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The deterministic nature of general relativity is ensured by the strong cosmic censorship conjecture,
which asserts that spacetime cannot be extended beyond the Cauchy horizon with the square integrable
connection. Although this conjecture holds true for asymptotically flat black hole spacetimes in general
relativity, a potential violation of this conjecture occurs in charged asymptotically de Sitter spacetimes.
Since it is expected that the Einstein-Hilbert action will involve higher curvature corrections, in this article
we have studied whether one can restore faith in the strong cosmic censorship when higher curvature
corrections to general relativity are considered. Contrary to our expectations, we have explicitly
demonstrated that not only a violation to the conjecture occurs near extremality, but the violation appears
to become stronger as the strength of the higher curvature term increases.
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I. INTRODUCTION AND MOTIVATION

The Strong Cosmic Censorship Conjecture, broadly
speaking, asserts that all the physically reasonable solutions
of Einstein’s equations with regular initial data are globally
hyperbolic, which in turn implies that general relativity is
deterministic in nature [1,2]. However, the existence of a
Cauchy horizon in several realistic solutions of Einstein’s
equations, may indicate a possible violation of strong
cosmic censorship conjecture, since a Cauchy horizon is
regarded as the boundary of maximum Cauchy develop-
ment of an initial data given on a Cauchy hypersurface.
Therefore the breakdown of strong cosmic censorship
conjecture or, equivalently, understanding the deterministic
nature of the theory boils down to the question of whether
the spacetime can be extended beyond the Cauchy horizon.
If the metric is regular at the Cauchy horizon, it is possible
to construct a geodesic that can be extended beyond the
Cauchy horizon into regions where any further evolution of
the geodesic cannot be uniquely obtained from the initial
data [3]. This scenario can be considered as a potential
violation of the strong cosmic censorship conjecture. One
possible resolution to this problem, as proposed by
Penrose, has to do with the unstable nature of the
Cauchy horizon with respect to any small perturbation
[4]. More precisely, if the perturbations at the Cauchy
horizon grow unboundedly, then ultimately they will turn
into a curvature singularity and, hence, the problem of

crossing the Cauchy horizon can be avoided. This process
of turning a Cauchy horizon to a curvature singularity is
known as the mass inflation in the literature [5–8]. This can
also be understood from the fact that all the incoming
waves will be blue shifted by an infinite amount as they
approach the Cauchy horizon, leading to the existence of a
singularity. This feature will survive for asymptotically flat
spacetimes, where the perturbations have a power-law
decay at late times, and, hence, the exponential growth
Φ ∼ eκ−u, with κ− being the surface gravity at the Cauchy
horizon, always dominates, leading to singular behavior.
On the other hand, for asymptotically de Sitter space-

times, the perturbations at late times also decay exponen-
tially, which has the possibility of being canceled by the
exponential growth at the Cauchy horizon, leading to
extension of the spacetime beyond the Cauchy horizon
[9,10]. More precisely, for the case of asymptotically
de Sitter spacetimes, e.g., the Reissner-Norsdröm-
de Sitter black hole, the perturbation attains an exponen-
tially decaying late-time tail Φ ∼ e−αu, where α ¼ −ImðωÞ
is the spectral gap related to the lowest-lying quasinormal
frequency. Therefore it is indeed possible, at least for a
certain range of parameters, where the exponential decay of
perturbation is balanced by the exponential growth of
perturbation at the Cauchy horizon, thus avoiding any
mass inflation singularity. Hence the quantity of interest in
such an analysis is the relative strength between the decay
and growth of the perturbation at the Cauchy horizon,
which is determined by the quantity β≡ ðα=κ−Þ. It so
happens that for β > 1=2, the late-time decay of the
perturbation becomes strong enough to overcome the
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growth at Cauchy horizon, thereby leading to a violation of
strong cosmic censorship conjecture [11]. In the absence of
a general proof for the strong cosmic censorship conjecture,
such an analysis plays a very crucial role in order to test the
conjecture, i.e., by looking for possible counterexamples.
This approach has been used recently by several authors in
order to test the validity of the strong cosmic censorship
conjecture for general relativity on various asymptotically
de Sitter black hole spacetimes in four and higher dimen-
sions with different test fields [12–26]. The central result
arising out of these analyses is the realization that the strong
cosmic censorship conjecture is violated in the near
extremal regime for nonrotating black holes, while for
rotating black holes, the violation can be avoided. For black
holes in the Born-Infeld-de Sitter and the Horndeski
theories, the strong cosmic censorship conjecture has also
been recently studied in [27,28].
Surprisingly, no such analysis for the validity of the

strong cosmic censorship conjecture has ever been
extended to black holes in higher curvature gravity theories.
Even though general relativity describes the gravitational
interaction around us very nicely, it also has several
shortcomings. The most notable among various ones are
the singularity problem and late time acceleration of the
Universe. Besides there are also numerous other motiva-
tions for looking for gravity theories beyond general
relativity, including nonrenormalizability of the gravita-
tional action [29–32]. Thus it is reasonable to believe that
general relativity is only an effective field theory, which
must be supplemented by higher curvature corrections at
the strong gravity regime. The most natural generalization
of the Einstein-Hilbert action involving higher curvature
corrections is the Lanczos-Lovelock gravity, containing at
most the second derivative of the metric [33–38]. This
motivates us to study whether the strong cosmic censorship
conjecture holds in the presence of higher curvature terms.
There is a hope that even though the strong cosmic
censorship conjecture is violated for certain solutions in
general relativity, when the higher curvature corrections are
taken into account it may be respected.
Followingwhich, in this work, we have studied the strong

cosmic censorship conjecture in the context of two higher
curvature theories. As our first example, we consider the
case of Einstein-Gauss-Bonnet gravity in five and higher
spacetime dimensions, which is the second-order term of the
Lanczos-Lovelock Lagrangian. The Einstein-Gauss-Bonnet
theory admits spherically symmetric charged black hole
solutions with a cosmological constant [39–44], which
involves a Cauchy horizon. Thus one can ask whether the
solution can be extended beyond the Cauchy horizon. Our
second example involves the study of pure Lovelock black
hole solutions [45–50] in dimensions d ≥ ð3kþ 1Þ, with
“k” being the Lovelock order, i.e., k ¼ 1 is the pure Einstein
Gravity, while k ¼ 2 is the pure Gauss-Bonnet Gravity and
so on. We would like to emphasize that, although the pure

Lovelock solutions may not represent a physical black hole,
it does provide a natural platform to study the effect of higher
curvature terms to the strong cosmic censorship conjecture,
which is the ultimate aim of our work.
The article is arranged as follows: In Sec. II we start by

reviewing the relationship between the quasinormal fre-
quency of the photon sphere modes and the Lyapunov
exponent associated with the photon sphere. This is a general
result for any spherically symmetric spacetime irrespective of
the underlying theory of gravity. Subsequently in Sec. III we
present a detailed analysis for obtaining the quasinormal
frequency for Einstein-Gauss-Bonnet black holes numeri-
cally and demonstrate the violation of the strong cosmic
censorship conjecture. The above procedure has been
repeated in order to obtain the quasinormal frequencies
for pure Lovelock black holes in an appropriate spacetime
dimension and show the violation of the strong cosmic
censorship conjecture in Sec. IV. We have compared this
violation with the corresponding scenario in Einstein gravity
to illustrate the effect of higher curvature terms. From both of
our examples, we conclude that the violation of the strong
cosmic censorship conjecture becomes even stronger when
higher curvature terms are added. We end with a brief
discussion and possible future outlooks in Sec. V.
Notations and Conventions: We have set the fundamen-

tal constants c ¼ 1 ¼ G. The Roman indices ða; b; c; � � �Þ
are used to denote spacetime indices. The Greek indices
ðμ; ν; α; � � �Þ, on the other hand, are used to denote spatial
indices on a spacelike hypersurface.

II. STRONG COSMIC CENSORSHIP
CONJECTURE AND QUASINORMAL

MODES: A BRIEF OVERVIEW

The stability of black holes under small perturbation, one
of the most important areas of research in black hole
physics, requires the computation of the quasinormal
modes. These modes are the eigenfunctions of the pertur-
bation equation with respect to some special set of
boundary conditions, i.e., only ingoing modes at the event
horizon and outgoing modes at infinity. The real part of the
associated eigenvalues, known as quasinormal mode
frequencies, determines the time period of oscillation,
while the imaginary part dictates the decay rate of the
perturbation. It is the decay rate of the perturbation, which
is central to the stability of a black hole. Thus the question
of stability of a black hole spacetime is linked with the sign
of the imaginary part of the quasinormal mode frequency,
ω. For most black hole spacetimes, because of the complex
structure of the perturbation equation, it is a daunting task
to obtain an analytical expression for the quasinormal
frequencies by solving the perturbation equation. A rela-
tively more straightforward task is to obtain the quasinor-
mal mode frequencies by solving the perturbation equation
numerically, and various numerical techniques have been
developed over the last few decades to compute the
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quasinormal mode frequencies accurately. However, in
certain limiting cases, it is indeed possible to obtain an
analytical expression of the quasinormal mode frequency.
One such limiting case is the ray optics approximation or
the eikonal limit, where both the real and imaginary parts of
the quasinormal mode frequency is related to various
geometric constructs associated with the photon sphere.
This stems from the fact that the effective potential
experienced by a photon in a black hole spacetime is
identical to the potential experienced by a test field in this
black hole spacetime, in the large angular momentum limit.
Thus the quasinormal mode frequencies, which are directly
connected with the potential in the perturbation equation
in the eikonal limit (this also corresponds to the large
angular momentum limit), get related to the potential a
photon experiences. In particular, the imaginary part of the
quasinormal mode frequency is related to the Lyapunov
exponent associated with the instability of the photon
sphere and the real part to the angular velocity of the
photon sphere [51–56], such that

ωn ¼ Ωphl − i

�
nþ 1

2

�
λph; ð1Þ

where l is the angular momentum and n ¼ 0; 1; 2…
represents the overtone number. We also refer the reader
to [57,58], where the above correspondence is discussed in
the context of higher curvature gravity.
The Lyapunov exponent λph, associated with the photon

sphere, determines the rate at which a geodesic located at
the photon sphere diverges or converges with respect to a
nearby geodesic. Further, Ωph is the angular velocity of
a photon located at the maxima of the photon sphere. In a
d-dimensional static and spherically symmetric spacetime
one can explicitly write down the expressions for λph and
Ωph in terms of the metric coefficients, which read

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2
d−2: ð2Þ

Exploiting the fact that the spacetime possesses spherical
symmetry, it is convenient to restrict our attention only to
the equatorial plane, which is identified by setting the
azimuthal angles to π=2, and, hence, the Lagrangian
associated with the geodesic motion takes the form,

L ¼ 1

2
ð−fðrÞ_t2 þ fðrÞ−1 _r2 þ r2 _ϕ2Þ; ð3Þ

where “dot” represents the derivative with respect to the
affine parameter. Here t and ϕ are cyclic coordinates and
correspondingly the energy and angular momentum,
pt ¼ −E and pϕ ¼ L are the constants of motion. The
unstable circular null trajectory or, more commonly, the
photon sphere, is determined by the equation V 0

effðrphÞ ¼
V 00
effðrphÞ ¼ 0, where Veff is the effective potential a photon

experiences. These equations further reduce to,

E2

L2
¼ fðrÞ

r2

2fðrÞ ¼ rf0ðrÞ: ð4Þ

The Lyapunov exponent is determined by taking the
variation of the effective potential Veff as r→rphþδr,
and, hence, one can show the following time evolution,
δr ∼ expð�λphtÞ, where the Lyapunov exponent λph has the
following expression in terms of the effective potential [51]:

λph ¼
ffiffiffiffiffiffiffiffi
V 00
eff

2_t2

r ����
r¼rph

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrphÞ
2

�
2fðrphÞ
r2ph

− f00ðrphÞ
�s
: ð5Þ

As per our convention the time dependence of the pertur-
bation goes as expð−iωntÞ, and, hence, the imaginary part
of the quasinormal mode frequency must be negative
ensuring stability. Since the longest lived quasinormal
mode frequency corresponds to the n ¼ 0 mode in (1),
the quantity of interest for the strong cosmic censorship
conjecture, i.e., β≡ f−minðImωnÞ=κchg, is given by,

βph¼
λph
2κch

¼ 1

2κch

( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrphÞ

2

�
2fðrphÞ
r2ph

−f00ðrphÞ
�s )

: ð6Þ

This finishes one part of the story, since (1) yielding an
analytical expression for quasinormal mode frequencies
holds true only in the large l limit. Since the quasinormal
mode frequencies in this context solely depend on the
photon sphere these are generally referred to as the photon
sphere modes. However, in the presence of the electro-
magnetic charge and cosmological constant, the quasinor-
mal spectrum of a black hole spacetime possesses two other
characteristic quasinormal modes, namely, the de Sitter
modes and the near extremal modes. The de Sitter mode
becomes relevant when the cosmological horizon lies far
away from the event horizon, i.e., in the limit when the
cosmological constant goes to zero. On the other hand, the
near extremal modes dominate the spectrum in the extremal
limit, i.e., when the Cauchy horizon approaches the event
horizon. The quasinormal mode frequency associated with
a de Sitter mode can be solely determined from the
asymptotic structure of spacetime, which has the following
form [59–62]:

ωn;dS ¼ −iðlþ 2nÞκc; ð7Þ

where κc is the surface gravity associated with the cosmo-
logical horizon and the quasinormal mode frequencies are
purely imaginary, as is evident from (8). The minimum
value for the imaginary part of the quasinormal mode
frequency corresponds to ωn¼0;dS ¼ −ilκc. Note that the
analytical expressions presented in this section for the
photon sphere and de Sitter modes are not exact and have
been obtained with some approximation. Hence, in the
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subsequent sections we compute the quasinormal frequen-
cies numerically which can be further compared with their
corresponding analytical expressions given in this section.
The final set of modes which are of importance in this
context are the near extremal modes. These appear when the
Cauchy horizon and the event horizon approach each other.
In the context of black holes in general relativity it was
possible to provide an analytical estimation for thesemodes;
however, in the present context it turns out to be difficult to
write down the analytical form for the near extremal modes
due to the complicated nature of the equation determining
the event horizon. Hence, we will not attempt to write down
any analytical expression for the near extremal modes;
rather, we will compute it numerically.
Violation of the strong cosmic censorship conjecture

requires the existence of weak solutions across the Cauchy
horizon. These weak solutions are said to exist when the
integral of the nonlinear field equations multiplied with a
smooth function over a region around the Cauchy horizon is
finite. For the case of mth order Lovelock theory, the
gravitational field equations will involvem curvatures terms,
and, hence, the existence of weak solutions will demand,Z

V
ddx

ffiffiffiffiffiffi
−g

p
ψð∂Γþ Γ2Þm ¼

Z
V
ddx

ffiffiffiffiffiffi
−g

p
ψð∂ϕÞ2; ð8Þ

where V is a volume around the Cauchy horizon and ψ is a
smooth function. Thus for the above integrals to exist, ϕ
should be square integrable and, hence, must belong to
H1

loc, while Γ should be a function in L2m
loc and, thus, gμν

should be Hm
loc. Thus, for gravitational perturbation to

extend weakly across the Cauchy horizon one requires a
stronger condition than that for the scalar field. Since
extension of any perturbation, e.g., scalar, electromagnetic
or gravitational, across the Cauchy horizon would con-
stitute a violation of the strong cosmic censorship con-
jecture, it follows that if β > ð1=2Þ for the scalar
perturbation, then the strong cosmic censorship conjecture
will be violated. However, for gravitational perturbation,
one must be careful before analyzing the limit on β, which
we leave for the future.
To see how the choice for β can be related to the validity

of the strong cosmic censorship conjecture, consider the
field equation□Φ ¼ 0 that a test scalar field obeys in the d
dimensional static and spherically symmetric spacetime.
Due to the existence of timelike and angular Killing vectors
in the spacetime, the scalar field can be expressed as
Φðt; r;ΩÞ ¼ e−iωtRðrÞhðΩÞ, where hðΩÞ corresponds to
spherical harmonics associated with the (d − 2) dimen-
sional unit sphere. The function RðrÞ satisfies a second
order differential equation, whose two independent solu-
tions, regular at the Cauchy horizon, read

Φð1Þðt; r;ΩÞ ¼ e−iωuRð1ÞðrÞhðΩÞ;
Φð2ÞðrÞ ¼ e−iωuRð2ÞðrÞðr − rchÞiωn=κchhðΩÞ: ð9Þ

Here ωn is the quasinormal mode frequency and κch is the
surface gravity associated with the Cauchy horizon. As a
consequence, the integral of the kinetic term of the scalar
field corresponds to the integral of ðr − rchÞ2ðiωn=κch−1Þ,
which in turn corresponds to ðr − rchÞ2ðβ−1Þ. Here β has
already been defined above in terms of Imωn and surface
gravity κch as β≡ f−minðImωnÞ=κchg. For β > ð1=2Þ, the
scalar field Φ is regular at the Cauchy horizon and can be
extended beyond the horizon. Hence, the condition β >
ð1=2Þ signifies whether the strong cosmic censorship
conjecture is respected in the spacetime or not. As
emphasized above, the addition of higher curvature terms
to the field equation leads to a higher regularity requirement
for the metric, in order to have the weak solution near the
Cauchy horizon [28]. Therefore, extendibility of the metric
perturbation beyond the Cauchy horizon would yield a
different bound on β. However, since in our analysis we
consider only the case of scalar perturbation, the above
bound on β still ensures the violation of the strong cosmic
censorship conjecture.
Another technical point must be emphasized here, for the

β > ð1=2Þ condition to have any relevance with the
violation of the strong cosmic censorship conjecture, it
is necessary that the late time decay of the perturbations is
exponential. This is certainly true for asymptotically
de Sitter black holes in general relativity [63], but whether
such an exponential decay holds for asymptotically
de Sitter black holes in higher curvature theory as well
must be properly addressed. This is important, since the late
time exponential decay of the perturbation is one of the
essential ingredients in the analysis of the strong cosmic
censorship conjecture, and, thus, for our results to make
sense, we must establish such a late time exponential tail for
the asymptotically de Sitter black hole under consideration.
Interestingly, such an exponential tail has already been
reported for asymptotically de Sitter black holes in
Einstein-Gauss-Bonnet gravity in [62]. Since the black
hole solutions we will study in this work are also asymp-
totically de Sitter black holes in the Einstein-Gauss-Bonnet
gravity, thus following [62], we can safely argue that β >
ð1=2Þ will also characterize the violation of the strong
cosmic censorship conjecture in the present situation. Since
the properties of Gauss-Bonnet gravity, which is the second
order term in the Lovelock polynomial, closely match with
the higher order terms in the full Lovelock polynomial, it is
reasonable to expect that the same exponential tail would
appear even for the asymptotically de Sitter black holes in
pure Lovelock theories, which are also considered in this
work. It is certainly possible to support the argument by
further numerical analysis, e.g., time evolution of the
perturbation. However, given the complicated nature of
the Lovelock polynomial and the associated field equa-
tions, such an analysis is beyond the scope of this work.
In the subsequent sections we have carried out the

analysis presented above in the context of a scalar field
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living on the charged Einstein-Gauss-Bonnet-de Sitter
black hole background and subsequently for a pure
Lovelock black hole background. The strategy we follow
here is identical to [11], i.e., we start by computing the
quasinormal mode frequencies associated with the photon
sphere modes, de Sitter modes, and near extremal modes
numerically. Having determined each of these modes
individually, we look for any possible region of parameter
space for which violation of strong cosmic censorship
conjecture occurs, i.e., the parameter β becomes greater
than ð1=2Þ. Since the quasinormal mode spectra for
Einstein-Gauss-Bonnet as well as pure Lovelock black
holes are different from those in Einstein’s gravity and
strongly depends on the Gauss-Bonnet coupling constant
[62,64–70], it is reasonable to expect that the fate of the
strong cosmic censorship conjecture in such theories would
be different and, hence, a detailed analysis in this context is
very important. For numerical computation, we follow the
Mathematica package developed in [71]. Since it is
expected that the Einstein-Hilbert action must be supple-
mented by higher curvature terms, it is reasonable for one to
expect that problems like violation of the strong cosmic
censorship conjecture should be settled in such higher
curvature theories. This is what we explore next.

III. STRONG COSMIC CENSORSHIP
CONJECTURE IN EINSTEIN-
GAUSS-BONNET GRAVITY

The statement of the strong cosmic censorship conjec-
ture, i.e., the assertion that solutions of Einstein’s equations
are nonextendible beyond the Cauchy horizon, has been
tested for numerous black hole solutions, but mostly within
the realm of general relativity. Even though certain non-
trivial matter couplings are taken into account, the influ-
ence of higher curvature terms on the strong cosmic
censorship conjecture has not been studied earlier. Since
general relativity is not a complete theory of gravity, it is
crucial to understand the effects of these higher curvature
modifications to general relativity and, hence, on the strong
cosmic censorship conjecture. In this work we will be

interested in the higher curvature corrections within the
domain of the Lanczos-Lovelock Lagrangian, since they
represent the most general extension to general relativity in
dimensions higher than four with field equations containing
up to the second derivatives of the metric. The Lanczos-
Lovelock Lagrangian is a homogeneous polynomial in the
Riemann tensor and is given by [33–37,72],

L ¼ ffiffiffiffiffiffi
−g

p Xkmax

k¼0

ckLk; ð10Þ

where,

Lk ¼
1

2k
δa1b1���akbkc1d1���ckdk R

c1d1
a1b1

� � �Rckdk
akbk

: ð11Þ

Here Rcd
ab represents the Riemann tensor in d spacetime

dimensions and δa1b1���akbkc1d1���ckdk denotes the totally antisymmetric
Kronecker delta. The zeroth order (k ¼ 0) term of the
Lanczos-Lovelock polynomial is the cosmological con-
stant, and the first order term (k ¼ 1) represents the
Einstein-Hilbert Lagrangian, and the second order term
(k ¼ 2) is the Gauss-Bonnet Lagrangian. Further, kmax
appearing in the Lanczos-Lovelock Lagrangian is related
to the spacetime dimensions as 2kmax ≤ d. The action for
such a theory involving the first three nontrivial contribu-
tions to the Lanczos-Lovelock Lagrangian is of the follow-
ing form:

A ¼ 1

16π

Z
ddx

ffiffiffiffiffiffi
−g

p ½Rþ αðR2 − 4RabRab þ RabcdRabcdÞ

− 2Λ − 4πFpqFpq�; ð12Þ

where we have included a matter Lagrangian of the form
−ð1=4ÞFabFab and α is the Gauss-Bonnet coupling param-
eter. There exists a spherically symmetric and static black
hole solution in d spacetime dimensions arising out of the
above action, with the line element in the form presented in
(2), where the function fðrÞ becomes [40,73–75],

fðrÞ ¼ 1þ r2

2α̃

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 64πα̃M

ðd − 2ÞΣd−2rd−1
−

2α̃Q2

ðd − 2Þðd − 3Þr2d−4 þ
8α̃Λ

ðd − 1Þðd − 2Þ

s #
: ð13Þ

Here “Q” is the electromagnetic charge corresponding to
the field tensor Fμν, and α̃ ¼ ðd − 3Þðd − 4Þα is the
rescaled Gauss-Bonnet coupling constant, and M is the
mass of the black hole. Further, Σd−2 is the volume of a
(d − 2) dimensional unit sphere. The location of the
horizons is given by the equation fðrÞ ¼ 0, which further
reduces to

4Λ
ðd − 1Þðd − 2Þ r

ð2d−4Þ − 2rð2d−6Þ − 2αrð2d−8Þ

þ 32πM
ðd − 2ÞΣd−2

rðd−3Þ −
Q2

ðd − 2Þðd − 3Þ ¼ 0: ð14Þ

Since for our analysis we require the black hole under
consideration to have three horizons, namely the event
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horizon, cosmological horizon, and Cauchy horizon, (14)
must give rise to three real positive roots. This is guaranteed
from the Descartes rule of sign.
Given this black hole spacetime,which is an exact solution

of the higher curvature gravitational field equations, we are
interested in studying if there is any violation of the strong
cosmic censorship conjecture in this spacetime. It should be
emphasized that when α ¼ 0, i.e., in the absence of higher
curvature terms, the spacetime reduces to a Reissner-
Nordström -de Sitter configuration in d − dimensions and
admits violation of the strong cosmic censorship conjecture
[20]. It is therefore interesting to see whether the addition of
higher curvature terms may cure the violation of the strong
cosmic censorship conjecture when α ≠ 0. Given the choice
for fðrÞ, one can explicitly determine the quantity β for the
photon sphere modes by computing the Lyapunov exponent
and surface gravity at the Cauchy horizon following (6).
However, as emphasized earlier in this section, it is better to
determine the quasinormal mode frequencies numerically
and then further obtain β to demonstrate the violation of the
strong cosmic censorship conjecture.
Let us start by describing the dynamics of amassless scalar

fieldΦ on a d dimensional spherically symmetric black hole
background as given in (2). The evolution of the perturbation
is governed by the Klein-Gordon equation□Φ ¼ 0. For the
spherically symmetric background, one can always expand
the field in terms of a natural basis on the (d − 2) sphere,
namely the spherical harmonics Ylmðθ;ϕÞ as follows:

Φðt; r;ΩÞ ¼
X
l;m

e−iωt
ϕðrÞ

rðd−2Þ=2
YlmðΩÞ; ð15Þ

which leads to the following master equation:� ∂2

∂r2� þ ω2 − VeffðrÞ
�
ϕðrÞ ¼ 0;

VeffðrÞ ¼ fðrÞ
�
lðlþ d − 3Þ

r2
þ ðd − 2Þðd − 4Þ

4r2
fðrÞ

þ ðd − 2Þ
2r

f0ðrÞ
�
; ð16Þ

where dr� ¼ fdr=fðrÞg is the tortoise coordinate and
VeffðrÞ is the effective potential expressed above in terms
of the metric function fðrÞ. The quasinormal mode fre-
quency ωn is defined as the eigenvalue of (16) that corre-
sponds to ingoing modes at the event horizon, rh, and
outgoing modes at the cosmological horizon, rc, i.e.,

ϕðr → rhÞ ∼ e−iωr� and ϕðr → rcÞ ∼ eiωr� : ð17Þ
As mentioned earlier, for computing the quasinormal
modes numerically we follow the procedure and use the
Mathematica package developed in [71]. This requires one to
work with the redefined radial coordinate u ¼ 1=r and
impose the quasinormal mode boundary conditions appro-
priately at the event horizon and at the cosmological horizon.
Thus, we obtain the complex frequencies of the quasinormal
modes, which are the first ingredients that go into the
definition of β. The computation of κch can also be performed
in a similar manner, and, hence, the numerical estimation for
f−ðImωn;lÞ=κchg can be obtained, whose minimum value
would yield an estimation for β. This has been shown
explicitly in Table I for the three modes of interest, namely

TABLE I. Numerical values of f−ðImωn;lÞ=κchg have been presented for the lowest lying quasinormal modes for different choices of
l. We have also presented them for various choices of the rescaled Gauss-Bonnet coupling constant α̃, the cosmological constant Λ, and
the rescaled electric charge ðQ=QmaxÞ, for M ¼ 1 and d ¼ 5. The numerical estimation of β, for a given α̃, Λ, and ðQ=QmaxÞ would
correspond to the lowest entry in that respective row. The values presented in the first column, with l ¼ 0, correspond to the near
extremal modes, while the second column, with l ¼ 1, depicts the de Sitter modes. Finally, the numerical estimation for
f−ðImωn;lÞ=κchg associated with the photon sphere modes has been presented for l ¼ 10. To see the direct correspondence with
the analytical results presented in Sec. II, in the last column we provide the analytical estimate of the same as well. As evident the
numerical and analytical estimations of f−ðImωn;lÞ=κchg are in close agreement, thereby justifying the use of analytical techniques for
black holes in higher curvature theories of gravity.

α Λ Q=Qmax l ¼ 0 l ¼ 1 l ¼ 10 l ¼ 10 (Analytical)

0.1 0.06 0.99 0.849266 0.467428 0.678101 0.6770764
0.995 0.8860955 0.7059601 1.02414 1.018981

0.1 0.99 0.850344 0.6296578 0.6674398 0.6661463
0.995 0.8841346 0.9521732 1.00561 1.00365144

0.2 0.06 0.99 0.861229 0.510842 0.734559 0.7334486
0.995 0.8952727 0.7683285 1.10481 1.09940317

0.1 0.99 0.8608527 0.685808 0.7215474 0.7201545
0.995 0.893013 1.0327756 1.0865954 1.0806729

0.3 0.06 0.99 0.8714403 0.555417 0.796272 0.79027861
0.995 0.9035516 0.83237279 1.18615 1.1804926

0.1 0.99 0.8703119 0.743391 0.776177 0.774676
0.995 0.9010936 1.1544405 1.160704 1.1584423
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the near extremalmodes (l ¼ 0), the de Sitter modes (l¼1),
and the photon sphere modes (l ¼ 10). Analytical estima-
tions for f−ðImωn;lÞ=κchg have also been presented in
Table I and, as evident from the numerical results, the
analytical and numerical values match quite well, within
an error of 6%. Further, fromTable I we see that β crosses the
value ð1=2Þ for the near extremal values of the charge
parameter Q and, hence, the violation of the strong cosmic
censorship conjecture does occur in the context of asymp-
totically de Sitter black holes in Einstein-Gauss-Bonnet
gravity inheriting the Cauchy Horizon.
Let us now verify the violation of the strong cosmic

censorship conjecture in an explicit manner. This can be
achieved by plotting f−ðImωn;lÞ=κchg (which for brevity
have been labeled as β) with respect to ðQ=QmaxÞ, where
Qmax is the extremal limit of the electric charge Q for a
given cosmological constant and Gauss-Bonnet parameter

α, in Fig. 1. The left column of the figure depicts the photon
sphere modes, the plots in the middle column depict the
de Sitter modes, and finally the plots on the right-most
column illustrate the near extremal modes. It is again
obvious that all of these modes cross the β ¼ ð1=2Þ line
and, hence, the strong cosmic censorship conjecture is
violated for charged, asymptotically de Sitter black holes in
Einstein-Gauss-Bonnet gravity. Thus presence of higher
curvature terms does not help to restore the strong cosmic
censorship conjecture. Furthermore, the violation gets
severe as the Gauss-Bonnet coupling parameter α is
increased, since the curves for β cross the line β ¼
ð1=2Þ earlier, thus, allowing for a larger parameter space
where the violation of the strong cosmic censorship
conjecture can be perceived. Further, for photon sphere
modes the violation becomes stronger as the spacetime
dimension is increased from d ¼ 5 to d ¼ 6 (see the last

FIG. 1. We have plotted the quantity f−ðImωnÞ=κchg, whose minima provides an estimation for β, with the ratio ðQ=QmaxÞ for all three
quasinormal modes of different origins. The plots on the leftmost column depict the variation of the ratio f−ðImωnÞ=κchg for the photon
sphere modes, the plots in the middle column are for the variation of the same quantity with the de Sitter modes, and, finally, the plots on
the right column are showing the variations with the near extremal modes. All the plots in a certain row are for a fixed value of the
cosmological constantΛ and all three curves in a given plot are for the three choices of the rescaled Gauss-Bonnet parameter. See the text
for discussion.
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row of Fig. 1), which is reminiscent of the result presented
in [15].
To see these results from a different perspective, we have

again plotted the ratio of the imaginary part of the quasi-
normal and the surface gravity at the Cauchy horizon against
ðQ=QmaxÞ, but this time with all the three modes depicted in
the same plot for various choices of the cosmological
constant Λ and the Gauss-Bonnet Parameter α in Fig. 2
ford ¼ 5. As evident fromFig. 2, for smaller values ofΛ, the
de Sitter mode dominates over and above the other two for
smaller ðQ=QmaxÞ. Subsequently, the de Sitter mode crosses
the β ¼ ð1=2Þ line, thus violating the strong cosmic censor-
ship conjecture, and finally the near extremal modes take
over.On the other hand, for larger values of the cosmological
constant, the photon sphere mode dominates, which crosses
the β ¼ ð1=2Þ line and finally gets subdominant to the near
extremal modes. The effect of higher curvature terms on the

violation of the strong cosmic censorship conjecture can be
easily realized from Fig. 2 as well. Since it clearly illustrates
that as theGauss-Bonnet coupling parameterα increases, the
violation of the strong cosmic censorship conjecture hap-
pens at smaller and smaller values of ðQ=QmaxÞ. This
implies that the parameter space available for violating
the strong cosmic censorship conjecture is larger in higher
curvature theories in comparison to general relativity. For
this purpose, we have plotted β against ðQ=QmaxÞ for three
choices of the Gauss-Bonnet coupling parameter α, includ-
ing α ¼ 0, which represents the general relativistic scenario.

IV. STRONG COSMIC CENSORSHIP
CONJECTURE IN PURE LOVELOCK GRAVITY

So far, our discussion has been on the violation of the
strong cosmic censorship conjecture in the context of five

FIG. 2. In this figure we have demonstrated the variation of f−ðImωnÞ=κchg, whose minima correspond to the parameter β, with
respect to ðQ=QmaxÞ for all three quasinormal modes of interest in each single plot. The photon sphere modes are denoted by blue
curves, the de Sitter modes are represented by green curves, and the near extremal modes are depicted by brown curves. Each of these
plots is for various choices of the cosmological constant Λ and the Gauss-Bonnet parameter α. The first vertical line in each of these plots
corresponds to the value of ðQ=QmaxÞ, where β becomes greater than ð1=2Þ for the first time and, hence, the strong cosmic censorship
conjecture is violated. While the second vertical line corresponds to the value of ðQ=QmaxÞ, where the near extremal modes starts to
dominate. In this plot, the mass is taken to be unity and the spacetime dimension to be d ¼ 5.
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and higher dimensional Einstein-Gauss-Bonnet gravity. As
illustrated in the previous section, the Einstein-Gauss-
Bonnet gravity leads to even stronger violation of the
strong cosmic censorship conjecture than that of a black
hole solution in general relativity. This still kept room for
the question, what happens for the other higher curvature
terms in the Lanczos-Lovelock Lagrangian? In this section,
we wish to study the effect of the other higher curvature
terms in the Lanczos-Lovelock Lagrangian on the violation
of the strong cosmic censorship conjecture, and for this
purpose we wish to consider the case of pure Lovelock
gravity [45,46], which refers to a single term in the full
Lovelock polynomial. More precisely, the kth order pure
Lovelock term corresponds to the LagrangianL ¼ ffiffiffiffiffiffi−gp

Lk,
without the sum. For example, the second-order pure
Lovelock theory has the Lagrangian of the form, L2 ¼ffiffiffiffiffiffi−gp fR2 − 4RabRab þ RabcdRabcdg. Thus the action for
such a theory involving a pure Lovelock Lagrangian with
a positive cosmological constant term is given by,

A ¼ 1

16π

Z
ddx

ffiffiffiffiffiffi
−g

p ½−2Λþ Lk − 4πFabFab�: ð18Þ

Such a theory admits the spherically symmetric black hole
solution in d spacetime dimensions with the line element
expressed in the form of (2), where the function fðrÞ is
given by [76],

fðrÞ ¼ 1 −
�
Λ̃r2k þ 2Mk

rd−2k−1
−

Q̃2

r2d−2k−4

�1
k

; ð19Þ

where Λ̃ and Q̃ are some rescaled version of the cosmological
constant and Uð1Þ the electromagnetic charge associated
with theMaxwell field coupledwith gravity. It is well known
that such a black hole solution admits instabilities with
respect to small perturbations in dimensions d < ð3kþ 1Þ
[45]. Hence, in our analysis, we restrict our attention only to
black holes in d ≥ ð3kþ 1Þ. In particular, we demonstrate
our result for the pure Gauss-Bonnet solution (k ¼ 2) in
seven spacetime dimensions. To illustrate the effect of pure
Gauss-Bonnet term on the strong cosmic censorship con-
jecture, we compare it with that of the corresponding black
hole solution of Einstein gravity in seven dimensions, i.e., a
Reissner-Nordström de Sitter solution. In d ¼ 7, the metric
component fðrÞ for the charged pure Gauss-Bonnet-de-
Sitter and charged Einstein-de-Sitter black hole solution
takes the form,

fGBðrÞ ¼ 1 −
�
Λ̃r4 þ 2M2

r2
−
Q̃2

r6

�1
2

;

fEHðrÞ ¼ 1 −
�
Λ̃r2 þ 2M

r4
−
Q̃2

r8

�
: ð20Þ

Thehorizons of both of these black hole solutions correspond
to the solutions of the equationsfGBðrÞ ¼ 0 and fEHðrÞ ¼ 0.

FIG. 3. We have plotted f−ðImωnÞ=κchg (for notational convenience, we have labeled the axis as β) in the context of pure Gauss-
Bonnet gravity as well as Einstein gravity, with the ratio ðQ=QmaxÞ, for the photon sphere (top left), de Sitter (top middle), and near
extremal (top right) modes in the upper row. As evident from the plots of all the three modes, the strong cosmic censorship conjecture is
violated in pure Gauss-Bonnet gravity. Moreover, all these plots demonstrate that the violation of the strong cosmic censorship
conjecture is more strong for pure Gauss-Bonnet gravity than the Einstein gravity in d ¼ 7 dimensions. Here we have taken the
cosmological constant to be Λ ¼ 0.06 and the mass being M ¼ 1. The bottom panel demonstrates the variation of f−ðImωnÞ=κchg for
seven dimensional pure Gauss-Bonnet gravity with various choices of the cosmological constant. As the figures clearly demonstrate, the
photon sphere mode always dominates till the near extremal modes take over. Note that the dominant quasinormal modes, which are the
near extremal mode in all three plots always stays smaller than unity.
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The existence of three positive real roots of these equations
can be easily realized from the Descartes rule of the sign
applied to the solutions of the above equations.
To check the validity of the strong cosmic censorship

conjecture we follow the identical procedure adopted for
the case of Einstein-Gauss-Bonnet gravity in the previous
section. We start by computing the quasinormal mode
frequencies and then the relative ratio between the late-time
decay rate governed by the imaginary part of the lowest
lying quasinormal modes and growth at the Cauchy
horizon corresponding to a massless scalar perturbation.
Following which we have demonstrated the variation of
f−ðImωnÞ=κchg, whose minima provides an estimation for
β, with the electric charge ðQ=QmaxÞ, where Qmax corre-
sponds to the extremal value of the electric charge in Fig. 3.
We have depicted the variation of f−ðImωnÞ=κchg for a
given Λ, for the photon sphere, de Sitter, and near extremal
modes. As the figures in the upper panel of Fig. 3 explicitly
demonstrate, the strong cosmic censorship conjecture is
indeed violated in the pure Lovelock spacetimes as well.
Further, as evident from Fig. 3, the violation of the strong
cosmic censorship conjecture in a pure Lanczos-Lovelock
theory occurs at smaller values of Q=Qmax in comparison
with the similar solution for Einstein gravity in the same
spacetime dimensions. Thus we can safely conclude that
the violation of the strong cosmic censorship conjecture is
more severe in theories involving higher order Lovelock
terms than in general relativity. For completeness, we have
also plotted the variation of f−ðImωnÞ=κchg with
ðQ=QmaxÞ for the three modes, with different choices of
the cosmological constant, in the context of the pure Gauss-
Bonnet black hole in seven spacetime dimensions. As these
figures in the bottom panel of Fig. 3 explicitly demonstrate,
the strong cosmic censorship conjecture is indeed violated.
In the initial phase, β is dominated by the photon sphere
modes, while later on the near extremal modes take over.
However, the β value for the dominating mode never
crosses the value unity, which suggests that the field can
be extended beyond the Cauchy horizon, with regularity as
the H1

loc function, but not smoother than that. This is
consistent with the expectation from the general relativistic
scenario as well. Thus in this respect the higher curvature
gravity follows the footsteps of general relativity, even
though the parameter space available for the violation of the
strong cosmic censorship conjecture is larger in higher
curvature theories of gravity.

V. CONCLUSION

Given an initial field configuration, predicting what
happens to the field in the future through the field equation
is one of the essential features that any well-behaved theory
of nature must possess. For the case of general relativity,
this is ensured by the strong cosmic censorship conjecture,
which states that the extension of the spacetime metric
across the Cauchy horizon keeping the Christoffel symbols

as square integrable functions is impossible. However,
recently it has appeared that this version of the strong
cosmic censorship conjecture is seemingly violated for
charged black hole spacetimes with a positive cosmological
constant. This suggests that the classical fate of an observer
is not completely determined from the initial data in general
relativity. This is a cause for alarm, since it depicts that the
deterministic nature of general relativity may break down
under certain situations. At the same time one must take
cognizance of the fact that general relativity is only an
effective theory and it must be supplemented by higher
curvature corrections. Thus, there is a tantalizing possibility
that the strong cosmic censorship conjecture may be
respected when these higher curvature terms are taken into
account.
Following this possibility, we have considered two well

known higher curvature theories of gravity and have
explored whether the strong cosmic censorship conjecture
is respected for charged asymptotically de Sitter black hole
solutions in them. In particular, we have studied the fate of
the strong cosmic censorship conjecture in the context of a
spherically symmetric black hole spacetime in Einstein-
Gauss-Bonnet gravity as well as in pure Gauss-Bonnet
theory. We have started by computing the quasinormal
frequencies in these black hole spacetimes both analytically
as well as numerically, which shows good agreement
between them (see Table I). Following which we have
determined the minimum of the imaginary part of the
quasinormal mode frequency as well as the surface gravity
at the Cauchy horizon, which has helped to study the
variation of β with the electromagnetic charge ðQ=QmaxÞ,
where Qmax corresponds to the extremal value of the
charge. Surprisingly, we find that the strong cosmic
censorship conjecture is violated even in these contexts.
Moreover, as the Gauss-Bonnet coupling constant, which
characterizes the strength of the higher curvature terms,
increases the violation of the strong cosmic censorship
conjecture becomes stronger. This conclusion has been
achieved by considering all three families of modes,
namely the photon sphere modes, the de Sitter modes,
and the near extremal modes. Thus, our analysis concludes
that the addition of higher curvature terms does not cure the
problem with the strong cosmic censorship conjecture,
rather it leads to an even stronger violation of the strong
cosmic censorship conjecture.
To further strengthen our result, we have considered one

more type of higher curvature theory, namely, the pure
Lanczos-Lovelock theory of gravity. In particular, we have
studied the case of a static, spherically symmetric black
hole solution with a positive cosmological constant in
seven-dimensional pure Gauss-Bonnet gravity. Following
an identical approach to the Einstein-Gauss-Bonnet case,
i.e., by first computing the quasinormal modes and then
computing β for the photon sphere modes and the near
extremal modes, we see that the violation of the strong
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cosmic censorship conjecture is present even in this
context. Furthermore, by comparing this result to that of
the pure Einstein gravity in seven dimensions we could
conclude that the violation of the strong cosmic censorship
conjecture is stronger in the case of pure Gauss-Bonnet
gravity. Thus, our result suggests that the strong cosmic
censorship conjecture is violated even when higher curva-
ture terms are included and the violation is stronger than
general relativity. Moreover, finally the near extremal
modes dominate and they reach the value unity asymp-
totically asQ approachesQmax. This suggests that the fields
are extendible across the Cauchy horizon as functions while
belonging to H1

loc, but not smoother than that. In this
respect the results are at per with the case of general
relativity. As a future outlook, one may consider a similar
scenario for rotating black hole solutions in the presence of
higher curvature and see whether the strong cosmic censor-
ship conjecture is still violated. This will help us to

understand the origin of this violation in a better manner.
Further, the above result was derived for the scalar field and
we hope that similar analysis will go through for the Dirac
and electromagnetic fields, but for gravitational perturba-
tions one needs to be careful due to the presence of higher
curvature terms. These we leave for the future.
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