system.

APPENDIX B: PROOF THAT THE TRACE
TERMS TO NNL ORDER CAN BE REMOVED

BY A REDEFINITION OF THE METRIC

In this section, we show that the tidal moments entering
the action may be defined in terms of the Riemann tensor
instead of the Weyl tensor since the traces of the Riemann
tensor do not play any role in the dynamics. Here, we denote

GðRÞ
μν , G

ðRÞ
λμν, and HðRÞ

μν as the tidal mass-quadrupole, mass-
octupole, and current-quadrupole moments introduced in

Eqs. (3.6), whileGðCÞ
μν ,G

ðCÞ
λμν, andH

ðCÞ
μν represent the same but

built with the Weyl tensor instead of the Riemann tensor. We
thus pose (setting G ¼ c ¼ 1 and omitting particle labels
and mention of the regularization)

GðRÞ
μν ¼ −Rμρνσuρuσ; GðCÞ

μν ¼ −Cμρνσuρuσ; ðB1aÞ

HðRÞ
μν ¼ 2R�

ðμρνÞσu
ρuσ; HðCÞ

μν ¼ 2C�
ðμρνÞσu

ρuσ; ðB1bÞ

GðRÞ
λμν ¼ −∇⊥

ðλRμρνÞσuρuσ; GðCÞ
λμν ¼ −∇⊥

ðλCμρνÞσuρuσ;

ðB1cÞ

where Cμνρσ stands for the Weyl tensor

Cμνρσ ¼ Rμνρσ − ðgμ½ρRσ�ν − gν½ρRσ�μÞ þ
1

3
gμ½ρgσ�νR ðB2Þ

and where we have used expressions for the original Weyl
tidal moments in which the STF operators have been
removed or replaced by mere symmetrizations, thanks to
the properties of theWeyl tensor and the covariant derivative.
To start with, we notice that, as one can check, the Riemann
and Weyl definitions of the current-type quadrupole coin-

cide, i.e., HðCÞ
μν ¼ HðRÞ

μν . As a result, the following discussion
will, in fact, only concern the mass-type moments. From
Eqs. (B1), we then get the following relations:

ðGμνGμνÞðCÞ ¼ ðGμνGμνÞðRÞ −Gμν
ðRÞRμν

þ ðdouble-zero termsÞ; ðB3aÞ

ðGμνρGμνρÞðCÞ ¼ ðGμνρGμνρÞðRÞ −Gλμν
ðRÞ∇λRμν

−
2

3
uμuν∇κRκμλν

�
∇λRρσuρuσ þ

1

3
∇λR

�

þ ðdouble-zero termsÞ; ðB3bÞ

where the “double-zero terms” are terms that are quadratic
in the Ricci tensor or scalar. Let us now prove that the
actions SðRÞ and SðCÞ corresponding to Eq. (2.11) using,
respectively, the Riemann and Weyl definitions lead to the
same EOM.
The double-zero terms are treated as follows. Varying

their contributions to the action, which necessarily have
the general form ∝

R
d4x

ffiffiffiffiffiffi−gp
Aμνρσ…∇���Rμν∇���Rρσ, leads,

after possible integrations by parts, to a sum of terms
∝
R
d4x

ffiffiffiffiffiffi−gp ½∇���ðAμνρσ…∇���RρσÞ þ ∇���ðAρσμν…∇���RρσÞ�×
δRμν, plus surface integrals at infinity which vanish, since
their integrands contain factors ∇���Rρσ that are identically
zero in vacuum. The remaining terms are then proportional
to (the covariant derivatives of) the Ricci tensor multiplied
by Aμνρσ…. On the other hand, Aμνρσ… is itself a sum of the
form

P
A δ

ð4Þðx − yAÞFμνρσ…
A , and the presence of the Dirac

distributions forces the evaluation of the Ricci tensor to
take place at one particle’s location, e.g., at x ¼ yA, in the
sense of dimensional regularization. Moreover, by virtue
of Einstein’s equations (reinstalling the particle’s label),
½Rμν�A ¼ 8π½ðTppÞμν − ðTppÞλλgμν=2�A þ OðϵtidalÞ, where
½ðTppÞμν�A denotes the point-particle stress-energy tensor
of our particle system at point A,

½Tμν
pp�A ¼

X
B

mB

Z
dτBu

μ
Bu

ν
B
δð4Þ½yAðτAÞ − yBðτBÞ�ffiffiffiffiffiffi−gp : ðB4Þ

If A ≠ B, then δð4Þ½yAðτAÞ − yBðτBÞ� ¼ 0 because the
compact objects never collide in the PN regime. If
A ¼ B, the Dirac distribution reduces to δð4Þð0Þ, which
is precisely zero in dimensional regularization, as the limit
of

R
ddþ1ke2πi0 ¼ 0 when d → 3. Hence ½Tμν

pp�A vanishes as
well, and so does the contribution of the double-zero terms
to the Euler-Lagrange equations for the pointlike bodies.
However, terms that are linear in both the Riemann and

the Ricci tensors (or the Ricci scalar) in Eqs. (B3) cannot
be dealt with in the same way as the double zeros.
Instead, they may be treated by making an appropriate
infinitesimal change of variable on the original metric,
say goriginalμν ¼ gμν þ hμν, in the action SðCÞ½goriginalμν ; yA�.
This naturally defines the new action S̃½gμν; yA� ¼
SðCÞ½goriginalμν ½gρσ; yB�; yA�, dynamically equivalent to SðCÞ

when regarded as a functional of the metric gμν. At first
order in hμν, it reads

S̃½gμν; yA� ¼ SðCÞ½gμν; yA�

−
1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rμν −

1

2
Rgμν − 8πTμν

�
hμν

þOðh2Þ: ðB5Þ

Now, we want S̃½gμν; yA� to coincide with SðRÞ½gμν; yA�.
By conveniently choosing hμν, the term ðRμν − 1

2
RgμνÞhμν
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will cancel the terms linear in the Ricci tensor or scalar
entering Eqs. (B3). As for the term

R
d4x

ffiffiffiffiffiffi−gp
Tμνhμν,

it vanishes by itself and can thus be ignored. Indeed,
integrating the Dirac deltas contained in the expression
chosen for hμν (see below) yields a sum on A ¼ 1; 2
of ∝ ½Tμν�A ¼ ½Tμν

pp�A þOðϵtidalÞ, which boils down to
OðϵtidalÞ since ½Tμν

pp�A ¼ 0, as explained above around
Eq. (B4).
Let us examine more precisely how to construct a hμν

suitable to absorb the Ricci-type terms in Eq. (B5) that

come from the difference ΔGμν ¼ GðCÞ
μν −GðRÞ

μν . The con-
tribution induced by this difference through the modi-
fication of the mass-quadrupole invariant ΔðGμνGμνÞ ¼
2GðRÞ

μν ΔGμν þ ðdouble-zero termsÞ has the form

Z
d4xZμνRμν ¼

Z
d4x

�
Zμν −

1

2
Zλ

λgμν

��
Rμν −

1

2
Rgμν

�
:

ðB6Þ

It is to be canceled by the piece of the integral in Eq. (B5)
that is sourced by ∝ ðRμν − 1

2
RgμνÞ. An obvious choice

guaranteeing such cancellation is h
ðGρσÞ
μν ¼ 16πðZμν −

1
2
Zλ

λgμνÞ= ffiffiffiffiffiffi−gp
. Possible extra terms linear (at least) in

the Ricci tensor or scalar merely add irrelevant double zeros
to the action. Those can be tuned to have

h
ðGρσÞ
μν ¼ −4π

X
A

μð2ÞA

Z
dτA½GðRÞ

μν �A
δð4Þ½xμ − yμAðτAÞ�ffiffiffiffiffiffi−gp : ðB7Þ

Regarding the mass octupole, we use the same method as
for the mass quadrupole to construct some suitable h

ðGρστÞ
μν ,

the only new feature being that ΔðGλμνGλμνÞ is now a
space-time integral with a source of the form Zλ

μν∇λRμν.
However, the structure (B6) is straightforwardly recovered
by integrating by parts. We finally find that, in the mass-
octupolar sector, the equality S̃ðGρστÞ ¼ ðSðRÞÞðGρστÞ is
achieved by setting

h
ðGρστÞ
μν ¼ 4π

X
A

μð3ÞA

3

Z
dτA∇λ

��
GðRÞ

λμν þ
2

3
∇κRκρλσuρuσ

�
uμuν þ

2

3
gμν

��
A

δð4Þ½x − yAðτAÞ�ffiffiffiffiffiffi−gp
�
: ðB8Þ

APPENDIX C: THE TIDAL ACCELERATION TO NNL ORDER

By varying the total generalized Fokker Lagrangian [(4.3) and (4.4)] and iteratively replacing the accelerations by the
values provided by the EOM consistently truncated at lower orders, we obtain the total acceleration of body 1 as
ai1 ¼ ðai1Þpp þ ðai1Þtidal, where the point-particle part can be found in, e.g., Ref. [41] and where

m1ðai1Þtidal ¼
G2

r712

�
ni12ð−9m2

2μ
ð2Þ
1 − 9m2

1μ
ð2Þ
2 Þ þ 1

c2

�
ni12

�
m2

2μ
ð2Þ
1 ð−36ðn12v1Þ2 þ 72ðn12v1Þðn12v2Þ

− 18v212 þ 9v21Þ þm2
1μ

ð2Þ
2

�
144ðn12v1Þ2 − 288ðn12v1Þðn12v2Þ þ 180ðn12v2Þ2 −

81

2
v212 þ 9v21

�

þm2
2σ

ð2Þ
1 ð−96ðn12v12Þ2 − 48v212Þ þm2

1σ
ð2Þ
2 ð−96ðn12v12Þ2 − 48v212Þ þ

Gm1

r12

�
159

2
m2

2μ
ð2Þ
1

þ 132m2
1μ

ð2Þ
2

�
þ Gm2

r12
ð99m2

2μ
ð2Þ
1 þ 84m2

1μ
ð2Þ
2 Þ

�
þ vi1½m2

2μ
ð2Þ
1 ð54ðn12v1Þ − 45ðn12v2ÞÞ

þ 9m2
1μ

ð2Þ
2 ðn12v1Þ þ 144m2

2σ
ð2Þ
1 ðn12v12Þ þ 144m2

1σ
ð2Þ
2 ðn12v12Þ� þ vi2½m2

2μ
ð2Þ
1 ð−54ðn12v1Þ

þ 45ðn12v2ÞÞ − 9m2
1μ

ð2Þ
2 ðn12v1Þ − 144m2

2σ
ð2Þ
1 ðn12v12Þ − 144m2

1σ
ð2Þ
2 ðn12v12Þ�

�

þ 1

c4

�
ni12

�
m2

2μ
ð2Þ
1 ð135ðn12v1Þ4 − 540ðn12v1Þ3ðn12v2Þ þ 990ðn12v1Þ2ðn12v2Þ2

− 900ðn12v1Þðn12v2Þ3 þ 225ðn12v2Þ4 þ 72ðn12v1Þðn12v2Þðv1v2Þ − 18ðv1v2Þ2 − 126ðn12v1Þ2v212
þ 324ðn12v1Þðn12v2Þv212 − 90ðn12v2Þ2v212 − 36ðv1v2Þv212 − 27v412 − 72ðn12v1Þðn12v2Þv21
þ 36ðv1v2Þv21 þ 36v212v

2
1 − 18v41Þ þm2

1μ
ð2Þ
2 ð−3855ðn12v1Þ4 þ 15420ðn12v1Þ3ðn12v2Þ

− 23850ðn12v1Þ2ðn12v2Þ2 þ 16860ðn12v1Þðn12v2Þ3 − 4665ðn12v2Þ4 − 288ðn12v1Þðn12v2Þðv1v2Þ
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þ 360ðn12v2Þ2ðv1v2Þ −
81

2
ðv1v2Þ2 þ 2598ðn12v1Þ2v212 − 5484ðn12v1Þðn12v2Þv212

þ 3084ðn12v2Þ2v212 − 81ðv1v2Þv212 −
1923

8
v412 þ 288ðn12v1Þðn12v2Þv21 − 360ðn12v2Þ2v21

þ 81ðv1v2Þv21 þ 81v212v
2
1 −

81

2
v41

�
þm2

2σ
ð2Þ
1 ð840ðn12v12Þ4 − 960ðn12v12Þ3ðn12v1Þ

þ 480ðn12v12Þ2ðn12v1Þ2 − 192ðn12v12Þ2ðv1v2Þ þ 192ðn12v12Þðn12v1Þðv1v2Þ − 48ðv1v2Þ2
− 336ðn12v12Þ2v212 − 192ðn12v12Þðn12v1Þv212 þ 192ðn12v1Þ2v212 − 96ðv1v2Þv212 − 72v412

þ 192ðn12v12Þ2v21 − 192ðn12v12Þðn12v1Þv21 þ 96ðv1v2Þv21 þ 96v212v
2
1 − 48v41Þ

þm2
1σ

ð2Þ
2 ð1000ðn12v12Þ4 − 960ðn12v12Þ3ðn12v1Þ þ 480ðn12v12Þ2ðn12v1Þ2 − 192ðn12v12Þ2ðv1v2Þ

þ 192ðn12v12Þðn12v1Þðv1v2Þ − 48ðv1v2Þ2 þ 64ðn12v12Þ2v212 − 192ðn12v12Þðn12v1Þv212
þ 192ðn12v1Þ2v212 − 96ðv1v2Þv212 − 128v412 þ 192ðn12v12Þ2v21 − 192ðn12v12Þðn12v1Þv21
þ 96ðv1v2Þv21 þ 96v212v

2
1 − 48v41Þ þ

Gm1

r12

�
m2

2μ
ð2Þ
1

�
7215

8
ðn12v1Þ2 −

7431

4
ðn12v1Þðn12v2Þ

þ 4461

8
ðn12v2Þ2 −

285

8
v212 −

159

2
v21

�
þm2

1μ
ð2Þ
2

�
−
15717

8
ðn12v1Þ2 þ

16581

4
ðn12v1Þðn12v2Þ

−
22521

8
ðn12v2Þ2 þ

4597

8
v212 − 132v21

�
þm2

2σ
ð2Þ
1 ð656ðn12v12Þ2 − 144ðn12v12Þðn12v1Þ

þ 200v212Þ þm2
1σ

ð2Þ
2 ð1124ðn12v12Þ2 − 144ðn12v12Þðn12v1Þ þ 436v212Þ

�

þ Gm2

r12

�
m2

2μ
ð2Þ
1

�
252ðn12v1Þ2 − 504ðn12v1Þðn12v2Þ −

387

2
ðn12v2Þ2 þ 162v212 − 99v21

�

þm2
1μ

ð2Þ
2 ð−2568ðn12v1Þ2 þ 5136ðn12v1Þðn12v2Þ − 2946ðn12v2Þ2 þ 426v212 − 84v21Þ

þm2
2σ

ð2Þ
1 ð672ðn12v12Þ2 þ 336v212Þ þm2

1σ
ð2Þ
2 ð592ðn12v12Þ2 þ 192v212Þ

�
þG2m2

1

r212

�
−
2145

7
m2

2μ
ð2Þ
1

− 1008m2
1μ

ð2Þ
2

�
þ G2m1m2

r212

�
−
2581

2
m2

2μ
ð2Þ
1 − 1805m2

1μ
ð2Þ
2

�
þG2m2

2

r212

�
−576m2

2μ
ð2Þ
1

−
6705

14
m2

1μ
ð2Þ
2

��
þ vi1

�
m2

2μ
ð2Þ
1 ð−144ðn12v1Þ3 þ 468ðn12v1Þ2ðn12v2Þ − 720ðn12v1Þðn12v2Þ2

þ 360ðn12v2Þ3 − 342ðn12v1Þðv1v2Þ þ 360ðn12v2Þðv1v2Þ þ 144ðn12v1Þv21 − 135ðn12v2Þv21
þ 198ðn12v1Þv22 − 225ðn12v2Þv22Þ þm2

1μ
ð2Þ
2

�
1248ðn12v1Þ3 − 3888ðn12v1Þ2ðn12v2Þ

þ 3996ðn12v1Þðn12v2Þ2 − 1392ðn12v2Þ3 þ 9ðn12v1Þðv1v2Þ −
903

2
ðn12v1Þv212 þ 492ðn12v2Þv212

− 9ðn12v1Þv21
�
þm2

2σ
ð2Þ
1 ð−1056ðn12v12Þ3 þ 1248ðn12v12Þ2ðn12v1Þ − 576ðn12v12Þðn12v1Þ2

− 960ðn12v12Þðv1v2Þ þ 48ðn12v1Þðv1v2Þ þ 336ðn12v12Þv21 þ 48ðn12v1Þv21 þ 624ðn12v12Þv22
− 96ðn12v1Þv22Þ þm2

1σ
ð2Þ
2 ð−1664ðn12v12Þ3 þ 1248ðn12v12Þ2ðn12v1Þ − 576ðn12v12Þðn12v1Þ2

− 1168ðn12v12Þðv1v2Þ þ 48ðn12v1Þðv1v2Þ þ 440ðn12v12Þv21 þ 48ðn12v1Þv21 þ 728ðn12v12Þv22
− 96ðn12v1Þv22Þ þ

Gm1

r12

�
m2

2μ
ð2Þ
1

�
−
1209

4
ðn12v1Þ þ

1179

4
ðn12v2Þ

�
þm2

1μ
ð2Þ
2

�
241

4
ðn12v1Þ
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−
661

4
ðn12v2Þ

�
þm2

2σ
ð2Þ
1 ð−712ðn12v1Þ þ 856ðn12v2ÞÞ þm2

1σ
ð2Þ
2 ð−1416ðn12v1Þ þ 1560ðn12v2ÞÞ

�

þ Gm2

r12
½m2

2μ
ð2Þ
1 ð−378ðn12v1Þ þ 279ðn12v2ÞÞ þm2

1μ
ð2Þ
2 ð714ðn12v1Þ − 798ðn12v2ÞÞ

− 1008m2
2σ

ð2Þ
1 ðn12v12Þ − 784m2

1σ
ð2Þ
2 ðn12v12Þ�

�
þ vi2

�
m2

2μ
ð2Þ
1 ð144ðn12v1Þ3 − 468ðn12v1Þ2ðn12v2Þ

þ 720ðn12v1Þðn12v2Þ2 − 360ðn12v2Þ3 þ 342ðn12v1Þðv1v2Þ − 360ðn12v2Þðv1v2Þ − 144ðn12v1Þv21
þ 135ðn12v2Þv21 − 198ðn12v1Þv22 þ 225ðn12v2Þv22Þ þm2

1μ
ð2Þ
2

�
−1248ðn12v1Þ3

þ 3888ðn12v1Þ2ðn12v2Þ − 3996ðn12v1Þðn12v2Þ2 þ 1392ðn12v2Þ3 − 9ðn12v1Þðv1v2Þ þ
903

2
ðn12v1Þv212

− 492ðn12v2Þv212 þ 9ðn12v1Þv21
�
þm2

2σ
ð2Þ
1 ð1056ðn12v12Þ3 − 1248ðn12v12Þ2ðn12v1Þ

þ 576ðn12v12Þðn12v1Þ2 þ 960ðn12v12Þðv1v2Þ − 48ðn12v1Þðv1v2Þ − 336ðn12v12Þv21 − 48ðn12v1Þv21
− 624ðn12v12Þv22 þ 96ðn12v1Þv22Þ þm2

1σ
ð2Þ
2 ð1664ðn12v12Þ3 − 1248ðn12v12Þ2ðn12v1Þ

þ 576ðn12v12Þðn12v1Þ2 þ 1168ðn12v12Þðv1v2Þ − 48ðn12v1Þðv1v2Þ − 440ðn12v12Þv21 − 48ðn12v1Þv21
− 728ðn12v12Þv22 þ 96ðn12v1Þv22Þ þ

Gm1

r12

�
m2

2μ
ð2Þ
1

�
1209

4
ðn12v1Þ −

1179

4
ðn12v2Þ

�

þm2
1μ

ð2Þ
2

�
−
241

4
ðn12v1Þ þ

661

4
ðn12v2Þ

�
þm2

2σ
ð2Þ
1 ð712ðn12v1Þ − 856ðn12v2ÞÞ

þm2
1σ

ð2Þ
2 ð1416ðn12v1Þ − 1560ðn12v2ÞÞ

�
þ Gm2

r12
½m2

2μ
ð2Þ
1 ð378ðn12v1Þ − 279ðn12v2ÞÞ

þm2
1μ

ð2Þ
2 ð−714ðn12v1Þ þ 798ðn12v2ÞÞ þ 1008m2

2σ
ð2Þ
1 ðn12v12Þ þ 784m2

1σ
ð2Þ
2 ðn12v12Þ�

��

þ 1

r212
ni12ð−60m2

2μ
ð3Þ
1 − 60m2

1μ
ð3Þ
2 Þ

�
þO

�
ϵtidal
c6

�
: ðC1Þ

The tidal part of the relative acceleration in the c.m. frame, deriving from the c.m. Lagrangian whose tidal part is shown in
(5.4), reads

ðaiÞtidal ¼ − 18
G2m
r7

μð2Þþ ni

þ 1

c2

�
G2m
r7

�
ðð108þ 72νÞμð2Þþ þ 180Δμð2Þ− − 192σð2Þþ Þ_r2ni þ

��
−
81

2
− 54ν

�
μð2Þþ −

45

2
Δμð2Þ−

−96σð2Þþ

�
v2ni þ ðð63 − 36νÞμð2Þþ − 45Δμð2Þ− þ 288σð2Þþ Þ_rvi

�
þ G3m2

r8
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